
Chapter 6

Krylov Subspace Methods that are
Based on a Projection of the Residual

Remark 6.1. Idea. The methods presented in this section determine the it-

erate x(k) at the manifold x(0) + Kk

�
r(0), A

�
such that the corresponding

residual r(k) is orthogonal to Kk

�
r(0), A

�
. That means, r(k) is projected in

the orthogonal complement Kk

�
r(0), A

�⊥
of Kk

�
r(0), A

�
.

Orthogonality with respect to a subspace is already known as a feature
of the best approximation problem in pre Hilbert spaces. There, the error
is orthogonal to the subspace, see Numerical Mathematics I. In iterative
schemes for solving linear equations, the error is not known. Here, one tries
to construct an efficient method by projecting the residual vector. ✷

6.1 General Matrices

Remark 6.2. Full orthogonalization method. Let Qk = {q
1
, . . . , q

k
} be an

orthonormal basis of Kk

�
r(0), A

�
computed with Arnoldi’s method, Algo-

rithm 5.3. It is q
1
= r(0)/

���r(0)
���
2
. Set β =

���r(0)
���
2
. By the orthogonality of

the columns of Qk, it follows that

QT
k r

(0) = βQT
k q1 = βe1. (6.1)

Then, one finds that the iterate x(k) is given by

x(k) = x(0) +Qkyk with y
k
= H̃−1

k (βe1) , (6.2)

where H̃k is defined in (5.7), since the orthogonal projection of r(k) in

Kk

�
r(0), A

�⊥
is unique and the iterate (6.2) fulfills r(k) ⊥ Kk

�
r(0), A

�
:
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40 6 Krylov Subspace Methods that are Based on a Projection of the Residual

QT
k r

(k) = QT
k

�
b−Ax(k)

�
= QT

k

�
b−Ax(0) − βAQkH̃

−1
k e1

�

= QT
k r

(0) − βQT
kAQk� �� �
=H̃k

H̃−1
k e1 = QT

k r
(0) − βe1 = 0,

where (6.2), (5.7), and (6.1) have been used.
The algorithm which is based on this approach is called full orthogonal-

ization method (FOM). Since it is of little relevance in practice, it will not
be presented here in detail. Similarly to GMRES, an early break down of the
Arnoldi process is equivalent of already having computed the solution. FOM
possesses the same fundamental problem as GMRES since the whole basis

of the Kk

�
r(0), A

�
has to be stored. In contrast to GMRES, the iterate of

FOM is undefined if H̃k is singular. This situation can happen, e.g., if A is a
symmetric indefinite matrix. ✷

6.2 Symmetric Matrices

Remark 6.3. SYMMLQ for symmetric matrices. If A is a symmetric matrix,
there is a way to perform FOM with a short recurrence, i.e., without having

to store the whole basis {q
1
, . . . , q

k
} of Kk

�
r(0), A

�
. The resulting method

is called SYMMLQ. This method will not be presented here. Instead, the
case that A is symmetric and positive definit will be studied in detail. Then,
SYMMLQ can be simplified, leading to the famous conjugate gradient (CG)
method. ✷

Remark 6.4. Lanczos algorithm for a s.p.d. matrix. CG will be derived from
the Lanczos method, Algorithm 5.12. Starting point is the Cholesky1 decom-
position of H̃k, which is by Lemma 5.14 a non-singular matrix,

H̃k = LkDkL
T
k (6.3)

=




1 0 · · · 0 0
l1 1 · · · 0 0

. . .
. . .

0 0 · · · lk−1 1







d1 0 · · · 0 0
0 d2 · · · 0 0

. . .

0 0 · · · dk




×




1 l1 · · · 0 0
. . .

. . .

0 0 · · · 1 lk−1

0 0 · · · 0 1


 .

