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1. Introduction

The numerical stability of a convection–diffusion equation is, for the most part, due
to the presence of the diffusion term. Then, when convection dominates diffusion,
it is natural to expect that instabilities appear in the numerical solution. These
instabilities result in the presence of large over- and undershoots, which are a sign
of a violation of the discrete maximum principle (DMP). To correct the violation
of the DMP, many methods have been proposed and analyzed over the years. The
first attempt was to add enough numerical diffusion to make the problem diffusion-
dominated, and then the DMP follows under appropriate assumptions (see, e.g.
Ref. 23). This crude strategy leads to numerical results which are extremely dif-
fusive, and then not usable in practice. This fact motivated the introduction of
the so-called shock-capturing methods, which are characterized by adding an extra
term to the discrete formulation. This extra term contains a viscosity coefficient
which is solution-dependent, hence making the method nonlinear (see Ref. 21 for
a review). Nonlinear discretizations are not necessarily guaranteed to preserve the
DMP, and, to the best of our knowledge, the first one was the work of Ref. 31.
Later approaches include Refs. 9, 11, 3, 4, 14 and 5.

All the above-mentioned references share two main hypotheses, namely, the
need to use first-order polynomials, and certain assumptions on the mesh. More
precisely, in the two-dimensional case the mesh is supposed to be a Delaunay one.
This restriction can be tracked back to the first work concerning the validity of
the DMP, even for a Laplace equation, i.e. the work of Ref. 13. Since then, sev-
eral generalizations and attempts to overcome that restriction have been done. For
example, in Ref. 10 an anisotropic Laplacian was added to the formulation, and the
DMP can be proved for more general cases. More recently, in the context of hyper-
bolic equations, the works of Refs. 18 and 17 propose methods that can overcome
this restriction, while at the same time providing approximations that converge to
the entropy solution. It is important to remark that these last references’ possible
extension to the case in which diffusion is present in the equations does not seem
to be an easy task.

One particular nonlinear discretization, designed to satisfy the DMP by con-
struction, is the one known as algebraic flux correction (AFC) method. The origins
of this method can be tracked back to Refs. 8 and 33, and it has enjoyed active
development in the last decade thanks to the work of Kuzmin and co-workers (see
Refs. 24–28, and Ref. 29 for a recent review). This class of methods, unlike previous
discretizations, is not based on a variational formulation of the problem, but rather
on a restatement of the resulting linear system in which the right-hand side is writ-
ten as the sum of antidiffusive fluxes. This restatement shows that these fluxes are
responsible for the violation of the DMP, and then AFC schemes limit them using
solution-dependent limiters. Despite the fact of providing good numerical results
(apart from the above-cited references, see also the review works of Refs. 22 and 1
for some further numerical results), until very recently, no mathematical analysis
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had been carried out for the AFC schemes. The first works in this direction are, to
the best of our knowledge, Refs. 6 and 7. Surprisingly, the proof of the DMP given
in Ref. 7 also requires the use of a Delaunay mesh. Then, despite the fact that
the geometry of the mesh does not enter explicitly in the definition of the AFC
methods, some results on them still depend on the geometry of the mesh. This
fact motivates the search for modifications of the limiters that generate methods
satisfying the DMP on general meshes.

Another important property that is often required for numerical discretizations
is the so-called linearity preservation. This property demands that the modification
added to the formulation vanishes if the solution is a polynomial of degree 1 (at
least locally). This restriction, which can be interpreted as a weak consistency
requirement, is believed to lead to improved accuracy in regions where the solution
is smooth. In fact, in previous works, linearity preservation was linked to good
convergence properties for diffusion problems (see, e.g. Refs. 20 and 30). Even if
this is a requirement that may seem natural, this condition was proposed in a very
heuristic manner. As a matter of fact, in many works the proposed method has
been claimed to be linearity preserving, but a proof of this fact is just hinted,
or even lacking. In addition, although this property, so far, has not been proved
mathematically to be a sufficient, or even a necessary, condition for good numerical
behavior, it has been observed in different works (see, e.g. Ref. 12, and, especially,
the introduction in Ref. 15 for a discussion) that linearity preservation improves
the quality of the numerical solution on distorted meshes.

Based on the above considerations, our main objective in this work is to propose
a definition of the limiters in an AFC method for a convection–diffusion–reaction
equation that achieves two main goals: satisfaction of the DMP and linearity preser-
vation, both on general simplicial meshes. To achieve this, we write down the main
requirements to be satisfied by the limiters, and proceed to modify the algorithm
proposed in Ref. 28 in such a way that these two properties are valid on general
meshes. More precisely, the limiters from Ref. 28 are modified with factors that
depend on the geometry of the elements that share a given node of the triangu-
lation. Hence, this approach introduces explicit geometric information about the
mesh into the algorithm.

