Applied Mathematics Letters 73 (2017) 78-83

Contents lists available at ScienceDirect a"""e" .
athematics

Letters

Applied Mathematics Letters

www.elsevier.com/locate/aml =i

Towards physically admissible reduced-order solutions for @Cmmk
convection—diffusion problems

Swetlana Giere®, Volker John™"*

& Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin
e. V. (WIAS), Mohrenstr. 39, 10117 Berlin, Germany

Y Freie Universitit Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195
Berlin, Germany

ARTICLE INFO ABSTRACT
Article history: This note proposes, analyzes, and studies numerically a regularization approach
Received 21 March 2017 in the computation of the initial condition for reduced-order models (ROMs)

Received in revised form 29 March
2017

Accepted 29 March 2017

Available online 2 May 2017

of convection—diffusion equations. The aim of this approach consists in reducing
significantly spurious oscillations in the ROM solutions.
© 2017 Elsevier Ltd. All rights reserved.

Keywords:

Reduced order models (ROMs)
Proper orthogonal decomposition
Convection-dominated equations
ROM initial condition
Differential filter

1. Introduction

Convection—diffusion equations are part of many models for natural phenomena and industrial processes.
They model the behavior of, e.g., temperature (energy balance) or concentrations. Often, convection
dominates diffusion. In this situation, it is well known that so-called stabilized discretizations have to be
employed to perform stable numerical simulations [1]. From the practical point of view, not only the accuracy
of a discretization, measured in some norm, is of interest but also that the numerical solution possesses
admissible values. For instance, a computed concentration with strong negative spurious oscillations is
useless in practice. However, there are relatively few discretizations that lead to solutions without spurious
oscillations, like the FEM-FCT schemes [2,3].

ROM is usually applied if simulations with nearly the same setup have to be repeated over and over
again and if the efficiency is of more importance than the accuracy, like in the simulation of optimization
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problems. Based on a set of snapshots and the proper orthogonal decomposition (POD) approach [4], one
may compute a basis that already captures important features of the solution.

Standard ROM simulations of convection—diffusion equations suffer from strong spurious oscillations. The
reasons for them are twofold: the construction of the ROM’s initial condition and the used discretization.
This note addresses the first issue. In addition to using the standard definition by an L? projection, a
regularization is applied. To the best of the authors’ knowledge, this approach has not been proposed in
the literature so far. It will be analyzed briefly and numerical studies show that spurious oscillations are
damped significantly.

2. Reduced-order models for convection—diffusion equations

Consider the convection—diffusion-reaction equation
Ou—cAu+b-Vu+cu=f in (0,T] x 22 (1)

with homogeneous Dirichlet boundary conditions u = 0 and the initial condition u%(x). In (1), £ is a
bounded domain in RY, d € {2,3}, with boundary I', b(t,z) and c(t, ) denote convection and reaction
fields, respectively, € > 0 is a constant diffusion coefficient, and T is the length of the time interval.

Let X = H}(2). To compute the POD basis functions, the centered-trajectory method is utilized,
i.e., the POD modes are computed from the fluctuation of the snapshots u; — 4y, i = 1,..., M, where
uyp, is the average of the snapshots. For a detailed description of performing the POD and computing the
POD modes, it is referred to [5]. Let the ROM approximation u,, of the solution u be given by wu(t, z) ~
Uro(t, @) = up(x) + ur(t, ), where u,(t,z) = >.._ 0;(t)¢ro(x) with the unknown coefficients {a;}7_;
and the POD basis functions {¢ro;}j—;. The standard Galerkin reduced-order model (G-ROM) is built by
projecting the continuous problem into the finite-dimensional POD space X, = span{yyo,i = 1,...,7}.
Numerical investigations in [6] asserted that the stabilization of a ROM was necessary in order to obtain
stable simulations for arbitrary POD dimensions r in the convection-dominated regime. The stabilized
Streamline-Upwind Petrov—Galerkin reduced-order model (SUPG-ROM) was used, which is presented in
the following.

