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(John and Matthies, 2004): strict decoupling of geometry and finite element spaces,
implementation of mapped finite elements as their definition can be found in textbooks,
and a geometric multigrid preconditioner with the option to use different finite element
spaces on different levels of the multigrid hierarchy. After having presented some thoughts

about in-house research codes, this paper focuses on aspects of the parallelization for
a distributed memory environment, which is the main novelty of PARMooN. Numerical
studies, performed on compute servers, assess the efficiency of the parallelized geometric
multigrid preconditioner in comparison with some parallel solvers that are available in the
library PETSc. The results of these studies give a first indication whether the cumbersome
implementation of the parallelized geometric multigrid method was worthwhile or not.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

MooNMD, a C++ program package for the numerical solution of elliptic and parabolic partial differential equations based
on mapped finite elements, is described in [1]. A modernized version of this package, called PARMOON, has recently been

developed to be used as a research code in the future.

The core of MooNMD was designed more than 15 years ago and this code has been successfully used in many scientific
studies. There are almost 90 research articles citing MooNMD via [1], see [2]. Recent advances in computing hardware and
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language standards necessitated a re-design and re-implementation of some of the core routines. With the new core and
the new features, the code was renamed to PARMoON (Parallel Mathematics and object-oriented Numerics).

The general aims of this paper are to report on the development of the existing research code towards the new package
PARMoOON in order to accomplish the desired features of an in-house research code that will be formulated in Section 2 and to
assess the parallelized geometric multigrid method by comparing it with solvers that are available in an external library. The
original code possesses some distinct features that should be transferred to PARMooN, like the strict decoupling of geometry
and finite element spaces, the implementation of mapped finite elements as their definition can be found in textbooks, and
a multiple discretization multilevel (MDML) preconditioner. This paper focuses on the most relevant aspect concerning the
development of PARMOON, namely the distributed memory parallelization. In particular, the technically most cumbersome
part, the parallelization of the geometric multigrid, is discussed.

A main contribution of this paper is a first assessment of the resulting parallel geometric multigrid method in comparison
with parallel solvers for linear systems of equations that can be called from the library PETSc. The numerical studies were
performed on compute servers as the available in-house hardware. We think that this assessment is also of interest for other
groups who develop their own codes in order to get an impression whether it is worthwhile to implement a parallelized
geometric multigrid method or not. Two main problem classes supported in PARMoON are considered in the numerical
studies: scalar convection-diffusion-reaction equations and the incompressible Navier-Stokes equations.

The paper is organized as follows. Section 2 contains an exposition of our thoughts about in-house research codes, in
particular about their advantages and their goals. Mapped finite elements, as they are used in MooNMD/PARMOooON, are
described in Section 3. Section 4 presents main aspects of the parallelization. The parallelization of the geometric multigrid
method is briefly discussed in Section 5. Numerical studies that compare this method with solvers available in PETSc are
presented in Section 6. The paper concludes with a summary.

2. Some considerations about in-house research codes

Nowadays, several academic software packages for solving partial differential equations exist in the research community.
They are usually developed and supported by research groups for whom software development is one of the main scientific
tasks. Such software packages include, among others, DEAL.II [3], FENICS [4], DUNE [5,6], OPENFOAM [7], or FREEFEM++ [8].
These packages have advanced functionality and support features like adaptive mesh refinement, parallelism, etc.

Naturally, a research code developed in-house possesses less functionality than these large packages. In view of their
availability, the following questions arise: Why is it worth to develop an own research code? In particular, is it worth to
develop a code within a research group that focuses primarily on numerical analysis? In the following, some arguments,
mainly based on our own experience, are presented.

In-depth knowledge of details of the software. The first key aspect of working with a code developed and maintained within
the research group is the detailed knowledge of the software structure. In fact, applied mathematicians often work at the
development of numerical methods. These methods have to be implemented, assessed, and compared with popular state-
of-the-art methods for the same problem. A meaningful assessment requires the usage of the methods in the same code. In
this respect, it is important to have access to a code where one knows and can control every detail.

For brevity, just one example will be mentioned to show the importance of knowing the details of a software package.
This example concerns the clarification of appropriate interface conditions in subdomain iterations for the Stokes-Darcy
problem, see [9]. Standard Neumann interface conditions can be used only for viscosity and permeability coefficients that are
unrealistically large. For realistic coefficients, appropriate Robin boundary conditions have to be used. The implementation
of the Robin interface conditions was performed in a straightforward way in MooNMD/PARMOON.

Flexibility. Further advantages of an own research code are the possibility of controlling its core parts and flexibility.
In particular, for our research it is very important that the code supports the use of different discretization strategies.
As an example, MooNMD was designed for finite element methods. But for the investigation of discretizations of time-
dependent convection-diffusion equations in [10], finite difference methods were implemented as well. Because these
methods performed very well, they were later used in the context of simulating population balance systems defined in
tensor-product domains, e.g., see [11].

Testing of numerical methods. MooNMD was used in the definition of benchmark problems in [12]. The list of examples
could be extended. In addition, a number of numerical methods have been developed and implemented in our research
code which turned out to be not (yet) competitive, like the optimization of stabilization parameters in SUPG methods
in [13]. Having a known and flexible research code at disposal allows to test and support methods that, at the time of the
implementation, have not been benchmarked in detail.

Certainly, also the large packages mentioned above allow the implementation of different methods and discretization
strategies. However, we think that a successful implementation often requires a very close interaction with core developers
of the packages. This effort might not be feasible for both the user and the developer. Therefore, an own code might reduce
the time from the development to the assessment of numerical methods.

Benefits for students. A further aspect, related to the interaction of the core development team, concerns the students and
the Ph.D. students who are involved in the development and in the usage of the code. Since the core developers of an own
research code are readily available and they are experts in the focused research topics of the group, these students can be
supported efficiently. In addition, students working at the code stated several positive effects: the work at details of the
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implementation facilitates the insight into the methods and algorithms, which is important for analyzing their properties,
and it enhances the skills in software design and management.

