
Chapter 1

Introduction

Remark 1.1. Contents of the lecture notes. These lecture notes consider
solvers for a linear system of equation

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1.1)

with a non-singular matrix A. The solution of such systems is the core of
many algorithms.

In particular, systems with the following features will be considered in
these notes:

• the dimension n of the systems is very large,
• the system matrix A is sparse, i.e., the number of non-zero entries in A is
only a small percentage, usually O(n), of the total number of entries that
is n2.

Systems with these features arise, e.g., in the discretization of partial differ-
ential equations.

Throughout the lecture notes, vectors are denoted by small underlined
letters, components of vectors by small letters, matrices by capital letters,
scalars by Greek letters, and indices by the letters i, j, l,m. The iteration
index in iterative scheme is denoted by k.

Main parts of these lecture notes follow Starke (2001). ✷
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Chapter 2

Some Basics on Vectors and Matrices

Remark 2.1. Contents. This chapter gives an overview on vector and matrix
properties that will be used in these lecture notes. ✷

Remark 2.2. Norms of vectors. Let x = (x1, . . . , xn)
T ∈ Rn be a vector. The

lp-norm is defined by

�x�p :=

�
n�

i=1

|xi|p
�1/p

, p ∈ [1,∞),

�x�∞ := max
i=1,...,n

|xi| .

If p = 1, the norm is called sum norm, in the case p = 2 one speaks of the
Euclidean norm, and for p = ∞ of the maximum norm. ✷

Remark 2.3. Norms of matrices. Let

A =




a11 · · · a1n
...

. . .
...

an1 · · · ann


 ∈ Rn×n.

The induced matrix p-norm is defined by

�A�p := max
x∈Rn

,x �=0

�Ax�p
�x�p

= max
x∈Rn

,�x�p≤1
�Ax�p = max

x∈Rn
,�x�p=1

�Ax�p. (2.1)

Special cases are

�A�1 = max
j=1,...,n

n�

i=1

��aij
�� , (maximum absolute) column sum norm,

�A�2 =
�
λmax

�
ATA

��1/2

, spectral norm,

5



6 2 Some Basics on Vectors and Matrices

�A�∞ = max
i=1,...,n

n�

j=1

��aij
�� , (maximum absolute) row sum norm.

Another norm is the Frobenius1 norm given by

�A�F =




n�

i,j=1

��aij
��2



1/2

.

✷

Remark 2.4. Properties of matrix norms. From (2.1), it follows immediately
for all x ∈ Rn \ {0} that

�A�p ≥
�Ax�p
�x�p

⇐⇒ �Ax�p ≤ �A�p �x�p .

The right-hand side estimate holds also for x = 0. It holds also �Ax�2 ≤
�A�F �x�2 . Matrix and vector norms that allow an estimate of this type are
called compatible.

By induction, it follows for B ∈ Rn×n that

�ABx�p ≤ �A�p �Bx�p ≤ �A�p �B�p �x�p ⇐⇒

�AB�p = max
x∈Rn

,x �=0

�ABx�p
�x�p

≤ �A�p �B�p .

✷

Definition 2.5. Eigenvalues, eigenvectors, spectral radius. A complex
number λ ∈ C is called eigenvalue of A ∈ Rn×n, if there is a vector x ∈
Cn, x �= 0, such that

Ax = λx.

The vector x is called eigenvector. Note that all real (complex) eigenvalues
will be associated to real (complex) eigenvectors.

The spectral radius of a matrix A is defined by

ρ (A) = max{|λ| : λ is eigenvalue of A}.

✷

Lemma 2.6. Properties of non-singular quadratic matrices. Let A ∈
Rn×n. The following properties are equivalent:

• A is non-singular.
• The inverse A−1 of A exists.

1
Ferdinand Georg Frobenius (1849 – 1917)



2 Some Basics on Vectors and Matrices 7

• The linear system (1.1) possesses for each right-hand side b a unique
solution.

• The determinant of A does not vanish: det (A) �= 0.
• All eigenvalues of A are different from zero.

Proof. This lemma was proved in the course on basic linear algebra. �

Remark 2.7. On eigenvalues. For every eigenvalue λj ∈ C of A, it holds��λj

�� ≤ �A� for any matrix norm which is given in Remark 2.3, see Numerical
Mathematics I for a proof of this statement. It follows that ρ (A) ≤ �A�. ✷

Lemma 2.8. Existence of a matrix norm that is arbitrarily close to
the spectral radius. Let A ∈ Rn×n and ε > 0 be given. Then, there is a
vector norm �·�∗ such that for the induced matrix norm, it holds

ρ (A) ≤ �A�∗ ≤ ρ (A) + ε.

Proof. The proof uses Schur’s
2
triangulation theorem: Every matrix A ∈ Rn×n

can be

factored in the form A = U
∗
TU , where U ∈ Cn×n

is a unitary matrix, U
∗
= U

−1
(the

adjoint matrix is the inverse matrix), and T is an upper triangular matrix of the form

T =




λ1 t12 · · · t1n
0 λ2 · · · t2n
...

...
. . .

...

0 0 · · · λn


 ∈ Rn×n

,

with the eigenvalues λ1, . . . ,λn of A, e.g., see (Marcus & Minc, 1992, p. 67). The vector

norm �·�∗ is defined with the diagonal matrix Dδ = diag
�
1, δ, . . . , δ

n−1
�
, δ > 0, to be

determined:

�x�∗ :=
���D−1

δ Ux
���
∞

.

