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Abstract. The divergence constraint of the incompressible Navier–Stokes equations is revisited in
the mixed finite element framework. While many stable and convergent mixed elements
have been developed throughout the past four decades, most classical methods relax the
divergence constraint and only enforce the condition discretely. As a result, these meth-
ods introduce a pressure-dependent consistency error which can potentially pollute the
computed velocity. These methods are not robust in the sense that a contribution from
the right-hand side, which influences only the pressure in the continuous equations, im-
pacts both velocity and pressure in the discrete equations. This article reviews the theory
and practical implications of relaxing the divergence constraint. Several approaches for
improving the discrete mass balance or even for computing divergence-free solutions will
be discussed: grad-div stabilization, higher order mixed methods derived on the basis of
an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with
an appropriate reconstruction of the test functions. Numerical examples illustrate both
the potential effects of using nonrobust discretizations and the improvements obtained by
utilizing pressure-robust discretizations.
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1. The Navier–Stokes and the Stokes Equations, Goals, and Contents of the
Review. The Navier–Stokes equations are a fundamental model of incompressible
Newtonian flows. They are used to model flows in pipes and channels, flows around
objects such as the wing of a plane, and weather and climate, to name just a few.
Developed in the mid-19th century, these equations have garnered great interest from
mathematicians, engineers, and scientists. In their simplest form, and assuming con-
stant fluid density, the equations are given in a domain Ω ⊂ Rd, d ∈ {2, 3}, and a
time interval (0, T ), T <∞, by

∂tu− ν∆u+ (u · ∇)u+∇p = f ,(1.1a)

∇ · u = 0,(1.1b)

where u denotes the velocity of the fluid, p denotes the pressure, and ν is the kinematic
viscosity. The nonlinear term u · ∇u = (u · ∇)u represents the inertial force, while

the term with the Laplace operator ∆u :=
∑d
i=1 ∂iiu encodes the viscous effects

of the fluid. The given function f takes into account external forces, e.g., gravity,
buoyancy, and centrifugal forces, and the divergence constraint ∇ · u = 0 represents
the incompressibility of the fluid, or equivalently in this setting, the conservation of
mass.
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The fact that the Navier–Stokes equations are a constrained system of partial
differential equations poses fundamental mathematical and numerical difficulties. A
basic model for studying the impact of the divergence constraint is that of the steady-
state (scaled) Stokes equations, given by

−ν∆u+∇p = f ,(1.2a)

−∇ · u = g,(1.2b)

u|∂Ω = 0,(1.2c)

with the last equation representing no-slip boundary conditions. The divergence
constraint −∇ · u = g originates, e.g., from transforming inhomogeneous Dirichlet
boundary conditions to no-slip boundary conditions. One notes immediately that the
analysis of the Stokes equations is simpler than that of the Navier–Stokes equations,
since the Stokes equations form a linear system and are not time-dependent.

A main goal of this review is to highlight and elaborate a type of nonrobustness
of many standard mixed finite element methods for the Stokes and Navier–Stokes
equations. This nonrobustness is connected to the discretization of the divergence
constraint (and not to the nonlinearity nor to dominating convection). The intended
type of robustness is called pressure-robustness, which means that some mixed meth-
ods are robust with respect to large and complicated pressures and some are not. To
avoid technicalities which do not concern the divergence constraint and its discretiza-
tion, the numerical analysis presented in this article is limited to the Stokes equations.
However, it is directly relevant to more complex systems, and the fundamental ideas
presented herein for the Stokes equations are extendable. The numerical studies con-
sider the Stokes and Navier–Stokes equations, and also multiphysics systems.

1.1. Examples That Demonstrate Difficulties of Standard Mixed Methods.
In what follows, three simple numerical examples are presented which illustrate the
lack of pressure-robustness in the numerical simulation of incompressible flow prob-
lems with standard finite element methods. All simulations were performed on uni-
formly refined grids using classical pairs of mixed finite elements: the mini element
proposed in [4], the Taylor–Hood element from [41], and the nonconforming Crouzeix–
Raviart element [26].

Example 1.1. No-flow problem for the Stokes equations. Consider the Stokes
equations with ν = 1 in Ω = (0, 1)2, no-slip boundary conditions, the right-hand
side f = (0,Ra(1 − y + 3y2))T , where Ra > 0 is a parameter, and g = 0. One finds
that u = 0, p = Ra(y3 − y2/2 + y − 7/12) is the solution of this equation. Changing
the parameter Ra in the right-hand side changes only the pressure. On the other
hand, applying standard mixed finite element methods, one can also see an influence
of this parameter on the discrete velocity; see Figure 1.1. For all considered pairs
of finite element spaces, the Taylor–Hood space P2/P1, the mini element (not shown
for the sake of brevity), and the nonconforming Crouzeix–Raviart space, the discrete
velocity is far from being equal to zero, even for Ra = 1.

The impact on the discrete velocity of a term which only influences the pressure
in the continuous case is one type of nonrobustness which is studied here. By the
construction of this example, this lack of robustness cannot be due to dominating
convection or to the nonlinearity of the problem. It is clarified in this review that this
lack of robustness is connected with the discretization of the divergence-free constraint
in mixed finite element methods. Based on a careful study of this issue, a remedy
which removes this instability for the Crouzeix–Raviart pair of finite element spaces
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Fig. 1.1 Example 1.1. Velocity errors in the no-flow problem for the Stokes equations.

was proposed in [51]. The underlying idea of this remedy is explained in section 5.2
and the result of its application is shown in Example 6.1.

Example 1.2. Stationary vortex. Consider the Navier–Stokes equations (1.1) with
ν = 1 in Ω = (−1, 1)2 with the prescribed solution

u =

(
−y
x

)
, p = Re

(
x2 + y2

2
− 1

3

)
, Re > 0,

and with Dirichlet boundary conditions. The flow field has the form of a vortex and
a direct calculation shows that f = 0. Clearly, ∂tu = 0 and ∆u = 0. Hence, there
is a balance of the nonlinear term of the Navier–Stokes equations and the pressure
gradient.

In standard finite element error estimates, some norm of the solution appears on
the right-hand side. In this example, one could think that the velocity errors are
uniformly bounded since the velocity does not depend on Re. Instead, one observes
in Figure 1.2 that the errors are proportional to Re, i.e., the velocity error has the
same scaling as the pressure.

Fig. 1.2 Example 1.2. Velocity errors for the stationary vortex.

This example shows that there is a negative impact of the pressure on the discrete
velocity. This influence is also a kind of non-pressure-robustness which by construction
is not due to dominating convection. A remedy in the case of the Crouzeix–Raviart
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finite element pair was proposed in [51]; see section 5.2 for the basic idea and Exam-
ple 6.1 for numerical results.

Example 1.3. Flow with Coriolis force. In some applications, such as meteorol-
ogy, the Coriolis force acting on the flow field is of the utmost importance. The
Coriolis force is modeled with the additional term 2w × u on the left-hand side of
the moment balance of the Navier–Stokes equations (1.1), where w is the vector of
angular momentum.

Consider a flow field which is two-dimensional, that is, assume u = (u1, u2, 0),
w = y(0, 0, ω/2)T , ω ∈ R, and assume that none of the functions of the problem
depends on the third coordinate. Then one obtains a two-dimensional model, similar
to the Navier–Stokes equations. In this model, the left-hand side of (1.1) contains
the additional term ωy(−u2, u1)T . The y-dependence of the Coriolis force models in
meteorology a latitude-dependence in a so-called β-plane approximation [67]. Here, a
part of the Earth’s surface is approximated by a tangent plane and vertical velocities
are neglected.

This problem is considered for the Navier–Stokes equations in Ω = (0, 10)× (0, 1)
with ν = 1 and the prescribed solution

u =

(
1
0

)
, p = ω

(
−y

2

2
+

1

6

)
=⇒ f = 0,

and with Dirichlet boundary conditions. In meteorology, this situation would model
a constant ocean current from west to east. For this solution, the first three terms
of the momentum balance of the Navier–Stokes equations (1.1) vanish, while ∇p is
balanced by the additional Coriolis force 2w × u.

Once again this is a problem where in the continuous setting the velocity does not
depend on the parameter ω, but the pressure does. The numerical results presented
in Figure 1.3 show that this property is not inherited by standard pairs of mixed finite
elements. The discrete velocity depends on ω and the error scales linearly with this
parameter, i.e., it scales the same way as the pressure.
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Fig. 1.3 Example 1.3. Velocity errors for the flow with Coriolis force.

1.2. Goals of the Review. A pressure-robust method in the sense studied in this
review is a method for which modifications of the continuous problem that only affect
the pressure lead to changes in the discrete solution that only affect the discrete pres-
sure. Otherwise, the method is said to be non-pressure-robust. In Examples 1.1–1.3
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it was shown that for non-pressure-robust methods there might be a large impact on
the discrete velocity from modifications that only affect the pressure in the continuous
equations.

Two fundamental observations concerning the Stokes (1.2) and Navier–Stokes
equations (1.1) can be made immediately:

1. For solutions to exist, the divergence operator must possess a certain surjec-
tivity property, the fundamental inf-sup compatibility condition: There exists
a constant β such that

inf
q∈L2

0(Ω)\{0}
sup

v∈H1
0(Ω)\{0}

(∇ · v, q)
‖∇v‖L2(Ω)‖q‖L2(Ω)

≥ β > 0.(1.3)

Otherwise, the constraint −∇ · u = g cannot hold.
2. A fundamental invariance property holds: Changing the external force by

a gradient field changes only the pressure solution, and not the velocity; in
symbols,

(1.4) f → f +∇ψ =⇒ (u, p)→ (u, p+ ψ),

since the additional force field ∇φ is balanced by the pressure gradient, and
the no-slip boundary conditions do not involve the pressure.

These issues not only affect the continuous equations, but also their discretizations. In
this review, the effect of the second observation on mixed finite element discretizations
will be elaborated upon. Discretizations that contain a stabilization with respect to
the discrete inf-sup condition, e.g., the pressure-stabilized Petrov–Galerkin (PSPG)
method [42], are not considered in this review.

The significance of the first observation is well known and forms a cornerstone
of numerical analysis for the Stokes and Navier–Stokes equations. It comprises the
fundamental finding that numerical schemes for approximating the Stokes and Navier–
Stokes equations should satisfy a certain compatibility criterion between the discrete
velocity and pressure spaces, in order to fulfill an appropriate surjectivity of the dis-
crete divergence operator: the so-called discrete inf-sup stability. The need for discrete
inf-sup stability results from the fact that the discrete velocity trial functions are con-
strained. The great practical value of discrete inf-sup stability is that it provides a
recipe for the construction of well-posed discretization schemes, whose solutions have
(asymptotically) optimal convergence rates.

The significance of the second observation for the discretization of the Navier–
Stokes equations has only recently begun to be realized [35]. As is explained in
detail in section 4.2, the discrete divergence constraint induces a discrete rotation
operator via the velocity test functions, since divergence-free vector test functions
have a vector potential. Therefore, in every mixed finite element discretization for
the Stokes problem (1.2) a discrete vorticity equation is hidden. For discretization
schemes satisfying (1.4) it holds exactly that ∇ × ∇ψ ≡ 0 for any differentiable
ψ. However, classical mixed methods, which satisfy the discrete inf-sup condition,
satisfy ∇ × ∇ψ ≡ 0 only approximately, up to some order of accuracy. In addition,
(1.4) can be explained using the Helmholtz–Hodge projection (see section 2), which
is mathematically more rigorous.

The violation of (1.4) by a discretization might have severe consequences.
• As is discussed in section 3, the violation of (1.4) results in finite element

error bounds for the velocity which depend on the pressure. Thus, large
pressures may lead to large velocity errors, which has already been observed
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in Examples 1.1–1.3. Indeed, there are important applications, e.g., natural
convection problems, where the pressure is larger than the velocity by orders
of magnitude. In such situations, one cannot expect to compute accurate
velocity fields with classical mixed methods, at least for low order methods.

• In the case ∇ · u = 0, one often expects in applications that the discrete
computed velocity field is also divergence-free. Otherwise, the conservation
of mass is violated. A violation of this conservation law is not tolerable in
many applications.

It turns out that so-called divergence-free mixed methods, i.e., methods whose discrete
velocity uh is in a sufficiently strong sense divergence-free (or in the general case
∇ ·uh = g in a sufficiently strong sense), satisfy (1.4) and thus belong to the class of
pressure-robust methods.

Another main goal is to review the construction of pressure-robust mixed methods
that satisfy simultaneously the discrete inf-sup stability and (1.4). In the last decade,
tremendous progress has been made in approaching this goal, though seemingly it
was believed for more than thirty years that it would be (practically) impossible to
construct such schemes. Indeed, the first pressure-robust mixed method on three-
dimensional tetrahedral grids was published only recently in 2005 [80]. Pressure-
robust mixed methods in two dimensions reach back to 1983 [75], although they were
rarely used in practice. Nowadays, three different approaches exist for the construction
of pressure-robust mixed methods.

• The first approach, which is the most classical, constructs divergence-free
mixed Galerkin schemes such that the discrete velocity is H1-conforming and
divergence-free. Here, novel ideas from the finite element exterior calculus
have delivered a tremendous breakthrough; see section 4.3.

• The second approach is due to recent discontinuous Galerkin (DG) meth-
ods. Here, novel mixed schemes for (1.2) look for divergence-free, H(div)-
conforming velocities; see section 4.4. This regularity suffices to assure (1.4).
Due to the relaxation of the H1-conformity of the velocity, the tangential
velocity components are discretized in the DG framework.

• The third approach is very recent and is based on the observation that velocity
trial and velocity test functions play a different role in order to guarantee
discrete inf-sup stability and (1.4); see section 5.2. Therefore, the resulting
schemes are not of Galerkin type. For (1.2) a variational crime in the right-
hand side of the momentum balance is applied, in order to replace discretely
divergence-free velocity test functions by divergence-free ones. In the case
of the Navier–Stokes equations, the variational crime must also be applied
to the test function of the convective term, and if a Coriolis force term is
present, also to this term.

In addition, an approach for improving the pressure-robustness of classical mixed
methods, the so-called grad-div stabilization, is presented in section 5.1.

1.3. Outline of the Review. An outline of this review article is now given, fol-
lowed by a list of notation. To focus on the goals of the review and to avoid technical
details, the review will concentrate on the Stokes equations (1.2).

Section 2 recalls the variational formulation of the Stokes equations and presents
the fundamental associated results. The momentum balance is discussed in detail,
as is the invariance property that “changes to the irrotational part of the forcing
only affect the pressure and do not alter the velocity.” The standard mixed finite
element method for Stokes is given in section 3, along with results for well-posedness
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under an inf-sup condition and a general error estimate. It is discussed that common
element choices only enforce the divergence constraint discretely, and that this leads
to pressure-dependent error estimates for the velocity.

Section 4 discusses pressure-robust mixed finite element methods for the Stokes
equations. In particular, it is shown that for special element choices, the divergence
constraint is enforced exactly and the velocity error does not depend on the pressure.
Such methods are deemed pressure-robust mixed methods in this article, as this prop-
erty does not hold in most commonly used elements. Discrete invariance properties
which are analogues of those found at the continuous level are also discussed, and it
is shown that they hold for pressure-robust mixed methods. A detailed description is
then given of the de Rham complex, which is a tool to develop pressure-robust mixed
methods. The section is concluded with a discussion of (nonconforming) H(div) mixed
methods and how they can be used in a pressure-robust way.

The focus of section 5 is on techniques that improve, or even fix, standard (non-
pressure-robust) mixed methods. The topics discussed are grad-div stabilization and
appropriate modification of test functions, which all serve the purpose of reducing
or eliminating the pressure from the velocity error. Moreover, a kind of postprocess-
ing approach is discussed that produces divergence-free H(div)-conforming velocities
from discretely divergence-free velocity fields. Such postprocessing is related to the
discussed modification of test functions, and it is interesting for the discretization of
tracers described by convection-diffusion equations; see, e.g., [33]. Results and dis-
cussion for several numerical studies presented are given in section 6. The aim of
this section is to show the types of problems for which the methods discussed in this
article can make a significant improvement in solution accuracy, as well as problems
where they do not make a difference.