Let the superscript n of a function denote the evaluation of the function at the time instance t, and let
At denote the fixed time step. The SUPG-ROM combined with the backward FEuler method reads as follows:
Forn=1,2,... find u] = uyy, — up € X, such that Vv, € X,

(uyr —up ™" v,) + Atasupc r (), vr) = At (f7,0,) — At agupa, (Gn, vr)
HAE D G (T V) e — Y G (ul —ul b V) (2)
KeTy, KeTy,

where 6,  is a stabilization parameter to be chosen and

aSUPG,T(uT’7 Ur) = (EVUT, VUT) + (bn : VUT7 U’r’) + (cnuru vr)

+ Z Op k (—eAup + 0" - Vu, + c"up, b" - Vo,
KeTy,

for all u,,v, € X, C Xj. Setting 6,k = 0 in (2) recovers the Galerkin ROM. In [6], numerical analysis
was utilized to derive the appropriate scalings of the stabilization parameter d, x for the case of a family
of uniform triangulations. In this study, the finite element version of the SUPG stabilization parameter
d, = O(h), with h being the finite element mesh width, was recommended and therefore this choice will be
employed in the numerical simulations in Section 4.
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3. Computation of the ROM’s initial condition

The coefficients {a?}7_; of the initial condition for a projection-based ROM such as (2) are usually
obtained by projecting u® — @, in the L? sense onto the POD basis: af = (uo — Up, Pro, Z), i=1,...,r

Consequently, the reduced-order approximation u of the initial condition u° has the form

0.0
U~ U, —uh+zaz§ﬁroza (3)
=1

which is the best approximation of u° in the POD space X, in the L? sense.

However, there might be different goals than this. Depending on the origin of the POD basis, the initial
condition (3), although optimal in the L? sense, can be polluted by spurious oscillations, e.g., see Fig. 2.
From the point of view of physical applications, it is desirable to be able to construct a ROM initial condition
that suppresses spurious oscillations as well as possible but still approximates well the function u°.

A possible way to achieve this goal originates from turbulence modeling. In some turbulence models, like
Approximate Deconvolution Models and the Leray a-model, a regularized velocity is defined by solving a

Helmholtz equation
— p? Aug + ug = u, (4)

where p is the filter width usually chosen to be p ~ h, see [7,8] for more details on this so-called differential
filter. Thus, the ROM initial condition (3) can be filtered in a post-processing step by computing the Galerkin
approximation of (4) with respect to the POD basis. Finally, the following problem has to be solved: Find
Uro,fil WIth Upo i1 — Up = Y5090 € X, such that

,u2 (vuro,ﬁla v@ro,i) + (uro,ﬁla Qoro,i) = (u(r)07 Soro,i) 5 1= 17 e Ty (5)

where uY, is the ROM approximation (3). It should be noted that the differential filter was used in ROM
snnulatlons of turbulent flows [9].

Next, the convergence of u?o’ﬁl for the special case of a family of uniform triangulations will be investigated.
Using the triangle inequality yields

[ _ur0ﬁ1H0< [Ju” =y ||0+Hu?o_ roﬁl”

The first term on the right-hand side can be expected to be small by the construction of uY, as the best
approximation in L?. To obtain an estimation of the second term on the right-hand side, the difference

ud —

o ro q1 can be utilized as a test function in (5). By shifting the second term on the left-hand side to the

right-hand side of the equation, by using the Cauchy—Schwarz inequality and the standard inverse estimate,
one obtains

=l <4 I8l 9 6 =t
<Ch~ 1,u2 ||Vuro ﬁl” Hu?o — Upg ﬁl”o’

such that for p ~ h it holds

[[ubo = upo,mll, = O(h). (6)

On the one hand, the filtering procedure (5) yields a solution that does not represent the best approxunatlon
of u® in the L? sense anymore. But because of (6) the function umﬁ
with the convergence of at least first order in the L? sense. On the other hand, u?07ﬁ1 can lead to a better

; is still a good approximation of u?

approximation of u® with respect to spurious oscillations.
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Fig. 1. Interpolated continuous initial condition (left) and solution at t = 6.28 for the FEM-FCT scheme (right).

