
Chapter 3

Classical Iterative Schemes

3.1 General Theory

Remark 3.1. Basic idea, transform to a fixed-point equation. The construction
of a classical iterative scheme for solving (1.1) starts with the decomposition

A = M −N, M,N ∈ Rn×n, M is non-singular, (3.1)

of the system matrix A. Using this decomposition, (1.1) can be transformed
into the fixed-point equation

Mx = b+Nx ⇐⇒ x = M−1 (b+Nx) . (3.2)

Given an initial iterate x(0) ∈ Rn, one can try to solve (3.2) with the fixed-
point iteration

x(k+1) = M−1
�
b+Nx(k)

�
, k = 0, 1, 2, . . . . (3.3)

Banach’s1 fixed-point theorem gives information on the convergence of this
iteration. ✷

Theorem 3.2. Banach’s fixed-point theorem. Let (X , d) be a complete
metric space and let f : X → X be a contraction (f is Lipschitz2 continuous
with the Lipschitz constant L < 1). Then, the equation x = f (x) possesses a
unique solution x̂ ∈ X (a fixed point). The iterative scheme

x(k+1) = f
�
x(k)

�
, k = 0, 1, 2, . . .

converges to x̂ for any initial iterate x(0) ∈ X .

1
Stefan Banach (1892 – 1945)

2
Rudolf Lipschitz (1832 – 1903)
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Proof. Basic course on calculus. �

Theorem 3.3. Condition on the iteration matrix of (3.3) for conver-
gence. The iterative scheme (3.3) converges to the solution x of (1.1) for

any initial iterate x(0) if and only if the spectral radius of the iteration matrix
G = M−1N is smaller than one: ρ (G) < 1.

Proof. i) Lipschitz continuity. The iteration (3.3) is a fixed-point iteration with

f : Rn → Rn
, x �→ M

−1
Nx+M

−1
b.

The operator G = M
−1

N is linear and bounded since �G�∗ is finite, where �·�∗ is any
matrix norm. Hence, G is continuous and even Lipschitz continuous. Since f is continuously

differentiable, the Lipschitz constant is given by

L∗ = sup
x∈Rn

�J (f (x))�∗ = sup
x∈Rn

�G�∗ = �G�∗ ,

where J (f (x)) is the (constant) Jacobian of f (x).

ii) Convergence for ρ (G) < 1. Let ρ (G) < 1. Then, it is possible to find a matrix norm

�·�∗ such that, according to Lemma 2.8, �G�∗ ≤ ρ (G) + ε < 1 with ε > 0. Hence, L∗ < 1
and f (x) is a contraction. Now, the statement follows with Theorem 3.2.

iii) ρ (G) ≥ 1. Let ρ (G) ≥ 1. An initial guess will be constructed for which the fixed-
point iteration does not converge. Without loss of generality, consider the case b = 0 such

that the solution of (1.1) is x = 0.

Since ρ (G) ≥ 1, there is an eigenvalue λ ∈ C of G with |λ| ≥ 1. This eigenvalue can be
written in the form

λ = |λ| (cos (ϕ) + i sin (ϕ)) , (3.4)

where ϕ is the argument of λ. Let z ∈ Cn
, z �= 0, be a corresponding eigenvector:

Gz = λz. (3.5)

From the conjugate of this equation Gz = λz, it follows that Gz = λz since G is a real
matrix.

Choose the initial iterate x
(0)

= z + z ∈ Rn
.

One has to exclude that x
(0)

= 0. If x
(0)

= 0, then z = iv with v ∈ Rn
. One obtains

from the eigenvalue equation that iGv = iλv which is equivalent to Gv = λv. On the

left-hand side of this equation, there is a real vector. Since v is a real vector, it follows
that λ must be real, too. But in this case, the corresponding eigenvector z is also real and

it cannot be of the form z = iv. Hence, an eigenvector of form z = iv cannot exist and

x
(0) �= 0.
Using the definition of the initial iterate, the eigenvalue problem (3.5), and some basic

properties of eigenvalues and complex numbers, it follows that

x
(k)

= G
�
G
�
· · ·Gx

(0)
��

� �� �
k times

= G
k
x
(0)

= G
k
z+G

k
z = λ

k
z+λ

k
z = 2Re

�
λ
k
z
�
, k = 0, 1, . . . .

