
� � ✂✞✁ ✆ � ✞✡✠☎✁ � ☞ � ✆ ✁☛☞ ✠ ✆ ✆☛✞ ✁❞❑ ✂ ✠ ☞
✢✔✜ ✍ ✞✛✞✠✗ ✓ ✢ ✟ ✠✘✓ ✙✚✓ ✢

✚✼⑤✂✁

In order to take advantage of the large number of zero elements, special schemes arere-
quired to store sparse matrices. The main goal is to represent only the nonzero elements,
and to be able to perform the common matrix operations. In the following, ☛

✄
denotes the

total number of nonzero elements. Only the most popular schemes are covered here, but
additional details can be found in books such as Duff, Erisman, and Reid [77].

The simplest storage scheme for sparse matrices is the so-called coordinateformat.
The data structure consists of three arrays: (1) a real array containing all the real (or com-
plex) values of the nonzero elements of⑩ in any order; (2) an integer array containing
their row indices; and (3) a second integer array containing their column indices. All three
arrays are of length☛

✄
, the number of nonzero elements.

✆ �✝✆☞✞ ✠ ☛ ✌ ✠ ✻ ✁ The matrix

⑩ ❼
✦✧✧✧
★
❽❬❿ ✪♣❿ ✪♣❿ ➑✉❿ ✪③❿

� ❿ ✂➇❿ ✪♣❿ ✂ ❿ ✪③❿
✄③❿ ✪♣❿ ☎ ❿ �③❿ ✆③❿
✪③❿ ✪♣❿ ❽ ✪♣❿✡❽❬❽❀❿ ✪③❿
✪③❿ ✪♣❿ ✪♣❿ ✪③❿ ❽✙➑✉❿

✫ ✬✬✬
✮

will be represented (for example) by

AA 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

JR 5 3 3 2 1 1 4 2 3 2 3 4

JC 5 5 3 4 1 4 4 1 1 2 4 3

In the above example, the elements are listed in an arbitrary order. In fact, they are
usually listed by row or columns. If the elements were listed by row, the array� ➊ which
contains redundant information might be replaced by an array which points to the begin-
ning of each row instead. This would involve nonnegligible savingsin storage. The new
data structure has three arrays with the following functions:➉ A real array⑩✜⑩ contains the real values❶③❷✵❹ stored row by row, from row 1 to⑦ .

The length of⑩✿⑩ is ☛
✄
.➉ An integer array� ⑩ contains the column indices of the elements❶ ❷❋❹ as stored in

the array⑩✜⑩ . The length of� ⑩ is Nz.➉ An integer array
✏ ⑩ contains the pointers to the beginning of each row in the arrays⑩✜⑩ and � ⑩ . Thus, the content of

✏ ⑩ ✯r❻ ✰ is the position in arrays⑩✜⑩ and � ⑩ where
the ❻ -th row starts. The length of

✏ ⑩ is ⑦✱➋ ❽ with
✏ ⑩ ✯ ⑦✱➋ ❽ ✰ containing the number✏ ⑩ ✯✷❽ ✰ ➋ ☛

✄
, i.e., the address in⑩ and � ⑩ of the beginning of a fictitious row

number⑦❩➋ ❽ .



�☎� � ☞✁✞ ✄ ✁ ✆✞✟ ✠ ☞ ✂✞✁ ✠ ✆ ✠ ☞ � ✄

Thus, the above matrix may be stored as follows:

AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

This format is probably the most popular for storing general sparse matrices. It is
called theCompressed Sparse Row(CSR) format. This scheme is preferred over the coor-
dinate scheme because it is often more useful for performing typical computations. On the
other hand, the coordinate scheme is advantageous for its simplicity and its flexibility. It is
often used as an “entry” format in sparse matrix software packages.

There are a number of variations for the Compressed Sparse Row format. Themost
obvious variation is storing the columns instead of the rows. The corresponding scheme is
known as theCompressed Sparse Column(CSC) scheme.

Another common variation exploits the fact that the diagonal elements of many ma-
trices are all usually nonzero and/or that they are accessed more often than the rest of the
elements. As a result, they can be stored separately. TheModified Sparse Row(MSR) for-
mat has only two arrays: a real array⑩✿⑩ and an integer array� ⑩ . The first ⑦ positions in⑩✿⑩ contain the diagonal elements of the matrix in order. The position⑦❫➋ ❽ of the array⑩✜⑩
is not used, but may sometimes be used to carry other information concerning the matrix.
Starting at position⑦❉➋ ➑ , the nonzero elements of⑩✿⑩ , excluding its diagonal elements,
are stored by row. For each element⑩✜⑩ ✯ ✎ ✰ , the integer� ⑩ ✯ ✎ ✰ represents its column index
on the matrix. The⑦❄➋ ❽ first positions of� ⑩ contain the pointer to the beginning of each
row in ⑩✿⑩ and � ⑩ . Thus, for the above example, the two arrays will be as follows:

AA 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.