4. Numerical studies

In this section, it will be numerically investigated to which extent the Galerkin ROM and SUPG-ROM
based on oscillation-free snapshots are able to compute admissible ROM solutions. Moreover, the impact
of the filtering procedure (5) of the ROM initial condition on the ROM results will be studied. The code
MooNMD [10] was utilized to perform the numerical studies.

For the sake of brevity, numerical results are presented only for one example, the standard rotating body
example. A detailed description of this example can be found, e.g., in [11]. Initially, three bodies are given,
see Fig. 1, which are rotated counter clock wise. The coefficients of (1) are 2 = (0,1)2, T = 6.28, ¢ = 1072,
b=(0.5—y,z—0.5)7T, and c = f = 0. Because of the very small diffusion, the result after one revolution
should recover the initial solution.

To evaluate the results of the simulations, several measures of interest will be monitored. Besides
considering plots of the obtained solutions, the L*(£2) error |[u™ — ul ||, at certain times and the discrete
analog of the L(0,T; L?(2)) error ﬁZLO lu™ —ul ||, respectively, will be considered, where u™ denotes
the solution of the continuous problem at time ¢,. In addition, the minimum and the maximum values of
the solution will be computed in the vertices of the mesh cells. The L?(£2) error gives some idea of the
accuracy of the methods and the smearing in the numerical solutions. The minimum and the maximum
values indicate the under- and overshoots of the numerical solution. The reference minimum and maximum
values of the solution are 0 and 1, respectively.

The snapshots were obtained by approximating the solution of (1) with the nonlinear flux-corrected
transport (FEM-FCT) scheme with the Crank—Nicolson method as time integrator, e.g., see [2,3]. Piecewise
linear finite elements P, and the length of the time step At = 102 were utilized. The computations were
carried out using 16641 degrees of freedom with the mesh width A = 1.1-1072. Then, 1257 snapshots,
corresponding to every fifth numerical solution, were used to compute the POD basis. In Fig. 1, the FEM-
FCT solution for the final time is shown. By construction of the scheme, the solution does not exhibit any
spurious oscillations. The POD basis was computed from the fluctuating part of the snapshots with respect
to the L? inner product by the method of snapshots [4].

G-ROM and SUPG-ROM simulations were carried out with the backward Euler scheme (2) using
At = 1073, Note that the spatial error usually dominates in ROM simulations such that the choice of
the time integrator is of only minor importance. The ROMs with the standard ROM initial condition are
denoted by G-ROM and SUPG-ROM and the ones equipped with the regularized ROM initial condition
(5) by G-ROM(reg) and SUPG-ROM(reg). Simulations with different values of 1 were performed. The best
results were obtained with p = 0.8 A and for the sake of brevity only these will be presented. Fig. 2 shows
the standard and the regularized initial conditions for » = 50. It can be seen that the standard ROM initial
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Fig. 2. Standard ROM initial condition (3) (left) and regularized ROM initial condition (5) (right) based on physically admissible
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Fig. 4. Time evolution of the measures of interest for G-ROMs and SUPG-ROMs for r = 50.

condition is polluted by spurious oscillations even if the FEM-FCT snapshots are free of oscillations. The
post-processing filtering procedure is able to suppress them significantly.

Computational results are presented in Figs. 3 and 4. The results for all r € {50,150} are qualitatively
similar. With G-ROM, the L(0,T; L?(2)) error is a little bit smaller than with SUPG-ROM. However, the
spurious oscillations in the first part of the time interval are considerably larger. Using the regularized initial
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condition u,, 51 leads to a significant damping of the undershoots and particularly of the overshoots. This

desired property can be observed in the whole time interval. But, the L'(0,7; L?({2)) error is somewhat

larger than with the standard initial condition u°.

5. Summary and outlook

This note proposed a regularization of the ROM’s initial condition for convection—diffusion equations.
Numerical studies showed a significant damping of spurious oscillations in the computed solutions. The
main open question for future research is the construction of a ROM discretization that ensures numerical
solutions without spurious oscillations.
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