1.4. Nomenclature. Throughout this review, standard notation will be used for
function spaces.

a(·, ·) velocity-velocity bilinear form b(·, ·) velocity-pressure bilinear form
CF Fortin operator constant CP constant in Poincaré’s estimate
curl vector curl operator div divergence operator
grad gradient operator β continuous inf-sup constant
βh discrete inf-sup constant Ra Rayleigh number
Th triangulation of Ω Re Reynolds number
Eh set of edges of Th γ parameter in grad-div

stabilization
T mesh cell of Th ν kinematic viscosity
e mesh cell of Eh f body force
g right-hand side of continuity

equation
h maximal value of hT for given

mesh
hT diameter of T n outward unit normal to ∂Ω
nT outward unit normal to T P(·) Helmholtz–Hodge projector
p pressure ph finite element pressure
Pk space of globally continuous

scalar-valued piecewise
polynomials of degree not
exceeding k

Pk space of globally continuous
vector-valued piecewise
polynomials of degree not
exceeding k

u velocity uh finite element velocity
Vh set of vertices of Th W h nonconforming finite element

velocity space
X velocity space, H1

0(Ω) Xh conforming finite element
velocity space
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Xdiv subspace of X, containing the
weakly divergence-free
functions

Xh,div space of discretely
divergence-free functions

Xh,div(g) manifold of functions with
divergence equal to g

Y pressure space, L2
0(Ω)

Yh finite element pressure space πF Fortin operator
π L2-projection to some space Ω domain
ω vorticity ∂Ω boundary of Ω
∇·h discrete divergence operator [|·|]τ jump across edges/faces in two

or three dimensions

2. Variational Formulation, Helmholtz–Hodge Decomposition, and an In-
variance Property. In this section, the variational formulation of the Stokes problem
is introduced, and the Helmholtz projector is discussed and its significance is em-
phasized for the (Navier–)Stokes momentum balance. The Helmholtz projector is of
central importance for understanding the results obtained with mixed finite element
methods, yet is generally not emphasized in the numerical analysis literature, or only
in a posteriori error control [1, 21].

Let Ω be a bounded domain with polyhedral and Lipschitz continuous boundary
and let f ∈ L2(Ω) and g ∈ L2(Ω). A weak solution to the incompressible Stokes
equations (1.2) is defined as a pair (u, p) ∈X × Y := H1

0(Ω) ∩ L2
0(Ω) satisfying

a(u,v) + b(v, p) = (f ,v) ∀ v ∈X,(2.1a)

b(u, q) = (g, q) ∀ q ∈ Y,(2.1b)

where L2
0(Ω) is the space of square integrable functions with vanishing mean. The

bilinear forms are given by a(w,v) = ν(∇w,∇v) and b(v, q) = −(∇ · v, q), and
(·, ·) denotes the L2 inner product over Ω. Note that vector-valued functions and
vector-valued function spaces are denoted in boldface, e.g., H1

0(Ω) = (H1
0 (Ω))d.

To analyze (2.1), the following partial integration formula for the divergence is
recalled which allows the introduction of a distributional divergence and a weak di-
vergence.

Lemma 2.1. For all ψ ∈ H1(Ω) and w ∈H1(Ω) there holds∫
Ω

ψ∇ ·w dx = −
∫

Ω

∇ψ ·w dx+

∫
∂Ω

ψw · n ds.

The surface integral is understood as a duality pairing between the spaces H
1
2 (∂Ω) and

H−
1
2 (∂Ω).

Proof. For smooth functions ψ ∈ C∞(Ω) and w ∈ C∞(Ω), the proof is a direct
consequence of the vector calculus identity ∇ · (ψw) = ψ∇ · w + ∇ψ · w and the
divergence theorem (integration by parts of the divergence term). Using the density
of C∞(Ω) and C∞(Ω) in H1(Ω) and H1(Ω), respectively, gives the statement of the
lemma.

This lemma motivates the introduction of the notion of a distributional divergence.

Definition 2.2. For a vector field w ∈ L1(Ω) the mapping C∞0 (Ω) → R given
by

ψ 7→ −
∫

Ω

∇ψ ·w dx

is called the distributional divergence of w.
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The weak divergence is defined in the usual way of defining weak derivatives.

Definition 2.3. If for a vector field w ∈ Lp(Ω) with p ≥ 1 there exists a function
ρ ∈ L1

loc(Ω) such that the distributional divergence can be represented in the form

−
∫

Ω

∇ψ ·w dx =

∫
Ω

ψρ dx ∀ ψ ∈ C∞0 (Ω),

the function ρ is called the weak divergence of w, abbreviated as ρ := ∇ · w. In
particular, for divergence-free vector fields w there holds

(2.2)

∫
Ω

∇ψ ·w dx = 0 ∀ ψ ∈ C∞0 (Ω).

Remark 2.4. Loosely speaking, divergence-free vector fields are characterized by
the fact that they are orthogonal in the L2(Ω) scalar product to all gradient fields
(with compact support). Classical mixed methods, whose construction is guided by
the discrete inf-sup condition (3.2), usually violate this essential property. Its violation
might lead to the lack of pressure-robustness as demonstrated in Examples 1.1–1.3.

Considering in the divergence constraint (2.1b) a test function q ∈ Y ∩ C∞0 (Ω),
one obtains with the divergence theorem∫

Ω

∇q · u dx =

∫
Ω

qg dx.

Following Definition 2.3, −g is the weak divergence of u. This statement can be
made more precise. Since u satisfies no-slip boundary conditions, one finds by the
divergence theorem that 0 =

∫
∂Ω
u ·n ds =

∫
Ω
∇·u dx. Combining this identity with

u ∈ H1(Ω) implies that ∇ · u ∈ Y . Hence, one can choose q = ∇ · u − g in (2.1b),
such that

(2.3) ‖∇ · u+ g‖L2(Ω) = 0.

Thus, ∇ · u = −g in the sense of L2(Ω).

Definition 2.5. The Hilbert space of vector fields that possess a weak divergence
is defined by

(2.4) H(div,Ω) := {w ∈ L2(Ω) : ∇ ·w ∈ L2(Ω)}.

Here, ∇ ·w is understood in the sense of Definition 2.3.

Note that Lemma 2.1 is valid also for functions w ∈H(div,Ω).
These definitions and lemmas allow us to prove the Helmholtz–Hodge decom-

position, a fundamental result for understanding the lack of pressure-robustness in
classical mixed methods.

Lemma 2.6 (Helmholtz–Hodge decomposition). Let Ω be a connected domain.
For every vector field f ∈ L2(Ω), there exist a vector field f0 ∈ H(div,Ω) and a
scalar function φ ∈ H1(Ω)/R with

1. f = f0 +∇φ,
2. ∇ · f0 = 0,
3. (f0,∇ψ) = 0 for all ψ ∈ H1(Ω).

The decomposition is unique.
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Proof. The following Neumann problem is well posed [36, p. 40]: find φ ∈ H1(Ω)/R
such that

(2.5) (∇φ,∇ψ) = (f ,∇ψ) ∀ ψ ∈ H1(Ω)/R.

Since f ∈ L2(Ω) and φ ∈ H1(Ω), it follows that f0 := f − ∇φ is in L2(Ω). By
construction, it holds that

(2.6) (f0,∇ψ) = 0 ∀ ψ ∈ H1(Ω)/R.

Since C∞0 (Ω)/R ⊂ H1(Ω)/R, it follows that f0 is weakly divergence-free in the sense
of Definition 2.3. In particular, ∇ · f0 = 0 ∈ L2(Ω) so that f0 ∈ H(div,Ω). Equa-
tion (2.6) gives the third property stated in the lemma. With a proof by contradiction,
the uniqueness of the decomposition follows in a straightforward manner using the
third property.

Definition 2.7 (Helmholtz–Hodge projector). The function f0 =: P(f) is called
the Helmholtz–Hodge projector of f .

Using the Helmholtz–Hodge projector, the following existence, uniqueness, and
stability estimates can be derived.

Lemma 2.8. Let f ∈ L2(Ω) and g ∈ Y . Then the Stokes problem (2.1) has a
unique solution for which the following stability estimates hold:

‖∇u‖L2(Ω) ≤
CP
ν
‖P(f)‖L2(Ω) +

1

β
‖g‖L2(Ω),(2.7a)

‖p‖L2(Ω) ≤
CP
β
‖f‖L2(Ω) +

ν

β2
‖g‖L2(Ω),(2.7b)

where β is the inf-sup constant defined in (1.3).

Proof. Assume that there is a velocity solution u ∈X. Define the divergence-free
subspace

Xdiv := {v ∈X : b(v, q) = 0 ∀ q ∈ Y }.

Then u can be orthogonally decomposed u = u0 + u⊥ with respect to the scalar
product a(·, ·) with u0 ∈ Xdiv and u⊥ ∈ X⊥div. It will be shown that both parts of
this decomposition exist and are uniquely defined. Hence, u also exists and is unique.

Due to the continuous inf-sup condition, the divergence operator is bijective
from X⊥div to Y . Thus, there exists a unique w⊥ ∈ X⊥div with −∇ · w⊥ = g and
‖∇w⊥‖L2(Ω) ≤ 1

β ‖g‖L2(Ω). Since ∇ ·u = ∇ ·u⊥, condition (2.1b) enforces u⊥ = w⊥.

Consequently, u⊥ is uniquely given and

(2.8) ‖∇u⊥‖L2(Ω) ≤
1

β
‖g‖L2(Ω).

The divergence-free part u0 is determined by testing (2.1a) with an arbitrary diver-
gence-free function v0 ∈ Xdiv. One obtains, using on the left-hand side the
a-orthogonality and on the right-hand side the L2-orthogonality against Xdiv,

(2.9) a(u,v0) + b(p,v0) = (f ,v0) ⇐⇒ a(u0,v0) = (P(f),v0).

Applying the Lax–Milgram theorem, it follows that u0 is uniquely defined due to
the coercivity of a(·, ·). The Cauchy–Schwarz inequality and Poincaré’s inequality for
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v0 = u0 yield

ν‖∇u0‖2L2(Ω) ≤ ‖P(f)‖L2(Ω)‖u0‖L2(Ω) ≤ CP ‖P(f)‖L2(Ω)‖∇u0‖L2(Ω).

Division by ‖∇u0‖L2(Ω), the decomposition of u, and estimate (2.8) give (2.7a).

The pressure p is now obtained by testing (2.1a) with arbitrary functions v⊥ ∈
X⊥div, yielding

(2.10) a(u,v⊥) + b(p,v⊥) = (f ,v⊥) ⇐⇒ (p,∇ · v⊥) = −(f ,v⊥) + a(u⊥,v⊥).

Again, since ∇· : X⊥div → Y is a bijection, p is uniquely determined by (2.10). For
proving the stability estimate of the pressure, one chooses the unique vp ∈X⊥div such
that ∇·vp = p and ‖∇vp‖L2(Ω) ≤ 1

β ‖p‖L2(Ω) hold. Inserting vp into (2.10), and using

the Cauchy–Schwarz and Poincaré estimates and (2.8), yields

‖p‖2L2(Ω) ≤ CP ‖f‖L2(Ω)‖∇vp‖L2(Ω) + ν‖∇u⊥‖L2(Ω)‖∇vp‖L2(Ω)

≤ CP
β
‖f‖L2(Ω)‖p‖L2(Ω) +

ν

β2
‖g‖L2(Ω)‖p‖L2(Ω),

which proves (2.7b).

The Helmholtz–Hodge projector allows us to justify the fundamental invariance
property (1.4) in a mathematically rigorous way. First, the following corollary is
proved.

Corollary 2.9. The Helmholtz projector P(∇φ) of a gradient field ∇φ with φ ∈
H1(Ω)/R vanishes, i.e., P(∇φ) = 0.

Proof. Taking f = ∇φ, it follows from the first property given in Lemma 2.6 and
the uniqueness of the Helmholtz–Hodge decomposition that f0 = 0 and consequently
P(f) = P(∇φ) = 0.

Lemma 2.10. Let f ∈ L2(Ω); then it holds for the Stokes problem (2.1) that
changing the right-hand side by f → f +∇ψ, with ψ ∈ H1(Ω)/R, leads to a change
in the solution by (u, p)→ (u, p+ ψ).

Proof. Let the Stokes solutions for the forcings f and f + ∇ψ be denoted by
(u, p) and (uψ, pψ), respectively. Both solutions are decomposed, u = u0 + u⊥ and

uψ = u0
ψ + u⊥ψ with u0, u0

ψ ∈ Xdiv and u⊥, u⊥ψ ∈ X
⊥
div. Since (2.1b) is satisfied in

both cases, it follows that b(u⊥−u⊥ψ , q) = 0 for all q ∈ Y such that from the continuous

inf-sup condition (1.3) it follows that u⊥ = u⊥ψ . The divergence-free parts u0 and u0
ψ

are determined by (2.9) and they are equal, since it holds that P(f + ∇ψ) = P(f)
according to Corollary 2.9. Using u⊥ = u⊥ψ , (2.10) for (u, p), and integration by parts
gives the following pressure equation for the forcing:

(pψ,∇ · v⊥) = −(f +∇ψ,v⊥) + a(u⊥,v⊥) = (p+ ψ,∇ · v⊥) ∀ v⊥ ∈X⊥div.

Therefore, the fundamental invariance property (1.4) holds.

3. The Lack of Pressure-Robustness for Standard Mixed Methods. This sec-
tion presents the basic finite element formulation for the Stokes problem and the error
analysis for the velocity error ‖∇(u− uh)‖L2(Ω). In particular, it is pointed out why
the pressure cannot be removed from the a priori velocity error bound for standard
mixed methods.
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A finite element method poses the variational formulation (2.1) on a pair of finite-
dimensional spaces consisting of piecewise polynomials. In particular, if Xh × Yh ⊂
X × Y denotes a pair of conforming piecewise polynomial spaces with respect to a
partition Th of Ω (parameterized by h), then a Galerkin finite element method for the
Stokes equations seeks (uh, ph) ∈Xh × Yh such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀ vh ∈Xh,(3.1a)

b(uh, qh) = (g, qh) ∀ qh ∈ Yh.(3.1b)

The discrete problem (3.1) is an example of a mixed finite element method in
which two finite element spaces are present in the formulation. In such methods,
the finite element spaces Xh and Yh must be compatible in order to guarantee the
existence and uniqueness of a solution as well as convergence, as the discretization
parameter tends to zero. In the case of the Stokes (and Navier–Stokes) equations,
the compatibility requirement is a surjective property of the divergence operator. In
particular, a necessary condition for the existence and stability of a solution of problem
(3.1) is the discrete inf-sup condition

inf
qh∈Yh\{0}

sup
vh∈Xh\{0}

(∇ · vh, qh)

‖∇vh‖L2(Ω)‖qh‖L2(Ω)
≥ βh > 0.(3.2)

For stability and optimal order convergence, it is required that βh ≥ β0 > 0 as h→ 0+.
Setting vh = uh in (3.1a) and qh = −ph in (3.1b) and adding the two equations

gives
ν‖∇uh‖2L2(Ω) = (f ,uh)− (g, ph),

which implies that zero data f ≡ 0 and g = 0 yield a zero solution uh ≡ 0. Since the
problem is linear, uniqueness of the discrete velocity solution is guaranteed, indepen-
dent of the choice of finite element spaces. With uniqueness of the velocity established,
the uniqueness of the pressure follows immediately by assuming two solutions and in-
serting the corresponding finite element problems into the discrete inf-sup condition
(3.2). The existence of solutions follows from the uniqueness, since the problem is
linear and finite-dimensional.

The discrete divergence operator ∇·h : Xh → Yh is defined with the help of the
L2-projection

(∇ ·h vh, qh) = (∇ · vh, qh) ∀ qh ∈ Yh.

Condition (3.2) implies that this operator is surjective from Xh onto Yh, with a
bounded right-inverse. Many finite element pairs have been developed that satisfy
the discrete inf-sup condition (3.2) with βh ≥ β0 > 0 as h→ 0+. A popular example
is the family of Taylor–Hood finite element pairs Pk/Pk−1, k ≥ 2. In the mini
element [4] it is Yh = P1, and the velocity space consists of continuous linear functions
that are enriched with local bubble functions to satisfy (3.2). An enrichment of the
velocity space with bubble functions for the same reason is also used for the Bernardi–
Raugel element [14], where the base polynomial spaces are P2 for the velocity and
discontinuous piecewise linears for the pressure. A first order variant in the same
paper is based on piecewise constant pressures and P1 for the velocity enriched by
normal-weighted face bubbles.

In the finite element problem, the divergence-free condition is enforced only by
(3.1b). Note that the pairs of spaces just mentioned satisfy ∇·hXh = Yh but lack the
inclusion ∇ ·Xh 6⊂ Yh. If ∇ ·Xh 6⊂ Yh, it cannot be expected that ‖∇ ·uh‖L2(Ω) = 0.
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In fact, it is known that this quantity can become quite large in simulations with
common element choices such as the Taylor–Hood pair P2/P1; see [22].

