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Abstract

The contents of this paper is twofold. First, important recent results concerning finite element methods for convection-
dominated problems and incompressible flow problems are described that illustrate the activities in these topics. Second,
a number of, in our opinion, important open problems in these fields are discussed. The exposition concentrates on H'-

conforming finite elements.

1 Introduction

There is a long tradition of using finite element methods
for the discretization of convection-dominated scalar equa-
tions and incompressible flow problems. For convection-
dominated equations, the development of the Streamline-
Upwind Petrov—Galerkin (SUPG) method in [41,88] can be
considered as a major starting point of this tradition and
for incompressible flow problems, the development of the
theory of linear saddle point problems and the derivation
of the inf-sup condition in [14,38]. Since then there have
been published several monographs, e.g., [126,127] about
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convection-dominated problems and [74,75,77,93,112] con-
cerning incompressible flow problems. In addition, a large
amount of papers has been published such that it is (nearly?)
impossible to achieve an overview on the existing methods
and results from numerical analysis.

Of course, in this long tradition, many fundamental ideas
were developed, like different approaches for stabilization,
and many basic results were proved, like a priori estimates in
natural norms of the problem or the stabilized finite element
scheme. During the last years, there has been the trend that
the results became more special. Along with this trend, our
personal observation is that the numerical analysis becomes
longer and more technical. It arises the question whether this
trend is the main direction for the future.

The goal of this paper is twofold. First, a number of recent
results will be surveyed which show that there are still sig-
nificant basic contributions to the considered topics. These
results include, e.g., the finite element error analysis of alge-
braic stabilizations, the derivation of the EMAC form of the
nonlinear term of the Navier—Stokes equations, the derivation
of pressure-robust discretizations, and the progress of using
and analyzing weakly divergence-free finite element meth-
ods. Considerable progress has been achieved also in the
construction of stabilized methods for the time-dependent
Navier—Stokes equations for which error bounds can be
derived where the constant does not explicitly depend on
inverse powers of the viscosity. Second, open problems in
the considered topics are stated, which are important in our
opinion. These problems are indicated with the symbol ».
The selection of these problems inevitably reflects our own
personal views and it is certainly not complete. The sequence
of their presentation does not possess any correlation with
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our personal opinion on their importance. The discussions in
this paper focus on H '-conforming finite element methods,
with a few exceptions concerning traditional non-conforming
methods for incompressible flow problems. Discontinuous
Galerkin methods and H (div)-conforming methods will not
be covered.

The paper is organized as follows. Section 2 consid-
ers scalar convection—diffusion—reaction equations. Incom-
pressible flow problems are discussed in Sect. 3, starting
with the Stokes equations, followed by the stationary Navier—
Stokes equations, and then finished with the time-dependent
Navier—Stokes equations. Finally, a summary is given.

2 Scalar convection-diffusion-reaction
equations

Let 2 c R?, d € {2, 3}, be a domain and T > 0 be a final
time. For the finite element error analysis, it is assumed that
§2 is a Lipschitz domain with polyhedral boundary.

Scalar convection—diffusion—reaction equations are given
by

oju —eAu+b-Vu+cu=f in(0,T] x £2, (1)

where ¢ > 0 is a constant diffusion coefficient, b is a convec-
tive field, and ¢ > 0 is a scalar function describing reactions.
For obtaining a well-posed problem, one has to prescribe
appropriate boundary conditions and an initial condition.
Besides (1), also the steady-state version

—eAu+b-Vu+cu=f in 2, 2)

equipped with boundary conditions, is of interest.

Equations of type (1) and (2) model the behavior of
scalar quantities, like temperature, concentrations etc., that
are transported in a flow field with velocity b (convection),
that undergo molecular transport (diffusion), and that might
interact (react) with each other. If the flow is incompressible,
thenitis V- b = 0.

The interesting case in applications is that convection
dominates diffusion: [|b| ;o) > €. Inthis situation, a char-
acteristic feature of solutions of (1) and (2) is the appearance
of layers. Layers are thin regions where the gradient of the
solution is very large. Depending on the type of layer, expo-
nential or characteristic, the thickness of the layer region
is O(e) or O(4/¢), respectively. From the practical point
of view, characteristic layers are of importance. In applica-
tions, it holds generally that /& < h, where h denotes the
mesh width, i.e., it is not possible to resolve the layers on
the used grids. This issue causes the failure of standard dis-
cretizations, like the Galerkin finite element method or the
central finite difference scheme, for convection-dominated
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convection—diffusion—reaction equations, since such meth-
ods try to resolve all important features of the solution. This
failure is expressed in the global appearance of strong spuri-
ous oscillations.

The remedy consists in using so-called stabilized dis-
cretizations. These discretizations introduce numerical diffu-
sion. A milestone in the development of such discretizations
was the proposal of the streamline-upwind Petrov—Galerkin
(SUPG) method in [41,88], which introduces numerical dif-
fusion in streamline direction. The SUPG method is still a
very popular stabilization technique. It belongs to the class
of residual-based stabilizations. Further stabilizations of this
type were proposed thereafter. Examples of other types of
stabilized methods are the continuous interior penalty (CIP)
method [50] and the local projection stabilization (LPS)
method, see [27] for the first application of this method to a
convection-dominated equation.

Remark 1 In our opinion, an ideal discretization of a
convection-dominated convection—diffusion-reaction equa-
tion should satisfy the following properties:

1. The numerical solution should possess sharp layers.

2. The numerical solution must not exhibit spurious oscil-
lations.

3. There should be an efficient way for computing the
numerical solution.

[}

The first two properties are connected with the accuracy
of the discretization and usually correlate with results from
the finite element error analysis in sufficiently strong norms.
Since the layer width is usually smaller than the mesh width,
it follows from Property 1 that it is desirable that the layer
of the numerical solution is not much wider than the mesh
width.

Property 2 is connected also with the physical fidelity of
the numerical solution. Of course, spurious oscillations are
erroneous, thus they diminish the accuracy. But even more
important, they represent unphysical situations, like negative
concentrations. Such unphysical results are often worthless in
practice. In coupled problems, where components of the solu-
tion usually enter as coefficient in equations of the system,
unphysical values might even lead to a blow-up of the simula-
tion, e.g., as reported in [99]. The non-appearance of spurious
oscillations is closely connected to the Discrete Maximum
Principle (DMP), i.e., the preservation of the Maximum Prin-
ciple (MP) in the process of the discretization. The MP is a
property of the solution of the continuous problem with a
physical meaning. For instance, if ¢ = 0 and f = 0 (no
sources), then the MP states that u takes its minimal and
maximal values at the boundary of the domain §2 or at the
time ¢ = 0. This issue is important, e.g., if u is a concen-
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tration. A discretization that satisfies the DMP is also called
monotone.