Of course, incorporating students into code development requires that there is an easy use of the code and an easy
access to basic routines, such as, in the case of a finite element solver, assembling of matrices and solving linear systems of
equations. This issue touches already the next question: What should be expected from an own research code?

Easy usage. In order to support students starting to work with the code, an easy installation and basic testing setup are
essential. There are even successful attempts for designing complex codes that can be used for teaching students in basic
courses on numerical methods for partial differential equations, like the so-called computational laboratory for Investigating
Incompressible Flow Problems (IFISS), see [ 14], which uses MATLAB, and the open source software FREEFEM++ [8], which is
based on an own language.

Modularity. The code should be modular. In particular, there should be a general core and individual projects are attached
to this core. Of course, the projects use routines from the core. But using an own code, it seems to be easier than with a large
package, which is developed somewhere else, to incorporate contributions from the projects into the core.

Stability. With respect to the required stability of the code, there are, in our opinion, no fundamental differences between
own research codes and large packages.

Efficiency. However, there are different expectations with respect to the efficiency. A research code should be flexible in
many respects, since its main tasks include supporting the development of numerical methods and results from numerical
analysis. For instance, in the code MooNMD/PARMooN, the concept of mapped finite elements is implemented, see Section 3.
In this way, the code supports currently around 170 finite elements in two dimensions and 75 finite elements in three
dimensions. Consequently, all routines are implemented for the general situation. For certain finite elements, this might be
less efficient than using tailored routines. However, also for a research code, efficiency is a key property that should not
be neglected. For instance, the simulation of standard academic benchmark problems for turbulent incompressible flows
requires the computation of large time intervals to collect temporal averages of statistics of interest. In our opinion, an own
research code should be reasonably efficient on the available in-house hardware, which, in our case, are usually laptops,
compute servers, or small clusters.

3. Mapped finite element spaces

The implementation of finite element methods in MooNMD/PARMOooN is based on a rather abstract definition of a finite
element space and on the mapping of each mesh cell to a reference cell.

Let 2 C R% d e {2, 3}, be a bounded domain and let 7" be an admissible triangulation of £2 consisting of compact,
simply connected mesh cells. For each mesh cell K, a local finite element space P(K) C C*(K),s > 0, is given by some
finite-dimensional space of functions spanned by a basis {qb,(,i}f':’(]. Furthermore, a set of local linear functionals {45,(,1-}?:’(1 is
given. The space P(K) is unisolvent with respect to the functionals. Often, a so-called local basis is chosen, i.e., a basis that

satisfies @y ;(¢x j) = 6 fori,j =1, ..., Nk.The local linear functionals might be values of the functions or their derivatives
at certain points, integrals on K or on faces of K.
Let dq,..., Py : {vel®(2) : v|g € P(K)} = R be given continuous linear functionals, where v |, € P(K) has to be

understood in the way that v is a polynomial in the interior of K and it is extended continuously to the boundary of K. The
restriction of each functional to C*(K) defines the set of local functionals. The union of all mesh cells K;, for which there is a
p € P(K;) with @;(p) # 0, will be denoted by w;. Now, the global finite element space is defined as follows. A function v(x)
defined on £2 with v|x € P(K) for all K € 7" is called continuous with respect to the functional ®; if Di(vlk,) = Pi(vlk,)
for all Ky, K; € w;. The space

S= {v € L*(£2) : v|g € P(K) and v is continuous with respectto &;, i =1, ..., N}

is called finite element space. The global basis {qu}}\’:l of S is defined by the conditions ¢; € S with ®;(¢;) = §; for
i,j=1,...,N.
Using this definition for the implementation of a finite element space requires

(1) the definition of the local basis and linear functionals for each K,
(2) the implementation of a method that assures continuity with respect to the functionals stated in the definition of S.

The first requirement can be achieved in two different ways, via a mapped or an unmapped implementation. In the
unmapped approach, the local basis and linear functionals are defined directly on K. In contrast, mapped finite elements are
closely connected to a standard way of analyzing finite element discretizations. This analysis consists of three steps:

e Map an arbitrary mesh cell K to a compact reference mesh cell K.
e Prove the desired properties on K, which is the core of the analysis.
e Map the reference mesh cell K back to K to get the final result.

Hence, this approach has two main features:
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e All considerations have to be done on K only.
e Information about neighbor mesh cells of K is neither available nor needed.

Mapped and unmapped finite element methods possess the same analytical properties if the reference map Fy : K— Kis
affine for every mesh cell K of the given triangulation, e.g., compare [ 15, Chap. 2.3]. In the case of non-affine maps, occurring,
e.g., for a triangulation consisting of arbitrary quadrilateral or hexahedral mesh cells, mapped and unmapped finite element
spaces might be different. In MooNMD/PARMoON, the concept of mapped finite elements is implemented in the following
way. Reference mesh cells are the unit simplices, e.g., in two dimensions with the vertices (0, 0), (1, 0), (0, 1), and the
unit cubes K = [—1, 1]%. Affine maps are available for all reference mesh cells. To account for arbitrary quadrilaterals and
hexahedra, d-linear maps are also implemented for the unit cubes. Based on the different reference cells, local spaces on K,
linear functionals, and reference maps, MooNMD/PARMooN currently supports about 170 finite elements in two dimensions
and 75 finite elements in three dimensions.

The use of mapped finite element spaces essentially requires the implementation of finite elements on the reference cells.
The quadrature rules for numerical integration have to be implemented only on these cells, since the integrals on physical
cells are transformed to integrals on the reference cells. Note that the same strategy works also for the handling of cell faces,
which are mapped onto lower-dimensional reference cells by corresponding reference maps.