Numerical studies will support the analytical results. In addition they show that
the numerical solutions obtained with the new limiter possess further desirable
properties compared with the solutions computed with the limiter from Ref. 25,
which is considered to be a method of choice: it exhibits optimal convergence on
distorted meshes in the diffusion-dominated regime and a sharper layer is obtained
in a standard test problem for the convection-dominated case.

It is worth mentioning that methods of AFC type we have found in the lit-
erature do not satisfy the objectives of our paper in the required generality. For
example, the techniques of Ref. 28, used as a basis for our method, are proved to be
linearity preserving only on symmetric meshes as we discuss in Remark 6.3 below.
The method recently presented in Ref. 5 has been proved to preserve the DMP
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only for meshes that satisfy the condition of Xu and Zikatanov from Ref. 32, and
this condition is sharp when the diffusion dominates. The linearity preservation of
this method is again restricted to symmetric meshes. An alternative making the
method linearity preserving for more general meshes requires solving an optimiza-
tion problem for each interior node of the mesh, thus rendering the method more
involved. Very recently, another monotone and linearity preserving method was
proposed in Ref. 2 for conservation laws. However, it is not clear whether the DMP
still holds when this method is applied to a convection–diffusion–reaction equation,
which is our problem of interest. Moreover, the authors of Ref. 2 propose to use a
regularization strategy to make the method twice differentiable and hence suitable
for applying Newton’s method but then the linearity preservation property is lost.
Thus, to the best of our knowledge, the method presented in this paper is the first
method that satisfies both the DMP and linearity preservation on general simplicial
meshes, when the equation under consideration is a convection–diffusion–reaction
equation. In particular, as a special result, a monotone and linearity preserving
discretization of the Poisson equation on general simplicial meshes is obtained.

The rest of the paper is organized as follows. In Sec. 2, AFC schemes are pre-
sented in their most general form. Then, the minimal requirements on the limiter
in order to satisfy the DMP are laid down in Sec. 3. Our concrete proposal for the
limiter is given in Sec. 4. Section 5 is devoted to the application of the AFC scheme
to the convection–diffusion–reaction equation and its analysis. The final ingredient
in the definition of the limiter, namely, the computation of the multiplicative factor
introduced in order to make the method linearity preserving, is presented in Sec. 6.
Finally, some numerical results supporting our claims are given in Sec. 7.

2. An Algebraic Flux Correction Scheme

Consider a linear boundary value problem for which the maximum principle holds.
Let us discretize this problem by the finite element method. Then, the discrete
solution can be represented by a vector U ∈ R

N of its coefficients with respect to
a basis of the respective finite element space. Let us assume that the last N − M

components of U (0 < M < N) correspond to nodes where Dirichlet boundary
conditions are prescribed whereas the first M components of U are computed using
the finite element discretization of the underlying partial differential equation. Then
U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form:

N∑
j=1

aijuj = gi, i = 1, . . . , M, (2.1)

ui = ub
i , i = M + 1, . . . , N. (2.2)

We assume that the matrix (aij)M
i,j=1 is positive definite, i.e.

M∑
i,j=1

uiaijuj > 0 ∀(u1, . . . , uM ) ∈ R
M\{0}. (2.3)
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To introduce an algebraic flux correction scheme, we first extend the matrix
of (2.1) to a matrix A = (aij)N

i,j=1. For example, one can simply use the finite
element matrix corresponding to the above-mentioned finite element discretization
in the case when homogeneous natural boundary conditions are used instead of the
Dirichlet ones. We shall consider this matrix with the following modification:

aji := 0 if aij < 0, i = 1, . . . , M, j = M + 1, . . . , N. (2.4)

This reduces the amount of artificial diffusion introduced by the matrix D defined
next.

Using the matrix A = (aij)N
i,j=1, we introduce a symmetric artificial diffusion

matrix D = (dij)N
i,j=1 with entries

dij = dji = −max{aij , 0, aji} ∀ i �= j, dii = −
∑
j �=i

dij . (2.5)

This definition guarantees that the matrix Ã := A+D has positive diagonal entries
and nonpositive off-diagonal entries. If, in addition,

N∑
j=1

aij ≥ 0, i = 1, . . . , M, (2.6)

then the matrix Ã satisfies sufficient conditions to preserve the discrete maximum
principle. Note that the property (2.6) is usually satisfied by finite element dis-
cretizations of elliptic equations arising in applications.

Going back to the solution of (2.1), this system is equivalent to

(ÃU)i = gi + (DU)i, i = 1, . . . , M. (2.7)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑
j �=i

fij , i = 1, . . . , N,

where fij = dij(uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . The idea of the
algebraic flux correction scheme is to limit those anti-diffusive fluxes fij that would
otherwise cause spurious oscillations. To this end, system (2.1) (or, equivalently,
(2.7)) is replaced by

(ÃU)i = gi +
∑
j �=i

αijfij , i = 1, . . . , M, (2.8)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original
system (2.1) is recovered. Hence, intuitively, the coefficients αij should be as close
to 1 as possible to limit the modifications of the original problem. So far, these
coefficients have been chosen in various ways, and their definition is always based
on the above fluxes fij , see Refs. 24–28 for examples. To guarantee that the resulting
scheme is conservative, and to be able to show existence of solutions, one should
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require that the coefficients αij are symmetric, i.e.