To derive finite element error estimates, under the assumptions that the discrete
inf-sup condition (3.2) holds for the pair Xh×Yh and that ∇·Xh 6⊂ Yh, consider the
manifold

(3.3) Xh,div(g) := {vh ∈Xh : (∇ · vh, qh) = (g, qh) ∀ qh ∈ Yh} .

In the case g = 0, the abbreviation Xh,div = Xh,div(0) will be used, i.e., Xh,div is
the space of discretely divergence-free functions, which is the kernel of the discrete
divergence operator. Note that, because of ∇ · Xh 6⊂ Yh, functions from Xh,div

are generally not divergence-free in the sense of L2(Ω) and hence it follows that
Xh,div 6⊂ Xdiv. Since Xh,div ⊂ Xh ⊂ X, test functions from Xh,div can be used as
test functions in the continuous problem (2.1a) as well as in the finite element problem
(3.1). Taking such test functions, qh = 0, and subtracting both equations gives the
error equation

(3.4) a(u− uh,vh) + b(vh, p− ph) = 0 ∀ vh ∈Xh,div.

Because of the special choice of test function there holds b(vh, ph) = 0, and therefore
the discrete pressure can be removed from the error equation. However, sinceXh,div 6⊂
Xdiv, the continuous pressure does not vanish in general. At this point it is not
possible to remove the dependency of the velocity error on the pressure. The best
that can be done is to add b(vh, qh) = 0 for arbitrary qh ∈ Yh to the left-hand side of
the error equation. Decomposing the error into

u− uh = (u− ũh)− (uh − ũh) =: η − φh

for arbitrary ũh ∈ Xh,div, inserting this decomposition into (3.4), and taking as test
function vh = φh yields

ν‖∇φh‖2L2(Ω) = ν(∇η,∇φh)− (∇ · φh, p− qh) ∀ qh ∈ Yh.

The terms on the right-hand side are estimated by the Cauchy–Schwarz inequality and
the estimate ‖∇ ·φh‖L2(Ω) ≤ ‖∇φh‖L2(Ω) (which holds with constant 1 for functions
with homogeneous Dirichlet boundary conditions). Dividing by ν‖∇φh‖L2(Ω) 6= 0
(the other case is trivial), one obtains

‖∇φh‖L2(Ω) ≤ ‖∇η‖L2(Ω) + ν−1‖p− qh‖L2(Ω) ∀ qh ∈ Yh.

Finally, one obtains with the triangle inequality

(3.5) ‖∇(u− uh)‖L2(Ω) ≤ 2 inf
ũh∈Xh,div

‖∇(u− ũh)‖L2(Ω) + ν−1 inf
qh∈Yh

‖p− qh‖L2(Ω).

The error estimate (3.5) shows that the bound for the velocity error ‖∇(u −
uh)‖L2(Ω) depends on the best approximation error of the pressure, which is scaled
with the inverse of the viscosity. This term becomes large if ν is small or if the best
approximation error is large. Estimating the best approximation error with some
interpolation error, one obtains a bound which contains the norm of the pressure in
some Sobolev space. Examples 1.1–1.3 have already shown that the bound obtained
in this way is sharp in the sense that large norms of the pressure dominate the velocity
error and the error scales the same way as the pressure does.
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Remark 3.1. It is useful to summarize the different meanings of a function being
“divergence-free” that have been introduced so far. In the strong form of the Navier–
Stokes equations (1.1) classical derivatives are used and u is pointwise divergence-free.
The property that a vector field is weakly divergence-free is given in (2.2). For func-
tions v ∈ X, this property is equivalent to ‖∇ · v‖L2(Ω) = 0; see (2.3) for g = 0. Fi-
nally, (conforming) discretely divergence-free vector fields are defined in (3.3). Clearly,
a pointwise divergence-free field is weakly and discretely divergence-free. Also, a
weakly divergence-free field from X is discretely divergence-free. However, a dis-
cretely divergence-free field is usually neither pointwise nor weakly divergence-free.

Remark 3.2. Since discretely divergence-free vector fields are generally not weakly
divergence-free, the question of the error in the divergence arises. From ‖∇ · (u −
uh)‖L2(Ω) ≤ ‖∇(u − uh)‖L2(Ω) one finds that this error is bounded with the same
order as the error of the gradient of the velocity.

In particular, for g = 0, this estimate means ‖∇ · uh‖L2(Ω) ≤ ‖∇(u− uh)‖L2(Ω).
In numerical simulations one finds that both sides of this estimate in fact possess
generally the same order of convergence. Thus, large errors ‖∇(u−uh)‖L2(Ω) usually
induce a bad (local) conservation of mass.

Remark 3.3. Consider the case g = 0. Then one obtains from the divergence
theorem that

(3.6) 0 =

∫
∂Ω

uh · n ds =

∫
Ω

∇ · uh dx,

such that mass is conserved in this global sense.
If discontinuous pressure spaces Yh ⊂ Y are used, one has an even more local

mass conservation. Since the piecewise constant functions are usually a subspace of
a discontinuous pressure finite element space, one obtains from (2.1b) that

(3.7) 0 =
∑
T∈Th

∫
T

(∇ · uh)qh dx =
∑
T∈Th

qh

∫
T

∇ · uh dx

for all qh ∈ P0. Consider an arbitrary mesh cell T1 and another arbitrary mesh cell
T2 6= T1. Then one can choose

qh =


1 in T1,

−|T1|
|T2|

in T2,

0 elsewhere.

With this choice, qh ∈ Yh. One finds with (3.7) that∫
T2

∇ · uh dx =
|T2|
|T1|

∫
T1

∇ · uh dx ∀ T2 ∈ Th.

It follows that∫
Ω

∇ · uh dx =
∑
T∈Th

∫
T

∇ · uh dx =
∑
T∈Th

|T |
|T1|

∫
T1

∇ · uh dx

=
1

|T1|

∫
T1

∇ · uh dx
∑
T∈Th

|T | = |Ω|
|T1|

∫
T1

∇ · uh dx.(3.8)
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From (3.6) one concludes that the last factor on the right-hand side of (3.8) vanishes.
Since T1 was chosen to be arbitrary, one obtains the local mass conservation

(3.9)

∫
T

∇ · uh dx = 0 ∀ T ∈ Th.

Note that the local mass conservation (3.9) does not necessarily imply that the
error ‖∇ · uh‖L2(Ω) is smaller in comparison with methods which use a continuous
space Yh.

4. Pressure-Robustness of Weakly Divergence-Free Mixed Finite Element
Methods.

4.1. Stability and Accuracy of Pressure-Robust Mixed Methods for the Stokes
Equations. In this section, mixed finite element error estimates for the discrete in-
compressible Stokes equations (3.1) are derived for inf-sup stable conforming element
pairs Xh ⊂ X, Yh ⊂ Y that satisfy ∇ · Xh ⊂ Yh. It will be shown that the
condition ∇ · Xh ⊂ Yh ensures pressure-robustness in the sense that the discrete
velocity error does not depend on the pressure. Due to this condition it holds that
Xh,div ⊂ Xdiv. The inf-sup stability of the element pair (Xh, Yh) ensures the exis-
tence of a so-called Fortin operator πF : X →Xh such that for all v ∈X and for all
qh ∈ Yh, (∇ · v, qh) = (∇ · πF (v), qh) with ‖∇πF (v)‖L2(Ω) ≤ CF ‖∇v‖L2(Ω); see [31].

Remark 4.1. Standard reasoning shows that discrete inf-sup stability is indeed
equivalent to the existence of a stable Fortin interpolator with stability constant CF
and that CF ≤ 1/βh. The precise value of the stability constant CF is important
since it enters the a priori velocity error estimate in Lemma 4.4. Classical textbooks
emphasizing the convergence rates usually apply the estimate CF ≤ 1/βh, which can
lead to pessimistic estimates [55, 78]. Note that, e.g., in the case of conforming mixed
finite elements, the limit inferior of a sequence of discrete inf-sup constants can be
estimated by the continuous inf-sup constant, i.e., limβh ≤ β (cf. [23, 78]). Indeed,
the continuous inf-sup constants can be very small in channel-like stretched domains.
For those domains, the estimate CF ≤ 1/βh is pessimistic, since CF can be of order
O(1) (see, e.g., [55]), while 1/βh can be very large. An explicit example is given in
[23], where it is shown that in a rectangular domain with side lengths 0 < l1 < l2 the
continuous inf-sup constant β is proportional to l1/l2, i.e.,

β ≤ π

2
√

3

l1
l2
.

Consequently, in a long stretched channel-like domain with l1 � l2, β and βh are very
small. In this case, estimates containing the stability constant CF are much sharper
[78], and will be preferred in what follows.

In perfect analogy to the continuous case, one obtains for the discrete solution of
(3.1) the following results.

Lemma 4.2. Let the finite element spaces Xh ⊂ X and Yh ⊂ Y satisfy the dis-
crete inf-sup stability (3.2) and let ∇·Xh ⊂ Yh. Then, for f ∈ L2(Ω) and g ∈ Y , the
Stokes problem (3.1) has a unique discrete solution for which the following stability
estimates hold:

‖∇uh‖L2(Ω) ≤
CP
ν
‖P(f)‖L2(Ω) +

1

βh
‖g‖L2(Ω),(4.1a)

‖ph‖L2(Ω) ≤
CP
βh
‖f‖L2(Ω) +

ν

β2
h

‖g‖L2(Ω).(4.1b)
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Proof. The proof is line by line the same as in Lemma 2.8, i.e., replace X by
Xh, change the words “continuous inf-sup condition” (with stability constant β) to
“discrete inf-sup condition” (with stability constant βh), and note thatXh,div ⊂Xdiv

holds. The discrete space X⊥h,div is defined by a-orthogonality in the space Xh.

Lemma 4.3. Let the finite element spaces Xh ⊂X and Yh ⊂ Y fulfill the discrete
inf-sup stability (3.2) and ∇ ·Xh ⊂ Yh. Then for all w ∈X with w ∈Xdiv(g),

(4.2) inf
wh∈Xh,div(g)

‖∇(w −wh)‖L2(Ω) ≤ (1 + CF ) inf
vh∈Xh

‖∇(w − vh)‖L2(Ω).

Proof. Let vh ∈Xh be arbitrary and define zh := πF (w−vh) ∈Xh. Due to the
properties of the Fortin interpolant one has ‖∇zh‖L2(Ω) ≤ CF ‖∇(w − vh)‖L2(Ω) and
(∇ · zh, qh) = (∇ · (w − vh), qh) for all qh ∈ Yh. Then wh := zh + vh ∈ Xh,div(g),
since

(∇ ·wh, qh) = (∇ · zh, qh) + (∇ · vh, qh) = (∇ · (w − vh), qh) + (∇ · vh, qh)

= −(g, qh) ∀ qh ∈ Yh.

Finally, the triangle inequality gives

‖∇(w −wh)‖L2(Ω) ≤ ‖∇(w − vh)‖L2(Ω) + ‖∇zh‖L2(Ω)

≤ (1 + CF )‖∇(w − vh)‖L2(Ω).

Lemma 4.4. Let the finite element spaces Xh ⊂ X and Yh ⊂ Y satisfy the dis-
crete inf-sup stability (3.2) with ∇ ·Xh ⊂ Yh, and let πYh

p ∈ Yh be the L2-projection
of p defined by

(p− πYh
p, qh) = 0 ∀ qh ∈ Yh.

Then, for the unique discrete solution (uh, ph) of (3.1), the following a priori error
estimates hold:

‖∇(u− uh)‖L2(Ω) ≤ 2 inf
wh∈Xh,div(g)

‖∇(u−wh)‖L2(Ω)(4.3a)

≤ 2(1 + CF ) inf
wh∈Xh

‖∇(u−wh)‖L2(Ω),

‖πYh
p− ph‖L2(Ω) ≤

ν

βh
‖∇(u− uh)‖L2(Ω),(4.3b)

‖p− ph‖L2(Ω) ≤ ‖p− πYh
p‖L2(Ω) +

ν

βh
‖∇(u− uh)‖L2(Ω).(4.3c)

Proof. For an arbitrary wh ∈ Xh,div(g) it holds that v0
h := uh − wh ∈ Xh,div.

Using the Galerkin orthogonality and the Cauchy–Schwarz inequality yields

ν‖∇v0
h‖2L2(Ω) = a(v0

h,v
0
h) = a(uh −wh,v

0
h) = a(u−wh,v

0
h)

≤ ν‖∇(u−wh)‖L2(Ω)‖∇v0
h‖L2(Ω) =⇒ ‖∇v0

h‖L2(Ω)

≤ ‖∇(u−wh)‖L2(Ω).

Now, the triangle inequality gives

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u−wh)‖L2(Ω) + ‖∇v0
h‖L2(Ω) ≤ 2‖∇(u−wh)‖L2(Ω),

which proves the first inequality of (4.3a), sincewh ∈Xh,div(g) was chosen arbitrarily.
The second inequality is a direct consequence of Lemma 4.3.
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The proof for (4.3b) exploits the assumption ∇ ·Xh ⊂ Yh. Hence, one obtains
for all vh ∈Xh

(4.4) (πYh
p− ph,∇ · vh) = (πYh

p− ph, qh) = (p− ph, qh) = ν(∇(u− uh),∇vh),

where the last step uses the definitions of the continuous and discrete Stokes problems
(2.1) and (3.1), respectively. Using the discrete inf-sup condition (3.2), (4.4), and the
Cauchy–Schwarz inequality yields

‖πYh
p− ph‖L2(Ω) ≤

1

βh
sup

vh∈Xh\{0}

(πYh
p− ph,∇ · vh)

‖∇vh‖L2(Ω)

≤ 1

βh
sup

vh∈Xh\{0}

ν‖∇(u− uh)‖L2(Ω)‖∇vh‖L2(Ω)

‖∇vh‖L2(Ω)

=
ν

βh
‖∇(u− uh)‖L2(Ω).

Statement (4.3b) follows with the triangle inequality.

Remark 4.5. The error estimates in Lemma 4.4 show that the discrete velocity
converges with an asymptotically optimal order to the continuous velocity (in the case
of sufficiently regular velocity), and that the velocity error is pressure-independent.
This remarkable feature distinguishes pressure-robust mixed methods from classical
mixed methods. Interestingly, something similar can be observed for the discrete
pressure. According to (4.3b), the discrete pressure is the best approximation of the
continuous pressure in L2(Ω) up to an additive error that is only velocity-dependent.
This property has been rarely emphasized so far in the context of mixed finite element
methods for the (Navier–)Stokes equations. Moreover, the inverse of the discrete inf-
sup constant βh enters only the pressure estimates. In addition, it occurs only in
the part of the error bound which is scaled by ν and therefore this term is usually
small. In the velocity estimates, the constant CF for an appropriate Fortin interpolant
replaces the classical constant 1/βh.

The error estimates show that for pressure-robust mixed methods there holds an
invariance principle, similar to the continuous problem; see Lemma 2.10.

Lemma 4.6. Let the finite element spaces Xh ⊂X and Yh ⊂ Y fulfill the discrete
inf-sup stability (3.2) and ∇·Xh ⊂ Yh. Then, for the unique discrete solution (uh, ph)
of (3.1) the following discrete fundamental invariance property holds: changing the
right-hand side f → f +∇ψ with f ∈ L2(Ω) and ψ ∈ H1(Ω)/R leads to a change in
the discrete solution of the form (uh, ph)→ (uh, ph + πYh

ψ).

Proof. The continuous and discrete solution operators (f , g)→ (u, p) and (f , g)→
(uh, ph) are linear. Hence, it suffices to study (2.1) and (3.1) for the right-hand side
(∇ψ, 0). The solutions of these special continuous and discrete problems are also
denoted by (u, p) and (uh, ph). Due to Corollary 2.9 it holds that P(∇ψ) ≡ 0,
and the stability estimates from Lemmas 2.8 and 4.2 yield u ≡ 0 and uh ≡ 0.
Moreover, the continuous fundamental invariance property from Lemma 2.10 gives
(u, p) = (0, ψ). Since ‖∇(u − uh)‖L2(Ω) = 0, estimate (4.3b) allows us to con-
clude that (uh, ph) = (0, πYh

ψ), and the discrete fundamental invariance property is
proven.

In summary, it has been shown in this section that pressure-robust mixed methods
possess a number of attractive properties.
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4.2. The Formal and the Discrete Vorticity Equations. It has been shown that
testing with a divergence-free test function in the continuous setting (2.9) or testing
with a discretely divergence-free function in the discrete setting (3.4) allows one to
derive elliptic problems that determine the velocity solution. Next, it will be argued
that these elliptic problems indeed represent a formal vorticity equation and a discrete
vorticity equation which characterize the difference between classical mixed methods
and pressure-robust mixed methods.