Properties 1 and 2 are difficult to combine. For the limit
case ¢ = 0, the famous Godunov Theorem states that a mono-
tone linear discretization is at most of first order [78]. A
similarly rigorous statement for the case ¢ > 0 does not
seem to exist. But the experience shows that higher order
linear methods for convection—diffusion—reaction equations
are not monotone. For this reason, many nonlinear discretiza-
tions, so-called Spurious Oscillations at Layers Diminishing
(SOLD) methods or shock capturing methods, were pro-
posed, which try to reduce or remove the spurious oscillations
by using stabilization terms introducing artificial diffusion
that depends on the numerical solution, see, e.g., [95,96] for
areview of such methods. For some of these schemes, results
from finite element analysis, like existence of a solution or
convergence, are available, e.g., in [16,46,106,120]. Non-
linear discretizations require an appropriate method for the
solution of the corresponding nonlinear algebraic problem.
This issue is closely related to Property 3.

Linear stabilized methods, like SUPG, CIP, or LPS, satisfy
Properties 1 and 3. Numerical studies with SOLD methods
in [13,95,102] showed that most of these methods do not sat-
isfy Property 2 neither. Also adaptive grid refinement does
not cure this deficiency, see [96], unless the grid becomes
so fine that the layer is resolved. Nevertheless, adaptivity
is an important tool to enhance the sharpness of the lay-
ers. One of the most successful first order approaches for
the numerical solution of the steady-state problem (2) was
a nonlinear upwind technique [105,122] which was proved
to be a monotone method. However, difficulties with respect
to the convergence of the iteration for solving the nonlinear
problem were reported sometimes, e.g., in [95].

As a result of numerical assessments of stabilized dis-
cretizations in [13,95,100,102], so-called algebraic stabiliza-
tions came into the focus of interest. These schemes are
designed to satisfy the DMP by construction and provide
reasonably sharp approximations of layers. In contrast to the
methods discussed above, which are all based on variational
formulations, the idea of algebraic stabilization is to mod-
ify the algebraic system corresponding to a discrete problem
(typically the Galerkin discretization) by means of solution-
dependent flux corrections. Hence, the resulting schemes are
again nonlinear. A drawback of these schemes is that they
have been applied successfully only for lowest order finite
elements, which limits the accuracy of the computed solu-
tions. The basic philosophy of flux correction schemes was
formulated already in the 1970s in [32,141]. Later, the idea
was applied in the finite element context, e.g., in [11,118].
In the last fifteen years, these methods have been further
intensively developed in, e.g., [107-111]. Here, the name
Algebraic Flux Correction (AFC) schemes was also fre-
quently used.

Despite the attractiveness of AFC schemes, there was no
rigorous numerical analysis for this class of methods for a
long time. First contributions to the analysis of AFC schemes
for the steady-state problem (2) can be found in [17-19].
These papers are concerned with the solvability of the non-
linear problems, the validity of the DMP, and the derivation
of error estimates. In particular, [19] introduced the first AFC
scheme for a convection—diffusion—reaction equation that
satisfies both the DMP and linearity preservation on general
simplicial meshes.

Although the general error estimate derived in [18]
is sharp, numerical results show that for particular AFC
schemes better convergence rates can be obtained, at least
for certain types of meshes.

» The derivation of error estimates for AFC schemes
explaining the convergence rates observed in numerical
experiments for particular flux corrections is open.

» An error analysis of AFC schemes for time-dependent
problems is missing.

However, also for more classical discretization tech-
niques, the error behavior is not completely understood. For
example, the question of getting an optimal rate of con-
vergence in L%(£2) for stabilized methods is still an open
problem even for steady-state problems (2). In [125], the fol-
lowing open question is formulated (Question 2.2):

» For general shape-regular meshes of diameter 7 and a
finite element space V" that includes all polynomials of
degree k > 1, can one construct a finite element method
for (2) whose solution u” € V" has the optimal L?(£2)
error property

lu — u"|L2(2) < CH* ™ |ull gm )

for some m? At present no such method is known for any
value of k.

Note that [125] discusses open problems for methods
using layer-adapted meshes, which is a topic that is not
addressed in the present paper.

Most of the papers concerned with error estimates for
convection-dominated problems prove global bounds that
depend on norms of the solution of the continuous prob-
lem over the full domain where the equations are defined.
Then, these global estimates are only meaningful for globally
smooth solutions. On the contrary, local estimates indicate
that the methods are able to produce accurate approxima-
tions in regions where the solution is locally smooth. More
precisely, in general, one can choose some maximal subset
that excludes all layers and prove bounds in terms of norms
restricted to this subset, by means of cut-off functions [127,
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Part III, Theorem 3.41]. Most of the local bounds existing in
the literature are for steady-state problems and even in that
case the results are not complete. In [49], the authors used
weighted norms for a CIP method and obtain local error esti-
mates. For the case of the SUPG method and steady-state
convection—diffusion—reaction problems, a local estimate
was derived for the first time in [123]. In [104,124,143,144],
see also [127], a modified SUPG method that adds artifi-
cial crosswind diffusion to the classical SUPG method is
analyzed for linear finite elements. In case of evolution-
ary problems, the results are even more scarce. The SUPG
method with space—time finite elements was studied in [123].
In [62], local bounds are obtained when the SUPG method
is combined with the backward Euler scheme. The argu-
ments used in the proof lead to proposals for the stabilization
parameter that depend on the length of the time step. How-
ever, numerical experiments show that local bounds seem to
hold true also with a stabilization parameter depending only
on the spatial mesh width and with other time integrators.
Then, the question of getting local bounds with a stabiliza-
tion parameter independent of the length of the time step
and the extension to others than the backward Euler method
remain as open problems.

» A further development of techniques for local finite ele-
ment error analysis is necessary.

Often, the error in others than the natural norm of the
problem or the stabilized discrete problem is of interest, in
particular the L°°(£2) norm. Pointwise error estimates were
obtained in [104] for a modified SUPG method that adds arti-
ficial crosswind diffusion for the steady-state problem (2). In
this paper, the authors assume that the mesh is quasi-uniform
and get pointwise accuracy of almost O(h/4) for linear
finite elements under local smoothness assumptions. This
pointwise estimate is sharpened in [124] to O3 log hl).
In[143], by orienting the mesh in the streamline direction and
imposing a uniformity condition on the mesh, the order of
pointwise convergence of the modified SUPG method based
on linear finite elements is increased to O(h?|logh|). By
studying a special type of meshes, it is shown in [144] that the
same method may actually converge with any order between
3/2 and 2 depending on properties of the meshes. All the
results mentioned above only apply to the steady-state prob-
lem (2).

» Pointwise estimates for higher order conforming finite
element methods are missing.