JA 7 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice that� ⑩ ✯ ⑦ ✰ ❼ � ⑩ ✯ ⑦ ➋ ❽ ✰ ❼ ❽ ✂ , indicating
that the last row is a zero row, once the diagonal element has been removed.

Diagonally structured matrices are matrices whose nonzero elements are located
along a small number of diagonals. These diagonals can be stored in a rectangular ar-
ray �✂✁☎✄✝✆✟✞☎✠☛✡✌☞✎✍✏✠☛✡✒✑✝✓✕✔ , where ✑✝✓ is the number of diagonals. The offsets of each of the
diagonals with respect to the main diagonal must be known. These will be stored in an ar-
ray ✁✗✖✗✘✙✘✚✞✛✠☛✡✒✑✝✓✕✔ . Thus, the element❶ ❷ ✖ ❷ ✧✢✜ ✣✥✤ ☞ ❹ ✍ of the original matrix is located in position✯r❻❁❺❂➀ ✰ of the array�✂✁☎✄✝✆ , i.e.,

�✂✁☎✄✝✆ ✯✇❻✰❺❍➀ ✰ ✁ ❶ ❷ ✖ ❷ ✧✢✜ ✣✦✤ ☞ ❹ ✍ ❿
The order in which the diagonals are stored in the columns of�✂✁✛✄✝✆ is generally unimpor-
tant, though if several more operations are performed with the main diagonal, storing it in
the first column may be slightly advantageous. Note also that all the diagonals except the
main diagonal have fewer than⑦ elements, so there are positions in�✂✁☎✄✝✆ that will not be
used.



� � ✂✞✁ ✆ � ✞✡✠☎✁ � ☞ � ✆ ✁☛☞ ✠ ✆ ✆☛✞ ✁❞❑ ✂ ✠ ☞
✆ �✝✆☞✞ ✠ ☛ ✌ ✠ ✻ �

For example, the following matrix which has three diagonals

⑩ ❼
✦✧✧✧
★
❽❀❿ ✪③❿ ➑③❿ ✪③❿ ✪③❿

� ❿ ✂♣❿ ✪♣❿ ✂ ❿ ✪③❿
✪♣❿ ✄③❿ ☎ ❿ ✪③❿ �③❿
✪♣❿ ✪③❿ ✆♣❿✡❽ ✪③❿ ✪③❿
✪♣❿ ✪③❿ ✪♣❿✡❽❬❽❬❿✡❽❆➑✉❿

✫✭✬✬✬
✮

will be represented by the two arrays

�✂✁☎✄✝✆ =

* 1. 2.
3. 4. 5.
6. 7. 8.
9. 10. *
11 12. *

✁✗✖✗✘ ✘ = -1 0 2 .

A more general scheme which is popular on vector machines is the so-called Ellpack-
Itpack format. The assumption in this scheme is that there are at most☛ ✬ nonzero elements
per row, where✑✙✓ is small. Then two rectangular arrays of dimension☞✕⑧ ✑✝✓ each are
required (one real and one integer). The first,

✁ ✖✄✂✙✘ , is similar to �✂✁☎✄✙✆ and contains the
nonzero elements of⑩ . The nonzero elements of each row of the matrix can be stored in
a row of the array

✁ ✖✄✂✙✘ ✞☎✠☛✡✌☞✎✍✏✠☛✡✒✑✝✓✕✔ , completing the row by zeros as necessary. Together
with

✁ ✖☎✂✙✘ , an integer array✆
✁ ✖✄✂✙✘✚✞✛✠☛✡✌☞✎✍✛✠ ✡✒✑✝✓✕✔ must be stored which contains the column

positions of each entry in
✁ ✖✄✂ ✘ .

✆ �✝✆☞✞ ✠ ☛ ✌ ✠ ✻ ✁ Thus, for the matrix of the previous example, the Ellpack-Itpack storage
scheme is

✁ ✖✄✂✙✘ =

1. 2. 0.
3. 4. 5.
6. 7. 8.
9. 10. 0.
11 12. 0.

✆
✁ ✖✄✂✙✘ =

1 3 1
1 2 4
2 3 5
3 4 4
4 5 5

.

A certain column number must be chosen for each of the zero elements that must be
added to pad the shorter rows of⑩ , i.e., rows 1, 4, and 5. In this example, those integers are
selected to be equal to the row numbers, as can be seen in the✆

✁ ✖✄✂✙✘ array. This is some-
what arbitrary, and in fact, any integer between❽ and ⑦ would be acceptable. However,
there may be good reasons for not inserting the same integers too often, e.g. a constant
number, for performance considerations.


