
Chapter 7

Convergence of Krylov Subspace
Methods

Remark 7.1. Motivation. The Krylov subspace methods compute the solution
of (1.1) in at most n iterations (in exact arithmetic) by construction. However,
this property is useless if n is large. The question arises whether one can get

information about the iterate x(k) for k < n. ✷

Remark 7.2. Starting point of the convergence analysis. The basis of the con-
vergence analysis for Krylov subspace methods is the following observation:

z ∈ Kk

�
r(0), A

�
is equivalent to z = qk−1 (A) r(0), where qk−1 ∈ Pk−1 is a

polynomial of degree k− 1. It follows for the residual of the k-th iterate that

r(k) = b−Ax(k) = b−A
�
x(0) + z

�
= r(0) −Az = r(0) −Aqk−1 (A) r(0)

= pk(A)r(0), (7.1)

where pk(x) = 1− xqk−1 (x) ∈ Pk, so that pk(0) = 1.
Considering the methods that are based on the minimization of the resid-

ual, see Chapter 5, one has now

���r(k)
���
2
= min

pk∈Pk,pk(0)=1

���pk(A)r(0)
���
2
,

such that with
���pk(A)r(0)

���
2
≤ �pk(A)�2

���r(0)
���
2
, it follows that

���r(k)
���
2���r(0)

���
2

≤ min
pk∈Pk,pk(0)=1

�pk(A)�2 . (7.2)

For all Krylov subspace methods, in particular for those methods which
are based on projecting the residual, see Chapter 6, it holds with (7.1) that

x− x(k) = A−1b−A−1
�
b− r(k)

�
= A−1r(k) = A−1pk (A) r(0)
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= A−1

�
k�

i=0

αiA
i

�
r(0) =

�
k�

i=0

αiA
i−1

�
r(0) =

�
k�

i=0

αiA
i

�
A−1r(0)

= pk (A)A−1r(0) = pk (A)
�
x− x(0)

�
. (7.3)

Consequently, the error can be characterized with the help of pk (A). ✷

Remark 7.3. S.p.d. matrices and the CG method. Consider the case that A is
symmetric and positive definite. Then, one gets from (7.3)

���x− x(k)
���
A
=

���pk (A)
�
x− x(0)

����
A
.

The iterate x(k) of the conjugate gradient method is the minimizer of���x− x(k)
���
A
in x(0) +Kk

�
r(0), A

�
, see Theorem 6.12. Hence

���x− x(k)
���
A
= min

pk∈Pk,pk(0)=1

���pk (A)
�
x− x(0)

����
A
, (7.4)

since pk(A) is the only parameter in the expression on the right-hand side.
From

���pk (A)
�
x− x(0)

����
A

=

��
pk (A)

�
x− x(0)

��T

A
�
pk (A)

�
x− x(0)

���1/2

=

��
A1/2pk (A)

�
x− x(0)

��T �
A1/2pk (A)

�
x− x(0)

���1/2

=

��
pk (A)A1/2

�
x− x(0)

��T �
pk (A)A1/2

�
x− x(0)

���1/2

=
���pk (A)A1/2

�
x− x(0)

����
2

≤ �pk (A)�2
���A1/2

�
x− x(0)

����
2
= �pk (A)�2

���x− x(0)
���
A
,

it follows by insertion in (7.4) that

���x− x(k)
���
A���x− x(0)

���
A

≤ min
pk∈Pk,pk(0)=1

�pk(A)�2 . (7.5)

The right-hand side of (7.5) is the same as the right-hand side of (7.2). ✷

Lemma 7.4. Characterization of �pk(A)�2 for normal matrices. If A ∈
Rn×n is a normal matrix, see Definition 2.14, then
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�pk(A)�2 = max
λ is

eigenvalue of A

|pk (λ)| .

Proof. Let pk ∈ Pk be an arbitrary polynomial with pk (0) = 1. Then, one obtains by
using Remark 2.15

�pk(A)�2 =
���pk

�
Q

T
ΛQ

����
2
=

�����
k�

i=0

αi

�
Q

T
ΛQ

�i

�����
2

=

�����Q
T

�
k�

i=0

αiΛ
i

�
Q

�����
2

=
���QT

pk (Λ)Q
���
2
= �pk (Λ)�2 ,

since �
Q

T
ΛQ

�i
=

�
Q

T
ΛQ

�
(Q

T

� �� �
=I

ΛQ
��

Q
T

� �� �
=I

ΛQ
�
. . .