» The derivation of pointwise estimates for time-dependent
problems seems to be open.

A posteriori error estimators are used for estimating
the accuracy of the computed solution and for controlling
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an adaptive grid refinement. In the case of convection-
dominated problems, a posteriori error estimates should be
robust with respect to the ratio of diffusion and convection,
1.e., the ratio of the error and its estimate should be bounded
uniformly from above and below by positive constants.

Let us consider first the steady-state equation (2). More
than 15 years ago, a competitive study of a number of pro-
posed error estimators for the SUPG solution of convection-
dominated convection—diffusion equations [92] came to the
conclusion that none of them is robust and that the quality
of the adaptively refined grids is often not satisfactory. Since
then, some contributions concerning new a posteriori error
estimators for the considered class of problems and types of
discretization can be found in the literature. In [138], an a
posteriori error bound is presented for the error in the norm
(£||Vv||iz(m + ||v||i2 o )!/2, which is not robust. An exten-
sion of the analysis of [138] led in [139] to a robust error
estimator for a norm that adds to the norm of [138] a dual
norm of the convective derivative. The additional term in this
norm can be only approximated. Some error bounds are also
proved in [129] in the one-dimensional case in a norm that
includes a semi-norm of the error of order 1/2. Robust a pos-
teriori error estimators for the L' (£2) and L2(£§2) norms of the
error can be found in [82-84]. Unlike the approaches from,
e.g., [138,139], the derivation of these estimators is based
on the variational multiscale theory [87]. It can be applied
to stabilized discretizations since their error distribution is
practically local [91]. The essential part in the derivation
consists in computing or approximating an appropriate norm
of a local Green’s function, see [84] for the P; and Q finite
elements in two-dimensional situations, and [83] for higher
order finite elements in one dimension. However, the L1 (§2)
and L?(£2) norms are comparably weak norms, i.e., spurious
oscillations of the numerical solution contribute generally
little to the errors in these norms. In [101], robust residual-
based a posteriori error bounds are derived for the error of
the SUPG finite element approximation. The error bounds are
obtained in the norm typically used in the a priori analysis
of this method. The derivation of the upper bound uses some
hypotheses that state essentially that the interpolation error is
smaller than two times the error of the SUPG method. These
hypotheses cannot be proved in practice, however, since the
value of the constant in the hypothesis (i.e., two) is arbitrary
and the analysis holds changing (increasing if needed) that
value, one can assume that the hypotheses always hold for a
value of the constant that depends on the concrete example.
Because of the hypotheses, the obtained results are from the
mathematical point of view only slightly less general than,
e.g., the results of [139]. However, from the practical point
of view, the derivation of a robust error estimator for the
natural norm of the SUPG method is of interest. A similar
situation can be found in [44], where the derivation of an a
posteriori error estimator for the natural norm of some other
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stabilized discretization is also based on an assumption (a
saturation assumption) that most probably is not satisfied in
the worst case. In [65], essentially the same error estimator
as proposed in [101] is proved to be robust in a dual norm.
Robust a posteriori error estimates employing a dual norm
were also derived in [136] for a wide range of stabilized meth-
ods. In [67], an efficient and reliable error estimator is derived
for SUPG approximations to steady-state equation (2), based
on the reconstruction of equilibrated fluxes. Error estimators
of this type provide guaranteed error bounds without fur-
ther unknown constants. The robustness of the estimator is
obtained again for a dual norm of the convective term. In sum-
mary, there are very recent papers on the a posteriori error
estimation of steady-state problems. However, robust esti-
mators bound the error using dual norms, which are not very
useful in practice, or, as in the case of [101], they bound the
error in standard norms but requiring some extra hypotheses.

With respect to evolutionary equation (1), in [59] the
extension of the error estimator proposed in [101] is consid-
ered. Numerical experiments show that the estimator works
well in practice. However, from the theoretical point of view,
only a one-dimensional proof is included. In [52], some spe-
cific assumptions are made on the convective term that do not
hold in general. Essentially the velocity field is assumed to
be decomposable in a coarse scale, slowly varying in space,
and a fine scale, with small amplitude that may have strong
spatial variations. Some a posteriori error bounds for quan-
tities of interest are obtained and applied to the CIP and the
SUPG methods. For the related question of goal-oriented a
posteriori error estimation, the recent work of [ 132] should be
mentioned. In the introduction of this paper, a comprehensive
survey of the existing references in the literature can be found.
In [132], the dual weighted residual (DWR) method is com-
bined with the SUPG method to control the error with respect
to some output functional. Both the theoretical justification
of the method and some interesting numerical experiments
are presented.

» Robust a posteriori error estimators for evolutionary
convection—diffusion equations in general situations and
with reasonable assumptions are missing.

» [125, Question 7.2]: For convection—diffusion problems,
using some a posteriori error estimator combined with
some strategy for mesh refinement (or for changing the
local polynomial degree) can one prove convergence of
the computed solution in some norm, uniformly with
respect to the diffusion parameter?

A comparably new approach for the discretization of par-
tial differential equations is isogeometric analysis (IGA) [86].
The basic idea of IGA consists in using as basis functions for
the discrete space the same functions that are usually uti-
lized for the parameterization of complex domains, namely

non-uniform rational B-splines (NURBS). NURBS possess
a higher regularity across faces of mesh cells than contin-
uous piecewise polynomials, which are the standard finite
element basis functions. This property is advocated as a
potential advantage of IGA [86]. A drawback is certainly
the higher complexity of implementing IGA. Meanwhile, the
concept of IGA has been applied for the numerical solution
of many classes of problems. However, surprisingly, there
are only few studies of the potential of IGA for convection—
diffusion equations, e.g., [24,86,103,134]. All studies are for
academic examples, none of them is for the time-dependent
problem (1). Second order NURBS were applied in a time-
dependent 3d application in [25]. In [86], it is noted that the
increased smoothness may lead to a better capturing of layers
and the summary of [103] emphasizes the large potential of
IGA, in combination with the SUPG method, for the simu-
lation of scalar convection—diffusion equations.

» Despite these promising initial experiences there seem
to be so far no serious efforts to establish IGA as an
alternative to standard H !-conforming finite elements for
the solution of convection—diffusion equations. Will this
situation change in future?

The ultimate open problem for the numerical solution of
convection-dominated convection—diffusion—reaction equa-
tions is the following:

» Construct methods that satisfy all properties stated in
Remark 1.

So far there is no such finite element method available.