1
André Louis Cholesky (1875 – 1918)
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Define P̂k = QkL
−T
k =

�
p̂
1
, . . . , p̂

k

�
. The columns of P̂k are linear combina-

tions of the columns of Qk such that span{p̂
1
, . . . , p̂

k
} ⊂ Kk

�
r(0), A

�
. Since

Lk is a non-singular matrix and since the columns of Qk form a basis of

Kk

�
r(0), A

�
, the product P̂k has full rank k and consequently, the columns

of P̂k form a basis of Kk

�
r(0), A

�
. Note that p̂

1
= q

1
= r(0)/

���r(0)
���
2
. Using

(6.3), one finds for the iterate (6.2) of FOM that

x(k) = x(0) + βQkL
−T
k D−1

k L−1
k e1 = x(0) + P̂kyk (6.4)

with y
k
= βD−1

k L−1
k e1. ✷

Lemma 6.5. Columns of P̂k are A-conjugate. The columns {p̂
1
, . . . , p̂

k
}

are mutually A-conjugate, i.e., P̂T
k AP̂k is a diagonal matrix.

Proof. Using (5.7) and (6.3) gives

P̂
T
k AP̂k = L

−1
k Q

T
k AQkL

−T
k = L

−1
k H̃kL

−T
k = Dk.

�

Remark 6.6. First version of a method. With this version of the method, it is
shown that a short recurrence is possible. But this version is not yet optimal
with respect to the computational costs.

The last column of P̂k is given by

p̂
k
= q

k
− lk−1p̂k−1

, (6.5)

which follows immediately from Qk = P̂kL
T
k . The update y

k
in (6.4) has the

form y
k
=

�
y
k−1

, ηk

�T

with ηk ∈ R, since

y
k
= βD−1

k L−1
k e1 = β

�
Dk−1

dk

�−1

� �� �
D−1

k−1

d−1
k




�
Lk−1 0

0T lk−1 1

�−1

� �� �
L−1

k−1 0
∗ 1




e1,k

= β

�
D−1

k−1L
−1
k−1 0

∗ d−1
k

�
e1,k =

�
βD−1

k−1L
−1
k−1e1,k−1

∗

�
=

�
y
k−1

ηk

�
,

where e1,k is the first Cartesian unit vector with k components and e1,k−1

the first Cartesian unit vector of length (k− 1). This means, the first (k− 1)
components of y

k
are the components of y

k−1
. Now, one needs to find a

formula for ηk.
From the definition of y

k
, it follows that LkDkyk = βe1, i.e.,
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Lk




yk,1d1
yk,2d2

...
ηkdk


 =




β
0
...
0


 .

Hence, using the form of Lk, it is lk−1yk,k−1dk−1 + ηkdk = 0 and

ηk = − lk−1yk,k−1dk−1

dk
, if k ≥ 2. (6.6)

The first component η1 is given by the first update

η1 = βD−1
1 L−1

1 e1 =
β

d1
.

From the representation (6.3), it follows that (note that β =
���r(0)

���
2
and βk,

k ≥ 2, are the entries of Hk)

α1 = d1,

βk = dk−1lk−1, k ≥ 2, (6.7)

αk = dk−1l
2
k−1 + dk, k ≥ 2,

where the values αk and βk are available from the Lanczos method. Thus,
with α1, the value for d1 is given. With d1 and β2, one finds l1. Then, with
α2, d1, l1, one can compute d2 and so on.

Inserting all terms in (6.4) gives

x(k) = x(0) + P̂kyk = x(0) +
�
P̂k−1p̂k

��
y
k−1

ηk

�
= x(0) + P̂k−1yk−1

+ ηkp̂k

= x(k−1) + ηkp̂k. (6.8)

Thus, the new iterate can be computed with (6.7), (6.5) and (6.6). This
approach shows that a short recurrence is possible. However, it is not yet
optimal from the point of view of computational costs and it can be simplified.

✷

Remark 6.7. Optimal version of the method. It holds for the residual, using
(6.4), that

r(k) = b−Ax(k) = b−Ax(0) −AP̂kyk = r(0) −Az

with some vector z ∈ Kk

�
r(0), A

�
= span{q

1
, . . . , q

k
} since the columns of

P̂k form a basis of Kk

�
r(0), A

�
, see Remark 6.4. This representation shows

first that
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r(k) ∈ Kk+1

�
r(0), A

�
= span

�
q
1
, . . . , q

k
, q

k+1

�
.