Concerning (2) above, a finite element space S is represented by a map # called d.o.f.-manager which maps local, i.e.,
within a cell, indices of degrees of freedom (d.o.f.) to global ones. For this purpose define M (K) to be the set of local d.o.f.s
denoted by (K, i) on the cell K. Then define the set of all local degrees of freedom

M= ) MK).
KeTh
The local-to-global map F now surjectively maps M to {1, ..., N} such that £ ((K,i)) = F((K’,j)) whenever the local

degrees of freedom (K, i) and (K’, j) belong to the same global degree of freedom. The number N < |M]| is then the number
of global degrees of freedom. In other words, & describes a partition P of the set M (i.e., an equivalence relation) together
with a global numbering. Computing such a map ¥ is done via Algorithm 1 in PARMooN.

Algorithm 1: Computation of # that maps local degrees of freedom to global ones.
The input is a mesh 7" whose cells K are ordered by increasing integers id(K).

1 P <« finest partition of M

2 for allmeshcellsK € 7"

3 determine M (K)

4 for all neighbors K’ of K with id(K) < id(K’)

5 determine M (K")

6 find local partition Py, of M(K) U M(K")

7 P <« finest partition coarser than P and Py

8  assign increasing integers to each subset in the partition P

Initially the partition is set to be the finest partition of the set M, i.e., it consists of disjoint single-element subsets, so that
no two degrees of freedom in M are identified yet. Step 6 in Algorithm 1 consists of finding identical degrees of freedom in
two neighboring cells K and K’, i.e., a local partition P, of M(K) UM (K’). This step is done using the information of positions
of degrees of freedom in the reference cell and tailored mapper classes. Step 7 updates the partition P such that all sets in
the previous set P and in Py, are contained in one set in the updated partition P. Finally, to each set of the resulting partition
of M, a unique integer is assigned that will serve as (the index of) the global degree of freedom. Steps 6 and 7 are explained
in detail in the following example.

Example 1. Consider a2 x2 mesh 7" consisting of four cells A, B, C, and D, each associated with a Q; -finite element, see Fig. 1.
The set of all local degrees of freedom is therefore M = {(A, 1), ..., (A, 49} U{(B,1),...,(B,4H)}U{(C, 1),...,(C,H}U
{(D, 1), ..., (D, 4)}. Algorithm 1 modifies a partition P, which is initialized to be the finest partition of M. During the
algorithm, the condition id(K) < id(K") is true exactly four times and steps 6 and 7 are depicted in Fig. 2.

(i) K = A, K’ = B: Identify (A, 2), (B, 1) (red) and (A, 4), (B, 3) (green).

(ii) K = A, K’ = C: Identify (A, 3), (C, 1) (blue) and (A, 4), (C, 2) (green).
(iii) K = B, K’ = D: Identify (B, 3), (D, 1) (green) and (B, 4), (D, 2) (yellow).
(iv) K = C,K’ = D: Identity (C, 2), (D, 1) (green) and (C, 4), (D, 3) (teal).
Now the set P defines a partition with nine sets, each describing one global degree of freedom. The map ¥ identifies M with
its image space {1, ..., 9}:

F@A D=1, F@A2) =FB1) =2,
FA3)=FC, =3, F@A4)=F@B3) =F(EC2=5®D1 =4,
F(B,2) =5, F(B,4) = F(D,2) = 6,
F(C,3) =7, F(C,4)=%(D,3) =8,

F(D,4) =9.
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Fig.1. A2 x2 meshwith Q finite elements. Left: Local degrees of freedom in each cell. Right: Global degrees of freedom after the application of Algorithm 1.
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A B C D A B C D
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(iil) ZINZ_ Sl N= ] (iv) Nz I RN

Fig. 2. The partition P of M during the four relevant steps in Algorithm 1. Each cell corresponds to one local degree of freedom. Cells with the same
color/pattern are considered equal, only empty (white) cells are not equal to each other. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The image of F is illustrated in Fig. 1 on the right.

The implementation of the concepts described in this section has been adapted from MooNMD to PARMooON in a straight-
forward way. It is clear that the definition of the local basis and functionals is completely local and therefore not affected by
the parallelization. The required continuity in the definition of finite element spaces is performed in PARMooN on each pro-
cess separately. The computed results are visualized with the software package PARAVIEW [ 16,17] that does not require global
numbers for the d.o.f.s. However, if needed, global numbers for d.o.f.s across all processes can be assigned, compare [18].
Altogether, the used concepts turned out to be applicable in the same way for the sequential as well as for the parallel code.

4. Parallel data structures in PARMooN

In this section, the main steps in our approach to parallelize a finite element code are described. PARM0OON supports a
single program, multiple data (SPMD) approach on parallelism using the Message Passing Interface (MPI) standard [19].
It relies on a decomposition of the domain, which is the standard for parallelized finite element codes. Decomposing
the computational domain and distributing it among the processes naturally leads to a parallelization of matrix-vector
operations. The local aspect of the finite element method, which is reflected in the sparsity of the arising matrices, limits
the communication overhead.

The main steps to be described in this section are domain decomposition, d.o.f. classification, consistency levels for
distributed vectors, and technical details on the implementation of communication.

4.1. Decomposing the domain—own cells and halo cells

In order to distribute the domain among the participating MPI processes, PARMooN makes use of the METIS graph
partitioning tool [20]. At program start, all processes read the same geometry and perform the same initial domain
refinement steps. Upon reaching the first refinement level on which computations will be performed, the root process
(process number 0) calls the METIS library to compute a disjoint domain decomposition, i.e., to determine which process is
going to be in charge of which mesh cells.

Root then communicates the METIS output to the other processes. Each process is informed about the cells it will be
responsible for. These cells are called own cells of the process. Each process then keeps only its own cells plus those cells
that share a boundary face, edge, or vertex with an own cell. In domain decomposition methods these cells are commonly
referred to as halo cells. The sketches in Fig. 3 clarify that expression—the halo cells form a one-layer thick halo around the
set of own cells. Each process P deletes all cells which are neither own nor halo cells of P.