The iteration converges to the solution x = 0 if

0 = lim
k→∞

2Re
�
λ
k
z
�
= lim

k→∞
2 |λ|k Re

�
(cos (kϕ) + i sin (kϕ)) z

�

= lim
k→∞

2 |λ|k (cos (kϕ)Re (z)− sin (kϕ) Im (z)) ,
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where (3.4) and basic properties of the real part of complex numbers were used. The factor

|λ|k is always larger or equal to 1, since |λ| ≥ 1. Hence, the second factor has to converge

to zero if the iteration should converge to x = 0. Note that the second factor is a vector. It

converges to zero if and only if each of its components converges to zero. There is at least
one component zl with zl �= 0, since z is an eigenvector. Let ζ be the argument of zl, i.e.,

the angle in the complex plane. Using the definition of the real and imaginary part of zl
and the trigonometric identity for cos(α+ β) yields

cos (kϕ)Re (zl)− sin (kϕ) Im (zl) = |zl| (cos (kϕ) cos (ζ)− sin (kϕ) sin (ζ))

= |zl| cos (kϕ+ ζ) . (3.6)

The only possibility to obtain convergence to zero for k → ∞ for the periodic cosine
function and for fixed increment ϕ is the case ζ = ±π/2 and ϕ ∈ {0,π}, because then

kϕ+ζ is π/2 plus an integer multiple of π, so that the term with the cosine vanishes. Since

ζ = ±π/2, it follows that Re(zl) = 0 and λ ∈ R. However, if λ ∈ R, then the eigenvector z
is real, too, which is a contradiction to Re(zl) = 0.

In summary, the iteration (3.3) does not converge for the initial iterate x
(0)

= z + z.

That means, if the iteration (3.3) converges for all initial iterates, then ρ (G) ≥ 1 cannot
hold. �

Remark 3.4. Complex-valued systems. The last part of the proof simplifies
much if one considers complex-valued systems of linear equations. Then, one

can take the initial iterate x(0) = z �= 0, finds that x(k) = λkz, and concludes

that
���x(k)

���
2
= |λ|k �z�2 �→ 0, since �z�2 �= 0 and |λ|k ≥ 1.

However, if a real-valued system is given, computations in practice are
performed usually only with real-valued vectors. Thus, the goal of the proof
was to show that there is a real-valued initial iterate for which the iteration
does not converge. Showing that there is a complex-valued initial iteration
for which the iteration does not converge, does not exclude that it converges
for all real-valued initial iterates. In particular, the real-valued situation is
not a special case of the complex-valued case. ✷

3.2 Examples for Classical Iterative Schemes

Remark 3.5. Decomposition of the system matrix. One uses for the definition
of classical iterative schemes a decomposition of the matrix A in the form

A = D + L+ U,

where D is the diagonal of A, L is its strict lower part and U its strict upper
part.

It turns out that the presented classical iterative schemes require that the
diagonal of A does not contain a zero entry. ✷

Example 3.6. Jacobi method. The Jacobi method is derived by setting

M = D, N = − (L+ U) .
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A straightforward calculation reveals that the fixed-point equation (3.2) has
the form

x = D−1 (b− (L+ U)x) = x+D−1 (b−Ax) .

This fixed-point equation gives the following iterative scheme, called Jacobi3

method
x(k+1) = x(k) +D−1

�
b−Ax(k)

�
, k = 0, 1, 2, . . . .

The iteration matrix is GJac = −D−1 (L+ U). ✷

Example 3.7. Damped Jacobi method. Let ω ∈ R, ω > 0. The matrices that
define the fixed-point equation for the damped Jacobi method are given by

M = ω−1D, N = ω−1D −A.

The damped Jacobi method has the form

x(k+1) = x(k) + ωD−1
�
b−Ax(k)

�
, k = 0, 1, 2, . . .

and the iteration matrix is GdJac = I − ωD−1A. ✷

Example 3.8. Gauss–Seidel method. In the Gauss4–Seidel5 method, the in-
vertible matrix M is a triangular matrix

M = D + L, N = −U.

It follows that

x(k+1) = (D + L)
−1

�
b− Ux(k)

�

= (D + L)
−1

�
b−Ax(k) + (A− U)x(k)

�

= x(k) + (D + L)
−1

�
b−Ax(k)

�
, k = 0, 1, 2, . . . .