3 Incompressible flow models

Flows of incompressible Newtonian fluids are modeled
by the incompressible Navier—Stokes equations, given here
already in dimensionless form,

oou—2vV-Dm)+ (u-V)Yu+Vp= fin(0,T] x £2,
(3)
V-u=0in(0,T] x £,

where u is the velocity field, p the pressure, f represents
body forces, and the parameter v is a dimensionless viscos-
ity. The inverse of v is usually called Reynolds number and
the velocity deformation tensor is the symmetric part of the
velocity gradient D (u) = (Vu + Vu')/2. Note that using
the divergence constraint, one obtains
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—2vV -D(u) = —vAu.

Problem (3) has to be equipped with appropriate boundary
conditions and an initial condition for the velocity. Based on
the particular flow to be studied, also a stationary version
of (3) and even a linear version without convective term, the
so-called Stokes equations, can be applied.

Remark 2 The incompressible Navier—Stokes equations pos-
sess the following features that might give rise to difficulties
in the analysis, numerical analysis, or in simulations:

— System (3) is a coupled system of a vector field u and a
scalar function p of saddle point character.

— The Navier—Stokes equations are nonlinear through the
convective term (u - V)u.

— In applications, the convective term (u - V)u often dom-
inates the viscous term —2vV - D (u). If the dominance
is strong, the flow becomes turbulent.

O

Possible boundary conditions for (3) (on parts of the
boundary of £2) include Dirichlet boundary conditions
(essential boundary conditions), outflow or do-nothing con-
ditions, directional do-nothing conditions, free slip con-
ditions, slip with friction and penetration conditions, and
boundary conditions on the pressure, see [93, Sect. 2.4] for
a detailed description. For academic purposes, also periodic
boundary conditions are used in the analysis.

» The numerical analysis with realistic boundary conditions
seems to be a wide open field for all kinds of incompress-
ible flow problems.

Often just Dirichlet conditions on 952 or periodic bound-
ary conditions are considered in the numerical analysis.
The recent proposal of the directional do-nothing condition
in [36] was motivated by the fact that no analytical way could
be found to control possible inflow in the case of the do-
nothing condition.

3.1 The Stokes equations

The Stokes equations are given by
—VvAu+Vp=f in§2,

“)
V-u=0

in £2,

together with appropriate boundary conditions. From the
three difficulties inherent to the Navier—Stokes equations,
only the coupling of u and p is present. Note that (4) can be
scaled with v~! such that after having defined a new pressure
and a new right-hand side, one obtains an equation without
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parameter. However, for illustrating some issues in this sec-
tion, it is of advantage to discuss form (4).

Since velocity and pressure are coupled in all incompress-
ible flow models, the open problems stated in this section are
also present for the Navier—Stokes equations.

To simplify the presentation, from now on the case of
homogeneous Dirichlet boundary conditions

u=0o0nads2

will be considered. Then, system (4) can be transformed to

a weak or variational formulation: Find (u, p) € V x Q =

H}(£2)4 x L3(£2) such that

(wVu,Vv)y —(V-v,p)=(f,v) YveV,
(V-u,q)=0 VqgeQ.

&)

The well-posedness of problem (5) has been well known
since the pioneering works [14,38] on the theory of linear
saddle point problems. A key in this theory is the fact that V
and Q satisfy an inf-sup condition

. (V-v,q9)
inf sup
a€O\(0} yev(oy IV VIl L2y 1911222y

Z,Bis > 0.

Let V" and Q" be finite element spaces for velocity and
pressure, respectively, that are conforming, i.e., vh c v
and Q" C Q. The finite element formulation of these
commonly called mixed methods reads as follows: Find
", p") € V" x Q" such that

wvu, Vol — (v o, phy = (f, ") Vol e Vv,
(6)
(V-u",¢"y=0 vq"e Q"

Similarly to the continuous problem, the well-posedness
of (6) requires the satisfaction of a discrete inf-sup condi-
tion

. (V- gh
inf S

h
up >B.>0. (7
q"e0M\{0} yh ey i (o) vah H L2(2) °

’qh H L2(2)

Usually, it is ,8{; < Bis, see [55] and [93, Lem. 3.53]. A
notable special case with ﬂi}; = Pijs is the lowest order
non-conforming Crouzeix—Raviart element [57], compare
also [93, Thm. 3.151].

Let

Vi ={o"evh i vt gh =0 g et} cvh
The inverse of ﬂi}; enters a general estimate of the best approx-

imation error in V(ﬁv by the best approximation error in
Vh 193, Lem. 3.60]. An alternative estimate, based on the
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construction of a special interpolation operator, is presented
in [76]. The constant in this estimate depends on the inverse
of local discrete inf-sup constants. The approach of [76] can-
not be applied to the Taylor—Hood spaces P>/ P and Q>/ 01
in three dimensions, which belong to the most popular pairs
of inf-sup stable spaces.

» Clarify whether best approximation errors in Vcﬁv can be
bounded by best approximation errors in V" with local
inf-sup constants for P,/ P and Q>/Q; in three dimen-
sions.

The best approximation error in V(ﬁv appears in the error
bounds obtained in the finite element analysis. Drawing con-
clusions from these bounds with respect to the order of
convergence, the estimate with the best approximation error
in V" is applied and in this way, the inverse of the dis-
crete inf-sup constant (or of local constants) enters the error
bounds. Error estimates for the pressure are based on the
discrete inf-sup condition (7) such that an additional factor
( ﬁi’;) ~lappears. It is important for optimal order convergence
that ;31’; is bounded uniformly away from zero. A couple of
papers study whether or not ,Bi}; depends on the aspect ratio,
e.g., [4,7-9,35,130]. Most of the available results are in two
dimensions.

» Further results concerning the dependency of ,Bi’; or local
inf-sup constants on the aspect ratio of mesh cells are
needed.

The continuity equation in the weak form (5) has to be sat-
isfied for all functions from the infinite-dimensional space Q,
whereas in the finite element formulation (6), its satisfaction
is required only for functions from the finite-dimensional
space Q". In the former case, one speaks of a weakly
divergence-free function (one has V-u = 0 a.e. in §£2) and in
the latter case of a discretely divergence-free function. Obvi-
ously, discretely divergence-free is a weaker property and it
turns out that generally the functions in thiv are not weakly
divergence-free, i.e., it is generally HV ul || L2(9) # 0. This
property implies, from the practical point of view, that mass is
not conserved. The order of convergence of || vV.u" ” L2@) is
generally the same as of || Vu —ul || 2@ [93, Cor. 4.24],
i.e., it is not very high for popular pairs of inf-sup stable
finite element spaces. An overview, discussing the topic of
the violation of the mass balance for finite element discretiza-
tions can be found in [98] and a shorter introduction in [93,
Sec. 4.6]. Of course, there have been attempts to construct
finite element pairs with weakly divergence-free velocities,
e.g., in [72,80]. However, most of these spaces are of rather
high polynomial degree and practically not used. The only
exception is the class of Scott—Vogelius spaces P/ P,fi_sf,

k > d, [133], for the particular case k = d. This class of
spaces does not satisfy the discrete inf-sup condition on gen-
eral grids [93, Ex. 3.73]. But it was shown in [133,142] that
the discrete inf-sup condition is satisfied on special grids, so-
called barycentric-refined grids. These grids are constructed
from simplicial grids by connecting each vertex of a simplex
with the barycenter of this simplex. In this way, a simplicial
grid is created with possibly very small and very large angles.