The own cells are further divided into dependent and independent cells. Therefore one defines the interface as the set of
those faces, edges, and vertices which are shared by own cells and halo cells. All own cells that contain a piece of interface
are called dependent cells, while the remaining own cells are called independent cells.

The requirements on an efficient domain decomposition are twofold: the computational load must be balanced, i.e., there
should be a comparable number of cells on each process, and the needed amount of communication must be small, i.e., the
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Fig. 3. Different cell types due to a domain decomposition.

interfaces should be as small as possible. Due to the deletion of cells, each process stores only a part of the entire problem, but
all processes execute the same program code. This was initially referred to as the single program, multiple data approach.

With its domain reduced to own cells plus halo cells, each process sets up a finite element space and performs all further
computations only on its part of the domain.

4.2. Types of degrees of freedom

In the case of parallelized finite element methods, communication is necessary to transmit values of d.o.f.s across
processes. This section describes the classification of d.o.f.s which is applied for this purpose.

A d.of. with index i is defined by the finite element basis function ¢; and the associated global linear functional &;. It
is represented, e.g., by the ith entry in the vectors for the solution and the right-hand side. Each process is responsible for
the classification of its d.o.f.s. The class to which a certain d.o.f. i belongs to depends on its location and on the classes of
those d.o.f.s with which it is coupled. That is to say, two degrees of freedom of a finite element in d dimensions are said to be
coupled if the supports of the corresponding basis functions intersect on a set of non-zero d-dimensional measure. Note that,
with this definition, coupling only occurs for d.o.f.s that are located in the same mesh cell. This notion of coupling transfers
directly to a property of the finite element matrix A: the coupling of d.o.f.s i and j will (potentially) lead to non-zero entries
a; and a;;, and the needed memory for these entries has to be allocated.

In the following, the classes of d.o.f.s in PARMooON will be described shortly. All d.o.f.s that are localized in an own cell
known to process P are called known d.o.fs and their set will be denoted by DY (D’ stands in the following for the set of
d.o.f.s on P of type x). This set is then divided into masters and slaves, i.e.,
uDf

slave’

=D"

master

D{ZHOWD
where U denotes the disjoint union. A d.o.f. i is said to be a master on P if P is responsible for the value of i, in a way that will
be clarified in Section 4.3. All known d.o.f.s which are not master on P are called slaves. It is worth noting that every d.o.f. in
the entire problem is a master on exactly one process. In contrast, a d.o.f. can be slave on more than one process.

An even finer classification of D? ... and Df, . will be used in the following. Note that the names for the classes
correspond only loosely to the types of cells they are located in. Care must be taken of those d.o.f.s that lie on the intersection
of different cell types. The classes are:

e Independent d.o.f., i.e., all d.o.f.s which lie in P’s own cells but not in its dependent cells. All P’s independent d.o.f.s are set
as masters, since they are not even known to any other process. They only couple to other masters of P.

e Dependent d.o.f, i.e., those d.o.f.s lying in P’s dependent cells, but not in its halo cells. Process P is the master of all its
dependent d.o.f.s. The notation is motivated by the fact that the dependent d.o.f.s are in a vicinity to the domain interface
and therefore possess a certain dependency on other processes.

e Interface d.o.f, i.e., all d.o.f.s that lie on the intersection of dependent cells and halo cells. These d.o.f.s are known to all
adjacent processes as interface d.o.f.s, too. Only one of these processes will take master responsibility for each interface
d.o.f.In particular, on a process P, one distinguishes between master interface d.o.f.s (the interface d.o.f.s which are master
on P) and slave interface d.o.f.s (all other d.o.f.s, for each of which a neighboring process takes master responsibility).

e Halo d.o.f, i.e., all d.o.f.s which lie in halo cells but not on the interface. Since all of them are dependent d.o.f.s to
neighboring processes, one of these will take master responsibility for them. On P all halo d.o.f.s are slaves.
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process 0

D.o.f. types:

| Independent
Da Dependent(a)
DB Dependent(B)
M  Interface Master
S Interface Slave
Ha  Halo(a)
HB Halo(B)

Fig. 4. Types of d.o.f.s at the interface for two-dimensional Q, finite elements, from the point of view of process 0 and process 1, where only the named
d.o.f.s are known to the respective process.

Hence, the sets of masters and slaves can be divided as

P _nP e e

Dmaster - Dindependent U Ddependent U Dinterfacemaster’
P _ P ‘AP

Dslave - Dinterfaceslave U Dhalo'

Moreover, it is convenient to further refine the d.o.f. classification in order to reduce the communication overhead,
see Section 4.3. To this aim, the halo and the dependent d.o.f.s of P are further divided into Halo(«) and Halo(8), and
Dependent(« ) and Dependent(8), respectively:

e Halo(«) and Halo(B) d.o.f.s: The Halo(«) d.o.f.s are those that are coupled with at least one (interface) master of P, while
Halo(8) d.o.f.s are coupled solely with other slaves, i.e., with interface slave d.o.f.s and other halo d.o.f.s.

e Dependent(a) and Dependent(f) d.o.f.s: Dependent(«) d.o.f.s are those connected to at least one (interface) slave, while
Dependent(f) d.o.f.s are all those that are connected to masters only, i.e., to interface master, other dependent, or
independent d.o.f.s. Note that all Dependent(8) d.o.f.s of process P will be Halo(8) on all other processes where they
are known. For Dependent(«) d.o.f.s the situation is not as simple. Each of them is Halo(«) to at least one neighboring
process, but can be Halo() to others.

In general, the d.o.f. classification depends on the finite element spaces and the decomposition of the domain. Fig. 4
sketches the different types for two-dimensional Q, finite elements at the interface between two processes.