�
Q

T
ΛQ

�
= Q

T
Λ
i
Q

and the �·�2 norm is invariant with respect to the multiplication with unitary matrices.
The matrix pk (Λ) is diagonal with the entries pk (λi). Hence

�pk(A)�2 = max
1≤i≤n

|pk (λi)|

by the definition of the spectral norm. �

Remark 7.5. Chebyshev polynomials. For proving the convergence theorem,
Chebyshev1 polynomials of first kind will be used, see also the lecture notes
of Numerical Mathematics I,

Tk (x) = cos (k arccos (x))

= xk −
�
k

2

�
xk−2

�
1− x2

�
+

�
k

4

�
xk−4

�
1− x2

�2

−
�
k

6

�
xk−6

�
1− x2

�3

. . . , x ∈ [−1, 1].

In particular, it is Tk(x) ∈ [−1, 1] for x ∈ [−1, 1],

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

The domain of definition of Tk(x) can be extended to |x| > 1. It is, with
i =

√
−1,

arccos (x) =
1

i
ln

�
x+

�
x2 − 1

�
, x ∈ R,

such that

Tk(x) = cos

�
k

i
ln

�
x+

�
x2 − 1

��
. (7.6)

For x > 1, one has

1
Pafnuty Lvovich Chebyshev (1821 – 1894)
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Fig. 7.1 Sketches of cosh(x) and arcosh(x).

ln

�
x+

�
x2 − 1

�
= arcosh (x) , (7.7)

see Figure 7.1 for sketches of the hyperbolic functions. Using that

eiz = cos(z) + i sin(z) =⇒ cos(z) =
eiz + e−iz

2
= cosh (iz) ∀ z ∈ C,

gives

cos
�z
i

�
= cos (−iz) = cosh (z) , z ∈ C.

With (7.6) and (7.7), it follows that

Tk (x) = cosh (k arcosh (x)) for x > 1.

For symmetry reasons, one obtains for x < −1

Tk (x) = (−1)
k
cosh (k arcosh (−x)) . (7.8)

✷

Theorem 7.6. Estimate of the rate of convergence for the CG
method. Let A be symmetric and positive definite with λmin < λmax, then

min
pk∈Pk,pk(0)=1

�pk(A)�2 ≤ 2

��
κ2 (A)− 1�
κ2 (A) + 1

�k

. (7.9)

Consequently, it is for the CG method

���x− x(k)
���
A���x− x(0)

���
A

≤ 2

��
κ2 (A)− 1�
κ2 (A) + 1

�k

. (7.10)
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Proof. The idea of the proof consists in constructing a special polynomial which gives the

estimate since
min

pk∈Pk,pk(0)=1
�pk(A)�2 ≤

��pk,special(A)
��
2
.

Let λmin be the smallest and λmax be the largest eigenvalue of A. Consider the linear

function

λ : R → R, t �→ λmin + λmax

2
+

λmax − λmin

2
t.

In particular, the restriction t ∈ [−1, 1] gives λ ∈ [λmin,λmax]. The root of λ(t) is denoted
by t0. It is

t0 = −λmin + λmax

λmax − λmin

= −κ2 (A) + 1

κ2 (A)− 1
< −1, (7.11)

where one uses that for symmetric positive definite matrices that κ2 (A) = λmax/λmin.

Denoting by t(λ) the inverse function, one defines the special polynomial

pk (λ) =
Tk (t (λ))

Tk (t (0))
=:

Tk (t)

Tk (t0)
∈ Pk.

Then, it is pk (0) = Tk (t0) /Tk (t0) = 1. It is by Lemma 7.4 and since λ ∈ [λmin,λmax] for

all eigenvalues of A (the maximum does not decrease if it is searched in a larger set)

�pk(A)�2 = max
λ is eigenvalue of A

|pk (λ)| ≤ max
λ∈[λmin,λmax]

|pk (λ)| = max
t∈[−1,1]

|Tk (t)|
|Tk (t0)|

=
1

|Tk (t0)|
max

t∈[−1,1]
|Tk (t)|

� �� �
≤1

≤ 1

|Tk (t0)|
. (7.12)

For estimating this term, consider (7.8) since t0 < −1:

|Tk (t0)| =

�������
(−1)

k
cosh(k arcosh(−t0)� �� �

ω0

)

�������
= |cosh (kω0)| =

e
kω0 + e

−kω0

2
.