The Formal Vorticity Equation in the Continuous Setting. Here, the case
d = 3 will be discussed; the two-dimensional case follows similar arguments. For
an arbitrary divergence-free vector field v ∈Xdiv ∩C∞0 (Ω), there exists a vector po-
tential ξ ∈ C∞0 (Ω) with v = ∇× ξ. Testing the momentum balance of (1.2) with v,
assuming that (u, p) ∈H3(Ω)∩H1(Ω) and ∇×f ∈ L2(Ω), and applying integration
by parts yields

(−ν∆u,∇× ξ) + (∇p,∇× ξ) = (f ,∇× ξ) ⇐⇒ (−ν∆ω, ξ) = (∇× f , ξ),

where the notation ω := ∇×u for the vorticity is used and the identity ∇× (∇p) ≡ 0
is applied. This equation shows that the vorticity satisfies formally, i.e., assuming
sufficient regularity, the diffusion equation

(4.5) − ν∆ω = ∇× f .

Note that the formal vorticity equation is derived from the strong form that corre-
sponds to the weak velocity equation

(4.6) a(u,v) = (f ,v) = (P(f),v) ∀ v ∈Xdiv,

which defines u (together with the statement −∇ · u = g) uniquely. This formal
vorticity equation reflects perfectly the fundamental invariance property (1.4), since
for the two forcings f and f +∇φ the same vorticity equation arises due to

∇× (f +∇φ) = ∇× f .

Therefore, the velocity u and its vorticity ω do not change, and the additional forcing
∇φ only affects the pressure. In fact, the appearance of the Helmholtz projector
P(f) in (4.6) corresponds to the dependence of the formal vorticity equation (4.5)
on ∇× f (and not on f). It should be noted that similar formal vorticity equations
can also be derived for the time-dependent Navier–Stokes equations by testing with
divergence-free vector fields.

Remark 4.7. The L2-orthogonality of gradient fields and divergence-free vector
fields with compact support is equivalent to the vector calculus statements “gradient
fields are irrotational” and “curl fields are divergence-free.” Indeed, for v = ∇× ξ ∈
Xdiv ∩C∞0 (Ω), integration by parts shows

0 =

∫
Ω

∇φ · v dx =

∫
Ω

∇φ · ∇ × ξ dx =

∫
Ω

(∇×∇φ︸ ︷︷ ︸
≡0

) · ξ dx = −
∫

Ω

φ(∇ · (∇× ξ)︸ ︷︷ ︸
=0

) dx.

In classical mixed methods the L2-orthogonality between gradient fields and discretely
divergence-free test functions is relaxed. This property is equivalent to a relaxation
of “gradient fields are irrotational.”
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Remark 4.8. The importance of the two operators divergence and curl for char-
acterizing vector fields will be illustrated further with the following theorem from [8]:
For a simply-connected bounded region Ω ⊂ R3 with a surface ∂Ω consisting of a
union of a finite number of disjoint closed C2 surfaces, there is a uniquely defined
vector field v ∈ L2(Ω), which fulfills

∇ · v = g in Ω, ∇× v = ω in Ω, v · n = 0 in ∂Ω,

for given g ∈ L2
0(Ω) and ω ∈ C1(Ω) with ∇· ω = 0. The main message of this theorem

is that information on the divergence and the curl of a vector field, together with some
boundary data, determines the vector field completely. This result emphasizes the
significance of the formal vorticity equation, since divergence and boundary data are
always prescribed for the Navier–Stokes equations and only the curl of the velocity
field is unknown.

Discrete Vorticity Equations for Classical and Pressure-Robust Mixed Meth-
ods. In (conforming) mixed finite element methods for the Stokes equations, the
discrete velocity solution is determined by

a(uh,vh) = (f ,vh)

for all vh ∈Xh,div. Introducing a discrete Helmholtz projector Ph : L2(Ω)→Xh,div,
defined as the L2-projection onto Xh,div, this formulation can be written as

(4.7) a(uh,vh) = (Ph(f),vh)

for all vh ∈Xh,div. Similarly to the continuous setting, cf. Remark 4.7, where (4.6) is
understood as a formal weak vorticity equation, testing with a (discretely) divergence-
free vector field is considered as a weak application of a curl operator, which yields
the discrete vorticity equation (4.7).

In the case of pressure-robust methods with Xh,div ⊂Xdiv there obviously holds
Ph(∇φ) = 0 for all φ ∈ H1(Ω), and the discrete vorticity equation

(4.8) a(uh,vh) = −ν(∆u,vh)

for all vh ∈Xh,div is pressure-independent.
In contrast, in the case of classical mixed methods with Xh,div 6⊂ Xdiv, one has

for all vh ∈Xh,div

(4.9) a(uh,vh) = (Ph(f),vh) = −ν(∆u,vh) + (Ph(∇p),vh),

and one obtains with the definition of Ph, integration by parts, (πYh
p,∇ · vh) = 0,

and the approximation estimate for the L2-projection (assuming that p is sufficiently
regular),

|(Ph(∇p),vh)| = |(∇p,vh)| = |(p,∇ · vh)| = |(p− πYh
p,∇ · vh)|

≤ Chk|p|Hk(Ω)‖∇ · vh‖L2(Ω).

Compared with (4.8), equation (4.9) contains the additional term (Ph(∇p),vh) with
vh ∈ Xh,div. It is this term that distinguishes pressure-robust mixed methods from
classical mixed methods. It can be understood as a pressure-dependent consistency
error of the discrete vorticity equation of classical mixed methods. Of course, this
consistency error vanishes with optimal order, whenever p is regular enough. However,
it can be arbitrarily large, depending on the given flow problem.
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Remark 4.9. Testing a vector field w with a smooth compactly supported diver-
gence-free vector field v = ∇× ξ ∈ Xdiv is equivalent to the application of a distri-
butional curl operator C∞0 (Ω)→ R to the vector field w,

(w,v) = (w,∇× ξ).

This distributional curl operator vanishes for all w = ∇φ.
Similarly, one can define a discrete distributional curl operator C∞0 (Ω)→ R by

(w,Ph(∇× ξ)).

Then, the discrete distributional curl of pressure-robust mixed methods vanishes for
all w = ∇φ, while for the discrete distributional curl operator of classical mixed
methods there holds

|(∇φ,Ph(∇× ξ))| ≤ O(hk)|φ|Hk(Ω).

Remark 4.10. In Lemma 4.6 it was shown that pressure-robust mixed methods
satisfy a fundamental invariance property, which is in perfect analogy to the con-
tinuous result from Lemma 2.10. However, for classical mixed methods there also
holds a (much weaker) discrete fundamental invariance property, which is equivalent
to the statement that the discrete curl operator of classical mixed methods fulfills
∇h ×∇φ ≡ O(hk)|φ|Hk(Ω): changing f → f +∇ψh by some discrete ψh ∈ Yh implies
that (uh, ph) → (uh, ph + ψh). For discontinuous pressure spaces Yh, the expression
∇ψh is to be understood as a discrete distributional gradient vh → −(ψh,∇ · vh).

4.3. A Tool to Develop Divergence-Free Elements: The de Rham Complex.
During the past 30 years, the construction of de Rham subcomplexes consisting of fi-
nite element spaces has been an invaluable tool in developing stable finite element pairs
for problems in porous media flow, electromagnetics, and linear elasticity [5, 6, 19, 59].
The key idea of this program is to mimic the algebraic and topological properties found
at the continuous level to obtain mixed finite element spaces with enhanced stabil-
ity properties which preserve physical quantities of interest. The culmination of these
ideas and tools is the finite element exterior calculus framework [5, 6], where canonical
finite element spaces are developed in arbitrary dimensions for the Hodge Laplacian.
However, only recently have these tools and ideas been applied to the Navier–Stokes
problem to obtain divergence-free finite element pairs.

To explain the main ideas, it is first recalled that the two-dimensional de Rham
complex with minimal L2 smoothness is given by the sequence of mappings

R −−→ H1(Ω)
curl
−−→ H(div,Ω)

div
−−→ L2(Ω) −−→ 0,(4.10)

where curl := (∂/∂x2,−∂/∂x1)t denotes the vector curl operator. If the domain Ω is
simply connected, then this complex is exact, that is, the range of each operator is the
kernel of the succeeding one [36]. In particular, the exactness of the complex implies
that (i) if z ∈ H1(Ω) is curl-free, then z is constant; (ii) if v ∈H(div,Ω) is solenoidal,
then v = curl z for some z ∈ H1(Ω); and (iii) the mapping div : H(div,Ω)→ L2(Ω)
is a surjection.

A finite element subcomplex of (4.10) consists of finite element spaces Υh ⊂
H1(Ω), W h ⊂H(div,Ω), and Qh ⊂ L2(Ω) satisfying the relations

R −−→ Υh

curl
−−→ W h

div
−−→ Qh −−→ 0.(4.11)
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It is well known that standard conforming finite element element spaces form a dis-
crete complex of (4.10) [6, 59]. For example, one may take Υh to be the Lagrange
finite element space, W h to be either the Raviart–Thomas or the Brezzi–Douglas–
Marini (BDM) finite element space, and Qh to be the space of discontinuous piecewise
polynomials [17, 69]. Similar to the continuous setting, the subcomplex (4.11) is exact
provided the domain is simply connected; as a result, the finite element pairs Υh×W h

and W h ×Qh form stable finite element pairs with respect to the curl and the diver-
gence operators, respectively. For example, the exactness property of the subcomplex
implies that div : W h → Qh is a surjection, and simple arguments show that this
surjection has a bounded right-inverse independent of h. From this result, one easily
deduces the inf-sup condition: supw∈W h

(divw, q)/‖w‖H(div,Ω) ≥ β‖q‖L2(Ω) ∀ q ∈ Qh.
While the complex (4.10) and its discrete counterpart are useful in the study

of several problems, it is not suitable for the Stokes problem due to the minimal
smoothness of the Hilbert spaces. Instead, a smooth de Rham complex (or Stokes
complex) has been proposed [30, 39, 58]:

R −−→ H2(Ω)
curl
−−→ H1(Ω)

div
−−→ L2(Ω) −−→ 0.(4.12)

Again, this complex is exact provided Ω is simply connected [36]. In particular, all
divergence-free H1(Ω) functions satisfy the relation v = curl z for some z ∈ H2(Ω),
where z is often referred to as the stream-function if v models an incompressible fluid.
Moreover, the mapping div : H1(Ω)→ L2(Ω) is a surjection, implying the continuous
inf-sup condition (1.3).

Similar to the previous setting, one can obtain stable finite element pairs by
considering subcomplexes of (4.12) consisting of finite element spaces,

R −−→ Σh
curl
−−→ Xh

div
−−→ Yh −−→ 0,(4.13)

where Σh ⊂ H2(Ω), Xh ⊂ H1(Ω), and Yh ⊂ L2(Ω). If the discrete complex (4.13)
is exact, then the finite element pair Xh × Yh satisfies the discrete inf-sup condition
provided this mapping has a bounded right-inverse. The mappings in (4.13) then
imply that divXh = Wh, and thus, the finite element pair yields divergence-free
approximations. A useful feature of this methodology is that the complex (4.13)
provides a guiding tool to develop the pair Xh × Yh satisfying these properties, in
particular, the H2(Ω)-conforming relatives that dictate the local and global properties
of these spaces. As far as we are aware, every divergence-free finite element pair has
an H2 relative satisfying (4.13).

As an example of the derivation of divergence-free pairs from H2-conforming finite
element spaces, the Hsieh–Clough–Tocher (HCT) finite element will be considered. To
describe this space, let Th denote a shape regular, conforming simplicial triangulation

of Ω ⊂ R2. For a simplex T ∈ Th, let {K(T )
r }3r=1 denote the three subtriangles

obtained by performing a barycenter refinement on T , and set Mh := {K(T )
r : T ∈

Th}. The HCT space ΣHCTh is defined as the space of globally H2 piecewise cubic
polynomials with respect to the (refined) mesh Mh. Denoting by Vh and Eh the set of
vertices and edges in the original mesh Th, one can show that any function z ∈ ΣHCTh

is uniquely determined by the constraint z|T ∈ H2(T ) for all T ∈ Th, and the values
z(a), ∇z(a), and

∫
e
∂z
∂ne

ds over all a ∈ Vh and e ∈ Eh (cf. [24] and Figure 4.1, row 1).

Here, ∂z
∂ne

:= ∇z ·ne and ne denotes the outward unit normal of the edge e. It follows

that the dimension of this space is dim ΣHCTh = 3|Vh| + |Eh|, where |S| denotes the
cardinality of a set S.
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The definition of the HCT space and its properties naturally leads to finite element
spaces satisfying (4.13). In particular, since differentiation lowers polynomial degree
and global continuity by 1, one may take XHCT

h to be the space of globally H1

piecewise quadratic, vector-valued polynomials with respect to Mh, and take Y HCTh

to be the space of (discontinuous) piecewise linear polynomials with respect to Mh.
The inclusions curl ΣHCTh ⊂XHCT

h and divXHCT
h ⊂ Y HCTh are immediate, and thus

these spaces satisfy (4.13).
To verify that the finite element spaces ΣHCTh , XHCT

h , and Y HCTh inherit the

exactness property, one first observes that if v ∈ XHCT
h ⊂H1(Ω) is divergence-free,

then v = curl z = (∂z/∂x2,−∂z/∂x1)t for some z ∈ H2(Ω) due to the exactness prop-
erty of the complex (4.12). Using the definitions of the curl operator and of XHCT

h ,
one deduces that both ∂z/∂x1 and ∂z/∂x2 are piecewise quadratic polynomials, and
therefore z is a piecewise cubic polynomial. Moreover, the condition curl z ∈ H1(Ω)
implies that z ∈ H2(Ω), and therefore z ∈ ΣHCTh .

Thus, to verify the exactness of the subcomplex (4.13) and to show that Xh×Yh
forms a stable finite element pair for the Stokes problem, it suffices to show that
divXHCT

h → Y HCTh is a surjection with a bounded right-inverse. This surjection

property can be achieved by a simple counting argument. Indeed, since divXHCT
h ⊆

WHCT
h , it suffices to show that the dimensions of divXHCT

h and Y HCTh are the same.
Since the finite element space Y HCTh consists of piecewise linear polynomials with
respect to Mh, and since the dimension of the space of linear polynomials in two
dimensions is 3, one has dimY HCTh = 3|Mh| = 9|Th|. Moreover, any function v ∈
XHCT
h is uniquely determined by its values at the vertices of Mh and its mean over all

edges in Mh [24]. Since the number of vertices in the refined mesh Mh is |Vh|+|Th|, and
the number of edges in Mh is |Eh|+3|Th|, one has dimXHCT

h = 2
(
|Vh|+ |Eh|+4|Th|

)
.

Therefore, by the rank-nullity theorem and Euler’s formula |Vh|+ |Th|− |Eh| = 1, one
obtains

dim
(
divXHCT

h

)
= dimXHCT

h − dim curlΣHCTh = dimXHCT
h − dim ΣHCTh + 1

= 2(|Vh|+ |Eh|+4|Th|)− (3|Vh|+ |Eh|)+(|Vh|+ |Th| − |Eh|) = 9|Th|
= dimY HCTh .

Thus, the subcomplex with the finite element spaces ΣHCTh , XHCT
h , and Y HCTh is

exact. Moreover, using a macroelement technique [7], one can show that the surjection
div : Xh → Yh has a bounded right-inverse independent of h, and therefore the
discrete inf-sup condition (3.2) is uniformly satisfied. For the Stokes equations, one
obtains the Scott–Vogelius pair of spaces P2/P

disc
1 = V HCT

h /WHCT
h [7, 71] on a

barycenter-refined mesh.
The given example is not limited to the HCT element; one may start with any

H2(Ω)-conforming finite element space to derive a stable divergence-free finite element
pair for the Stokes problem. Examples of H2(Ω) spaces include the Morgan–Scott
element [60], the Argyris element [24], the rational Zienkiewicz element [24], and the
Bogner–Fox–Schmit rectangular element [24]. These H2(Ω) finite element spaces were
used to derive stable divergence-free finite element pairs in [30, 39, 72]; these finite
element spaces and their H2-conforming relatives are summarized in Figure 4.1.