4.3. Consistency levels

In parallel computations, values and information, e.g., finite element vectors, can be stored either in a consistent way or
in an additive way. In the case of a finite element vector, which is of major interest here, consistent storage means that all
processes have the same and correct value at all respective d.o.f.s as in the sequential environment. If the vector is present
in additive storage, each global value is the sum of the values over all processes where it is known. In PARMOON, certain
concepts of weakened consistent storage of finite element vectors and matrices are used.

A finite element vector belongs to one of the following four levels of consistency.

e Level-0-consistent. Consistency holds only with regard to master degrees of freedom. Each master on each process holds
the same value as it would be in a sequential computation. The values of slaves are in an undefined storage state. In the
implementation of operations care must be taken not to lose Level-0-consistency—all master values must be kept as they
would be in a sequential execution.

e Level-1-consistent. All masters and all interface slave d.o.f.s are stored consistently. The values of all halo d.o.f.s are in an
undefined storage state.

e Level-2-consistent. Consistency is established for all but Halo(8) d.o.f.s. The values of Halo(8) d.o.f.s. are in an undefined
storage state while all other values are consistent.

e Level-3-consistent. All d.o.f.s are stored consistently. This situation is called the “real” consistent storage.
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Table 1

Master-slave relationship of d.o.f. types.
Relation (shorthand) Master type Updates Slave type
Interface (IMS) Interface master — Interface slave
Dependent(« )-Halo(«) (DHw ) Dependent(«) — Halo(«r)
Dependent()-Halo(8) (DHB) Dependent(f) — Halo(B8)

The main motivations behind introducing this classification are that different operations require a different state of
consistency of their input data and that restoring a certain state of consistency requires a certain amount of communication—
the lower the required state of consistency, the lower the required amount of communication.

After the domain has been decomposed, each process P assembles a finite element matrix on all its known cells. The use of
halo cells assures that all information to assemble the rows belonging to masters is available on P. The finite element matrix
assembled in this way will have the property that all rows and columns which belong to masters are correctly assembled,
i.e., consistent. A matrix with this property is called Level-O-consistent, too. In fact, even the rows belonging to interface
slave d.o.f.s are correct, but this is only a by-product. Hence, the finite element matrix is even Level-1-consistent. Note that
it is not possible to extend this concept to Level-2- or even Level-3-consistency of a matrix. The reason is that some of the
d.o.f.s which would be needed to store the entire matrix row associated with a halo d.o.f. are not in D}, ..

Regarding operations, multiplication of a Level-0-consistent matrix with a Level-2-consistent vector gives a Level-0-
consistent vector. Level-3-consistency of the input vector is not needed. If the input is Level-3-consistent, together with the
matrix being Level-1-consistent, the result will be Level-1-consistent.

Multiplying a vector with a constant scalar will maintain the current consistency level, as will vector-vector addition.
In the latter case, vectors with different consistency level might be added and the result has the lower consistency level.
Scalar products require Level-0-consistency of both vectors, where all slaves will be skipped, and a globally additive reduce
operation is required to get a consistent result.

Level-3-consistency of a finite element vector in PARMOooON is only enforced if operations require knowledge of the
represented finite element function even on the halo cells. Such operations include the matrix assembling with an input
finite element function, e.g., for the convective term of the Navier-Stokes equations, interpolating initial conditions in a
time-dependent problem, or gradient recovery by averaging gradients over a patch of mesh cells.

Enforcing certain consistency levels is a matter of communication. For each d.o.f. which needs an update, the responsible
master process communicates its value to all processes where it is slave. These processes simply reset its value to the received
value. The required infrastructure for this communication is set up just once for a certain finite element space and can be
reused whenever an update is necessary.

4.4. Organizing communication

When setting up the communication structure, one has to find, for each non-independent master i, all those slaves on
other processes that are globally identical to i. Certain master types match with certain slave types, see Table 1, forming
three distinct pairs of master-slave relations. To restore a certain consistency level, at least one of these relations requires
an update.

Note that it is generally not possible to immediately identify the global number of a d.o.f., since each process creates finite
element spaces only on its known (own and halo) cells and it numbers its d.o.f.s locally, unaware of the other processes. In
PARMOoON, the global identification of a d.o.f. is defined according to the global number of the mesh cell in which the d.o.f.
is located. These global cell numbers are assigned to each cell before decomposing the domain. Performing only uniform
refinements after domain decomposition, such a globally unique cell number can easily be given to children cells, too. Hence,
the global cell number and a consistent local numbering of the d.o.f.s within each cell enable to identify each d.o.f. globally.

The communication structure is stored in a class called ParFEMapper, while the communication itself is performed
by a class named ParFECommunicator. Setting up the ParFEMapper and ParFECommunicator requires some
communication itself, and a detailed description of this task is presented in [18]. In what follows, only an overview of it
is given, including a short description of those data fields of ParFEMapper that are relevant when updating the d.o.f.s
of a certain master-slave relation, see Table 1. The interface (IMS) relation is presented as an example. For the two other
relations, the data fields are defined in a similar way.

For the IMS update, the ParFECommunicator wraps a call to the MPI function MPT_Al1ltoallv, where every process
may send a different set of values of the same type (MPI_DOUBLE in this case) to each other process. To control the
MPI_Alltoallv call, the ParFEMapper stores the following data, where mpi_size is the total number of processes
and nInterfaceSlaves is the number of interface slaves local to process P.

e int* sendBufIMS is the send buffer, filled with the values of all interface masters, each one possibly appearing
more than once, which will then be sent to the other processes. Its total length equals the sum over all values of
sendCountsIMS.

e int* sendCountsIMS is an array of size mpi_size. It lists how many values P has to send to each process.
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e int* sendDisplIMS is the send displacement, an array of size mpi_size. It stores where in the array sendBuf IMS
the message for a certain process starts. In PARMoON there are neither overlaps nor gaps, so sendDisplIMS[i] holds
the sum of sendCountsIMS[0] to sendCountsIMS[i-1].

e int* 1recvBufIMS is the receive buffer, which will be filled with sent values from the other processes in the
communication routine. Its size equals nInterfaceSlaves.

e int* recvCountsIMSisanarray of sizempi_size.Itlists how many values are to be received from each process. The
sum of its values isnInterfaceSlaves.

e int* recvDisplIMS is the receive displacement. Like for sendDisplIMS there are neither gaps nor overlaps.