» For the Scott—Vogelius pair of finite element spaces, an
analysis of the impact of these angles on the discrete inf-
sup constant and also on the best approximation errors in
V(ﬁv and Q" is not available.

Numerical studies in [131] show very promising results
for the P, /Pl‘jlisc pair of finite element spaces at 2d exam-
ples, even for the time-dependent Navier—Stokes equations,
such that there is some hope that the extreme angles of
barycentric-refined grids do not possess a dominant impact.
Moreover, these studies illustrate that P> / PldiSC works well on
anisotropic barycentric-refined grids. In summary, the only
promising weakly divergence-free pair of standard finite ele-
ment spaces is Py / Pkdi_slc, k = d, on barycentric-refined grids.

In the context of IGA there are also proposals for con-
structing discrete spaces that allow the computation of
weakly divergence-free velocity fields [42,70,71]. However,
for incompressible flow problems there seems to be a similar
situation as described for scalar convection—diffusion equa-
tions: compared with standard finite element methods, only
rather few contributions with IGA can be found in the liter-
ature in recent years, e.g., in [43,85].

In [115], a new approach has been started for improv-
ing low order mixed discretizations. A particular goal was
the construction of finite element discretizations where the
error bounds for the velocity do not depend on the pres-
sure. For this reason, the new discretizations are called
pressure-robust. Classical mixed methods, as the Taylor—
Hood methods, are not pressure-robust. Starting point of
this approach is the following observation for the continuous
problem (5). Let f € L2(£2)?, then f admits a Helmholtz
decomposition f = Ppeim f + Vr with Pheim f € Haiv($2)
and Vr € (Hgy(£2))* where

Hgiv (2) = [v e’ V-vel*2) : V-v=0

and v -n = 0 on 052 in a weak sense} .

Inserting this decomposition in the momentum balance of (5)
and applying integration by parts yields

—(Au,v) — (V-v,p) = (Preimf,v)— (V-v,r) YveV.
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Thus, irrotational forces Vr are balanced by the pressure and
divergence-free forces by the velocity. Or with other words,
if f is changed to f + Vr, then the solution (u, p) changes
to (u, p + r). For inf-sup stable mixed finite elements that
are not weakly divergence-free, this property does not hold
since

(Vr, oy = —(v ", r)

and if r ¢ Q" this term is not completely balanced by the
finite element pressure. One can also state it in such a way that
classical mixed methods relax the Helmholtz decomposition.
The idea of [115] was to use an appropriate reconstruction
P applied to the test function such that in particular P"v €
Hgiy (£2) forallv e thiv. The simplest situation is that vhis
the lowest order Crouzeix—Raviart space and then the image
of P" can be chosen to be the lowest order Raviart-Thomas
space. Using now P”v" as test function on the right-hand
side of (6) gives

(Vr, PPy = —(v - (P"vM), r).

Taking v" € Vd}iv, which makes the pressure term on the
left-hand side of (6) zero, cancels also the contribution of r
on the right-hand side. In this way, one can obtain velocity
error bounds that do not depend on the pressure. Chang-
ing the test function introduces a consistency error that has
to be analyzed. The computed finite element velocity is
generally not weakly divergence-free, but a velocity approxi-
mation with this property is P"u". Meanwhile, the basic idea
from [115] is extended to all important pairs of finite element
spaces [113,116]. Thus, this approach seems to be princi-
pally understood for the Stokes equations, but new issues
arise for more complicated incompressible flow problems,
see Sect. 3.3.

Velocity error bounds for non-pressure-robust mixed
methods depend on v™!, e.g., compare [93, Rem. 4.33]. This
dependency is sharp in the worst case, e.g., for the no-flow
problem [98, Ex. 1.1]. However, in many other examples,
a strong dependency of the velocity errors on v—! can be
observed only on coarse grids. Then, the error reduction for
small values of v is higher than the predicted asymptotic rate
of convergence until the errors become practically indepen-
dent of v, compare [94] or [93, Ex. 4.34].

» It is not understood in which cases the dependency of the
velocity errors on v~! is sharp and in which cases the
errors become asymptotically independent of v—!.

Using inf-sup stable pairs of finite element spaces requires
the implementation of different spaces for velocity and pres-
sure as well as the solution of linear systems of saddle point
type. Since these issues introduce a certain complexity, it is
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appealing to develop methods that use the same finite ele-
ment spaces for velocity and pressure. Because such pairs
of spaces do not satisfy an inf-sup condition, a stabilization
becomes necessary that removes the saddle point character
of the discrete problem and thus the necessity of an inf-sup
condition. There are several proposals of such stabilizations,
which can be grouped in two classes: stabilizations using the
residual and stabilizations using only the pressure, see [93,
Sec. 4.5.2] for a brief overview. A general framework for
the first class is given in [31] and this class comprises the
pressure-stabilized Petrov—Galerkin (PSPG) method [89,90],
an absolutely stable modification of this method [31], the
Galerkin least squares (GLS) method [89], and the absolutely
stable method from Douglas and Wang [64]. A framework for
the second class is presented in [39]. This class contains the
Brezzi-Pitkidranta method [40], a method from Codina and
Blasco [56], the LPS method [26], a method from Dohrmann
and Bochev [63], and a method that penalizes the jumps of the
normal derivatives of the pressure across faces [51]. Numer-
ical analysis is available for each method. However, there
seems to be no guideline which ones should be preferred in
practice.

» Systematic assessments of the proposed stabilized meth-
ods are missing that clarify their advantages and draw-
backs and give finally proposals which ones should be
preferred in simulations.

Most methods possess parameters whose optimal asymptotic
choice is known. As usual in such a situation, the optimal
parameter choice for a concrete problem is not clear. By
construction, the violation of the mass balance is a neces-
sary consequence of inf-sup stabilized methods, such that
weakly divergence-free finite element solutions cannot be
expected. However, for the P;/ Py pair and for certain types
of stabilizations, a post-processing was proposed in [20-22]
for computing a weakly divergence-free discrete velocity.
Using anisotropic grids is of advantage for the simula-
tion of many flow problems. In this situation, the impact of
the aspect ratio of the mesh cells on the error analysis is of
interest. The literature on the dependency of the discrete inf-
sup constant on the cell aspect ratio was already mentioned.
Concerning the finite element error analysis for incompress-
ible flow problems on anisotropic meshes there are only few
contributions. Most of them consider inf-sup stabilized dis-
cretizations, via the GLS method [121], the PSPG method [6],
the LPS method [33], or the Brezzi—Pitkédranta method [114].
An important goal of the analysis was the design of appro-
priate stabilization parameters with respect to the aspect
ratio. Conforming inf-sup stable pairs are considered in [3]
and the non-conforming Crouzeix—Raviart element is stud-
ied in [1,10]. Most of the available analysis for conforming
methods is performed for 2d problems. Only in [6], tensor-



Finite elements for scalar convection-dominated equations and incompressible flow problems... 55

product grids in 3d that are refined towards the boundary are
considered.