While the development of divergence-free, two-dimensional Stokes elements has
reached a stage of maturity, the three-dimensional case is considerably more challeng-
ing, and several issues remain to be resolved. To explain the added difficulties, as
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Hsieh–Clough–Tocher [7]

Argyris [2, 30]

Argyris [2, 30]

Zienkiewicz [24, 39]

Bogner–Fox–Schmit [18, 63, 9]

Bogner–Fox–Schmit [63]

Fig. 4.1 H2-conforming finite element space Σh (left), velocity space Xh (middle), and pressure
space Yh (right) satisfying the exact complex (4.13). Small and large circles denote first
and second derivative degrees of freedom (d.o.f.s), respectively, solid points denote function
d.o.f.s, arrows denote directional derivative d.o.f.s, and lines without arrows denote normal
derivative d.o.f.s.

before the de Rham complex with minimal L2 smoothness is stated:

R−−→H1(Ω)
grad

−−→ H(curl ,Ω)
curl
−−→H(div,Ω)

div
−−→ L2(Ω) −−→ 0,(4.14)

where H(curl ,Ω) denotes the space of square-integrable vector-valued functions
whose curl is in L2(Ω). Similar to the two-dimensional case, classical families of
finite element spaces form a subcomplex of (4.14) that inherits the cohomology of the
sequence.

Based on the complex (4.14) one may construct complexes with enhanced smooth-
ness that are suitable for the Stokes problem. However, due to the additional space
and the differential operator in the three-dimensional case, different Stokes complexes
may be considered. For example, the complex

R−−→H2(Ω)
grad

−−→ H1(curl ; Ω)
curl
−−→H1(Ω)

div
−−→ L2(Ω) −−→ 0,(4.15)

with H1(curl ; Ω) = {v ∈ H1(Ω); curlv ∈ H1(Ω)}, was proposed in [62, 73] to
develop conforming and nonconforming divergence-free elements. Due to the high
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regularity of the spaces, the polynomial order becomes exceedingly high. For example,
the lowest degree H2-conforming piecewise polynomial space is 9; as a result, the
lowest order velocity space based on this construction is 6 [62], which may limit the
practical use of these elements. On the other hand, one could consider the quintic
composite elements (also known as macroelements) documented in [46] as the H2-
conforming finite element space. This element is most likely related to the Scott–
Vogelius pair P3/P

disc
2 on barycenter-refined triangulations studied in [80]. However,

the corresponding H1(curl ,Ω) conforming element completing the sequence (4.15)
is missing in the literature.

Alternatively, the complex

R−−→H1(Ω)
grad

−−→ Φ
curl
−−→H1(Ω)

div
−−→ L2(Ω) −−→ 0,(4.16)

with Φ := {v ∈ L2(Ω) : curlv ∈ H1(Ω)}, was recently proposed in [29] to derive
stable pairs in an isogeometric framework. On the other hand, as far as we are aware,
no finite element spaces conforming to the complex (4.16) exist.

Constructions of divergence-free finite elements obtained in different ways can be
found, e.g., in [81, 82].

4.4. H(div)-Conforming Finite Element Methods. Recently, to bypass the
difficulty of constructing conforming, inf-sup stable, and divergence-free spaces, finite
element methods for the Stokes problem that use strictly H(div)-conforming bases
have been proposed [25, 38, 45, 58, 73, 76, 77, 79]. Before presenting these schemes, a
criterion to ensure that a finite element space is a subspace of H(div,Ω) is reviewed.

As before, Th denotes a shape-regular triangulation of Ω. Let Eh be the set of
(open) edges (d = 2) or faces (d = 3) of the mesh. The set of boundary edges/faces is
denoted by EBh ⊂ Eh, i.e., e ∈ EBh if e∩ ∂Ω 6= ∅, and EIh := Eh\EBh is the set of interior
edges/faces.

Lemma 4.11. Let W h denote a space of piecewise polynomials with respect to
the partition Th. Then W h ⊂ H(div,Ω), provided the normal components (but not
necessarily the tangential components) of functions in this space are continuous across
all interelement boundaries e ∈ EIh.

Proof. Letwh ∈W h and suppose that the normal component ofwh is continuous
across each e ∈ EIh. Set ρh ∈ L2(Ω) such that ρh|T = ∇·wh|T for all T ∈ Th. Applying
the divergence theorem elementwise yields for any ψ ∈ C∞0 (Ω),

−
∫

Ω

∇ψ ·wh dx = −
∑
T∈Th

∫
T

∇ψ ·wh dx

=
∑
T∈Th

(∫
T∈Th

ψ(∇ ·wh) dx−
∫
∂T

(wh · nT )ψ ds

)
=

∫
Ω

ρhψ dx−
∑
T∈Th

∫
∂T

(wh · nT )ψ ds.

Since the normal component of wh is continuous, and since ψ vanishes on ∂Ω, the
boundary integrals vanish, and the statement of the lemma follows from Defini-
tion 2.3.
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Two canonicalH(div,Ω)-conforming finite element spaces satisfying this criterion
include the Raviart–Thomas space of order k ≥ 0 [61, 69],

RTk := {wh ∈H0(div,Ω) : wh|T ∈ RTk(T ) ∀ T ∈ Th},(4.17a)

and the Brezzi–Douglas–Marini (BDM) space of degree k ≥ 1,

BDMk := {wh ∈H0(div,Ω) : wh|T ∈ Pk(T ) ∀ T ∈ Th}.(4.17b)

Here, H0(div,Ω) = {v ∈H(div,Ω) : v · n|∂Ω = 0}, and RTk(T ) := Pk(T ) + xPk(T )
is the local Raviart–Thomas space. Both of these spaces form inf-sup stable pairs
with appropriate pressure spaces and, consequently, lead to stable discretizations for
second order elliptic problems.

To make this last statement precise, denote by Qh the space of discontinuous
piecewise polynomials of degree k if W h = RTk, or k − 1 if W h = BDMk, and with
vanishing mean. Then the finite element pair W h ×Qh is inf-sup stable in the sense
that

inf
qh∈Qh\{0}

sup
wh∈W h\{0}

∫
Ω

(∇ ·wh)qh dx

‖wh‖H(div,Ω)‖qh‖L2(Ω)
≥ βh,(4.18)

with βh > 0 uniformly bounded from below. Moreover, it is easy to see from
their definitions that the inclusion ∇ ·W h ⊆ Qh is satisfied; as a result, the dis-
cretely divergence-free functions are weakly divergence-free, i.e., {wh ∈W h :

∫
Ω

(∇ ·
wh)qh dx = 0 ∀ qh ∈ Qh} = {wh ∈W h : ∇ ·wh ≡ 0}.

While these spaces are inf-sup stable with respect to the H(div,Ω) norm and
the discretely divergence-free functions are solenoidal, the spaces are not directly
applicable for the Stokes problem due to their lack of smoothness. In particular, since
the Raviart–Thomas and BDM spaces satisfy the noninclusion W h 6⊂ H1

0(Ω), i.e.,
these spaces are nonconforming with respect to H1

0(Ω), the finite element method for
the Stokes problem (3.1) is not well defined since the gradients of functions in W h do
not exist globally. Furthermore, if the gradients in the formulation (3.1) are replaced
by their piecewise defined counterpart, the resulting method, even if nonsingular, is
not convergent since the method is inconsistent in the sense that

−
∫

Ω

∆v ·wh dx 6= a(v,wh)

for general functions v ∈ H2(Ω) ∩H1
0(Ω) and wh ∈W h. As such, modifications of

the method are needed to ensure that the discrete problem is stable and consistent,
yet still preserves the divergence-free property. Generally speaking, this is achieved
in two ways: (i) modify the bilinear forms in (3.1) or (ii) modify the H(div,Ω) spaces
to impose tangential continuity in some weak sense.

In the first case, using techniques found in discontinuous Galerkin methods, the
bilinear form a(·, ·) in (3.1) is modified to ensure that the form is consistent with the
Laplace operator. Here, the symmetric interior penalty arguments given in [76, 77]
are presented, although different discontinuous Galerkin techniques are available [25].
For simplicity it is assumed that Ω ⊂ R2; however, the arguments generalize quite
naturally to the three-dimensional case. Let wh ∈W h ⊂ H(div,Ω) be an arbitrary
function in the Raviart–Thomas or BDM space, and assume that the velocity solution
of the Stokes problem u is sufficiently smooth. Then it follows from Green’s theorem
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that

−
∫
T

∆u ·wh dx =

∫
T

∇u : ∇wh dx−
∫
∂T

∂u

∂nT
·wh ds,

where ∂u
∂nT

:= ∇unT . Let τT denote the tangential unit vector of ∂T , obtained
by rotating nT by 90 degrees counterclockwise. Due to the vector identity v =
(v · nT )nT + (v · τT )τT and summing over T ∈ Th, there holds

−
∫

Ω

∆u ·wh dx =

∫
Ω

∇hu : ∇hwh dx

−
∑
T∈Th

∫
∂T

(
∂(u · nT )

∂nT
(wh · nT ) +

∂(u · τT )

∂nT
(wh · τT )

)
ds(4.19)

=

∫
Ω

∇hu : ∇hwh dx−
∑
T∈Th

∫
∂T

∂(u · τT )

∂nT
(wh · τT ) ds,

where ∇h denotes the piecewise gradient operator and the normal continuity of wh

was used to derive the second equality.
The sum of boundary integrals is now written as a sum of integrals over edges

of the triangulation. Let e ∈ EIh with e = ∂T+ ∩ ∂T− and T± ∈ Th. For a piecewise
smooth vector-valued function w the average and jump of w across e, respectively,
are defined as

{{
ε(w)

}}∣∣
e

:=
1

2

(
∂(w+ · τT+

)

∂nT+

+
∂(w− · τT−)

∂nT−

)
, [|w|]τ

∣∣
e

:= w+ · τT+
+w− · τT− ,

where w± = w|T± . For a boundary edge e ∈ EBh with e = ∂T ∩ ∂Ω these operators
are given by

{{
ε(w)

}}∣∣
e

:=
∂(w · τT )

∂nT
, [|w|]τ

∣∣
e

:= w · τT .

Combining (4.19) with the algebraic identity ab−cd = 1
2 (a−c)(b+d)+ 1

2 (a+c)(b−d),
and noting that the jump of u vanishes on all edges, yields

−
∫

Ω

∆u ·wh dx =

∫
Ω

∇hu : ∇hwh dx−
∑
e∈Eh

∫
e

{{
ε(u)

}}
[|wh|]τ ds ∀ wh ∈W h.

While the right-hand side of (4.19) induces a consistent bilinear form for the
Laplace operator, it has two undesirable properties. First, the right-hand side is
nonsymmetric with respect to u and wh, which is in strong contrast to the self-
adjoint property of the Laplacian. Second, the form induced by (4.19) restricted to
W h ×W h is noncoercive, again in contrast to the Laplace operator. A simple fix to
address these issues is to exploit the jump-free property of u and amend this identity
with two trivial terms:
(4.20)

−
∫

Ω

∆u ·wh dx =

∫
Ω

∇hu : ∇hwh dx

−
∑
e∈Eh

(∫
e

{{
ε(u)

}}
[|wh|]τ ds+

∫
e

{{
wh

}}
[|u|]τ ds−

σ

he

∫
e

[|u|]τ [|wh|]τ ds
)

=: ah(u,wh) ∀ wh ∈Xh,



DIVERGENCE-FREE CONSTRAINT IN MIXED METHODS 519

where he = diam(e) and σ > 0 is some parameter. In the literature, the edge terms in
the bilinear form ah(·, ·), going from left to right, are commonly referred to (for obvious
reasons) as consistency terms, symmetry terms, and penalization terms, respectively.
The choice of the penalization parameter σ is dictated by the next lemma.

Lemma 4.12 (see [77]). There exists σ0 > 0 depending only on the shape regu-
larity of Th such that for σ ≥ σ0,

1

2
‖wh‖21,h ≤ ah(wh,wh) ∀ wh ∈W h,

where the discrete H1-norm is defined as

‖w‖21,h :=
∑
T∈Th

‖∇w‖2L2(T ) +
∑
e∈Eh

he‖
{{
ε(w)

}}
‖2L2(e) +

∑
e∈Eh

h−1
e ‖ [|w|]τ ‖

2
L2(e).

Moreover, for all wh ∈W h and v ∈Hs(Ω) with s > 3/2,

ah(v,wh) ≤ (1 + σ)‖v‖1,h‖wh‖1,h.

This derivation of the bilinear form ah(·, ·) motivates the finite element method for
the Stokes problem using H(div,Ω)-conforming elements: Find (uh, ph) ∈W h ×Qh
satisfying

ah(uh,wh) + b(wh, ph) = (f ,wh) ∀ wh ∈W h,(4.21a)

b(uh, qh) = (g, qh) ∀ q ∈ Qh.(4.21b)

From the derivation of the bilinear form ah(·, ·), one immediately sees that the method
is consistent provided u is sufficiently smooth (e.g., u ∈ Hs(Ω) with s > 3/2); in
particular, if one interchanges uh with u in (4.21), then the two statements are still
satisfied. Furthermore, a combination of (4.18) and scaling arguments shows that the
inf-sup condition is satisfied on W h ×Qh with respect to the discrete H1-norm:

inf
qh∈Qh\{0}

sup
wh∈W h\{0}

∫
Ω

(∇ ·wh)qh

‖wh‖1,h‖qh‖L2(Ω)
≥ βh,

with βh uniformly bounded. Therefore, in light of Lemma 4.12 and by slightly gen-
eralizing the framework of section 3, one concludes that if σ is sufficiently large, then
there exists a unique solution to (4.21). Moreover, using the approximation proper-
ties of the finite element spaces (cf. (4.17)), and since the discretely divergence-free
functions are weakly divergence-free, the errors satisfy

‖u− uh‖1,h ≤ C inf
wh∈W h

‖u−wh‖1,h ≤ Ch`−1‖u‖H`(Ω),

‖p− ph‖L2(Ω) ≤ C
(

inf
qh∈Qh

‖p− qh‖L2(Ω) + ν‖u− uh‖1,h
)

≤ C
(
hm‖p‖Hm(Ω) + νh`−1‖u‖H`(Ω)

)
,

where ` = min{s, k + 1} and u ∈ Hs(Ω). If p ∈ Hr(Ω) and if W h × Qh is the
Raviart–Thomas pair, then m = min{r, k + 1}. If W h × Qh is the BDM pair, then
m = min{r, k}.

Another class of H(div,Ω)-conforming methods for the Stokes problem modifies
the Raviart–Thomas and BDM spaces locally with divergence-free vector fields such



520 JOHN, LINKE, MERDON, NEILAN, AND REBHOLZ

that the resulting spaces possess weak tangential continuity [38, 58, 73, 79]. The rea-
soning behind this approach is that, if the spaces are augmented with divergence-free
vector fields, then the inf-sup condition (4.18) is satisfied and discretely divergence-
free functions are still weakly divergence-free. To be precise, the local spaces of these
elements, in two dimensions, are of the form [38, 39]

Ŵ (T ) = W (T ) + curl (bTS(T )), with curl q :=

(
∂q/∂x2

−∂q/∂x1

)
,(4.22)

where bT is the cubic bubble function (i.e., the product of the three barycentric
coordinates of T ), S(T ) is some auxiliary space, and W (T ) is the local space of W h,
that is, W (T ) = Pk(T ) if W h is the BDM space or W (T ) = RTk(T ) if it is the

Raviart–Thomas space. Clearly one has divŴ (T ) = divW (T ), indicating that the
range of the divergence operator acting on the augmented space is preserved.

As an example, reference [58] takes W (T ) to be the local, lowest order Raviart–
Thomas space RT0(T ) and the auxiliary space to be the space of piecewise linear poly-
nomials, S(T ) = P1(T ). It is easy to see in this case that the sum in (4.22) is direct,

and thus, the dimension of the local augmented space is dim Ŵ (T ) = dim RT0(T ) +
dim curl (bTP1(T )) = dim RT0(T ) + dimP1(T ) = 3 + 3 = 6. In addition to the prop-

erty divŴ (T ) = divRT0(T ) = P0(T ), the normal component of functions in Ŵ (T )

are constant on the boundary of T . Indeed, if wh = w0 + curl (bT qh) ∈ Ŵ (T ) with
w0 ∈ RT0(T ) and qh ∈ P1(T ), then by properties of RT0(T ), the curl operator, and
bT ,

wh · ne
∣∣
e

= w0 · ne
∣∣
e

+
∂(qhbT )

∂τ e

∣∣∣∣
e

= w0 · ne|e ∈ P0(e).

On the only other hand, the tangential component is generally cubic.
In [58] it is shown that a function wh ∈ Ŵ (T ) is uniquely determined by the six

values ∫
e

wh ds, e ⊂ ∂T,

or equivalently, ∫
e

wh · ne ds,
∫
e

wh · τ e ds, e ⊂ ∂T.(4.23)

The global space Ŵ h induced by the local space and degrees of freedom (4.23) is the

space of L2-functions that are (i) locally in Ŵ (T ) on each T ∈ Th; (ii) continuous
with respect to (4.23) on each e ∈ EIh; and (iii) vanish on (4.23) for e ⊂ ∂Ω.