Besides the data, which is needed in the immediate control of MPI_Alltoallv, the ParFEMapper contains two arrays
that allow to interpret the sent and received data, by mapping between send or receive buffer and the local d.o.f.s:

e int* sentDofIMS interprets sentDofIMS[i] = d as: The ith place in sendBuf IMS has to be filled with the value of
the local d.o.f. i.
e int* rcvdDofIMS interprets rcvdDofIMS[i] = d as: The ith value in recvBuf IMS should update the local d.o.f. i.

To change a vector from Level-0-consistency to Level-1-consistency, only an IMS update is required. For restoring Level-
2-consistency, additionally a DHa update is necessary, while Level-3-consistency requires even a DHS update on top.

5. The parallel geometric multigrid method

Geometric multigrid methods are an appealing option to be used as preconditioners in problems where the necessary
hierarchy of grids can be provided. These methods have been used in the simulations performed with MooNMD in particular
for three-dimensional problems and for linear saddle point problems arising in the linearization and discretization of
equations modeling incompressible flow problems [21].

The components of a geometric multigrid method are the following: function prolongation, defect restriction, function
restriction, smoother, and coarse grid solver. Concerning details of the algorithms and implementation of the first three
components in MooNMD/PARMooN, it will be referred to [1] for details. It shall be only noted that multilevel methods are
supported that allow different finite element spaces on different levels of the multigrid hierarchy. In particular, the so-called
multiple discretization multilevel (MDML) method for higher order discretizations can be used. This method possesses
the higher order discretization on the highest multigrid level and a low order discretization on all coarser levels, where
more multigrid levels might be defined than geometric levels exist. The motivation for this approach is the experience that
multigrid methods often work very efficiently for low order discretizations. Numerical studies of the efficiency of the MDML
method can be found, e.g., in [22]. The grid transfer operations are performed with a local operator, taking values only on
the mesh cells of the current level, proposed in [23], that can handle different finite element spaces on different levels of the
grid hierarchy, see [21,1] for details.

The implementation and parallelization of geometric multigrid methods require a considerable amount of work. The
geometric data structures need to be equipped with parent-child information and the grid transfer operations have to
be implemented. In the current version of PARMoON, each process is responsible for a part of the coarsest grid, compare
Section 4.1, and refines this part uniformly. Consequently, all parent-child information is available on the process. More
technical details on constructing the grid hierarchy can be found in [18].

As usual in parallel geometric multigrid methods, block-Jacobi smoothers are applied, where the blocks correspond to the
master and interface slave degrees of freedom of a process. Within the blocks, the actual smoother, like SSOR or the Vanka
smoother, is used. After each smoothing iteration, the values at the interface are updated by computing their arithmetic
average. As already mentioned above, the grid transfer operators need as potential input all values that are connected to a
mesh cell. Since it is sufficient to perform the grid transfer only on own cells, the input vectors for the grid transfer have to
be Level-1-consistent.

6. Numerical studies

The performed numerical studies are a first step of assessing the efficiency of the parallelized geometric multigrid method
in comparison with parallel solvers that can be used by linking an external library to the code. The underlying question is
whether it was worthwhile to perform the complex parallelization of this method. We think that this question arises also
in other groups that maintain an in-house research code.

In this paper, the numerical studies concentrate on the standard multigrid method (same number of geometric and
multigrid levels, same discretization on each level) since we think that this method is of most interest for the community. It
was used as preconditioner in the flexible GMRES (FGMRES) method [24]. The system on the coarsest grid was solved with a
sparse direct solver. Moreover, the V-cycle was applied because of its better efficiency on parallel computers compared with
the more stable F- and W-cycle (the F-cycle is our standard approach in sequential simulations). The V-cycle approaches
less often coarser grids, which possess an unfavorable ratio of computational work and necessary communications, than the
other cycles.

The efficiency of the geometric multigrid preconditioner has been compared with the efficiency of the sparse direct solver
MUMPS [25,26] and the FGMRES method preconditioned with SSOR (for scalar problems), the BoomerAMG [27] (for scalar
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problems), or the LSC preconditioner [28] (for linear saddle point problems). These solvers were used as they are provided
in the library PETSc, version 3.7.2, [29-31]. The restart parameter in FGMRES was set to be 50.

The numerical studies were performed on a hardware platform that can be usually found in universities and academic
institutes, in our case, on compute servers HP BL460c Gen9 2xXeon, Fourteen-Core 2600 MHz. We think that the performance
on a hardware platform that is widely available is of interest for the community. The results will consider only the computing
times for the different solvers of the linear systems of equations. We could observe some variations of these times for the
same code and input parameters across different runs. To reduce the influence of these variations, all simulations were
performed five times, the fastest and the slowest computing time were neglected and the average of the remaining three
times is presented below.

Example 2 (Steady-State Convection-Diffusion Equation). This example is a three-dimensional extension of a benchmark
problem for two-dimensional convection-diffusion equations—the so-called Hemker example [32,33]. The domain is
defined by

2={{(=3,9x (=3.)\ {x,»: ¥ +y <1}} x(0,6)
and the equation is given by
—eAu+b-Vu=0 in$2,

with e = 1078 and b = (1, 0, 0). Dirichlet boundary conditions u = 0 were prescribed at the inlet plane {x = —3} and
u = 1 at the cylinder. At all other boundaries, homogeneous Neumann boundary conditions were imposed. This example
models, e.g., the heat transport from the cylinder. The solution exhibits boundary layers at the cylinder and internal layers
downwind the cylinder, see Fig. 5.