αij = αji , i, j = 1, . . . , M. (2.9)

Rewriting Eq. (2.8) using the definition of the matrix Ã, one obtains the follow-
ing expression for the algebraic flux correction scheme:

N∑
j=1

aijuj +
N∑

j=1

(1 − αij)dij(uj − ui) = gi, i = 1, . . . , M, (2.10)

ui = ub
i , i = M + 1, . . . , N, (2.11)

where αij = αij(u1, . . . , uN) ∈ [0, 1], i = 1, . . . , M , j = 1, . . . , N , satisfy (2.9).
The following theorem states sufficient conditions on the limiters αij assuring

the solvability of the nonlinear discrete problem (2.10), (2.11). Our proposal for
such limiters will be given in Sec. 4.

Theorem 2.1. Let (2.3) hold. For any i ∈ {1, . . . , M}, j ∈ {1, . . . , N}, let
αij : R

N → [0, 1] be such that αij(u1, . . . , uN )(uj − ui) is a continuous function
of u1, . . . , uN . Finally, let the functions αij satisfy (2.9). Then there exists a solu-
tion of the nonlinear problem (2.10), (2.11).

Proof. See Theorem 3.3 in Ref. 7.

It is worth mentioning that the symmetry property (2.9) is necessary for the
validity of Theorem 2.1, see Ref. 6.

3. The Discrete Maximum Principle

As it was mentioned in the Introduction, the main motivation of AFC schemes is
to respect the DMP. In this section, we state some minimal assumptions on the
limiters αij in order to satisfy this property.

Given i ∈ {1, . . . , M}, the discrete maximum principle will be formulated locally,
with respect to an index set Si ⊂ {1, . . . , N}. We assume that

Si ⊃ {j ∈ {1, . . . , N}\{i} : aij �= 0 or aji > 0}, i = 1, . . . , M. (3.1)

The proof of the discrete maximum principle requires only that {αijdij}j∈Si van-
ish if ui is a strict local extremum. More precisely, we assume that, for any i ∈
{1, . . . , M} and any U = (u1, . . . , uN) ∈ R

N , the limiters αij satisfy

ui > uj ∀ j ∈ Si or ui < uj ∀ j ∈ Si ⇒ αij(U)dij = 0 ∀ j ∈ Si. (3.2)

The matrix A will be supposed to satisfy (2.6). Then the only assumption on A

for proving the local discrete maximum principle at i ∈ {1, . . . , M} will be that

there exists j ∈ {1, . . . , N}, j �= i : aij < 0 or aij < aji . (3.3)

Note that the diagonal entry aii can be arbitrary. The condition (3.3) is typically
satisfied, in particular, by the matrix associated to a finite element discretization
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of the convection–diffusion equation (see Lemma 5.1 and Remark 5.2 below for
details). If (3.3) does not hold but

Ai :=
N∑

j=1

aij > 0, (3.4)

then still a slightly weaker statement on the DMP can be proved. If Ai = 0 and
aii > 0 (as implied by (2.3)), then (3.3) is always satisfied.

With the above hypotheses, we prove the main result of this section.

Theorem 3.1. Let the matrix A satisfy (2.6) and let the limiters αij satisfy (3.2).
Let (u1, . . . , uN ) ∈ R

N satisfy (2.10). Consider any i ∈ {1, . . . , M}. If (3.3) holds,
one has:

gi ≤ 0 ⇒
(

if ui ≥ 0, then ui ≤ max
j∈Si

uj

)
, (3.5)

gi ≥ 0 ⇒
(

if ui ≤ 0, then ui ≥ min
j∈Si

uj

)
. (3.6)

If Ai > 0, one has:

gi ≤ 0 ⇒
(

if ui > 0, then ui ≤ max
j∈Si

uj

)
, (3.7)

gi ≥ 0 ⇒
(

if ui < 0, then ui ≥ min
j∈Si

uj

)
. (3.8)

Consequently, if (3.3) holds or Ai > 0, one has:

gi ≤ 0 ⇒ ui ≤ max
j∈Si

u+
j , (3.9)

gi ≥ 0 ⇒ ui ≥ min
j∈Si

u−
j , (3.10)

where u+
j := max{0, uj} and u−

j := min{0, uj}.

