84 CHAPTER 3 SPARSE MATRICES

_ e———
STORAGE SCHEMES

- E

In order to take advantage of the large number of zero elements, special schemges are
quired to store sparse matrices. The main goal is to represent only thern@iements,
and to be able to perform the common matrix operations. In the fallpuN z denotes the
total number of nonzero elements. Only the most popular schemes are covereluter
additional details can be found in books such as Duff, Erisman, and Rdid [77

The simplest storage scheme for sparse matrices is the so-called coofdinae
The data structure consists of three arrays: (1) a real array containihg adidl (or com-
plex) values of the nonzero elements.4fin any order; (2) an integer array containing
their row indices; and (3) a second integer array containing their coludiceis. All three
arrays are of lengtiV z, the number of nonzero elements.

Example 3.7 The matrix

L 0. 0 2 o

3. 4. 0. 5 0

A=|6 0. 7. 8 o

0. 0. 10. 11. 0.

0. 0. 0. 0. 12

will be represented (for example) by

AA |12.9. 7. 5. 1 2 11. 3. 6 4. 8 10.
R |5 3 3 2 1 1 4 2 3 2 3 4
JC |5 5 3 41 4 4 11 2 4 3

In the above example, the elements are listed in an arbitrary order. InHagtate
usually listed by row or columns. If the elements were listed by roevatiayJC which
contains redundant information might be replaced by an array which poitite tegin-
ning of each row instead. This would involve nonnegligible savingstorage. The new
data structure has three arrays with the following functions:

e A real arrayAA contains the real values; stored row by row, from row 1 ta.
The length ofAA is Nz.

e An integer arrayJ A contains the column indices of the elememfs as stored in
the arrayA A. The length of/ A is Nz.

e Aninteger arrayf A contains the pointers to the beginning of each row in the arrays
AA andJA. Thus, the content dfA(¢) is the position in arrayd A andJ A where
thei-th row starts. The length df4 isn + 1 with T A(n + 1) containing the number
TA(1) + Nz, i.e., the address il and JA of the beginning of a fictitious row
numbern + 1.

3.4 STORAGE SCHEMES 85

Thus, the above matrix may be stored as follows:

AA |1 2. 3 4 5 6 7. 8 9 10 11 1%
A |1 4 1 2 4 13 45 3 4 5
A |1 3 6 10 12 13|

This format is probably the most popular for storing general sparsdaesit It is
called theCompressed Sparse R¢GSR) format. This scheme is preferred over the coor-
dinate scheme because it is often more useful for performing typical datigns. On the
other hand, the coordinate scheme is advantageous for its simplicit{sdtexibility. It is
often used as an “entry” format in sparse matrix software packages.

There are a number of variations for the Compressed Sparse Row formahoBte
obvious variation is storing the columns instead of the rows. Theesponding scheme is
known as the&Compressed Sparse Colu@SC) scheme.

Another common variation exploits the fact that the diagonal elementsof ma-
trices are all usually nonzero and/or that they are accessed more often thast thiethe
elements. As a result, they can be stored separatelyMblified Sparse ROWSR) for-
mat has only two arrays: a real arrdyl and an integer array A. The firstn positions in
AA contain the diagonal elements of the matrix in order. The positibh of the array4d A
is not used, but may sometimes be used to carry other information corgéneimatrix.
Starting at positiom + 2, the nonzero elements dfA, excluding its diagonal elements,
are stored by row. For each elemehi(k), the integet/ A(k) represents its column index
on the matrix. They + 1 first positions of/ A contain the pointer to the beginning of each
row in AA andJA. Thus, for the above example, the two arrays will be as follows:

AA | 1. 4 7.11.12. * 2. 3 5 6 8 9. 10

JA | 7 8 10131414 4 1 4 1 4 5 3

The star denotes an unused location. Notice fafn) = JA(n + 1) = 14, indicating
that the last row is a zero row, once the diagonal element has been removed.
Diagonally structured matrices are matrices whose nonzero elements are located
along a small number of diagonals. These diagonals can be stored in a reataargul
ray DIAG(1:n,1:Nd), whereNd is the number of diagonals. The offsets of each of the
diagonals with respect to the main diagonal must be known. These wilbtegisn an ar-
ray IOFF (1:Nd). Thus, the element; ; ;o5 (;) Of the original matrix is located in position
(i,7) of the arrayDIAG, i.e.,

DIAG(i,J) < @4 itiof(j)-

The order in which the diagonals are stored in the colummgaé is generally unimpor-
tant, though if several more operations are performed with the maiongstoring it in
the first column may be slightly advantageous. Note also that all thewlidgexcept the
main diagonal have fewer thanelements, so there are positionDInG that will not be
used.

86 CHAPTER 3 SPARSE MATRICES

Example 3.8 For example, the following matrix which has three diagonals

0. 0.
5. 0.
0. 8.
0.

h S

Il
CoowrH
e
coONoN

—

0.
1. 12.

will be represented by the two arrays

I0FF=[-1 0 2].

DIAG=

©Pw x
= [N
po A

[EEN
AN

A more general scheme which is popular on vector machines is the so-called Ellpack
Itpack format. The assumption in this scheme is that there are at¥absbnzero elements
per row, whereld is small. Then two rectangular arrays of dimensioir Nd each are
required (one real and one integer). The fiefiEF, is similar toDIAG and contains the
nonzero elements of. The nonzero elements of each row of the matrix can be stored in
a row of the arrayfOEF (1:n,1:Nd), completing the row by zeros as necessary. Together
with COEF, an integer arrayCOEF (1:n, 1:Nd) must be stored which contains the column
positions of each entry iGiOEF.

Example 3.9 Thus, for the matrix of the previous example, the Ellpack-Itpack storag
scheme s

1 2. 1 3 1
3. 4. 1 2 4
COEF=| 6. 7. JCOEF=|2 3 5
9. 10. 3 4 4
11 12 4 5 5

A certain column number must be chosen for each of the zero elements that must be
added to pad the shorter rows4fi.e., rows 1, 4, and 5. In this example, those integers are
selected to be equal to the row numbers, as can be seenJgQRE array. This is some-
what arbitrary, and in fact, any integer betweeandrn would be acceptable. However,
there may be good reasons for not inserting the same integers tog @fjem constant
number, for performance considerations.