It is well known that stabilized discretizations have to be employed in the presence of dominant convection. In the
numerical studies, the popular streamline-upwind Petrov-Galerkin (SUPG) method [34,35] was used with the standard
parameter choice given in [36, Egs. (5)—(7)]. Simulations were performed with Q; finite elements. The initial grid is depicted
in Fig. 5.

Computational results are presented in Figs. 6 and 7 for refinement levels 4 (1297 375 d.o.f.s) and 5 (10 388 032 d.o.f.s).
The PETSc solvers were called with the flags -ksp_type fgmres -pc_type sorand -ksp_type fgmres -pc_type
hypre -pc_hypre_type boomeramg, respectively. For the geometric multigrid preconditioner, the V(2,2)-cycle was
used and the overrelaxation parameter of the SSOR smoother within the block-Jacobi method was set to be w = 1. This
approach is certainly not optimal since with an increasing number of processes the number of blocks of the block-Jacobi
method increases, which in turn makes it advantageous to apply some damping, i.e., a somewhat smaller overrelaxation
parameter. In order not to increase the complexity of the numerical studies, we decided to fix a constant overrelaxation
parameter that worked reasonably well for the whole range of processor numbers which was used. The iterative solvers
were stopped if the Euclidean norm of the residual vector was less than 10~'°. Parameters like the stopping criterion, the
overrelaxation factor, and the restart parameter were the same in all iterative methods.

It can be seen in Fig. 6 that the sparse direct solver performed less efficient by around two orders of magnitude
than the other solvers. This behavior was observed for all studied scalar problems and no further results with this
solver for scalar problems will be presented. Among the iterative solvers, PETSc FGMRES with SSOR preconditioner and
PARMoON FGMRES with geometric multigrid preconditioner (MG) performed notably more efficient than PETSc FGMRES
with BoomerAMG. The latter solver did not even converge on the finer grid in the simulations on more than two processors.
With respect to the computing times and the stability, similar results were obtained by applying two V(1,1) BoomerAMG
cycles (-pc_hypre_boomeramg_max_iter 2). With the V(2,2) cycle (-pc_hypre_boomeramg_grid_sweeps_all
2), the solver did not converge. FGMRES with SSOR required considerably more iterations than PARMooN FGMRES with MG:
around 125 vs. 25 on level 4 and 320 vs. 45 on level 5. A notable decrease of the computing time for the iterative solvers
on the coarser grid can be observed only until 8 processors. On this grid, PETSc FGMRES with SSOR was a little bit faster
than PARMooN FGMRES with MG. On the finer grid, a decrease of the computing times occurred until 16 processors and
PARMooN FGMRES with MG was often a little bit more efficient.

Example 3 (Time-Dependent Convection-Diffusion-Reaction Equation). This example can be found also in the literature,
e.g., in[10], and it models a typical situation which is encountered in applications. A species enters the domain £2 = (0, 1)3
at the inlet I3, = {0} x (5/8,6/8) x (5/8,6/8) and it is transported through the domain to the outlet I, = {1} x
(3/8,4/8) x (4/8, 5/8).In addition, the species is diffused somewhat and in the subregion where the species is transported,
also a reaction occurs. The ratio of diffusion and convection is typical for many applications.

The underlying model is given by

du—eAu+b-Vu+cu=20 in (0, 3) x £2,
u=1uy in(0,3)x I}
e— =0 on (0, 3) x Iy,

u=0 on(0,3) x (82 \ (INU ),
U(O, ) = Up in $2.
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Fig.5. Example 2, numerical solution (left) and initial grid (level 0, right). The color bar shows that the numerical solution computed with the SUPG method
possesses under- and over-shoots. These spurious oscillations occur in particular in a vicinity of the cylinder, compare [ 13, Fig. 14] for the two-dimensional
situation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Example 2, solver times on refinement level 4.
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Fig. 7. Example 2, solver times on refinement level 5. PETSc FGMRES with BoomerAMG converged only with two processors (1519 s).

The diffusion parameter is given by ¢ = 1078, the convection field is defined by b = (1, —1/4, —1/8)", and the reaction by

_J1 ifdist(x,g) < 0.1,
c@) = {O else,



U. Wilbrandt et al. / Computers and Mathematics with Applications 74 (2017) 74-88 85

‘ ‘ ‘ 140 ‘ ‘ ;
2000 »—< FGMRES + SSOR (PETSc) | »— FGMRES + SSOR (PETSc)
¢ FGMRES + AMG (PETSc) B8 FGMRES + MG (ParMooN)
B—8 FGMRES + MG (ParMooN) 120
¢ 1500} S
& 8
£ € 100
() (0]
£ 1000} ] E
] S 80
2 2
& 3
500} 1 60
sy a0l ‘ ‘ ‘ ‘ ‘
2 4 8 12 16 20 24 2 4 8 12 16 20 24
# processors # processors
Fig. 8. Example 3, solver times on the 64> cubed mesh.
‘ ‘ ‘ 1600 ‘ ‘ ;
=< FGMRES + SSOR (PETSc) “— FGMRES + SSOR (PETSc)
200001 44 FGMRES + AMG (PETSc) || 1400 -8 FGMRES + MG (ParMooN)
m— FGMRES + MG (ParMooN) i l
] [§]
v Q
Y 15000} » 1200
£ c
v 0]
£ £ 1000
= £
§ 10000} ;
>
2> = 800
2 b
5000} 1
600
F‘!‘f_.j - —il- - 200L | | | | |
2 4 8 12 16 20 24 2 4 8 12 16 20 24

# processors # processors

Fig.9. Example 3, solver times on the 128 cubed mesh.

where g is the line through the center of the inlet and the center of the outlet and dist(x, g) denotes the Euclidean distance
of the point x to the line g. The boundary condition at the inlet is prescribed by

sin(rt/2) ift €0, 1],
Upp = {1 ift € (1,2,
sin((t — 1)/2) ift € (2, 3].