For the induced matrix norm, it follows, using the Schur triangulation of A, that

�A�∗ := max
x∈Rn

,x �=0

���D−1
δ UAx

���
∞���D−1

δ Ux
���
∞

= max
x∈Rn

,x �=0

���D−1
δ UU

∗
TUx

���
∞���D−1

δ Ux
���
∞

. (2.2)

Setting y = D
−1
δ Ux, it follows that x = U

∗
Dδy since the matrices U and Dδ are non-

singular and D
−1
δ U is a bijection from Rn

to Rn
. Inserting this expression in (2.2) and

using the definition of the row sum norm gives

�A�∗ = max
y∈Rn

,y �=0

���D−1
δ UU

∗
TUU

∗
Dδy

���
∞��y

��
∞

=
���D−1

δ TDδ

���
∞

.

The diagonal matrix D
−1
δ scales just the rows of T and the matrix Dδ just the columns of

T . Thus, the product is again an upper triangular matrix and a straightforward calculation
shows that

2
Issai Schur (1875 – 1941)



8 2 Some Basics on Vectors and Matrices

D
−1
δ TDδ =




λ1 δt12 · · · δ
n−1

t1n
0 λ2 · · · δ

n−2
t2n

...
...

. . .
...

0 0 · · · δtn−1,n

0 0 · · · λn




and hence
���D−1

δ TDδ

���
∞

≤ ρ (A) + ε if δ is chosen sufficiently small. �

Definition 2.9. Spectral condition number. The spectral condition num-
ber κ2 (A) of a non-singular matrix A ∈ Rn×n is defined by

κ2 (A) = �A�2
���A−1

���
2
.

✷

Definition 2.10. Definiteness. The matrix A ∈ Rn×n is called positive
definite if

xTAx > 0 ∀ x ∈ Rn \ {0}. (2.3)

If the equal sign can occur, A is called positive semi-definite. ✷

Remark 2.11. On definiteness. Applying the standard basis vectors (Carte-
sian3 basis vectors)

e(i) = (0, . . . , 0, 1����
i

, 0, . . . , 0)T , i = 1, . . . , n,

in (2.3) shows that if A is positive (semi-)definite then also the diagonal
matrix diag (aii) is positive (semi-)definite. ✷

Remark 2.12. On symmetric matrices. A matrix A ∈ Rn×n is called sym-
metric if A = AT . It is called skew-symmetric if AT = −A.

One of the most important properties of symmetric matrices is that all
eigenvalues are real numbers. It holds, e.g., see Saad (2003),

λmax (A) = max
x∈Rn

,x �=0

xTAx

xTx
, λmin (A) = min

x∈Rn
,x �=0

xTAx

xTx
. (2.4)

The quotient on the right-hand side is called Rayleigh4 quotient. A symmetric
matrix is positive definite (s.p.d.) if and only if all of its eigenvalues are
positive. It is positive semi-definite if and only if all of its eigenvalues are
non-negative.

In the case of A ∈ Rn×n being symmetric and positive definite, one obtains
for the spectral norm of A

3
René Descartes (1596 – 1650)

4
John William Strutt (Lord Rayleigh) (1842 – 1919)
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�A�2 =
�
λmax

�
ATA

��1/2

=
�
λmax

�
A2

��1/2

=
�
(λmax (A))

2
�1/2

= λmax (A) .

It was used that the eigenvalues of A2 are the squares of the eigenvalues of
A, which is obtained by

A2x = A (Ax) = A (λx) = λAx = λ2x.

Since

Ax = λx ⇐⇒ A−1x =
1

λ
x,

the eigenvalues of A−1 are the inverses of the eigenvalues of A. In particular,

one finds that λmax

�
A−1

�
= (λmin (A))

−1
. With the same arguments as for

�A�2, it follows that
���A−1

���
2
= (λmin (A))

−1
and finally

κ2 (A) =
λmax (A)

λmin (A)
≥ 1.

For each symmetric matrix A ∈ Rn×n there is an orthogonal matrix Q ∈
Rn×n such that

A = Q diag(λi) Q
T ,

where λi, i = 1, . . . , n, are the eigenvalues of A. If A is in addition positive
definite, then all eigenvalues are positive and the square root of A is defined
by

A1/2 := Q diag
�
λ
1/2
i

�
QT .

✷

Definition 2.13. Diagonal dominance. A matrix A is called diagonally
dominant if

|aii| ≥
n�

j=1,j �=i

��aij
�� for all i = 1, . . . , n.

If for all i the larger sign holds, then A is called strongly diagonally dominant.
✷

Definition 2.14. Normal matrix. The matrix A ∈ Rn×n is called normal,
if ATA = AAT . ✷

Remark 2.15. On normal matrices.

• It is known that A is normal if and only if it is unitary similar to a diagonal
matrix, i.e., there is a unitary matrix Q ∈ Rn×n (orthogonal matrix) such
that

A = Q∗ΛQ, Λ = diag (λ1, . . . ,λn) ,

where λ1, . . . ,λn are the eigenvalues of A.



10 2 Some Basics on Vectors and Matrices

• From Definition 2.14, it follows directly that symmetric matrices are nor-
mal.

✷


