
Chapter 10

Summary and Outlook

Remark 10.1. Practical use of iterative solvers. The core of many algorithms
is the solution of linear systems of equations. There are many applications
where these systems are large and the system matrix is sparse. In this situa-
tion, appropriate iterative methods are often the most efficient solvers.

• In practice, iterative methods, like all Krylov subspace methods, are usu-
ally used in combination with a preconditioner.

• For systems with symmetric and positive definite matrix, the by far most
popular method is PCG, see Algorithm 8.8.

• For general matrices, preconditioned GMRES and BiCGStab are popular.
Occasionally, also CGS is used.

• If the preconditioner is not a matrix but an iterative method, it might
change from iteration to iteration. There are so-called flexible methods,
like flexible GMRES, to cope with this situation.

• Special forms of the matrix require sometimes the construction of spe-
cial preconditioners. For instance, standard preconditioners, like Jacobi
or Gauss–Seidel, cannot be applied for matrices that are of so-called sad-
dle point form

A =

�
A11 A12

A21 0

�
,

since there are zero entries in the diagonal.

✷

Remark 10.2. Sparse direct solvers. In the past decades, there has been an
enormous development of direct solvers for sparse linear systems of equations,
so-called sparse direct solvers. Popular packages are UMFPACK, PAR-
DISO, and MUMPS. In particular, for linear systems of equations aris-
ing in the discretization of partial differential equations, there are several
comparisons with iterative solvers. It turned out that it makes a difference
whether the partial differential equation is defined in a two-dimensional or
three-dimensional domain.
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• In 2d, sparse direct solvers often outperform iterative solvers for small
and medium-sized systems, up to a matrix dimension of around 106.

• In 3d, which is the natural dimension for many real world problems, it-
erative methods are usually more efficient if the dimension of the matrix
exceeds 104. That means, sparse direct solvers should be used only for
small problems.

The reason for these differences is the different sparsity pattern of matrices
from discretizations of partial differential equations in 2d and 3d. ✷

Remark 10.3. Multigrid methods. The discretization of partial differential
equations is usually based on a triangulation of the underlying domain. Con-
sider a uniform triangulation with mesh size h. Then, it turns out that the
spectral condition number of discretization matrices A behaves asymptoti-
cally like κ2(A) = O(h−2) or even worse with respect to h.

Consider a symmetric positive definite matrix A with κ2(A) = O(h−2)
and the CG method. Then, if follows from Remark 7.8 that the number
of iterations for achieving a prescribed reduction of the error behaves in
the worst case like

�
κ2(A) = O(h−1). Thus, refining the mesh once, i.e.,

h → h/2, leads to the expectation that the number of iterations for the same
reduction of the error on the fine grid is twice as large as the number on the
coarser grid. This non-optimal behavior can be observed in practice, compare
also the corresponding problem from the exercises.

An optimal solver has to satisfy two requirements:

• the number of iterations for reducing the error with a certain factor is
independent of h, i.e., the spectral norm of the iteration matrix should be
smaller than a number ρ0 < 1 with ρ0 independent of h,

• the cost per iteration scales linearly with the number of unknowns.

The second requirement cannot be improved since for solving a linear system
of equations, each unknown has to be touched at least once.

A class of solvers that satisfies these requirements, at least for certain
problems, are (geometric) multigrid methods. For such methods, one needs
a hierarchy of grids, starting with a coarsest one, then a next finer one, and
so on until the finest grid, which is the grid where the solution should be
computed. On each grid, one defines an appropriate linear system of equa-
tions and between the grids one has to define appropriate transfer operators.
Starting on the finest grid, one applies on each grid, but the coarsest one,
a simple iterative scheme, e.g., one of the classical iterative schemes from
Chapter 3. On the coarsest grid, where the dimension of the linear system
of equations is much smaller than on the finest grid, one solves this system,
e.g., with a direct solver.

In practice, however, one often has only one grid, in particular if the do-
main is complicated, and this grid is already fine. Thus, one cannot build
a grid hierarchy. For such situations, so-called algebraic multigrid methods
(AMG) has been proposed. These method are building a hierarchy of ma-
trices that starts with the matrix on the given grid. Then, matrices with
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smaller and smaller dimension, and corresponding right-hand sides, are con-
structed. Such constructions are based on the sparsity pattern and the size
of the entries. There are different approaches that lead to different kinds of
AMG methods. ✷

Remark 10.4. Software. There are many packages that provide iterative solvers.
Quite popular ones, which provide also many other tools, are PETSc and
Trilinos. ✷