Proof. Since dij = 0 for any i ∈ {1, . . . , M} and j �∈ Si ∪ {i}, Eq. (2.10) can be
written in the form

Aiui +
∑
j∈Si

[aij + (1 − αij(U))dij ](uj − ui) = gi, i = 1, . . . , M. (3.11)

Consider any i ∈ {1, . . . , M} and let gi ≤ 0 and ui ≥ 0. Let us assume that ui > uj

for all j ∈ Si. Then (3.11) and (3.2) imply that

Aiui +
∑
j∈Si

(aij + dij)(uj − ui) = gi. (3.12)

Due to the definition of dij (cf. (2.5)), one has aij + dij ≤ 0 for j �= i. More-
over, if (3.3) holds, there is a j ∈ Si such that aij + dij < 0. Hence the left-hand
side of (3.12) is strictly positive, which is a contradiction. If Ai > 0 and ui > 0,
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then (3.12) implies that gi ≥ Aiui > 0. This is, again, a contradiction. Therefore,
there is a j ∈ Si such that ui ≤ uj , which proves (3.5) and (3.7). The state-
ments (3.6) and (3.8) follow in an analogous way. Finally, (3.9) and (3.10) are
immediate consequences of the preceding statements.

Assuming equality instead of inequality in (2.6), the following stronger result
can be proved.

Theorem 3.2. Let the limiters αij satisfy (3.2) and let (u1, . . . , uN) ∈ R
N satisfy

(2.10). Consider any i ∈ {1, . . . , M}. If Ai = 0 and (3.3) holds, then one has:

gi ≤ 0 ⇒ ui ≤ max
j∈Si

uj ,

gi ≥ 0 ⇒ ui ≥ min
j∈Si

uj .

Proof. The proof from the previous result can be applied with the minor difference
that, since Ai = 0, the restriction on the sign of ui is not needed.

4. Definition of αij

The last section imposed minimal conditions that the limiter αij used in (2.10)
should satisfy in order to guarantee the discrete maximum principle. In this section,
we design a limiter that fulfills those hypotheses. Additionally, we are interested in
proposing a limiter that makes the method linearity preserving on general simplicial
meshes. Our proposal is related to the one from Ref. 28 which is, however, not
proved to be linearity preserving on general meshes, see Remark 6.3. The main
difference between our proposal and the one from Ref. 28 is the definition of the
constant γi below, which will be later derived to impose linearity preservation on
general simplicial meshes. We shall show that it provides limiters that guarantee
the solvability of (2.10), (2.11), and the validity of the discrete maximum principle.

First, for any i ∈ {1, . . . , M}, we set

umax
i := max

j∈Si∪{i}
uj , umin

i := min
j∈Si∪{i}

uj , qi := γi

∑
j∈Si

dij , (4.1)

where Si is an index set satisfying (3.1) and γi > 0 is a fixed constant, whose value
will be defined later (see (6.5) in Theorem 6.1). Furthermore, for any i ∈ {1, . . . , M},
we set

P+
i :=

∑
j∈Si

f+
ij , P−

i :=
∑
j∈Si

f−
ij , Q+

i := qi(ui − umax
i ), Q−

i := qi(ui − umin
i ),

and we define

R+
i := min

{
1,

Q+
i

P+
i

}
, R−

i := min
{

1,
Q−

i

P−
i

}
.
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If P+
i or P−

i vanishes, we set R+
i := 1 or R−

i := 1, respectively. Finally, we set

α̃ij :=


R+

i if fij > 0,

1 if fij = 0,

R−
i if fij < 0,

i = 1, . . . , M, j = 1, . . . , N,

and define

αij := min{α̃ij , α̃ji}, i, j = 1, . . . , M,

αij := α̃ij , i = 1, . . . , M, j = M + 1, . . . , N.

The symmetry condition (2.9) is guaranteed by the last step of this algorithm.
The following result shows that the above limiter satisfies (3.2). Then, the result-

ing method respects the discrete maximum principle, independently of the geometry
of the mesh, provided A satisfies (2.6) and at least one of the conditions (3.3) and
(3.4) for any i ∈ {1, . . . , M}.

Lemma 4.1. The limiter αij defined in this section satisfies (3.2).

Proof. Consider any i ∈ {1, . . . , M} and U = (u1, . . . , uN) ∈ R
N such that ui > uj

for all j ∈ Si. Then, umax
i = ui and hence Q+

i = 0. Choose any j ∈ Si and let us
show that αij(U)dij = 0. It suffices to consider dij �= 0. But then fij > 0 and hence
P+

i > 0, leading to R+
i = 0. Consequently α̃ij(U) = 0, thus giving αij(U) = 0. If

ui < uj for all j ∈ Si, then the proof is analogous.

In addition to the last lemma, the following result states that the limiter αij

satisfies the continuity conditions from Theorem 2.1, and hence problem (2.10),
(2.11) has a solution. Its proof is very similar to Lemma 4.1 in Ref. 7, and then we
give an abridged form of it for completeness.

Lemma 4.2. The coefficients αij are such that φij(U) := αij(u1, . . . , uN )(uj − ui)
are continuous functions of u1, . . . , uN on R

N .

Proof. Consider any i ∈ {1, . . . , M}, j ∈ {1, . . . , N}. Let us first investigate the
continuity of α̃ij . It suffices to consider the case α̃ij �≡ 1 (and hence dij �= 0 and
j ∈ Si). Let U = {ui}N

i=1 ∈ R
N . We first consider ui > uj. Then, fij > 0 and one

obtains

α̃ij(U) = R+
i =

min{P+
i , Q+

i }
|fij | + P̃+

i

with P̃+
i =

∑
k∈Si\{j}

f+
ik.