The initial condition is set to be ug(x) = 0. Initially, in the time interval [0, 1], the inflow increases and the injected species is
transported towards the outlet. Then, there is a constant inflow in the time interval (1, 2] and the species reaches the outlet.
At t = 2, there is almost a steady-state solution. Finally, the inflow decreases in the time interval (2, 3], compare [10].

The SUPG stabilization of the Q; finite element method was used and as temporal discretization, the Crank-Nicolson
scheme with the equidistant time step At = 1072 was applied. Simulations were performed on grids with 64° and 1283
cubic mesh cells. The coarsest grid for the geometric multigrid method possessed 43 cubic mesh cells. The SSOR method was
applied with the overrelaxation parameter v = 1.25. As initial guess for the iterative solvers, the solution from the previous
discrete time was used. The availability of a good initial guess and the dominance of the system matrix by the mass matrix
are the main differences to the steady-state case.

Computing times for the iterative solvers are presented in Figs. 8 and 9. On the coarser grid, a speed-up can be observed
only until 8 processors and on the finer grid until 12-16 processors. With respect to the efficiency of the iterative solvers, the
same observations can be made as in steady-state Example 2. Using the V(2,2) cycle or two V(1,1) cycles in the BoomerAMG
gave the same order of computing times as the presented times of the V(1,1) cycle. The same statement holds true for the
number of iterations per time step, e.g., on the finer grid there were up to 45 for PETSc FGMRES with SSOR and around 1-3
for PETSc FGMRES with BoomerAMG and PARMooN FGMRES with MG.
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Fig. 10. Example 4, initial grid (level 0).

Example 4 (Steady-State Incompressible Navier-Stokes Equations). This example considers the benchmark problem of the
flow around a cylinder defined in [37]. The steady-state Navier-Stokes equations are given by

—vAu+ w-VYu+Vp=0 in$2,
V-u=0 in§$2,

where u is the velocity, p the pressure, v = 1073 is the dimensionless viscosity, and £2 is the domain given by
2 ={(0,2.55) x (0,0.41) \ {(x—0.5)* + (y — 0.2)* < 0.05°}} x (0, 0.41).
At the inlet x = 0, the velocity was prescribed by

u ( 72 z(0.41 )(0.41 —2),0 O)T
041472 P )

at the outlet x = 2.55, the do-nothing boundary condition was imposed and on all other boundaries, the no-slip boundary

condition was used. The flow field exhibits vortices behind the cylinder.

The Navier-Stokes equations were discretized with the popular Q, /P;jisc (continuous piecewise triquadratic velocity,
discontinuous piecewise linear pressure) pair of finite element spaces on a hexahedral grid, see Fig. 10 for the initial grid.
Simulations were performed on level 2 (776 160 velocity d.o.f.s, 122 800 pressure d.o.f.s) and level 3 (6 052 800 velocity
d.o.f.s, 983 040 pressure d.o.f.s). The nonlinear problem was linearized with a Picard iteration (fixed point iteration). In each
step of this iteration, the iterative solvers reduced the Euclidean norm of the residual vector by at least the factor 10 before
performiglg the next Picard iteration. The Picard iteration was stopped if the Euclidean norm of the residual vector was less
than 107°.

In the geometric multigrid preconditioner, the so-called mesh-cell oriented Vanka smoother was used, e.g., see [22,21].
This smoother is a block Gauss-Seidel method that solves a local system in each mesh cell. The multigrid preconditioner
was applied with the V(2,2)-cycle.

The linearization and used discretization of the incompressible Navier-Stokes equations require the solution of a linear
saddle point problem in each Picard iteration. We tried several options for calling an iterative solver from PETSc for such
problems, as well based on the coupled system as on Schur complement approaches. Only with a Schur complement
approach and the least square commutator (LSC) preconditioner (-ksp_type fgmres -pc_type fieldsplit
-pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type upper -fieldsplit_1_pc_
type lsc -fieldsplit_1_lsc_pc_type lu -fieldsplit_O_ksp_type preonly -fieldsplit_O_pc_type
1u), reasonable computing times could be obtained, at least for the coarser grid, see Fig. 11. Like for the scalar problems, the
sparse direct solver performed by far the least efficient. The solver with the geometric multigrid method was more efficient
by around a factor of 20 compared with the iterative solver called from PETSc. For the finer grid, the numerical studies were
restricted to the geometric multigrid preconditioner, see Fig. 12. It can be observed that increasing the number of processors
from 2 to 20 reduces the computing time by a factor of around 6.6.

7. Summary

This paper presented some aspects of the remanufacturing of an existing research code, in particular with respect to
its parallelization. All distinct features of the predecessor code could be incorporated in a straightforward way into the
modernized code PARMooN. The efficiency of the most complex method in the parallel implementation, the geometric
multigrid method, was assessed against some parallel solvers that are available in external libraries. The major conclusions
of this assessment are twofold. For scalar convection-diffusion-reaction equations, the geometric multigrid preconditioner
was similarly efficient as an iterative solver from the PETSc library. The larger the problems became, the better was
its efficiency in comparison with the external solver. For linear saddle point problems, arising in the simulation of the
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Fig. 11. Example 4, solver times on refinement level 2.
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Fig. 12. Example 4, solver times and scaling on refinement level 3. The scaling is computed by 2 - t, /(p - t,), where p is the number of processors and t,
the corresponding time from the left picture.

incompressible Navier-Stokes equations, we could not find so far any external solver that proved to be nearly as efficient as
the geometric multigrid preconditioner.

On the one hand, we keep on working at improving the efficiency of the geometric multigrid preconditioner. On the other
hand, we continue to assess external libraries with respect to efficient solvers for linear saddle point problems, which can
be used in situations where a multigrid hierarchy is not available. In addition, an assessment as presented in this paper on
another widely available hardware platform, namely small clusters of processors, is planned.
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