By construction, see Remark 6.2, it is also r(k) ⊥ Kk

�
r(0), A

�
. These two

properties imply that r(k) ∈ span{q
k+1

} such that

r(k) = ±
���r(k)

���
2
q
k+1

. (6.9)

With (6.8), the residual vector r(k) can be computed recursively by

r(k) = b−Ax(k) = b−A
�
x(k−1) + ηkp̂k

�
= r(k−1) − ηkAp̂

k
. (6.10)

Setting

q
k+1

=
r(k)���r(k)

���
2

(6.11)

and denoting p
k
=

���r(k−1)
���
2
p̂
k
, one obtains with (6.10) and (6.8)

r(k) = r(k−1) − ηk���r(k−1)
���
2

Ap
k
= r(k−1) − νkAp

k
, (6.12)

x(k) = x(k−1) +
ηk���r(k−1)

���
2

p
k
= x(k−1) + νkpk. (6.13)

With (6.5) and (6.11), one gets for k ≥ 2

p
k
=

���r(k−1)
���
2
p̂
k
=

���r(k−1)
���
2


q

k
− lk−1

p
k−1���r(k−2)

���
2




= r(k−1) −

���r(k−1)
���
2
lk−1���r(k−2)
���
2

p
k−1

= r(k−1) + µkpk−1
. (6.14)

Note that p
1
= r(0).

Now, formulas for νk and µk are needed. Multiplying (6.14) from the left-

hand side with pT
k
A gives

pT
k
Ap

k
= pT

k
Ar(k−1) + µk

���r(k−2)
���
2

���r(k−1)
���
2

p̂T
k
Ap̂

k−1� �� �
=0,Lemma 6.5

= pT
k
Ar(k−1).

(6.15)
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Multiplying (6.12) from left with
�
r(k−1)

�T

and using r(j−1) = cjqj , j =

1, . . . , k + 1, see (6.9), and the orthonormality of the vectors q
j
leads to

�
r(k−1)

�T

r(k)

� �� �
=0

=
�
r(k−1)

�T

r(k−1) − νk

�
r(k−1)

�T

Ap
k
,

which gives together with (6.15)

νk =

�
r(k−1)

�T

r(k−1)

�
r(k−1)

�T

Ap
k

=

�
r(k−1)

�T

r(k−1)

pT
k
Ap

k

. (6.16)

Now, multiplying (6.14) from left with pT
k−1

A leads to, using Lemma 6.5,

pT
k−1

Ap
k� �� �

=0

= pT
k−1

Ar(k−1) + µkp
T

k−1
Ap

k−1
,

which gives

µk = −
pT
k−1

Ar(k−1)

pT
k−1

Ap
k−1

.

To simplify this expression, in particular to get rid of the matrix-vector mul-

tiplications, multiply (6.12) from left with
�
r(k)

�T

such that one obtains,

using r(k) ⊥ r(k−1),

�
r(k)

�T

r(k) = 0− νk

�
r(k)

�T

Ap
k

=⇒ νk = −

�
r(k)

�T

r(k)

�
r(k)

�T

Ap
k

.

This expression gives together with (6.16)

−

�
r(k)

�T

Ap
k

pT
k
Ap

k

=

�
r(k)

�T

r(k)

�
r(k−1)

�T

r(k−1)
,

such that

µk =

�
r(k−1)

�T

r(k−1)

�
r(k−2)

�T

r(k−2)
, k ≥ 2. (6.17)
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The evaluation of this expression requires only two inner products but not
any matrix-vector product. These considerations lead to Algorithm 6.8. ✷

Algorithm 6.8. Conjugate Gradient (CG) method. Given a symmetric
positive definite matrix A ∈ Rn×n, a right-hand side b ∈ Rn, an initial iterate

x(0) ∈ Rn, and a tolerance ε > 0.