Since the normal component of wh ∈ Ŵ h is constant on edges, the first set
of degrees of freedom given in (4.23) implies that the normal component of wh is

continuous across interior edges; thus, Ŵ h ⊂ H(div,Ω) (cf. Lemma 4.11) and the
finite element space can be written as

Ŵ h =

{
wh ∈H0(div; Ω) : wh|T ∈ Ŵ (T ),

∫
e

[|wh|]τ ds = 0 ∀ e ∈ Eh

}
.

The pressure space is the space of discontinuous constants with vanishing mean,

Qh = {qh ∈ L2
0(Ω) : q|T ∈ P0(T ) ∀ T ∈ Th}.
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Due to the high polynomial degree of the tangential component, the condition that∫
e

[|wh|]τ ds = 0 is not sufficient to ensure that [|wh|]τ = 0 on interior edges. As a

result the global space is not H1-conforming: Ŵ h 6⊂H1(Ω); nonetheless,∫
e

| [|wh|]τ |
2 ds ≤ Ch‖∇hwh‖2L2(ωe) ∀ wh ∈ Ŵ h,(4.24)

where ωe denotes the set of triangles with e as an edge. One concludes from this
estimate that, although the space is not globally conforming, it does possess a weak
type of continuity across edges.

The finite element method for the Stokes problem utilizing these spaces has the
same form as (4.21), but with W h replaced by Ŵ h, and with the bilinear form ah(·, ·)
defined as

ah(w,v) =

∫
Ω

∇hw : ∇hv dx.

From the previous arguments, one concludes that this form is not consistent with the
Laplace operator since Ŵ h is not globally continuous. However, one can exploit the
weak continuity of Ŵ h to show∣∣∣∣−∫

Ω

(∆u) · vh dx− ah(u,vh)

∣∣∣∣ ≤ Ch‖u‖H2(Ω)‖∇hvh‖L2(Ω) ∀ vh ∈ Ŵ h.

Using this result, it can be proved that there exists a unique solution to the finite
element method and the errors satisfy

‖∇h(u− uh)‖L2(Ω) ≤ Ch‖u‖H2(Ω),

‖p− ph‖L2(Ω) ≤ Ch
(
‖p‖H1(Ω) + ν‖u‖H2(Ω)

)
.

5. Improving the Pressure-Robustness of Standard Mixed Finite Elements.
The (vast) majority of finite element codes contains only standard finite element
methods such that the use of standard mixed methods is a straightforward option
for the discretization of incompressible flow problems. Hence, approaches for improv-
ing the pressure-robustness of standard mixed methods are of great interest. There
are essentially two such approaches, of which both modify the bilinear form of the
momentum equation of the finite element problem. The grad-div stabilization adds
a penalty with respect to the continuity equation. This method can be applied to
any standard mixed method; it reduces the lack of pressure-robustness, but does not
remove it. The second method chooses appropriate test functions for some terms of
the finite element formulation to reestablish properties from the continuous equation
in the finite element problem, e.g., the fundamental invariance property (1.4). This
rather new approach is currently known to be applicable to a number of mixed meth-
ods with discontinuous pressure, and it was extended recently to the Taylor–Hood and
mini-finite-element family in [49]. It leads to pressure-robust discretizations. For the
sake of completeness, a postprocessing technique for low order pairs of finite element
spaces that do not satisfy the discrete inf-sup condition will be briefly discussed.

5.1. Grad-div Stabilization. Grad-div stabilization is probably the most popular
technique for improving the pressure-robustness of pairs of finite element spaces which
do not satisfy the continuity equation in a sufficiently strong sense. In practice, it is
usually applied in the case ∇ · u = 0 and the discussion herein will be restricted to
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this case. An extension to ∇ · u = g is possible with additional technical details. For
g = 0, the insufficient satisfaction of the continuity equation means that the finite
element solution is not divergence-free in the sense of Definition 2.3.

The grad-div stabilization arises from adding 0 = −γ∇(∇ · u) to the continuous
momentum equation. Applying integration by parts in deriving the weak formulation
of the equation and then replacing the infinite-dimensional spaces with finite element
spaces leads to the term γ(∇·uh,∇·vh) in the finite element formulation. As has been
discussed throughout this article, ∇ · uh 6= 0 in most common finite element choices,
such as the Taylor–Hood pair of spaces, and so this “grad-div term” is nonzero and
does have an effect on the discrete solution. Grad-div stabilization was first introduced
in [32] and has been widely studied over the past decade.

To see the effect of grad-div stabilization, consider again the discrete Stokes sys-
tem (1.2), but now with a grad-div term and with g = 0. Assuming that (Xh, Yh)
satisfies the discrete inf-sup condition (3.2), the grad-div stabilized Stokes system
takes the following form: Find uh ∈Xh,div such that

(5.1) a(uh,vh) + γ(∇ · uh,∇ · vh) = (f ,vh) ∀ vh ∈Xh,div,

where the bilinear form a(·, ·) is given in (2.1a). Since a(·, ·) is positive definite and
the term γ(∇ · uh,∇ · vh) is positive semidefinite, the existence and uniqueness of
a solution of the grad-div stabilized discrete Stokes system follow directly from the
lemma of Lax–Milgram.

First, it will be shown that the grad-div stabilization penalizes the divergence
error. This fact can be seen immediately from an a priori estimate found by taking
vh = uh in (5.1). Applying the estimate for the dual pairing yields

ν‖∇uh‖2L2(Ω) + γ‖∇ · uh‖2L2(Ω) = (f ,uh) ≤ ‖f‖H−1(Ω)‖∇uh‖L2(Ω)

≤ ν−1

2
‖f‖2H−1(Ω) +

ν

2
‖∇uh‖2L2(Ω).

Reducing this estimate gives

(5.2) ν‖∇uh‖2L2(Ω) + 2γ‖∇ · uh‖2L2(Ω) ≤ ν
−1‖f‖2H−1(Ω).

Since f is given, the right-hand side is a fixed constant independent of γ. Thus,
taking γ larger forces the divergence error to become smaller, since (5.2) implies that
‖∇ · uh‖L2(Ω) ≤ O(γ−1/2).

Estimate (5.2) can be refined to obtain a stronger scaling with γ, following [35].
Denote by V h the weakly divergence-free subspace of Xh, i.e.,

V h := {vh ∈Xh : ‖∇ · vh‖L2(Ω) = 0},

and let V ⊥h be its orthogonal complement in Xh,div with respect to the inner product

induced by a(·, ·). It is shown in [35] that for vrh ∈ V
⊥
h ,

‖∇vrh‖L2(Ω) ≤ C(h)‖∇ · vrh‖L2(Ω),

with C(h) potentially depending inversely on h. However, on certain types of meshes
and element degrees, it can even be independent of h [36, 56]. Orthogonally decom-
posing the solution into uh = u0

h+urh with u0
h ∈ V h and urh ∈ V

⊥
h , choosing vh = urh

in (5.1), and using a(u0
h,u

r
h) = 0 and ∇ · u0

h = 0 gives

ν‖∇urh‖2L2(Ω) + γ‖∇ · urh‖2L2(Ω) ≤ ‖f‖−1‖∇urh‖L2(Ω) ≤ C(h)‖f‖H−1(Ω)‖∇ · urh‖L2(Ω),
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and consequently

‖∇ · uh‖L2(Ω) = ‖∇ · urh‖L2(Ω) ≤ C(h,f)γ−1.

Hence, on a fixed mesh, one can expect first order convergence to zero of the divergence
error as γ−1 goes to zero.

It will now be discussed that the grad-div stabilization can reduce the effect of the
pressure on the velocity error. The error estimate without grad-div stabilization for
the Galerkin discretization is given in (3.5). It will be emphasized once more that
if the pressure p is large or complex, then the second term on the right-hand side
of (3.5) becomes the dominant term of the error bound. This term represents the
best approximation error of the pressure scaled by ν−1. Note that for the Navier–
Stokes equations and other related problems, error estimates will often have this same
pressure term [47], and so similar issues occur there as well.

The finite element error analysis starts by deriving an error equation for the grad-
div stabilized finite element method (5.1) by subtracting the scheme from the weak
form of the Stokes equation (2.1a),

ν(∇e,∇vh) + γ(∇ · e,∇ · vh) = (p,∇ · vh) = (p− qh,∇ · vh) ∀ vh ∈Xh,div,

where e = u − uh and qh is arbitrary in Yh. For arbitrary ũh ∈ Xh,div, the error
is decomposed into e = (u − ũh) − (uh − ũh) =: η − φh. Then choosing vh = φh
provides

ν‖∇φh‖2L2(Ω) + γ‖∇ · φh‖2L2(Ω) = −(p− qh,∇ · φh) + γ(∇ · η,∇ · φ) + ν(∇η,∇φ),

which immediately reduces with Cauchy–Schwarz and Young’s inequalities to

ν‖∇φh‖2L2(Ω) + γ‖∇ · φh‖2L2(Ω) ≤ 2(p− qh,∇ · φh) + γ‖∇ · η‖2L2(Ω) + ν‖∇η‖2L2(Ω).

Next, the pressure is majorized by using again Cauchy–Schwarz and Young’s inequal-
ities,

2(p− qh,∇ · φh) ≤ 2γ−1‖p− qh‖2L2(Ω) +
γ

2
‖∇ · φh‖2L2(Ω).

Absorbing the second term on the right-hand side with a corresponding term on the
left-hand side is not possible for the Galerkin discretization considered in section 3.
Inserting this estimate and applying the triangle inequality yields

(5.3) ‖∇(u− uh)‖2L2(Ω) +
γ

2ν
‖∇ · (u− uh)‖2L2(Ω)

≤ 4

γν
inf

qh∈Yh

‖p−qh‖2L2(Ω)+ inf
ũh∈Xh,div

(
4‖∇(u− ũh)‖2L2(Ω) +

3γ

ν
‖∇ · (u− ũh)‖2L2(Ω)

)
.

Comparing this estimate to (3.5) and considering the choice γ > ν, then the scaling
of the velocity error (in the H1 norm) with the best approximation error of the
pressure is reduced from ν−1 to ν−1/2γ−1/2. Thus, if the best approximation error of
the pressure is the dominant source of the velocity error, grad-div stabilization can
reduce the velocity error, sometimes substantially depending on the relative size of
the pressure approximation error and the velocity approximation error.

In some finite element settings, the weakly divergence-free subspace V h of the
velocity space has optimal approximation properties in the sense of

inf
ṽh∈V h

‖∇(v − ṽh)‖L2(Ω) ≤ C inf
ṽh∈Xh

‖∇(v − ṽh)‖L2(Ω)
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holding when ∇ · v = 0. For example, this holds for Xh = Pk with k = d on
barycenter-refined triangular/tetrahedral meshes [68, 80]. In such cases, the error
analysis for the grad-div stabilized discretization can be modified by taking ũh ∈ V h,
which leads to ‖∇ · η‖L2(Ω) = 0 and provides the modified error estimate

‖∇(u− uh)‖2L2(Ω) +
γ

ν
‖∇ · (u− uh)‖2L2(Ω)

≤ C
(

1

γν
inf

qh∈Yh

‖p− qh‖2L2(Ω) + inf
ũh∈Xh

‖∇(u− ũh)‖2L2(Ω)

)
.(5.4)

This estimate is better than (5.3) in the sense that one can take in (5.4) large values of
γ without increasing the error bound at all. The best approximation error in Xh,div

appearing in (5.3) can be estimated with the best approximation error in Xh using
(4.2). Since V h ⊂ Xh,div, the constant in (5.4) will potentially be bigger than the
constant which is introduced by applying (4.2) to (5.3). On the other hand, one can
take γ arbitrarily large (up to where the condition number of the linear system of
equations becomes prohibitively large) and essentially completely remove the impact
of the pressure on the velocity error.

Proposals for the choice of the stability parameter γ in practice rely on equili-
brating the terms in the error bound containing γ. For instance, if both infima on the
right-hand side of (5.3) are asymptotically of the same order, then this approach leads
to γ ∼ 1 with respect to the mesh width. A careful study of optimal choices of γ with
respect to error bounds in different norms and of the dependence of γ on norms of
the solution of the Stokes problem can be found in [43]. In this paper, the analytical
results were supported with comprehensive numerical studies. It turns out that for
each concrete example an appropriate choice typically depends on several aspects, so
a good choice is not usually a priori clear.

In summary, grad-div stabilization is a popular and simple technique for im-
proving the pressure-robustness of any mixed method. It is now well known that it
penalizes for lack of mass conservation, can improve solution accuracy for simulations
of Stokes and Navier–Stokes equations by reducing the effect of the pressure on the
velocity error [48, 66, 64, 65], and can improve conditioning of discrete systems [37]
and convergence of iterative solvers [13, 15, 20, 40]. It has also been shown to im-
prove solution accuracy for related coupled multiphysics problems [28, 35, 44, 57, 74].
Some recent studies have considered the optimal choice of the parameter γ. Although
γ ∼ 1 is often a good choice with Taylor–Hood elements, some guidelines are given
in [43] for potentially better choices, depending on the pair of finite element spaces,
the mesh structure, the relative size of the pressure and the size of the velocity, and
whether or not the sequence of weakly divergence-free subspaces of the discrete ve-
locity spaces has an optimal approximation property. For the time-dependent Oseen
and Navier–Stokes equations, it has been shown in [3, 27] that the use of grad-div
stabilization leads to error bounds for the energy norm with constants independent
of inverse powers of ν. Consequently, the error bound for the L2 norm of the ve-
locity gradient depends explicitly on ν−1/2, which is a weaker dependence than for
the Galerkin discretization. However, grad-div stabilization is not a complete remedy
in the sense that a pressure-robust method is not constructed in this way; see also
Example 6.2.

5.2. Using Appropriate Reconstructions of Test Functions. This section shows
that an appropriate modification of the test functions might lead to pressure-robust
mixed methods. This recent and quite general approach was introduced in [50, 51, 52],
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and it is based on well-understood inf-sup stable mixed methods. The modifications
of the standard mixed methods are not severe, and in the case of the Stokes equations,
the stiffness matrix is actually unchanged.

The approach is based on the observation that test and trial functions play quite
different roles. Changing the velocity test functions by using an H(div)-conforming
velocity reconstruction operator, one establishes the L2-orthogonality between dis-
cretely divergence-free test functions and arbitrary gradient fields. In this way, one
obtains the discrete counterpart of the Helmholtz–Hodge decomposition, Lemma 2.6,
which is relaxed in classical mixed methods, and the fundamental invariance property
(1.4) is also recovered. In addition, one obtains a discrete vorticity equation which
is close to (4.8) for pressure-robust mixed methods with Xh,div ⊂ Xdiv. The price
to pay is an additional velocity-dependent consistency error, which is, however, of
sufficiently high order.

While the approach was originally presented and analyzed for the first order non-
conforming Crouzeix–Raviart element, it will be presented here for the conforming
pair of finite element spaces Xh/Yh = Pbubble

2 /Pdisc
1 , to enable a better comparison

with the results from section 3. Besides the discrete spaces Xh and Yh, the construc-
tion of the method needs the first order Raviart–Thomas space Rh := RT1, which is
an H(div)-conforming space (cf. section 4.4). Important properties of Rh utilized for
the construction of the method are:

• for all vh ∈ Rh, e ⊂ ∂T, T ∈ Th it holds that vh|e ∈ P1(e);
• for all q ∈ P1(e),

∫
e
q [|vh · ne|]τ ds = 0;

• for all vh ∈ Rh it holds that ∇ · vh ∈ Yh.
The construction of the method requires the definition of a velocity reconstruction
operator Πh : X → Rh satisfying the following properties:∫

T

(v −Πhv) dx = 0 ∀ v ∈X,∀ T ∈ Th,(5.5) ∫
e

(v −Πhv) · neqh ds = 0 ∀ v ∈X,∀ qh ∈ P1(e),(5.6)

‖Πhv − v‖L2(T ) ≤ Ch
m
T |v|Hm(T ) , m = 1, 2,(5.7)

with a constant C depending only on the angles of T . By this definition, the recon-
struction operator is just the standard Fortin interpolator for the RT1 element. Using
the product rule, integration by parts, (5.5), (5.6), the fact that ∇qh|T is constant,
and integration by parts again gives for v ∈X, for all T ∈ Th, and for all qh ∈ Yh∫
T

∇ · vqh dx =

∫
T

∇ · (vqh) dx−
∫
T

∇qh · v dx =

∫
∂T

qhv · nT ds−
∫
T

∇qh · v dx

=

∫
∂T

qh(Πhv) · nT ds−
∫
T

∇qh · (Πhv) dx =

∫
T

∇ · (Πhv)qh dx.(5.8)

Consequently, it holds that

(5.9) ∇ · (Πhv) = πYh
(∇ · v).