Since ui > uj , there is a neighborhood of U where the denominator of the above
expression does not vanish, and then the function α̃ij is continuous in U . Now, if
uj > ui, by the same arguments one can deduce that α̃ij is continuous in U . Thus,
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if ui �= uj , then α̃ij , and therefore φij , is continuous in U . Finally, if ui = uj, then
φij(U) = 0. Let V = {vi}N

i=1 ∈ R
N . Then, since αij(U) ∈ [0, 1], one obtains

|φij(V ) − φij(U)|
= |φij(V )| = |αij(V )||vj − vi| ≤ |vj − uj − (vi − ui)| ≤

√
2‖V − U‖RN .

Then, φij(V ) → φij(U) if V → U and φij is continuous in U . This finishes the
proof.

We finish this section by making some comments on the choice of the factors γi

used in (4.1). First, the proof of the discrete maximum principle is independent of
their values, and then, it can be applied for choices other than the one introduced
in this paper, e.g. the ones from Ref. 28. Once this is said, the actual value of
γi has two main impacts on the performance of the AFC scheme. First, if chosen
appropriately (as it will be done in Sec. 6 below), then it can be proved that the
resulting scheme is linearity preserving on general simplicial meshes. Second, it
influences the amount of artificial diffusion added by the AFC term to the original
system (2.1). If γi’s are increased, then more limiters αij will be equal to 1 and
hence less artificial diffusion will be added. If γi’s are decreased, then more limiters
αij will be smaller than 1 and hence more artificial diffusion will be added. Thus,
to reduce smearing of approximate solutions represented by the values u1, . . . , uN ,
large values of γi’s are convenient. The downside of this is that, for large values
of γi’s, the limiters αij(u1, . . . , uN) change very rapidly near local extrema in ui

and hence the numerical solution of the nonlinear algebraic problem becomes more
involved.

5. The AFC Scheme for Convection–Diffusion–Reaction Equations

Let Ω ⊂ R
d, d = 2, 3, be a bounded polyhedral domain with Lipschitz boundary.

Let us consider the steady-state convection–diffusion–reaction equation

−ε∆u + b · ∇u + cu = g in Ω, u = ub on ∂Ω, (5.1)

where ε ∈ (0, ε0) with ε0 < +∞ is a constant, and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω),
g ∈ L2(Ω), and ub ∈ H

1
2(∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0, c ≥ σ0 ≥ 0 in Ω,

where σ0 is a constant. The weak solution of (5.1) is a function u ∈ H1(Ω) such
that u = ub on ∂Ω and

a(u, v) = (g, v) ∀ v ∈ H1
0 (Ω), (5.2)

with

a(u, v) = ε(∇u,∇v) + (b · ∇u, v) + (cu, v).
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Here we adopt the usual notation for Sobolev spaces. In particular, (·, ·) denotes
the inner product in L2(Ω) or L2(Ω)d. Since c ≥ σ0 in Ω and b is solenoidal, then

a(v, v) ≥ ‖v‖2
a ∀ v ∈ H1

0 (Ω), (5.3)

with

‖v‖2
a = ε|v|21,Ω + σ0‖v‖2

0,Ω.

It is well known that the weak solution of (5.1) exists, is unique, and satisfies the
maximum principle (cf. Ref. 16).

Let Th belong to a regular family of triangulations of Ω consisting of simplices.
We introduce the finite element spaces:

Wh = {vh ∈ C(Ω) : vh|T ∈ P1(T )∀T ∈ Th}, Vh = Wh ∩ H1
0 (Ω),

consisting of continuous piecewise linear functions. From now on, we denote by
x1, . . . , xN the vertices of the triangulation Th and assume that x1, . . . , xM ∈ Ω
and xM+1, . . . , xN ∈ ∂Ω. Furthermore, we denote by ϕ1, . . . , ϕN the usual basis
functions of Wh, i.e. we assume that ϕi(xj) = δij , i, j = 1, . . . , N , where δij is the
Kronecker symbol. Then the functions ϕ1, . . . , ϕM form a basis in Vh.