» There are only quite few results concerning the impact
of the aspect ratio of anisotropic grid cells in the finite
element error analysis of incompressible flow problems.
Most of the available results are for two dimensions.

Error estimates for other quantities than the natural
norms of the problem are important for many applications.
Estimates in the L°°(£2) norm for general finite element
approximations of the Stokes problem are established on
quasi-uniform meshes for domains with smooth boundary
in [54]. The authors of [81] extended this result to con-
vex polyhedral domains in three dimensions and the lowest
order Taylor—Hood elements, extending also the correspond-
ing two-dimensional result proved in [79]. Further results can
be found in [73], where L°°(S2) estimates for finite element
solutions of the Stokes and the steady-state Navier—Stokes
equations in convex polyhedra are obtained. In both cases,
the viscosity parameter in [73] is taken to be v = 1. Concern-
ing quantities of interest, an example for the time-dependent
Navier—Stokes equations shall be already mentioned here.
The error of the drag and lift coefficients for inf-sup stable
finite element discretizations, combined with the backward
Euler scheme, is analyzed for flows around a body in [135].
Estimates are derived for errors measured in discrete versions
of the norms in L2((0, ); R) and L*((0, 1); R).

» A priori and a posteriori error analysis for quantities of
interest is still a widely open topic for all kinds of incom-
pressible flow problems.

As for convection—diffusion equations, local finite ele-
ment error analysis would be of interest for incompressible
flow problems.

» For incompressible flow problems, we are unaware of
local bounds proved in the literature.

3.2 The steady-state Navier-Stokes equations

If v is sufficiently large and if all data of the problem do not
depend on time, then the flow field becomes stationary and it
can be modeled by the steady-state Navier—Stokes equations

—vAu+ - -VYu+Vp=f in$2,

. 3
V-u=0 in £2,

equipped with appropriate boundary conditions. Besides the
coupling of velocity and pressure, first item in Remark 2, (8)
is nonlinear, which is the second item in Remark 2. From the

practical point of view, the consideration of the dominance
of the convective term is not that much of importance for the
steady-state situation, since uniqueness of a weak solution
can be shown only in the case that the viscous term is suffi-
ciently large compared with both, the convective term and the
forces, e.g., [93, Thm. 6.20]. Otherwise, one has to consider
in practice the time-dependent Navier—Stokes equations.

For simplicity of presentation, only the case of homo-
geneous Dirichlet boundary conditions is discussed in the
following. Then, the weak form of (8) is derived in the usual
way: Find (u, p) € V x Q such that

WVu, Vo) + neony(u, u, v) = (V-v,p) =(f,v) YveV,
(V-u,q)=0 Vqge,

with
Neony (&, v, w) = ((u - V)v, w). )

The finite element formulation with conforming methods
reads as follows: Find (u", ph) e Vh x Qh such that

Wva, voly +n@", uh vy — (v o, phy
=(f. ") Vo' evh
(V-u',g"y=0 vqg"e Q"

with some discrete convective term n' (uh, uh, vh).

Animportantissue is the choice of the term nh (uh Jul ol ).
The stability analysis requires that this term is skew-
symmetric, i.e., it has to vanish if the second and third
argument are identical. Choosing nh(~, ) = Reonv(ss *s +)s
then this property is satisfied only if u” is weakly divergence-
free. This situation is given, e.g., for the Scott—Vogelius pairs
on barycentric-refined grids. Nevertheless, the form (9) is
often used in simulations since it is the easiest form from the
point of view of implementation. Skew-symmetric forms for
arbitrary pairs of finite element spaces include

1
Nskew (U, V, W) = E(”corw(us v, W) — Reony (U, w, v)), (10)

ndiv(#, v, W) = Neony (1, v, W) + %((V ‘u)v, w), (1D
Nrot(u, v, w) = ((V x u) x v, w). (12)

The application of n.q (-, -, -) requires the use of a modified
pressure, the so-called Bernoulli pressure. The forms (10)—
(12) are used as well in the numerical analysis as in simula-
tions. A recent proposal from [53] is the so-called energy
momentum and angular momentum conserving (EMAC)
form
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Nemac (W, ¥, W) = 2D () u, w) + (V- w)v, w), (13)

which requires also a modification of the pressure. The
EMAC form was derived by requiring that the discrete
nonlinear term should be chosen such that the follow-
ing quantities are conserved: kinetic energy (for v =
0, f = 0), momentum (for f with zero linear momen-
tum), and angular momentum (for f with zero angular
momentum). It is shown in [53] that the EMAC form is
the only one that conserves all these quantities. In addi-
tion, helicity (for v = 0, f = 0), 2d enstrophy, and
total vorticity are conserved by the EMAC form. Numeri-
cal studies in [53] show that the EMAC form was always
among the most accurate discretizations of the convec-
tive term. Promising numerical results are also presented
in [131].

» From the theoretical point of view, the new EMAC form
offers several attractive features. Further numerical stud-
ies are necessary to clarify whether this form should be
preferred also in simulations.

Note that the forms (10), (11), and (13) are identical to (9)
if the finite element velocity solution is weakly divergence-
free, e.g., as given for the Scott—Vogelius pair of spaces on
barycentric-refined grids. The numerical analysis might also
profit from this situation since for (9) only one term has to
be bounded. For the time-dependent Navier—Stokes equa-
tions there are already results in this direction, compare [93,
Rem. 7.40] and [131].