One has to estimate this term from below. Consider first the case k = 1. Since −t0 > 1,

one has, by applying the inverse function,

e
ω0 + e

−ω0

2
= cosh (ω0) = cosh (arcosh (−t0)) = −t0,

from what e
ω0 + e

−ω0 = −2t0 follows. This equation is quadratic in e
ω0 with the solution

e
ω0 = −t0����

>1

±
�

t
2
0 − 1.

For estimating |Tk (t0)|, one obtains a sharper estimate if the larger one of these two values

is considered, see (7.13) below. One gets with (7.11) and the binomial theorem

e
ω0 = −t0 +

�
t
2
0 − 1 =

κ2 (A) + 1

κ2 (A)− 1
+

�
(κ2 (A) + 1)

2 − (κ2 (A)− 1)
2

(κ2 (A)− 1)
2

=
κ2 (A) + 2

�
κ2 (A) + 1

κ2 (A)− 1
=

��
κ2 (A) + 1

�2

��
κ2 (A) + 1

���
κ2 (A)− 1

� =

�
κ2 (A) + 1�
κ2 (A)− 1

.
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Now, |Tk (t0)| is estimated from below

|Tk (t0)| =
e
kω0 + e

−kω0

2
>

e
kω0

2
=

�
e
ω0

�k

2
=

1

2

��
κ2 (A) + 1�
κ2 (A)− 1

�k

. (7.13)

Inserting this estimate in (7.12) finishes the proof of (7.9).

Estimate (7.10) is obtained by inserting (7.9) in (7.5). �

Remark 7.7. The case λmin = λmax = λ. From Remark 2.15, it follows that
for λmin = λmax = λ

A = QTλIQ = λQTQ = λI,

i.e., A is a multiple of the identity matrix. In this case, the linear system
of equations can be solved directly, without using the CG method. Choos-
ing p1(x) = −x/λ + 1, then it is p1(0) = 1, p1(λ) = 0 and consequently
�p1(A)�2 = 0, see Lemma 7.4. That means, the CG method converges in one
iteration. ✷

Remark 7.8. Connection of the number of iterations and the spectral condition
number. To guarantee the reduction of the error by a factor 0 < η < 1 on the
basis of (7.5) and estimate (7.9) from Theorem 7.6, the condition

2

��
κ2 (A)− 1�
κ2 (A) + 1

�k

≤ η

must be satisfied. The number of iterations to achieve this condition is

k ≥ |ln (η/2)|����ln
�√

κ2(A)−1√
κ2(A)+1

�����
=

− ln (η/2)

ln

�√
κ2(A)+1√
κ2(A)−1

� .

If κ2 (A) is large, then a power series expansion of the logarithm

ln(1 + x) = x− x2

2
+

x3

3
− . . . ,

gives, using only the linear term,

ln

��
κ2 (A) + 1�
κ2 (A)− 1

�
= ln



1 + 1√

κ2(A)

1− 1√
κ2(A)




= ln

�
1 +

1�
κ2 (A)

�
− ln

�
1− 1�

κ2 (A)

�

≈ 2�
κ2 (A)

.
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That means, an approximation of the upper bound of the number of iterations
to reduce the error by the factor η is

k ≈ − ln (η/2)

2

�
κ2 (A).

The dependency on O
��

κ2 (A)
�
can be observed in fact sometimes. How-

ever, often the convergence of the CG method is considerably faster than pre-
dicted by the upper bound (7.10). One can derive better and sharper bounds
if the distribution of all eigenvalues is considered instead only the smallest
and the largest one, which are needed for computing the spectral condition
number. ✷

Remark 7.9. Round-off errors. For studying the behavior of the CG method
in practice, one has to take into account in the analysis the round-off errors
that are committed due to the finite precision arithmetic. The accumulation
of round-off errors might lead to an increasing loss of the property of the
computed vectors to be A-conjugate. Then, the computed solution might be
only a quite inaccurate approximation of the solution of (1.1). ✷