Now, an approximate solution of the variational problem (5.2) can be introduced
as the solution of the following finite-dimensional problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) = (g, vh) ∀ vh ∈ Vh. (5.4)

We denote

aij = a(ϕj , ϕi), i, j = 1, . . . , N, (5.5)

gi = (g, ϕi), i = 1, . . . , M, (5.6)

ub
i = ub(xi), i = M + 1, . . . , N. (5.7)

Then uh solves (5.4) if and only if its coefficient vector with respect to the basis
of Wh satisfies the relations (2.1) and (2.2). The bilinear form a defines the matrix
A = (aij)N

i,j=1 whose entries are given by (5.5) and (2.4). Finally, thanks to (5.3) the

matrix (aij)M
i,j=1 satisfies (2.3), and it follows that the problem (5.4) has a unique

solution.
The artificial diffusion matrix D = (dij)N

i,j=1 is defined using (2.5). We introduce
the nonlinear form

dh(w; z, v) :=
N∑

i,j=1

(1 − αij(w))dij (z(xj) − z(xi))v(xi) ∀w, z, v ∈ C(Ω),

with αij(w) := αij({w(xk)}N
k=1). Then the corresponding flux correction sch-

eme (2.10), (2.11) can be rewritten as the following variational problem:
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Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) + dh(uh; uh, vh) = (g, vh) ∀ vh ∈ Vh. (5.8)

Since the limiters αij defined in the last section satisfy the assumptions of Theo-
rem 2.1, and the bilinear form a is elliptic, then the problem (5.8) has a solution.
A natural (solution-dependent) norm on Vh corresponding to the left-hand side of
(5.8) is defined by

‖vh‖h := (‖vh‖2
a + dh(uh; vh, vh))1/2, vh ∈ Vh.

Assuming that u ∈ H2(Ω) and following completely analogous steps as the ones
from Sec. 7 in Ref. 7 it follows that, if σ0 > 0, the following error bound holds

‖u − uh‖h ≤ Ch‖u‖2,Ω + (dh(uh; ihu, ihu))1/2, (5.9)

where C > 0 is independent of u, h and ε, and ihu stands for the Lagrange inter-
polant of u. For the last term in (5.9), using the proof of Lemma 7.3 from Ref. 7,
it follows that

dh(wh; ihu, ihu) ≤ C max
i,j=1,...,N

(|dij ||xi − xj |2−d)|ihu|21,Ω ∀wh ∈ Wh, u ∈ C(Ω),

(5.10)

where C is independent of h and the data of problem (5.1). This result shows
that the error ‖u − uh‖h will tend to zero as long as the product |dij | |xi − xj |2−d

tends to zero. This implies that the method will converge as long as the matrix A

tends to be an M -matrix, and this speed of convergence is fast enough to compen-
sate for the negative power of h arising from |xi − xj |2−d in the three-dimensional
case. Hence, it is natural to expect that the convergence properties of the method
will vary according to the geometry of the mesh. In particular, for the convection-
dominated regime, an O(h1/2) estimate of ‖u−uh‖h can be shown irrespectively of
the geometry of the mesh. On the contrary, for the diffusion-dominated regime, the
convergence rates will vary dramatically depending on the geometrical properties
of the mesh (see Ref. 7 for details). This was illustrated numerically in Ref. 7 for
the limiter defined in Ref. 25. In some particular cases a better than expected con-
vergence was observed, but the theoretical justification of this fact, which requires
a more refined estimation of dh(uh; ihu, ihu) for particular limiters, does not seem
to be an easy task, and it will be the subject of our future research.

The above results are valid for any limiters αij satisfying the assumptions of
Sec. 2 (respectively of Theorem 2.1) and hence, in particular, for the limiter from
Sec. 4. To apply this limiter, we have to specify the sets Si satisfying (3.1). The
simplest possibility is to use

Si = {j ∈ {1, . . . , N}\{i} : xi and xj are end points of the same edge}, (5.11)
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where i = 1, . . . , M . This definition of Si was used in the computations reported in
Sec. 7. To finish the definition of αij , we have to define the factors γi used in (4.1).
This will be done in the following section.

Remark 5.1. Usually, results on the discrete maximum principle like in Theo-
rems 3.1 and 3.2 are proved for Delaunay meshes with respect to sets Si = {j ∈
{1, . . . , N}\{i} : aij �= 0}. For c = 0, this definition and the set used in (3.1) coin-
cide for Delaunay meshes. Indeed, for such a mesh, the validity of aji > 0 in (3.1)
implies that aij �= 0 since aij + aji = 2ε(∇ϕi,∇ϕj) ≤ 0. Whenever c > 0, then the
two definitions no longer coincide, the set induced by (3.1) can be larger, and hence
the final result is slightly weaker. The stronger assumption (3.1) is made in order
to guarantee our results to be valid on arbitrary meshes.

We close this section by showing that the matrix A defined above satisfies the
assumptions made on it to prove the discrete maximum principle.

Lemma 5.1. The matrix A defined in (5.5) and (2.4) satisfies the assumption
(2.6). Moreover, for any i ∈ {1, . . . , M}, the assumption (3.3) holds if Ai = 0 or

there exists j ∈ {1, . . . , N} : (b · ∇ϕj , ϕi) �= 0. (5.12)

Proof. The validity of (2.6) follows immediately from the property
∑N

j=1 ϕj = 1
and the non-negativity of c. Consider any i ∈ {1, . . . , M}. If Ai = 0, then there is
j ∈ {1, . . . , N}, j �= i, with aij < 0 since aii ≥ ε|ϕi|21,Ω > 0. Hence (3.3) holds. Let
us assume (5.12) and let (3.3) does not hold, i.e.

aij ≥ 0 and aij ≥ aji ∀ j ∈ {1, . . . , N}, j �= i. (5.13)

Under this assumption, then the modification (2.4) is not used for the matrix entries
in (5.13), and the original matrix remains unchanged. Hence, in view of the second
inequality in (5.13), one has

(b · ∇ϕj , ϕi) ≥ (b · ∇ϕi, ϕj) = −(b · ∇ϕj , ϕi) ∀ j ∈ {1, . . . , N}, j �= i,

so that

(b · ∇ϕj , ϕi) ≥ 0 ∀ j ∈ {1, . . . , N}, j �= i.