Using a Newton, quasi Newton, or Picard method for
solving the Navier—Stokes equations requires the solu-
tion of a linear saddle point problem in each iteration.
The efficiency of computing this solution is the key for
the efficiency of the whole simulation. Recent numerical
studies in [2,140] show that so-called coupled multigrid
methods with Vanka-type smoothers [137] are often much
more efficient than certain one-grid solvers, in particu-
lar on fine grids. However, the geometry in applications
might be so complex that only one grid is available and
multigrid methods cannot be applied. Among the one-grid
solvers, sparse direct solvers were particularly inefficient
for three-dimensional problems in [2,140]. The numerical
studies in [2,140] considered as one-grid solver flexible
GMRES (FGMRES) [128] with preconditioners of least
squares commutator (LSC) type [68,69]. In three dimen-
sions, this approach worked on the one hand much more
efficient than the used sparse direct solver but on the other
hand much less efficient than FGMRES with coupled multi-
grid preconditioners. An alternative one-grid approach is
the augmented Lagrangian-based preconditioner proposed
in [28,29].
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» The construction of more efficient one-grid precondition-
ers for iterative solvers of linear saddle point problems
arising in the discretization of the steady-state Navier—
Stokes equations than currently available, in particular
for problems in three dimensions with many degrees of
freedom, is necessary.

Note that the situation for time-dependent problems, in par-
ticular when discretized with small time steps, is different.
In this case, FGMRES with a LSC-type preconditioner that
uses an iterative solver of the velocity subproblem proved to
be generally much more efficient than all multigrid precon-
ditioners in the numerical studies in [2].

Next, a posteriori error estimators for convection-
dominated flow problems will be discussed. In [30], an a
posteriori error estimator for a generalized Oseen problem
(linearized Navier—Stokes equations) for the SUPG method
is presented, leading to similar results to the ones presented
in [139]. A fully computable a posteriori error estimator for
a generalized Oseen problem is introduced in [5], where
the solution is approximated with low order conforming and
conforming stabilized finite element methods, and one esti-

mates the error in the norm (v||Vu||2Lz(Q) + c||u||i2(m +

||p||iz(m)1/2, with ¢ > 0 being the constant in the zeroth
order term. The analysis is based on the solution of local
Neumann-type problems that required the introduction of
suitable equilibrated fluxes. The constants in the error bounds
depend on inverse powers of the viscosity parameter. As it
can be observed in the numerical studies of [5], the pro-
posed estimator is not robust in the convection-dominated
regime. Some a posteriori error estimators of residual-type
for the Oseen problem and a stabilized scheme are pre-
sented in [23]. As in [5], the constants in the bounds depend
on inverse powers of the viscosity parameter. In [45], the
Navier-Stokes equations on the unit square with periodic
boundary conditions are considered. Analogous assumptions
to those from [52] were used for the velocity of the Navier—
Stokes equations. While the assumptions of [52] do not hold
in general, those in [45] are even impossible to check in prac-
tice. The constants in [45] depend exponentially on a factor
proportional to the L°°(£2) norm of the gradient of the large
eddies of the exact solution. Some a posteriori error estima-
tors are obtained for the vorticity in a weak norm.

» Deriving robust a posteriori error estimators in the
convection-dominated regime is an open problem even
for the Oseen equations (linearized Navier—Stokes equa-
tions).

Applying Newton’s method for the solution of the Navier—
Stokes equations or having to solve a dual linearized problem
to the Navier—Stokes equations within optimization tech-
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niques or for a posteriori error estimation with the DWR
method leads to linear problems of the form

—vAu+(w-VYu+ u-VyIw+Vp=g in$2,
(14)
V-u=0 in £2,

for given w and g satisfying V-w = 0. The zeroth order term
(u - V)w does not possess any sign such that coercivity of
the operator corresponding to a weak form of (14) cannot be
guaranteed. In particular, the available theory for the Oseen
problem, which requires a zeroth order term cu with ¢ €
L*>(£2), ¢ > 0, is not applicable to (14). There seems to
be only little analysis for problems of type (14). In [66], a
post-processing technique for increasing the accuracy of the
Galerkin approximation to the Navier—Stokes equations is
proposed that adds the term cu with an appropriate constant
¢ > 0 to the left-hand side of (14). Then, the associated
bilinear form looks as follows

By(u,v) =v(Vu, Vo)+(w-Viu, v)+((u-Vy)w, v)+c(u, v)
(15)

for u, v € V. For investigating coercivity of (15), the anti-
symmetry of the convective term, implying ((w - V)u, u) =
0, and the estimate

(@ - Vyw, w)] < [[Vwll ) lul7aq)

are used, such that
2 2
Bw(u» u) >V ”vu”LZ(_Q) + (C - ”Vw”LOO(.Q)) ”u”LZ(_Q) .

Choosing now ¢ > [[Vw|| gy gives coercivity of By (-, -)
with the coercivity constant v.

» The analysis of problems of type (14) is widely open.

Note that a regularity assumption of the formu € W (£2)¢
is not unusual for the finite element analysis, in particular in
the time-dependent situation, compare Sect. 3.3.

3.3 Time-dependent Navier-Stokes equations

The numerical analysis of continuous-in-time discretizations
and of fully discrete methods that use a fully implicit form
of the nonlinear term lead to an intermediate estimate for
which a Gronwall-type lemma is applied. The application of
this lemma gives an exponential factor in the error bounds
whose argument depends on the length of the time interval,
norms of the solution, and possibly on inverse powers of the
viscosity. Depending on the form of the discrete convective

term, the assumptions on the smoothness of the solution, and
the finite element space, different arguments are obtained.

Consider first Galerkin methods, i.e., discretizations with-
out any stabilization terms. Using the standard skew-
symmetric form of the convective term (10) and assuming
Vu € L4(0, T; LZ(.Q)dXd), one gets the argument

4
F ” Vll ||L4(0,Z;L2(.Q))

in the exponential, compare [93, Thm. 7.35]. It was pro-
posed in [12,48] to assume a higher regularity of the
velocity, namely Vu € L'(0, T; L®(£2)4*?) and u €
L2(0, T; L°°(.Q)d). Then, a different technique can be
applied for estimating the nonlinear term which leads to an
exponential with the argument

40
3 IVull 10,7002 + " el 720,710 (2)) -

e.g., see [93, Rem. 7.39]. Hence, the explicit dependency
on the viscosity is reduced from v=3 to v=!. If one con-
siders weakly divergence-free and inf-sup stable pairs of
finite element spaces, like the Scott—Vogelius pair P/ Pkdi_sf,
k > d, on barycentric-refined grids or weakly divergence-
free IGA methods from [42,70,71], one can use the standard
form ncony (-, -, ) of the convective term in the error anal-
ysis. That means, one has to bound only one term and not
two terms as in other skew-symmetric formulations of the
convective term. The error analysis uses the assumption
Vu e L0, T; L®(£2)?*4), which guarantees the regular-
ity of a solution of the 3d incompressible Euler equations,
ie., (3) with v = 0, e.g., see [15]. It implies that the solu-
tions of the ordinary differential equation ‘fl—’t‘ = u(t,x) do
never intersect and they remain smooth in [0, 7']. Then, one
obtains the argument

IVallL1o,7;00))

in the exponential, e.g., compare [93, Rem. 7.40]. In this spe-
cial case, the explicit dependency on inverse powers of the
viscosity vanishes. Nevertheless, in all cases, the exponential
factor becomes usually very large even for short times. But
on the other hand, there is an abundance of practical simu-
lations which shows that reliable flow simulations over long
time intervals can be performed for flows whose scales in
space and time can be resolved on a suitable mesh. In such
situations, the errors are heavily overpredicted by the analytic
bounds such that these bounds are useless.