The iteration matrix has the form GGS = M−1N = − (D + L)
−1

U . Multi-
plying the first equation of the Gauss–Seidel method form left by (D + L)
and then by D−1 and rearranging terms gives the more familiar form of this
iteration

x(k+1) = D−1
�
b− Lx(k+1) − Ux(k)

�

= x(k) +D−1
�
b− Lx(k+1) − (D + U)x(k)

�
, k = 0, 1, 2, . . . .

3
Carl Gustav Jacob Jacobi (1804 – 1851)

4
Johann Carl Friedrich Gauss (1777 – 1855)

5
Philipp Ludwig von Seidel (1821 – 1896)
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Writing this iteration for the components of the vector shows that the right-
hand side can be evaluated even if the new iterate appears there, since only
already computed components of the new iterate are needed for this evalua-
tion

x
(k+1)
i = x

(k)
i +

1

aii


bi −

i−1�

j=1

aijx
(k+1)
j −

n�

j=i

aijx
(k)
j


 , k = 0, 1, 2, . . . .

✷

Example 3.9. SOR method. The matrices that define the (forward) successive
over relaxation (SOR) method are given by

M = ω−1D + L, N = ω−1D − (D + U) ,

where ω ∈ R,ω > 0. This method can be written in the form

x(k+1) = x(k) + ωD−1
�
b− Lx(k+1) − (D + U)x(k)

�
, k = 0, 1, 2, . . .

or

x(k+1) = x(k) +

�
D

ω
+ L

�−1 �
b−Ax(k)

�
, k = 0, 1, 2, . . . .

For ω = 1, the Gauss–Seidel method is recovered. One obtains for the itera-
tion matrix

GSOR (ω) =
�
ω−1D + L

�−1 �
ω−1D − (D + U)

�

= ω (D + ωL)
−1

�
ω−1D − (D + U)

�

= (D + ωL)
−1

((1− ω)D − ωU) . (3.7)

✷

Example 3.10. SSOR method. In the SOR method, one can change the roles
of L and U to obtain the backward SOR method

x(k+1) = x(k) + ωD−1
�
b− Ux(k+1) − (D + L)x(k)

�
, k = 0, 1, 2, . . . .

This method updates the unknowns in reverse order. The forward and back-
ward SOR behave in general differently. There are cases where one of them
works much more efficient than the other one. However, in general one does
not know a priori which is the better variant. The SSOR (symmetric SOR)
method combines both methods. One step of SSOR consists of two substeps,
one forward SOR and one backward SOR step:

x(k+1/2) = x(k) + ωD−1
�
b− Lx(k+1/2) − (D + U)x(k)

�
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x(k+1) = x(k+1/2) + ωD−1
�
b− Ux(k+1) − (D + L)x(k+1/2)

�
,

k = 0, 1, 2, . . .. ✷

3.3 Some Convergence Results

Theorem 3.11. Convergence for strongly diagonally dominant ma-
trices. Let A ∈ Rn×n be strongly diagonally dominant. Then, the Ja-
cobi method and the Gauss–Seidel method converge for every initial iterate

x(0) ∈ Rn.

Proof. Following Theorem 3.3, one has to show that the spectral radius of the iteration
matrices is smaller than 1.

Jacobi method. Let z ∈ Rn
, z �= 0. Then, the triangle inequality gives

��(GJacz)i
�� =

���
�
−D

−1
(L+ U) z

�
i

��� =

������
1

aii

n�

j=1,j �=i

aijzj

������
≤ 1

|aii|

n�

j=1,j �=i

��aij
�� ��zj

��

≤ 1

|aii|

n�

j=1,j �=i

��aij
��

� �� �
<|aii|

�z�∞ < �z�∞ , i = 1, . . . , n,

which is equivalent to �GJacz�∞ < �z�∞. With Remark 2.7 and the definition of �·�∞,

Remark 2.3, it follows that

ρ (GJac) ≤ �GJac�∞ = max
z∈Rn

,z �=0

�GJacz�∞
�z�∞

< 1. (3.8)

Gauss–Seidel method. A direct calculation shows (exercise)

GGS = −D
−1

(LGGS + U) . (3.9)

This relation and the triangle inequality gives for the first component and z ∈ Rn
, z �= 0,

