
Chapter 8

Preconditioning

8.1 The General Approach

Remark 8.1. Motivation and idea. It was seen in Chapter 7 that the number
of iterations might depend on the condition number of the matrix. In order
to reduce the number of iterations, one wants to replace the original linear
system of equations (1.1) by an equivalent system whose system matrix has
a smaller condition number. This strategy is called preconditioning.

The main idea of preconditioning consists in applying the iterative method
to the equivalent system

M−1Ax = M−1b (preconditioning from left)

or
AM−1y = b, x = M−1y (preconditioning from right).

The non-singular matrix M is called preconditioner. This matrix should sat-
isfy two requirements:

• The convergence of the iterative method for the system with the matrix
M−1A or AM−1, respectively, should be faster than for the original sys-
tem with the matrix A. That means,M−1 should be a good approximation
to A−1.

• Linear systems with the matrix M should be solvable with low costs.

In general, one has to find a compromise between these two requirements.
Usually, left and right preconditioning lead to different methods which

might behave sometimes quite differently. ✷

Remark 8.2. Some preconditioners. An easy way to construct preconditioners
consists in starting with the decomposition A = D + L+ U , see Section 3.2,
and using parts of this decomposition which are easily invertible:

• M = D, diagonal preconditioner, Jacobi preconditioner,
• M = D + L, forward Gauss–Seidel preconditioner,
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• M = D + U , backward Gauss–Seidel preconditioner,
• M = (D + L)D−1 (D + U), symmetric Gauss–Seidel preconditioner.

Damped versions of the classical iterative schemes can be also used. A more
advanced preconditioner will be presented in Section 8.3.

Note that M or M−1 do not need to be known explicitly. They can also
stand for some numerical (iterative) method for solving linear systems of
equations. Then, M−1 means that this method should be applied to a vector.

✷

Remark 8.3. Change in algorithms for general matrices if the preconditioner
is applied. In algorithms for general matrices A, preconditioning from left

consists in replacing A by M−1A and r(k) by M−1r(k) in the algorithms.
Then, e.g., GMRES computes the iterate

x(k) ∈ x(0) +Kk

�
M−1r(0),M−1A

�

such that
���M−1r(k)

���
2
becomes minimal. ✷

8.2 Symmetric Matrices

Remark 8.4. A difficulty and its solution. A problem occurs if the matrix A is
symmetric and the iterative method wants to exploit this property, e.g., using
short recurrences, since in general neither M−1A nor AM−1 are symmetric.
This problem can be solved by constructing the orthonormal basis of the
Krylov subspace with respect to an appropriate inner product.

Let H be a Hilbert1 space with the inner product (·, ·)H and L : H → H
be a linear map. This map is called self-adjoint with respect to (·, ·)H if

(Lv, w)H = (v,Lw)H ∀ v, w ∈ H.

In the case H = Rn equipped with the standard Cartesian basis and the
Euclidean inner product (·, ·), a linear map, which is represented by a matrix
A, is self-adjoint if

(Ax, y) = (x,Ay) ∀ x, y ∈ Rn.

This condition is equivalent to A being symmetric.
If the preconditioner M is symmetric and positive definite, then

(x, y)M = (x,My), ∀ x, y ∈ Rn

1
David Hilbert (1862 – 1943)
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defines an inner product in Rn. The induced norm is given by �x�M =

(x, x)
1/2
M .

Consider for the remainder of this section preconditioning from left. The
matrix M−1A is self-adjoint with respect to this inner product since

(M−1Ax, y)M = (M−1Ax,My) = (Ax, y) = (x,Ay) = (x,M−1Ay)M

for all x, y ∈ Rn.
Now, one can generate an orthonormal basis with respect to the inner

product (·, ·)M of Kk

�
M−1r(0),M−1A

�
by an appropriate modification of

the Lanczos algorithm. ✷

Algorithm 8.5. Preconditioned Lanczos algorithm for symmetric
matrices. Given a symmetric matrix A ∈ Rn×n, a symmetric positive defi-

nite matrix M ∈ Rn×n, and r(0) ∈ Rn.

1. z = M−1r(0)

2. q
1
=

z

(r(0), z)1/2

3. β0 = 0
4. q

0
= 0

5. for j = 1 : k
6. s = Aq

j

7. z = M−1s

8. αj =
�
s, q

j

�

9. z = z − αjqj − βj−1qj−1

10. βj = (s, z)1/2

11. q
j+1

= z/βj

12. endfor

✷

Remark 8.6. On the preconditioned Lanczos algorithm for symmetric matri-
ces.

• The vector z is computed by solving Mz = s.
• The matrix form of the preconditioned Lanczos algorithm is

M−1AQk = Qk+1Hk with Hk =




α1 β1 0 · · · 0 0
β1 α2 β2 · · · 0 0
...

. . .
. . .

. . .
...

...

0 0 0 · · · αk−1 βk−1

0 0 0 · · · βk−1 αk

0 0 0 · · · 0 βk




∈ R(k+1)×k.

(8.1)
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The columns of Qk+1 are orthogonal with respect to (·, ·)M

QT
k+1MQk+1 = I ∈ R(k+1)×(k+1). (8.2)

✷

Remark 8.7. On the orthogonality condition for the preconditioned conjugate
gradient method. The preconditioned conjugate gradient method (PCG) is
one of the most important algorithms for solving linear systems of equa-
tions with symmetric and positive definite matrix. Besides the preconditioned
Lanczos algorithm, one needs to implement the orthogonality condition of the
residual with respect to (·, ·)M with a short recurrence. Concretely, one has
to construct

x(k) ∈ x(0) +Kk

�
M−1r(0),M−1A

�
(8.3)

such thatM−1r(k) = M−1
�
b−Ax(k)

�
is orthogonal toKk

�
M−1r(0),M−1A

�

with respect to (·, ·)M

M−1r(k) ⊥M Kk

�
M−1r(0),M−1A

�
⇐⇒ M−1r(k) ⊥M Qk.

Using the definition of q
1
, see Algorithm 8.5, lines 1 and 2, it is by (8.2)

�
q
k
, r(0)

�
=

�
q
k
,MM−1r(0)

�
=

���M−1r(0)
���
M

�
q
k
,Mq

1

�

=
���M−1r(0)

���
M

δ1k, (8.4)

where δij is the Kronecker symbol. Since by construction x(k) = x(0)+Qkyk,

one obtains with β =
���M−1r(0)

���
M
, (8.4), (8.1), and (8.2) the condition

0 =
�
Qk,M

−1r(k)
�
M

=
�
Qk,MM−1r(k)

�

=
�
Qk, r

(k)
�
=

�
Qk, r

(0) −AQkyk

�

= βe1 −QT
kAQkyk = βe1 −QT

kMQk+1Hkyk

= βe1 −QT
kM

�
Qkqk+1

�
Hkyk = βe1 − [I0]Hkyk

= βe1 − H̃kyk,

where H̃k ∈ Rk×k is the matrix consisting of the first k rows of Hk. Hence,

y
k
can be computed from H̃k, from what follows that x(k) can be computed

with a short recurrence. Analogous calculations as in Section 6.2 lead finally
to PCG. ✷

Algorithm 8.8. Preconditioned conjugate gradient (PCG). Given a
symmetric positive definite matrix A ∈ Rn×n, a right-hand side b ∈ Rn, an