1. r(0) = b−Ax(0)

2. p
1
= r(0)

3. k = 0
4. while

���r(k)
���
2
> ε

5. k = k + 1
6. s = Ap

k

7. νk =

�
r(k−1)

�T

r(k−1)

pT
k
s

% (6.16)

8. x(k) = x(k−1) + νkpk % (6.13)

9. r(k) = r(k−1) − νks % (6.12)

10. µk+1 =

�
r(k)

�T

r(k)

�
r(k−1)

�T

r(k−1)
% (6.17)

11. p
k+1

= r(k) + µk+1pk % (6.14)
12. endwhile

✷

Remark 6.9. First publication of CG. The CG method was published the first
time by Hestenes2 and Stiefel3 in Hestenes & Stiefel (1952). ✷

Remark 6.10. Costs of CG. The costs of one CG iteration are:

• one matrix-vector multiplication, line 6,
• three additions of vectors in Rn, lines 8, 9, 11,
• three multiplications of vectors with a scalar, lines 8, 9, 11,

• two inner products of vectors, lines 7, 10. The inner product
�
r(k−1)

�T

r(k−1)

is already known from the previous iteration.

One has to store four vectors: x(k), r(k), p
k
, s. In comparison with the conju-

gate residual method, CG needs one vector update (2n flops) less and one
has to store one vector less. Since both schemes exihibit in general a similar
convergence, CG is generally preferred.

Altogether, CG is in general the best performing iterative scheme, with-
out a multigrid component, for solving linear systems of equations with a
symmetric positive definit matrix. ✷

2
Magnus Rudolph Hestenes (1906 – 1991)

3
Eduard L. Stiefel (1909 – 1978)
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Definition 6.11. Energy norm. Let A ∈ Rn×n be s.p.d., then A induces a
vector norm by

�x�A = (x,Ax)
1/2 ∀ x ∈ Rn,

the so-called energy norm. ✷

Theorem 6.12. Minimization of the error in the energy norm. Let
A ∈ Rn×n be symmetric and positive definite. The iterate

x(k) = x(0) +
���r(0)

���
2
QkH̃

−1
k e1

is well defined and it is the solution of

min
y∈

�
x
(0)

+Kk

�
r
(0)

,A
��

��x− y
��
A
,

where x is the solution of (1.1). The corresponding residual r(k) is orthogonal

to Kk

�
r(0), A

�
, i.e., QT

k r
(k) = 0.

Proof. The non-singularity of the matrix H̃k, Lemma 5.14, induces that the iterate x
(k)

is well defined. The orthogonality of r
(k)

and Kk

�
r
(0)

, A
�

follows by the construction of

the method, see Remark 6.2.

Let y ∈
�
x
(0)

+Kk

�
r
(0)

, A
��

, y �= x
(k)

, and denote z = y − x
(k) ∈ Kk

�
r
(0)

, A
�
.

Using the symmetriy of A, the orthogonality of r
(k)

to z ∈ Kk

�
r
(0)

, A
�
, and the positive

definiteness of A gives

��x− y
��2

A

=
�
x− y

�T
A
�
x− y

�
=

�
x− x

(k) − z
�T

A
�
x− x

(k) − z
�

=
�
x− x

(k)
�T

A
�
x− x

(k)
�
− z

T
A
�
x− x

(k)
�
−

�
x− x

(k)
�T

Az
� �� �

=

��
x−x

(k)
�T

Az

�T
∈R

+z
T
Az

=
�
x− x

(k)
�T

A
�
x− x

(k)
�
− 2z

T
A
�
x− x

(k)
�
+ z

T
Az

=
�
x− x

(k)
�T

A
�
x− x

(k)
�
− 2 z

T
r
(k)

� �� �
=0

+ z
T
Az� �� �

>0

>
�
x− x

(k)
�T

A
�
x− x

(k)
�
=

���x− x
(k)

���
2

A
.

It follows that x
(k)

is the solution of the minimization problem. �

Remark 6.13. On the energy norm. To minimize the error in the energy norm
is more natural than to minimize the Euclidean norm of the residual, which
is the goal of the conjugate residual method, since

���r(k)
���
2
=

���A
�
x− x(k)

����
2
=

���x− x(k)
���
A

2
.
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The energy norm of the error is a more natural measure than the norm �·�
A

2 .
In the literature, one can find the derivation of the CG method also with

the starting point of trying to minimize the error in the energy norm. One
finds that the most simple approach, the steepest descent method, converges
very slowly. Considerations on improving this iterative scheme lead finally to
the CG method. ✷