��(GGSz)1
�� ≤ 1

|a11|

n�

j=2

��a1j
�� ��zj

�� ≤ 1

|a11|

n�

j=2

��a1j
��

� �� �
<|a11|

�z�∞ < �z�∞ ,

where the term with the factor LGGS vanishes since the first row of L consists only of

zeros. Using now (3.9) and the induction | (GGSz)j | < �z�∞, j < i yields

��(GGSz)i
�� ≤ 1

|aii|




i−1�

j=1

��aij
��
���(GGSz)j

���+
n�

j=i+1

��aij
�� ��zj

��
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≤ 1

|aii|




n�

j=1,j �=i

��aij
��



� �� �
<|aii|

�z�∞ < �z�∞ , i = 2, . . . , n.

The remainder of the proof is like for the Jacobi method, compare (3.8). �

Lemma 3.12. Eigenvalues of the iteration matrix of the damped
Jacobi method. Let ω > 0, then λ ∈ C is an eigenvalue of GJac if and only
if µ = 1− ω + ωλ is an eigenvalue of GdJac.

Proof. It is with A = D + L+ U

GdJac = I − ωD
−1

A = I − ωD
−1

D − ωD
−1

(L+ U)� �� �
−GJac

= (1− ω) I + ωGJac.

The statement of the lemma follows now from well known properties of eigenvalues. �

Example 3.13. Convergence of the damped Jacobi method where the Jacobi
method fails. If ω is chosen appropriately, there is the possibility that the
damped Jacobi method converges for every initial guess whereas the Jacobi
method does not.

Assume that GJac has only real eigenvalues. Denote by λmin the smallest
one and by λmax the largest one. If

λmin < −1 < λmax < 1,

then there are initial iterates for which the Jacobi method does not converge,
compare Theorem 3.3. From Lemma 3.12, one has

µmin = (1− ω) + ωλmin = 1− ω (1− λmin) ,

µmax = (1− ω) + ωλmax = 1− ω (1− λmax) . (3.10)

It follows that

−1 < µmin < 1 if ω <
2

1− λmin

< 1, −1 < µmax < 1 if 0 < ω ≤ 1.

The choice ω ∈ (0, 2/ (1− λmin)) ensures the convergence of the damped
Jacobi method for each initial iterate.

Consider the case λmax > 1. Then, one gets from (3.10) that µmax > 1. In
this case, there are initial iterates for which the damped Jacobi method does
not converge as well. ✷

Lemma 3.14. Parameter in the case that the SOR method con-
verges, Lemma of Kahan6. If the SOR method converges for every initial

iterate x(0) ∈ Rn, then ω ∈ (0, 2).

6
William M. Kahan, born 1933
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Proof. Let λ1, . . . ,λn ∈ C be the eigenvalues of GSOR (ω). It is with (3.7) and properties

of the determinant

n�

i=1

λi = det (GSOR (ω)) = det
�
(D + ωL)

−1
((1− ω)D − ωU)

�

= det
�

(D + ωL)
−1

� �� �
lower triangular matrix

�
det

�
(1− ω)D − ωU� �� �

upper triangular matrix

�

= det
�
D

−1
�
(1− ω)

n
det (D) = (1− ω)

n
.

Hence, it follows that
n�

i=1

|λi| = |1− ω|n .

There is at least one eigenvalue λi with |λi| ≥ |1− ω| and it follows that ρ (GSOR (ω)) ≥
|1− ω|. Now, the application of Theorem 3.3 shows that SOR cannot converge for all initial
iterates if ω �∈ (0, 2), because if ω �∈ (0, 2) then ρ (GSOR (ω)) ≥ |1− ω| ≥ 1. �

Theorem 3.15. Convergence of SOR for s.p.d. matrices. Let A ∈
Rn×n be s.p.d. Then the SOR method converges for all initial iterates x(0) ∈
Rn if ω ∈ (0, 2).

Proof. Let λ ∈ C be an eigenvalue of GSOR (ω), see (3.7), and let z ∈ Cn
be a corre-

sponding eigenvector, i.e.,

(D + ωL)
−1

((1− ω)D − ωU) z = λz. (3.11)

Following Theorem 3.3, one has to find a condition such that |λ| < 1 is satisfied. The

following identities can be easily verified using the decomposition of A:

D + ωL =
�
1− ω

2

�
D +

ω

2
A+

ω

2
(L− U) ,

(1− ω)D − ωU =
�
1− ω

2

�
D − ω

2
A+

ω

2
(L− U) .

