Chapter 4
The Richardson Iteration

Remark 4.1. Motivation. The Richardson iteration by itself is not of that
much interest in practice. However, it provides the idea for a tool that is
then used for the construction of advanced iterative methods, namely the
consideration of Krylov subspaces. |

Definition 4.2. Richardson iteration. Let Q(O) € R" be a given initial

iterate. The Richardson® iteration for computing a sequence of vectors g(k) €
R™, k=0,1,2,..., has the form

pB) 2 Ag® D ) ) (4.1)

with appropriately chosen numbers o, € R. The vector f(k) is called residual.
A straightforward calculation shows that this method can be written as fixed-
point iteration in the following form

IL'(k+1) = (I — OékA) l(k) + Oékb.

O
Definition 4.3. Co-domain of a matrix. The set
y Ay n
R(A) = o cyeCly#0,CC
is called co-domain of A. O

Remark 4.4. On the co-domain of a matriz. The co-domain of A can be de-
fined by using only the vectors from the unit sphere of C", since

! Lewis Fry Richardson (1881 — 1953)
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The unit sphere is a compact set (bounded and closed) and the mapping
y—y Ay/y"y is continuous. It follows that R (A) is also a compact set, see
literature. |

Lemma 4.5. Co-domain of the inverse matrix. Let A € R"™™" with
R(A) C {AeC : Re(\) >0}, i.e., the co-domain of A is a subset of the
right half of the complex plane. Then

R(A—l) C{\eC : Re(\) > 0}.

P 7”00f. From the assumption, it follows that A is non-singular. Otherwise, there would be
a vector z € ker(A), z # 0, and

A
Re(z - Z) = Re (0) = 0.

zz

This statement contradicts the assumption on R(A).

Let y € C", y # 0, be arbitrary and z = A_ly # 0. Hence, z is also an arbitrary vector.
Using the definition of y, that the real parts of a complex number and of its conjugate are
the same, and | Az]l, < [[A]l, [12ll, yields

*A71 . 1 .
Re(y*y> = ——Re (g A 1g) = ——Re((42)" A 1Ag)
vy llull; Azl —
-~ =
€R
1 * 1 * gk \* 1 *
= ——sRe(z’A’2) = —Re((27472)") = ——5Re (2" 4z)
Azll;  ~—>— [lAz]; 1Azl13
ecC
2 * *
A 1 A
_ |I§H22Re (z E z) > L Re (z - z) >0,
1Azl13 zz Al zZz
where the last statement follows from the assumption on R (A). ]

Theorem 4.6. Convergence of the Richardson iteration. Let A €
R™"™ with R(A) € {\€C : Re(\) > 0}. Then the Richardson iteration
(4.1) converges to the solution of the linear system Az = b for every initial
iterate if o, = a, k=0,1,2,..., with

O<a<min{6:Re(x\), )\ER(A_l)}. (4.2)

Proof. Note that ’R(Ail) is a compact set such that the minimum in (4.2) exists. By
Lemma 4.5, the minimum is positive such that a positive value o as given in (4.2) exists.

Let z be the solution of (1.1). It will be shown that the error Q*@UC)H decreases
2

strongly monotonically and the rate of decrease is strictly lower (uniformly with respect
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to k) than one. Using (4.1) and b = Az, one has the recursion

(40— g3 _0p® =55 ¥ o (b— 4x®)

-z —ar =z -z

g—g(k)—aA(g—g(k)>.

zT—Z

18

Hence, it is

2
-
2

Denotingy = A (z — g(k)) , using that the transposed of a real number is the same number

18

o™ _aa <£_£(k)) 2™ _an <£_£(k))> (4.3)

) () (e

|8
|8

and (4.2), one obtains

€R
(m—x(k)>TA (z—z(k)) (;v—;v(k))TATA_TA (z—x(k)) Ta T
S S _ = 7 S _Y Y
2 = 2 - T
4 (==*)] 4 (e==*)] vy
2 2
T ,—1
A
- Y T ¥ Zmin{Re()\) : A6R<A71>} > a,
vy

<
e < aeme) a(e-s).

Applying this estimate to the last term of (4.3) yields

2 2 T
o=, < Jla=a®], - (a-2)" 4 (a=a®)
2 2

T
(k)H2 1—04(2_2%)) fkgﬁ; £(k)> ) (4.4)
2

|lo-=

Since R (A) is compact, there is a € > 0 such that Re (\) > ¢ for all A € R (A) (there is
no sequence that can converge to the imaginary axis). Hence, it holds that

T
(2-2%)" 4 (2-®) .

“I.

€.
o2

Choosing ¢ such that ae < 1, then it follows from (4.4) that
2 2 2
o=+, <fle==®], 0 o0 = afe -2
2 2 2
with ¢ independent of k and ¢ € (0,1). One obtains by induction

-1, < ¢ -2
2 2

such that g(k) — x as k — oo. |
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Remark 4.7. Choice of a for s.p.d. matrices. Let A be symmetric and positive
definite. Using the Rayleigh quotient (2.4) yields for an arbitrary vector y €
c” a

- i (Ime ;B2 e )

2 IRe (3) 2
(2 ()" A" Im (y)
W)l |[1m ()|]2 )

(IR )3 X (471) + 1 () 3 A (471))

i (A7) = 5 @ = p<1A>'

1
lull;

>

That means, the choice a < 1/p(A) guarantees the convergence of the
Richardson method. ad

Remark 4.8. Residual minimization for choosing ay,. One possibility to choose
ay, in practice consists in the minimization of the norm of the residual

2

Hr(;@H)HQ _ biAx(kJrl)’
, z

2 2
R e e
2 2

2

_ £<k>H2 o, (zuc))T Ar®) _ g, ( Agk))%(k) ta? H Aﬁ(k)HZ
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€R
E(k)HQ %0y, <£<k>)T Ar® 4 o2 ‘ AE(k)H2'
2 2

The necessary condition for a minimum

d 2 T 2
o2 o
dOLk 2 2

gives

T
(zw)) Ar®
ak - ﬁ. (4.5)
=]
2

Since
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d> 2 2

2oz 7, =24, >0

daj, 2 2

if z(k) 2 0, one obtains in fact a minimum. O

Remark 4.9. Spaces spanned by the iterates. It is by (4.1)

=M e 2® 1 span {ﬁ(m}’

It holds

One obtains by induction

2® e 2 4 span {g(()),Ag(O),...,A""lg(o)}.
O

Definition 4.10. Krylov subspace. Let ¢ € R" and A € R"*". Then, the
space

K,,(¢q,A) := span {g, Ag, ..., Am_lg}

is called the Krylov2 subspace of order m that is spanned by ¢ and A. O

Remark 4.11. Next goal. It holds that g(k) € g(o) + K, (K(O),A) In the fol-

lowing, Richardson’s method will be improved by constructing the iterates

(k)

x'"’ in this manifold with respect to certain optimality criteria. |

2 Aleksey Nikolaevich Krylov (1863 — 1945)