» The derivation of quantitatively realistic error bounds for
the Galerkin method applied to the discretization of flows
whose scales in space and time can be resolved on a suit-
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able mesh, possibly under some appropriate assumptions,
is an open problem.

Note that examples can be constructed where the worst case,
namely the exponential growth of errors with respect to time,
can be observed, e.g., in [131, Ex. 5.2].

There are only few error bounds in the literature for
approximations to the time-dependent Navier—Stokes equa-
tions where the constants are independent of explicit inverse
powers of v (apart from the dependency on v~! through
norms of the exact solution), sometimes called semi-robust,
uniform, or quasi-uniform estimates. Such bounds were
derived by applying stabilization techniques that are also
used for convection—diffusion equations, like the CIP method
in [48] and the LPS method applied to the convective term
in [12,58]. On the other hand, semi-robust error bounds were
obtained for discretizations with stabilization terms that were
proposed for different purposes. Semi-robust error bounds of
the Galerkin discretization with weakly divergence-free finite
elements, even without additional stabilization term, can be
found in [131]. The analysis of the Galerkin method with
grad-div stabilization, that allows the use of more general,
not necessarily weakly divergence-free, finite elements can
be found in [12,119] under the assumption that the grid is
sufficiently fine (h < 4/v), in [58] with an assumption on
the regularity of the finite element solution, and in [60] with-
out any assumptions of this form. Grad-div stabilization was
proposed for finite element discretizations to improve the
approximation of the conservation of mass. In [60], optimal
semi-robust bounds for the L2(§2) norm of the divergence
of the velocity and the error of the pressure in the L%(£2)
norm are derived. In [61], LPS stabilized methods are stud-
ied. Under the assumption that each component of the finite
element velocity belongs to the pressure space, a semi-robust
estimate is derived for a method with LPS stabilizations
for the velocity gradient and the pressure gradient, and the
convective term is bounded with the pressure gradient LPS
stabilization.

» Finite element error analyses show that semi-robust esti-
mates are obtained with stabilizations that were not
proposed to stabilize dominant convection. The deeper
reasons for this behavior are not yet understood.

An alternative way to derive semi-robust a priori and
a posteriori error estimates was developed in [45] for the
2d Navier—Stokes equations in vorticity—streamfunction for-
mulation in the space-periodic setting. This approach is
based on a scale separation of the velocity field together
with a uniform boundedness assumption for the large
scales. However, already in [45] a number of reasons are
given why this approach cannot be extended to the 3d
situation.
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Standard finite element error analysis of the time-
dependent Navier—Stokes equations derives error bounds for
a sum of the velocity error in L?(£2) at the final time and
a time—space energy error. Considering a family of shape-
regular meshes, a conforming velocity finite element space
that includes all piecewise polynomials of degree k, an appro-
priate pressure finite element space, and a sufficiently smooth
exact solution, then the proved order of convergence is k.
However, for the Lz(.Q) error at the final time, one might
expect order k + 1, which is also supported by numeri-
cal studies, e.g., see [93, Ex. 7.41]. A higher order than
k was proved for a CIP stabilized method in [48], namely

lu — u"| L0, T; L*(2)) < Ch*+1/2, (16)

where C is independent of explicit negative powers of v and
it depends on |[u|| yr+1(oy and || pll gr+1(oy. Thus, half an
order has been achieved with increasing the needed regu-
larity for the pressure from H*(£2) to H*T1(2). In [61],
error bounds of type (16) are obtained for a LPS method
with non inf-sup stable elements that adds a control of
the fluctuation of the gradient and an LPS term stabi-
lizing the pressure. As in [48], the pressure is assumed
to be in H**1(£2). An estimate of order k + 1, which
is however not semi-robust, is given in [71] for an IGA
method.

» It is open whether optimal and semi-robust L>°(0, T'; L>
(.Q)d) error bounds for the velocity can be proved for
some method.

Pressure-robust discretizations for the Stokes equations,
which are not weakly divergence-free, need only a modi-
fication of the discrete right-hand side, compare Sect. 3.1.
However, the development of pressure-robust schemes for
the incompressible Navier—Stokes equations requires addi-
tional modifications of the discretization of the temporal
derivative and of the discrete nonlinear convective term,
thus leading also to modifications of the matrix. There are
already proposals on how to perform such modifications
in practice, e.g., in [37,117]. Finite element analysis can
be found so far for the steady-state Navier—Stokes equa-
tions and the rotational form of the convective term (12)
in [117].

» The finite element analysis of not weakly divergence-free
pressure-robust discretizations for the time-dependent
Navier—Stokes equations has still to be developed.

Since the behavior of turbulent flows is in some sense
chaotic, the computation of a certain local quantity in time
and space is usually not meaningful in applications. Hence,
for turbulent flows, one is usually interested in temporal
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or spatio-temporal averages of quantities. So far, there are
only very initial attempts to derive error estimates for such
averaged quantities. In [97], few results for time-averaged
errors in standard norms are presented. An a posteriori
error estimator and an adaptive algorithm for time-averaged
functionals of interest for (flow) problems with periodic
or quasi-periodic behavior are proposed in [34]. In [47],
an error estimate for a time-averaged pressure computed
with a CIP stabilization of the transient Oseen equations is
derived.

» The numerical analysis for temporal or spatio-temporal
averages of errors and quantities of interest has to be
developed further.

As already mentioned in Sect. 3.2, in the last decade,
one-grid preconditioners for linear algebraic saddle point
problems arising in the discretization and linearization of the
time-dependent Navier—Stokes equations have been devel-
oped that work efficiently, at least on serial or small parallel
computers, e.g., in [28,29,68,69].

In many applications, the flow domain depends on time,
e.g., if problems with free surfaces are considered.

» Finite element analysis for the Navier—Stokes equations
in time-dependent domains does not seem to be available.

4 Summary

Finite elements for scalar convection-dominated equations
and incompressible flow problems—a never ending story?
We hope that this paper provided the evidence that the end
is not yet reached. In contrast, there are still many important
open problems. Most of them seem to be quite challenging.
To work at their solution requires a profound knowledge of
the fields that are addressed in this paper. And even then,
quick solutions, which are accompanied with fast publica-
tions, are rather unlikely.

We hope that this paper stimulates further research on
finite element methods for convection-dominated problems
and incompressible flow problems, in particular to solve the
stated open problems.
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