Since (b · ∇ϕi, ϕi) = 0 and
∑N

j=1(b · ∇ϕj , ϕi) = 0, one deduces that

(b · ∇ϕj , ϕi) = 0 ∀ j ∈ {1, . . . , N},
which is in contradiction with (5.12).

Remark 5.2. According to the previous lemma, the validity of (3.3) is not guar-
anteed if the convection term does not contribute to the ith row of the matrix A.
Although this cannot be excluded, it is a rather exceptional situation and hence
(3.3) will typically hold if b does not vanish identically in supp ϕi. Lemma 5.1 also
shows that (3.3) holds if c ≡ 0 since then Ai = 0 for any i ∈ {1, . . . , M}. Thus, if the
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reaction term for c > 0 is discretized using a lumping like in Ref. 7, the off-diagonal
entries of A are the same as for c ≡ 0 and hence (3.3) again holds although Ai > 0.

6. Linearity Preservation

Let us consider the limiter from Sec. 4 with the sets Si defined in (5.11). In this
section, we finish the definition of this limiter by specifying the parameters γi that
make it possible to prove that the resulting scheme is linearity preserving on general
simplicial meshes. We recall that x1, . . . , xN stand for the vertices of Th, and that
x1, . . . , xM ∈ Ω. We shall show that the factors γi in (4.1) can be defined in such a
way that

α̃ij(u) = 1 ∀u ∈ P1(Rd), i = 1, . . . , M, j = 1, . . . , N. (6.1)

Then the AFC scheme (2.10), (2.11) will be linearity preserving. Let us consider
any function u ∈ P1(Rd) and set ui = u(xi), i = 1, . . . , N . Then, if one wants to
satisfy (6.1), one needs

Q+
i ≥ P+

i if fij > 0, Q−
i ≤ P−

i if fij < 0. (6.2)

Sufficient conditions for (6.2) are the inequalities

ui − umin
i ≤ γi(umax

i − ui), umax
i − ui ≤ γi(ui − umin

i ). (6.3)

Note that it suffices to find γi such that

ui − umin
i ≤ γi(umax

i − ui) ∀u ∈ P1(Rd), (6.4)

since then the second inequality in (6.3) follows from (6.4) by changing the sign of
u. Thus, the validity of (6.4) assures that the AFC scheme (2.10), (2.11) based on
the limiter from Sec. 4 is linearity preserving.

To discuss the validity of (6.4), it is convenient to introduce the patch ∆i =
supp ϕi for any interior vertex xi of the triangulation Th. Thus, ∆i is a patch
consisting of simplices T ∈ Th sharing the vertex xi, see Fig. 1. Then the sets Si

defined in (5.11) satisfy

Si = {j ∈ {1, . . . , N} : xj ∈ ∂∆i},
and one has

umin
i = min

∆i

u, umax
i = max

∆i

u.

Note that, for u ∈ P1(Rd), umin
i and umax

i are attained at vertices lying on ∂∆i.

Fig. 1. Examples of patches ∆i for d = 2.
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If the patch ∆i is symmetric with respect to the vertex xi (like the first three
patches from the left in Fig. 1), then the inequality (6.4) holds with γi = 1 as the
following lemma shows.

Lemma 6.1. Let ∆i be symmetric with respect to xi. Then

ui − umin
i = umax

i − ui ∀u ∈ P1(Rd).

Proof. Let us assume that ui − umin
i < umax

i − ui. There exists a vertex xj ∈ ∂∆i

such that umax
i = uj. Furthermore, due to the symmetry of ∆i, there is a vertex

xk ∈ ∂∆i such that (xj + xk)/2 = xi. Then uj + uk = 2 ui and hence

ui − umin
i < umax

i − ui = uj − ui = ui − uk.

Consequently, uk < umin
i , which is a contradiction. Analogously, it can be shown

that ui − umin
i > umax

i − ui leads to a contradiction.

For general patches ∆i, a possible factor γi is computed in the following theorem.

Theorem 6.1. Let x1, . . . , xM ∈ Ω. For any i ∈ {1, . . . , M}, let ∆i be the above-
defined patch corresponding to the vertex xi and let ∆conv

i be its convex hull. Let

γi =
max

xj∈∂∆i

|xi − xj |
dist(xi, ∂∆conv

i )
, i = 1, . . . , M. (6.5)

Then the inequalities (6.4) hold and hence the AFC scheme (2.10), (2.11) with the
limiter from Sec. 4 is linearity preserving.