Inserting these identities in the eigenvalue equation (3.11) and multiplying this equation

from the left-hand side with (D + ωL) and with the adjoint vector z
∗
, one obtains

λ =

�
1− ω

2

�
z
∗
Dz − ω

2
z
∗
Az +

ω

2
z
∗
(L− U) z

�
1− ω

2

�
z
∗
Dz +

ω

2
z
∗
Az +

ω

2
z
∗
(L− U) z

.

Now, the terms in this expression will be considered individually. The matrix L − U is

skew-symmetric since A is symmetric. It follows for all x ∈ Rn
that

x
T
(L− U)x� �� �
∈ R

=
�
x
T
(L− U)x

�T
= x

T
(L− U)

T
x = −x

T
(L− U)x ∈ R,

consequently x
T
(L− U)x = 0 for all x ∈ Rn

, and

Re
�
z
∗
(L− U) z

�
= Re

�
z
∗�

� �� �
∈Rn

(L− U)Re (z)� �� �
∈Rn

+Im
�
z
∗�

� �� �
∈Rn

(L− U) Im (z)� �� �
∈Rn

= 0.
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Hence, z
∗
(L− U) z = ia with a ∈ R.

Since A is positive definite, its diagonal D is positive definite, too. The products z
∗
Dz

and z
∗
Az are positive real numbers since for z = u+ iv, z

∗
= u

T − iv
T
, u, v ∈ Rn

, z �= 0
(u �= 0 or v �= 0), because it is an eigenvector, one obtains with the symmetry of A and

the positive definiteness of this matrix

z
∗
Az = u

T
Au− iv

T
Au+ iu

T
Av − i

2
v
T
Av

= u
T
Au− iv

T
Au+ iv

T
Au+ v

T
Av > 0.

It follows that λ has the form

λ =
b+ ia

c+ ia
a, b, c ∈ R, c > 0,

so that the denominator is not zero, with

b =
�
1− ω

2

�
z
∗
Dz − ω

2
z
∗
Az, c =

�
1− ω

2

�
z
∗
Dz +

ω

2
z
∗
Az.

Consequently, it is

|λ|2 =
b
2
+ a

2

c
2
+ a

2
=

��
1− ω

2

�
z
∗
Dz − ω

2
z
∗
Az

�2
+ a

2

��
1− ω

2

�
z
∗
Dz +

ω

2
z
∗
Az

�2
+ a

2
.

Thus |λ| < 1 holds only if the numerator is smaller than the denominator. The only
difference of the numerator and the denominator is the mixed term in the square. Applying

the square and neglecting the same positive terms on both side, this condition is equivalent

to

− ω����
>0

�
1− ω

2

�
z
∗
Dz� �� �

>0

z
∗
Az� �� �

>0

< ω
�
1− ω

2

�
z
∗
Dz z

∗
Az ⇐⇒

−
�
1− ω

2

�
<

�
1− ω

2

�
⇐⇒

ω < 2.

Hence, the SOR method converges for all initial iterates if ω ∈ (0, 2). �

Remark 3.16. Difficulty of choosing ω in practice. For choosing ω such that
the SOR method converges as fast as possible, one needs information about
the eigenvalues of A. However, the computation of these information is very
costly, see Numerical Mathematics I or the literature. ✷

Remark 3.17. Number of iterations in practice. If classical iterative schemes
are used for the solution of linear systems of equations that arise in discretiz-
ing partial differential equations, one finds that the number of iterations to
fulfill a certain stopping criterion increases rapidly if the mesh is refined.
One can show that the number of iteration depends on the condition number
of the matrices and it scales linearly with the condition number. As exam-
ple, the standard finite difference discretization of the Laplace equation on
an equidistant grid of size h leads to matrices with a condition number of

O
�
h−2

�
, see homework problems. It follows that the number of iterations for
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the solution of the linear system increases approximately by the factor 4 with
each refinement h → h/2. For this reason, the classical iterative schemes are
not useful as solver for such systems. They are important as preconditioners
or as smoothers in multigrid methods, see Chapter 8. ✷