In particular, for discretely divergence-free vector fields vh ∈ Xh,div the left-hand
side of (5.8) vanishes such that from (5.9) it follows that such fields are mapped to
divergence-free fields in the sense of H(div,Ω).
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Now, the modified scheme reads as follows: Find (uh, ph) ∈ Xh × Yh such that
for all (vh, qh) ∈Xh × Yh,

a(uh,vh) + b(vh, ph) = (f ,Πhvh),(5.10a)

b(uh, qh) = (g, qh).(5.10b)

Lemma 5.1. Let u ∈H3(Ω) and v ∈X; then it holds that

(5.11) |(∆u,Πhv) + (∇u,∇v)| ≤ C
∑
T∈Th

h2
T |u|H3(T ) |v|H1(T ) .

Proof. Using integration by parts, (5.5), the Cauchy–Schwarz inequality, and in-
terpolation estimates for both factors, e.g., (5.7), yields

(∆u,Πhv) + (∇u,∇v) = (∆u,Πhv − v) + (∇u,∇v) + (∆u,v)

= (∆u− πP0(T )∆u,Πhv − v)

≤ C
∑
T∈Th

h2
T |u|H3(T ) |v|H1(T ) .

Theorem 5.2. Assume that the solution of the Stokes equations (2.1) satisfies
u ∈H3(Ω) and p ∈ H2(Ω). Let the finite element problem (5.10) be discretized with
Pbubble

2 /Pdisc
1 ; then the following error bounds hold:

‖∇(u− uh)‖L2(Ω) ≤ 2(1 + CF ) inf
wh∈Xh

‖∇(u−wh)‖L2(Ω) + Ch2 |u|H3(Ω) ,

(5.12)

‖πYh
p− ph‖L2(Ω) ≤

ν

βh

(
2(1 + CF ) inf

wh∈Xh

‖∇(u−wh)‖L2(Ω) + Ch2 |u|H3(Ω)

)
,

(5.13)

‖p− ph‖L2(Ω) ≤ inf
qh∈Yh

‖p− qh‖L2(Ω)(5.14)

+
ν

βh

(
2(1 + CF ) inf

wh∈Xh

‖∇(u−wh)‖L2(Ω) + Ch2 |u|H3(Ω)

)
.

Proof. Because of uh ∈ Xh,div(g) it holds for an arbitrary wh ∈ Xh,div(g) that
v0
h := uh −wh ∈ Xh,div. Since Πhv

0
h ∈ H(div,Ω) is weakly divergence-free and the

homogeneous boundary condition of v0
h induces that Πhv

0
h · n vanishes on ∂Ω, one

gets that (∇p,Πhv
0
h) = 0. Using this property, after applying (5.10a), gives

ν‖∇v0
h‖2L2(Ω) = a(v0

h,v
0
h) = a(uh,v

0
h)− a(wh,v

0
h)

= (−ν∆u+∇p,Πhv
0
h)− a(wh,v

0
h)

= a(u−wh,v
0
h)− ν

(
(∆u,Πhv

0
h) + (∇u,∇v0

h)
)
.

Using (5.11) and the Cauchy–Schwarz inequality yields

ν‖∇v0
h‖2L2(Ω) ≤ ν‖∇(u−wh)‖L2(Ω)‖∇v0

h‖L2(Ω) + νCh2|u|H3(Ω)‖∇v0
h‖L2(Ω),

such that

‖∇v0
h‖L2(Ω) ≤ inf

wh∈Xh,div(g)
‖u−wh‖L2(Ω) + Ch2|u|H3(Ω).
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With the triangle inequality it follows that

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u−wh)‖L2(Ω) + ‖∇v0
h‖L2(Ω).

Inserting now the estimate for ‖∇v0
h‖L2(Ω), noting that wh was chosen to be arbitrary,

and applying (4.2) finishes the proof of estimate (5.12).
To prove (5.13), consider an arbitrary function vh ∈ Xh. Then ∇ · Πhvh ∈ Yh

and from the definition of the L2-projection and (5.8) it follows that

(5.15) (p,∇ ·Πhvh) = (πYh
p,∇ ·Πhvh) = (πYh

p,∇ · vh).

Using (5.10a), integration by parts, and (5.15) now yields

(πYh
p− ph,∇ · vh) = (πYh

p,∇ · vh) + (f ,Πhvh)− a(uh,vh)

= (πYh
p,∇ · vh) + (∇p,Πhvh)− (ν∆u,Πhvh)− a(uh,vh)

= (πYh
p,∇ · vh)− (p,∇ ·Πhvh)− (ν∆u,Πhvh)− a(uh,vh)

= −(ν∆u,Πhvh)− a(uh,vh)

= −(ν∆u,Πhvh)− a(u,vh)− a(uh − u,vh).

Inserting this expression in the discrete inf-sup condition (3.2) and applying the tri-
angle and Cauchy–Schwarz inequalities and (5.11) gives

‖πYh
p− ph‖ ≤

ν

βh

(
‖∇(u− uh)‖L2(Ω) + sup

0 6=vh∈Xh

|(∆u,Πhvh) + (∇u,∇vh)|
‖∇vh‖L2(Ω)

)
≤ ν

βh

(
‖∇(u− uh)‖L2(Ω) + Ch2|u|H3(Ω)

)
.

The proof of (5.13) is finished by inserting (5.12).
Estimate (5.14) is a direct consequence of the triangle inequality

‖p− ph‖L2(Ω) ≤ ‖p− πYh
p‖L2(Ω) + ‖πYh

p− ph‖L2(Ω),

estimate (5.13), and the observation that the L2-projection is the best approximation
in the L2(Ω) norm.

The error estimates above show that, to achieve pressure-robustness, the inclu-
sion Xh,div ⊂ Xdiv is not needed. In fact, for the incompressible Stokes equations
a lack of pressure-robustness can only evolve in the discretization of the right-hand
side term (f ,vh). The key idea is to repair the L2 scalar product, in order to ensure
that discretely divergence-free vector fields become orthogonal to gradient fields. For
more complex flows than the incompressible Stokes equations, one has to repair this
kind of L2-orthogonality in every term of the discrete weak formulation, where some
force is tested in the L2 sense with a test function vh. This issue also concerns the
nonlinear convection term (uh ·∇)uh and the Coriolis force term; see [51, 53]. So far,
the approach has been generalized to mixed discretizations of arbitrarily high order
on triangles, tetrahedra, squares, and cuboids, if the discrete pressures are discon-
tinuous [52]. Extensions for conforming mixed methods with continuous pressure are
presented in [49].

Remark 5.3. Instead of Rh = RT1 one can also use Rh := BDM2 and its stan-
dard Fortin interpolator Πh. This approach has the advantage of a possibly smaller
consistency error and it leaves quadratic test functions untouched. In other words,
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only the nonquadratic bubble functions have to be modified. This version of the recon-
struction was used in the numerical examples below. Similarly, the test functions of
the lowest order Bernardi–Raugel element were reconstructed into Rh := BDM1 with
the associated standard Fortin interpolator, which only affects the normal-weighted
face bubbles.

5.3. Postprocessing of Low Order Velocity Fields Computed with Non-inf-
sup Stable Methods. An approach for postprocessing a finite element solution in such
a way that one obtains a divergence-free solution inH(div,Ω) was proposed for certain
stabilized discretizations in [10, 11, 12]. In these papers, two-dimensional problems
were considered which were discretized with P1 finite elements for the velocity and P0

or P1 finite elements for the pressure. The stabilization with respect to the discrete
inf-sup condition is based on jumps of ∇uh or ph across the edges of the mesh cells.
The basic idea of this approach consists of adding a correction from RT0(Th) to uh
so that the resulting discrete velocity is divergence-free. The concrete form of the
correction depends on the stabilization used. It can be shown that the divergence-
free velocity field converges with optimal order in appropriate norms.

6. Numerical Studies. This section presents a couple of examples which illus-
trate situations in which the methods discussed in the previous sections are beneficial,
and also situations where standard methods work equally well.

Example 6.1. Examples 1.1–1.3 with appropriate reconstructions of test functions.
In Examples 1.1–1.3 the dependence of the velocity error on the viscosity for the
standard nonconforming Crouzeix–Raviart finite element discretization PCR

1 /P0 was
clearly seen. As mentioned at the beginning of section 5.2, a reconstruction of the
test function can be applied for this pair of finite element spaces; see [51]. In the
case of the Stokes equations, this reconstruction is performed only on the right-hand
side. For the Navier–Stokes equations, the test function in the convective term and, if
present, also the term with the Coriolis force, have to be reconstructed; see [16]. For
the Crouzeix–Raviart finite element, the reconstructed test function is a projection
onto a Raviart–Thomas function of order zero (RT0). Applying this reconstruction,
one obtains the results presented in Figure 6.1. One can see that in all cases the
velocity fields are recovered up to round-off errors.

Example 6.2. Grad-div stabilization. The effect of using the grad-div stabilization
described in section 5.1 will be illustrated for the Stokes equations with the prescribed
solution

u= 200

(
x2(1− x)2y(1− y)(1− 2y)
−x(1− x)(1− 2x)y2(1− y)2

)
, p= 10

((
x− 1

2

)3

y2 + (1− x)3

(
y − 1

2

)3
)

;

see Figure 6.2. The velocity field has the form of a large vortex. Note that for the
flow problem from Example 1.1, the second infimum in the error bound (5.3) vanishes
such that γ → ∞ leads to the ideal computed velocity field. This situation is not
representative for the general case.

Here, only a few results will be presented. The simulations were performed with
the Taylor–Hood pair of spaces P2/P1. The unstructured initial grid depicted in
Figure 6.2 was refined four times leading to 36,546 degrees of freedom (d.o.f.s) for
the velocity and 4,688 d.o.f.s for the pressure. In this situation, the error estimate
(5.3) for ‖∇(u − uh)‖2L2(Ω) applies. Both infima in the error bound are of the same
order, hence their equilibration leads to the choice γ ∼ 1 with respect to the mesh
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Fig. 6.1 Example 6.1. Crouzeix–Raviart pair of spaces with reconstructed test function, Exam-
ples 1.1–1.3.

Fig. 6.2 Example 6.2. Velocity, pressure, initial grid (level 0).

width. The analysis from [43] shows that the optimal choice of γ depends on norms
of the solution. Since the prescribed solution does not depend on the viscosity, the
optimal stabilization parameter should be independent of ν. A representative result
is presented in Figure 6.3. It can be seen that for ν = 1 one obtains for a wide
range of γ approximately the same results. For large γ only, the divergence error
decreases but at the same time ‖∇(u−uh)‖2L2(Ω) increases. For smaller values of ν, one

observes that the optimal stabilization parameter with respect to ‖∇(u − uh)‖2L2(Ω)

is contained in [0.03, 0.08]. The impact on the error ‖∇ · uh‖2L2(Ω) is much higher for

small ν. In particular, in the case ν = 10−6, very large values of γ lead to almost
divergence-free solutions with only a slightly larger velocity error compared with the
optimal parameter for ‖∇(u−uh)‖2L2(Ω). However, it shall be emphasized that large
contributions of the grad-div stabilization result in linear systems of equations with
large condition numbers [65].
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Fig. 6.3 Example 6.2. Errors for a wide range of stabilization parameters.

The presented result illustrates the final comment of section 5.1 quite well: the
grad-div stabilization might improve the pressure-robustness in certain situations but
it is not a remedy. For this reason, the presentation of more numerical results will be
omitted here. Instead, the reader is referred to the comprehensive numerical studies
in [43].

Example 6.3. Natural convection in a triangular cavity. In natural convection
problems, the flow is driven by the temperature. Here, a model consisting of a coupled
system of the Stokes equations and a convection-diffusion equation for the temperature
will be considered:

−∆u+∇p = Raejθ,(6.1)

∇ · u = 0,(6.2)

−∆θ + u · ∇θ = 0,(6.3)

with θ representing temperature and ej being a unit vector pointing in the direction
opposite to gravity. Simulations were performed with the Rayleigh number Ra = 106.
Models of this type can be used for the simulation of fluids like silicon oil.

Natural convection problems defined on the unit square are standard test prob-
lems. To present a different setup, the domain Ω was chosen to be the right triangle
with vertices (0, 0), (1, 0), and (0, 1). The boundary is considered to be solid walls.
Thus, homogeneous Dirichlet boundary conditions for the velocity are prescribed on
the walls. For the temperature, a sinusoidal heat source is enforced on the bottom
boundary with a Dirichlet condition, the left wall is set to a constant temperature
of zero, and the hypotenuse wall is perfectly insulated so that a Neumann bound-
ary condition is appropriate. The domain and the boundary conditions are shown
in Figure 6.4. This figure shows also the initial triangulation (level 0) used in the
simulations.

Besides presenting plots of the numerical solutions in this section, the Nusselt
number defined by

Nu =

∫
∂Ω∩{y=0}

∇T · n ds

will be studied. Extrapolating results obtained with higher order discretizations, one
finds Nu ≈ 24.535.

First, results for a low order discretization will be presented. For the Stokes equa-
tions, the Bernardi–Raugel element PBR

1 /P0 [14] was used and for the temperature,
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1 : u=0, T = 2(1 cos(2  x) )

1 :
u=0,
 T = 0

3 : u=0,
  T  n= 0

(0,1)

(1,0)(0,0)

Fig. 6.4 Example 6.3. Left: domain and boundary conditions for the natural convection problem in
a triangular cavity; right: initial triangulation (level 0).

the P1 finite element. The velocity space in the Bernardi–Raugel element consists
of P1 functions which are enriched with edge bubble functions. For this element, a
reconstruction of the test function as described in section 5.2 and Remark 5.3 can be
constructed.

For the methods that use a reconstruction of the test functions, the discrete
velocity fields are not weakly divergence-free. In order to enforce this property, one
has to apply a projection operator which maps the discretely divergence-free velocity
field to a divergence-free velocity field. To this end, the same operator Πh can be
employed that was used for reconstructing the test functions. The desired divergence-
free property follows from (5.9). This reconstruction was applied to u in (6.3).

Computed solutions obtained without and with this reconstruction are depicted in
Figures 6.5–6.7. The Nusselt numbers and the divergence of the discrete velocity are
given in Table 6.1. The velocity field computed using the method with reconstruction
is much smoother on coarse grids; also, the temperature is somewhat smoother. The
computed pressure fields look similar for both methods. With respect to the Nusselt
number, the results of the method with reconstruction are generally more accurate.
In summary, the use of an appropriately reconstructed test function in the Bernardi–
Raugel pair of spaces led to a clear improvement of the accuracy of the computed
results compared with the standard method.

As higher order discretizations, the Taylor–Hood pair P2/P1, the Scott–Vogelius
pair P2/P

disc
1 [71], and the pair Pbubble

2 /Pdisc
1 from [26] were considered. In the

Pbubble
2 /Pdisc

1 finite element, the velocity space consists of P2 functions and an en-
richment with mesh cell bubbles. The reconstruction of the test function for this
pair is described in section 5.2 and Remark 5.3. As for the Bernardi–Raugel element
with reconstruction, the reconstruction is also applied to u in (6.3). For applying
the Scott–Vogelius pair, an additional barycentric refinement of the grids was applied
to guarantee the satisfaction of the discrete inf-sup condition (3.2); see [68]. Since
Yh = Pdisc

1 = ∇ · P2 = Xh, the use of the Scott–Vogelius pair gives divergence-free
velocity fields in the sense of Definition 2.3. For all higher order discretizations, the
temperature was discretized with the P2 finite element.

The computed velocity fields for the higher order discretizations are presented
in Figure 6.8. Only for the grids with the smallest number of degrees of freedom
can small differences be observed. In this case, the velocity obtained with the Taylor–
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Fig. 6.5 Example 6.3. Absolute value of the velocity (speed) obtained with the Bernardi–Raugel
element PBR

1 /P0 on levels 1 to 3. Top: standard formulation; bottom: with reconstruction
of the test function.

Fig. 6.6 Example 6.3. Pressure obtained with the Bernardi–Raugel element PBR
1 /P0 on levels 1

to 3. Top: standard formulation; bottom: with reconstruction of the test function.

Hood pair seems to be the least accurate. The situation is similar for the temperature.
With respect to the pressure, there are only small differences between the different
methods, which is the same situation as for the low order discretizations. For the sake
of brevity, the presentation of the pressures computed by the higher order methods is
omitted.

To obtain a reference value for the Nusselt number, simulations with the Taylor–
Hood and Scott–Vogelius finite elements were performed on very fine meshes and
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Fig. 6.7 Example 6.3. Temperature obtained with the Bernardi–Raugel element PBR
1 /P0 on levels 1

to 3. Top: standard formulation; bottom: with reconstruction of the test function.

Table 6.1 Example 6.3. Nusselt number obtained with the Bernardi–Raugel element PBR
1 /P0.

Level d.o.f. Standard With reconstruction
0 271 not conv. 11.828
1 947 14.016 13.870
2 3317 17.232 20.935
3 13115 21.955 23.665
4 51697 23.664 24.238
Reference 24.535

the numbers were extrapolated by Aitken extrapolation; see Table 6.2. Both methods
agree on the first two digits. For a similar number of degrees of freedom, more accurate
Nusselt numbers were obtained with the Taylor–Hood pair of spaces compared with
the Scott–Vogelius pair. The application of the reconstruction for Pbubble

2 /Pdisc
1 had

only a minor effect on the computed Nusselt numbers.
In summary, with the standard Taylor–Hood pair of spaces P2/P1 good results

were obtained, except on grids with very few degrees of freedom. Apart from obtaining
a divergence-free solution, there is no advantage to using the Scott–Vogelius pair for
this problem. There is also no advantage to applying a reconstruction of the test
function for the Pbubble

2 /Pdisc
1 pair of spaces. Possibly the almost linear pressure,

which can be resolved well by all discrete piecewise linear pressure spaces, is one
reason why only minor differences for the higher order methods could be observed.
However, it will be shown in Example 6.6 that a divergence-free solution might be
very important if the scalar quantity possesses certain restrictions arising from the
physics of the problem.

Example 6.4. Navier–Stokes equations for a potential flow. This example studies
a problem from [54] where the potential flow u = ∇h, with the harmonic function h =
y5 +5x4y−10x2y3, is considered for the Navier–Stokes equations on Ω = (−0.5, 0.5)2.
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Fig. 6.8 Example 6.3. Absolute value of the velocity (speed). Top to bottom: P2/P1 (levels 1 to
3), P2/Pdisc

1 (levels 0 to 2 with barycentric refinement), Pbubble
2 /Pdisc

1 (levels 0 to 2),

Pbubble
2 /Pdisc

1 with reconstructed test function (levels 0 to 2).

For potential flows, it holds that ∆u = 0 and (u · ∇)u = −∇(|u|2/2). Hence, the
pressure is solely induced by the convection term, i.e., p = −|u|2/2, and the Navier–
Stokes equations are satisfied with f = 0.

This example shows that the nonlinear convection term can also cause a lack
of pressure-robustness. This feature will be illustrated for the Pbubble

2 /Pdisc
1 pair of

spaces, where the nonlinear convection term in its weak form is discretized by

(6.4)

∫
Ω

((uh · ∇)uh) · vh dx.
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Table 6.2 Example 6.3. Nusselt number obtained with P2/P1, P2/Pdisc
1 , Pbubble

2 /Pdisc
1 , Pbubble

2 /
Pdisc
1 with reconstructed test function.

P2/P1 P2/Pdisc
1 Pbubble

2 /Pdisc
1 std./reco.

Level d.o.f. Nu d.o.f. Nu d.o.f. Nu Nu
0 446 0.074 1539 10.318 675 5.778 6.240
1 1551 16.105 5829 17.867 2469 13.850 13.765
2 5414 20.748 21333 21.967 8869 20.261 20.254
3 21361 23.475 86409 23.918 35561 23.460 23.461
4 84108 24.183 344685 24.333 141149 24.184 24.184
5 332757 24.427 1373127 24.471
6 1325912 24.501

Extrapolation 24.537 24.533

Table 6.3 Example 6.4. L2 errors of the gradient of the velocity for the classical discretization
(6.4). The notation “dnc” indicates that the method did not converge.

ν \ # d.o.f. 304 1200 4529 18175 71847 287593 1146124
1e+5 3.6095e+0 8.2123e-1 2.1783e-1 5.1476e-2 1.2878e-2 3.1832e-3 7.9016e-4
1e+0 3.6143e+0 8.2132e-1 2.1774e-1 5.1479e-2 1.2881e-2 3.1833e-3 7.9021e-4
1e-1 3.6670e+0 8.2534e-1 2.1753e-1 5.1732e-2 1.2961e-2 3.1998e-3 7.9470e-4
1e-2 4.9303e+0 1.1136e+0 2.6617e-1 7.2571e-2 1.8499e-2 4.6238e-3 1.1641e-3
2e-3 dnc 3.3922e+0 7.5804e-1 2.4830e-1 6.5474e-2 1.6949e-2 4.3358e-3
1e-3 dnc dnc 1.3212e+0 4.5871e-1 1.2413e-1 3.2771e-2 8.4937e-3
2e-4 dnc dnc dnc 1.6678e+0 4.9753e-1 1.3967e-1 3.8696e-2
1e-4 dnc dnc dnc dnc 8.5289e-1 2.4610e-1 7.0749e-2
5e-5 dnc dnc dnc dnc dnc dnc 1.2460e-1

Table 6.4 Example 6.4. L2 errors of the gradient of the velocity for the modified discretization
(6.5). The notation “dnc” indicates that the method did not converge.

ν \ # d.o.f. 304 1200 4529 18175 71847 287593 1146124
1e+5 3.6095e+0 8.2123e-1 2.1783e-1 5.1476e-2 1.2878e-2 3.1832e-3 7.9016e-4
1e+0 3.6109e+0 8.2123e-1 2.1783e-1 5.1477e-2 1.2879e-2 3.1832e-3 7.9017e-4
1e-1 3.6240e+0 8.2134e-1 2.1786e-1 5.1476e-2 1.2879e-2 3.1832e-3 7.9017e-4
1e-2 3.7743e+0 8.3142e-1 2.1925e-1 5.1567e-2 1.2891e-2 3.1837e-3 7.9020e-4
2e-3 4.3747e+0 9.2917e-1 2.3061e-1 5.2552e-2 1.3019e-2 3.1930e-3 7.9085e-4
1e-3 dnc 1.0666e+0 2.5486e-1 5.4077e-2 1.3213e-2 3.2124e-3 7.9252e-4
2e-4 dnc dnc dnc 7.4417e-2 1.4721e-2 3.3851e-3 8.1340e-4
1e-4 dnc dnc dnc dnc 1.7548e-2 3.6028e-3 8.4052e-4
5e-5 dnc dnc dnc dnc dnc 4.1404e-3 8.9510e-4

In the modified variant, the nonlinear convection term is discretized by

(6.5)

∫
Ω

((uh · ∇)uh) · (Πhvh) dx

with the reconstruction operator Πh from Remark 5.3.
Tables 6.3 and 6.4 present L2 errors of the gradient of the velocity for the classical

method (6.4) and the modified method (6.5). For ν = 105, the nonlinear convection
term has only little impact and both methods compute nearly the same approximation
of u. However, for decreasing values of ν, the methods behave differently. There is
a much wider range of ν for which the errors of the solutions computed with the
modified method stay nearly unchanged. This feature can be seen best on the finest
mesh, where the L2 errors of the velocity gradient for the modified method do not
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Table 6.5 Example 6.4. Factors between the L2 errors of the gradient of the velocity of the classical
and modified methods using the results from Tables 6.3 and 6.4.

ν \ # d.o.f. 304 1200 4529 18175 71847 287593 1146124
1e+5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1e+0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1e-1 1.01 1.00 1.00 1.00 1.01 1.01 1.01
1e-2 1.31 1.34 1.21 1.41 1.44 1.45 1.47
2e-3 - 3.65 3.29 4.72 5.03 5.31 5.48
1e-3 - - 5.18 8.48 9.39 10.20 10.72
2e-4 - - - 22.41 33.80 41.26 47.57
1e-4 - - - - 48.60 68.31 84.17
5e-5 - - - - - - 139.20

increase significantly until about ν = 10−3, while there is already a notably larger
deviation of this error for the classical method and ν = 10−1.

Table 6.5 lists the factors between the L2 errors of the velocity gradient of the
classical and the modified method for different values of ν and different refinement
levels. A factor larger than one indicates that the error of the classical methods is
larger than the error of the modified method. On finer meshes, these factors scale
almost with 1/ν, which shows that the error in this case is dominated by the influence
of the badly resolved pressure. The factors even seem to increase on finer meshes. For
the smallest ν and the finest mesh in the presented study, an improvement factor of
about 139 is attained. This result means that the classical method needs more than
three refinement levels (under the assumption of optimal quadratic convergence) to
compute an error as small as the error obtained with the modified method. In conclu-
sion, pressure-robustness in the Navier–Stokes case also concerns the test functions of
the nonlinear convection term; see [54] for more details. In a time-dependent setting,
the temporal derivative of the velocity can cause a lack of pressure-robustness and
can be treated similarly; compare also [54].

Example 6.5. Flow over a forward facing step with Coriolis force. As mentioned
in Example 1.3, flows with strong Coriolis forces appear in several applications. The
simplest model for such a flow has the form

−ν∆u+∇p+ 2ω × u = f , ∇ · u = 0,

where ω is a constant angular velocity vector. A two-dimensional example with
ω = (0, 0, ω)T will be considered. Since

∇× (ω × u) = ω

−∂zu1

−∂zu2

∇ · u

 = 0,

(ω×u) is conservative, which implies that there is a function φ satisfying ω∇φ = ω×u.
Thus, changing the magnitude ω of the Coriolis force will change only the pressure
solution, i.e., p→ p+ ωφ, and not the velocity solution.

This problem was considered in the domain Ω = (0, 4)× (0, 2) \ [2, 4]× [0, 1]; see
Figure 6.9. The inlet is situated at x = 0 and the outlet at x = 4. Dirichlet bound-
ary conditions are prescribed on the entire boundary, where the volume preserving
parabolic inflow and outflow profiles are given by

uin =

(
y(2− y)/2

0

)
, uout =

(
4(2− y)(y − 1)

0

)
,
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Fig. 6.9 Example 6.5. Domain and boundary conditions and coarsest mesh (level 0).

Fig. 6.10 Example 6.5. Absolute value of the velocity (speed) obtained with the Bernardi–Raugel
element PBR

1 /P0 on refinement levels 2 and 3. Top: standard formulation; bottom: with
reconstruction of the test function.

and no-slip conditions are used at all other parts of the boundary. Simulations were
performed with ν = 0.01 and ω = 100. The initial grid is depicted in Figure 6.9. For
the Scott–Vogelius pair of finite element spaces, a barycentric refinement of all grid
levels was applied.

Computed solutions obtained on coarse grids are presented in Figures 6.10–6.12.
The positive effect of using the formulation with reconstructed test function and
Coriolis force term can be observed clearly, not only for the low order Bernardi–
Raugel element PBR

1 /P0, but also for the higher order Pbubble
2 /Pdisc

1 pair of spaces; see
Figures 6.10 and 6.11. Also, the solutions computed with the divergence-free Scott–
Vogelius finite element are considerably more accurate than the solutions obtained
with the Taylor–Hood element on grids with a comparable number of degrees of
freedom; see Figure 6.12. Note that due to the barycentric refinement, the number
of degrees of freedom for the Scott–Vogelius element on level l is approximately the
same as for the Taylor–Hood element on level l − 1.

In summary, this example shows clearly the benefit that might be achieved if
pressure-robust discretizations are used for simulations of flows with Coriolis forces.



538 JOHN, LINKE, MERDON, NEILAN, AND REBHOLZ

Fig. 6.11 Example 6.5. Absolute value of the velocity (speed) obtained with Pbubble
2 /Pdisc

1 on refine-
ment levels 1 and 2. Top: standard formulation; bottom: with reconstruction of the test
function.

Fig. 6.12 Example 6.5. Absolute value of the velocity (speed) obtained with the Taylor–Hood element
on refinement levels 1 and 2 (top) and the Scott–Vogelius element on refinement levels 0
and 1 (bottom).

Example 6.6. Convection-dominated transport of a passive scalar. The final ex-
ample demonstrates that divergence-free discrete velocity fields might also be of ad-
vantage in coupled problems. To this end, consider the transport of a passive scalar,
e.g., temperature, through a domain with a flow field which is governed by the Stokes
equations

−ν∆u+∇p = 0,(6.6)

∇ · u = 0,(6.7)

−ε∆θ + u · ∇θ = 0.(6.8)

The domain and the boundary conditions for the velocity are the same as in Exam-
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Fig. 6.13 Example 6.6. Concentration obtained with a Voronoi finite volume method and veloc-
ity fields by the Bernardi–Raugel element PBR

1 /P0 on refinement levels 2–4 (top), the
Pbubble
2 /Pdisc

1 on refinement levels 1–3 (middle), and the Taylor–Hood element on refine-
ment levels 1–3 (bottom).

ple 6.5. At the inlet, the constant temperature θ = 1 is prescribed and on all other
boundaries, a free temperature flux −ε∇θ ·n = 0. Together with (6.8) it follows that
θ = 1 is the solution for the temperature field. Simulations were performed with the
coefficients ν = 0.01 and ε = 10−6. The same initial grid was used as is presented in
Figure 6.9.

The Stokes equations were discretized either by the Bernardi–Raugel element
PBR

1 /P0, the Pbubble
2 /Pdisc

1 element, or the Taylor–Hood element. Equation (6.8) for
the temperature is a convection-dominated equation. It is well known that stabiliza-
tions are necessary for discretizing this type of system. There are numerous proposals;
e.g., see [70]. However, there are only a few stabilized methods that satisfy a discrete
maximum principle, which is an important property in many applications to guarantee
that numerical solutions have meaningful physical values. One of these discretizations
is the exponentially fitted Voronoi finite volume method from [33, 34]. This method
satisfies the discrete maximum principle on Delaunay grids (the grids used are of this
type) and for divergence-free convection fields.

The computation of weakly divergence-free fields for the methods that use a re-
construction of the test functions is described in Example 6.3.

Figure 6.13 and Table 6.6 present results of the numerical simulations. The ve-
locity field is of the same form as in Example 6.5. Since there is no Coriolis force,
visually there appear to be almost no differences in the velocity fields computed with
the different discretizations (their presentation is omitted for the sake of brevity).
However, the violation of the divergence constraint causes (strong) spurious oscilla-
tions of the discrete temperature in all cases where the discrete velocity fields are not
divergence-free. By contrast, the methods with divergence-free velocity fields compute
the temperature with exact accuracy on all grid levels.
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Table 6.6 Example 6.6. Minimal and maximal temperature.

PBR
1 /P0 Pbubble

2 /Pdisc
1 P2/P1 P2/Pdisc

1
Level std. reco. std. reco.

0 0.550/1.331 1.000/1.000 0.942/2.071 1.000/1.000 0.881/1.930 1.000/1.000
1 0.273/6.343 1.000/1.000 0.875/1.319 1.000/1.000 0.828/1.640 1.000/1.000
2 0.408/2.997 1.000/1.000 0.948/1.037 1.000/1.000 0.773/1.052 1.000/1.000
3 0.582/2.761 1.000/1.000 0.993/1.005 1.000/1.000 0.955/1.030 1.000/1.000
4 0.827/1.415 1.000/1.000 0.993/1.002 1.000/1.000 0.909/1.017 1.000/1.000

7. Outlook. This article has provided a thorough review of state-of-the-art meth-
ods and numerical analysis used for the enforcement of the divergence constraint in
mixed finite element methods for equations that model incompressible flows, with a
special emphasis on the Stokes equations with possibly nonvanishing divergence of the
velocity field. Although a significant amount of progress has been achieved, in partic-
ular, in the past decade, these methods have not achieved large-scale and widespread
use. As discussed in section 4.3, there remain several open problems related to de
Rham complexes in the three-dimensional case. Further, while the focus in this arti-
cle was mainly on the Stokes equations, additional important details can arise when
Coriolis forces are present, for the Navier–Stokes equations, and for multiphysics sys-
tems. This is true for all methods discussed, but especially for the pressure-robust
discretizations that are only H(div)-conforming and the methods that apply H(div)-
conforming velocity reconstructions; see section 5.2 and section 5 in [51].

Another important open problem is the development of efficient linear solvers for
large-scale computations with divergence-free elements. Most linear solvers used in
large-scale Navier–Stokes codes seem tailored to low order elements and are less effec-
tive when used with divergence-free elements, due to the pressure matrices being much
larger. However, these larger pressure matrices are very sparse, and this can likely
be exploited. Furthermore, divergence-free elements usually have a macroelement
structure in the mesh, which seems to provide a natural framework for developing
multigrid preconditioners.
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