Proof. For simplicity, we shall present the proof for d = 2. For d = 3 one can
proceed analogously. Consider a patch ∆i and let u ∈ P1(R2) be any nonconstant
linear function. Let p be the line in the direction of ∇u containing the vertex xi.
Then there are uniquely determined points A, B ∈ p such that u(A) = umin

i , u(B) =
umax

i . Let qA and qB be lines orthogonal to p intersecting the line p at the points A

and B, respectively, see Fig. 2. Since u is constant along lines perpendicular to p, the
patch ∆i is contained in the strip between the lines qA and qB. Consequently, each
of these lines intersects ∆i only at points on ∂∆i comprising at least one vertex.
Moreover, any such vertex lies on the boundary of the convex hull ∆conv

i . To find
a constant γi for which the inequality (6.4) holds, we have to estimate the ratio

ui − umin
i

umax
i − ui

=
u(xi) − u(A)
u(B) − u(xi)

=
|xi − A|
|B − xi| .

Since qA contains a vertex xk lying on ∂∆conv
i , one has

|xi − A| ≤ |xi − xk| ≤ max
xj∈∂∆conv

i

|xi − xj | = max
xj∈∂∆i

|xi − xj |.
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q

q
xi

A

B

TB

BE

p
B

A

Fig. 2. Patch ∆i with notation from the proof of Theorem 6.1.

On the other hand, if TB is a triangle whose vertices are xi and two consecutive
vertices on ∂∆conv

i such that the half-line xiB intersects TB (see Fig. 2), then

|B − xi| ≥ dist(xi, EB),

where EB is the edge of TB opposite xi. Consequently,

|B − xi| ≥ dist(xi, ∂∆conv
i ),

which gives (6.5).

Remark 6.1. For the patches in Fig. 1, the formula (6.5) gives the values 2,
√

2,√
2, 2 and 2, respectively (from the left to the right). Since the first three patches

from the left are symmetric, Lemma 6.1 shows that the formula (6.5) is not optimal
in general. The last two patches in Fig. 1 are nonsymmetric and, for the linear
function u(x, y) = x + y, one obtains ui − umin

i = 2(umax
i − ui). Thus, for these two

patches, the formula (6.5) gives the optimal values.
This possible lack of optimality arises from the fact that we have used the

worst case scenario, that is, when the extrema of the function u are attained at the
vertices closest to, and furthest away from, xi, to derive the formula (6.5). This
reasoning about the worst case scenario is adapted to three-space dimensions in a
straightforward way.

Remark 6.2. Let us briefly mention the computation of the denominator in (6.5).
First, any vertex xj ∈ ∂∆i is shifted in the direction of the edge xixj on the bound-
ary of the convex hull ∆conv

i . Then one goes through all simplices T forming ∆conv
i

and, denoting by E the edge (or face) of T opposite xi, one computes dist(xi, E).
This is particularly easy in the two-dimensional case: if T possesses an obtuse angle
at an end point of E, say P , then dist(xi, E) = |xi−P |. If both angles of T at the end
points of E are nonobtuse, then dist(xi, E) = 2 |T |/|E|. In the three-dimensional
case, the computation of dist(xi, E) is more involved. Nevertheless, one can replace
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it by 3 |T |/|E| ≤ dist(xi, E) (and possibly increase the value of γi). Another pos-
sibility is to replace dist(xi, ∂∆conv

i ) by the smallest diameter of inscribed balls of
simplices forming ∆conv

i .

Remark 6.3. As already mentioned, the limiter proposed in this paper is related
to a method presented in Ref. 28. Although the methods of Ref. 28 are claimed
to be linearity preserving, it turns out that the respective proofs are not valid for
general meshes. The reason is that they rely on the validity of the inequality

ui − uj ≤ γij(umax
i − ui), (6.6)

for any u ∈ P1(Rd) and j ∈ Si (with Si defined in (5.11)), where

γij =
2

mi

∑
k �=i

|cik · (xi − xj)|, mi =
∫

Ω

ϕi dx , cik =
∫

Ω

ϕi ∇ϕk dx.

To prove (6.6), one uses the fact that mi∇u =
∑

k cikuk =
∑

k cik(uk −ui) and
ui − uj = ∇u · (xi − xj), which lead to

ui − uj =
1

mi

∑
k �=i

cik · (xi − xj)(uk − ui). (6.7)

If the patch ∆i is symmetric with respect to xi, then |uk − ui| ≤ umax
i − ui for any

k ∈ Si due to Lemma 6.1 and hence (6.7) implies (6.6). On the other hand, for non-
symmetric patches, the inequality |uk −ui| ≤ umax

i −ui may be violated. Therefore,
in general, (6.6) does not hold, as one can see from the following counterexample.
Let us consider the patch ∆i depicted in Fig. 3 consisting of four right-angled tri-
angles such that the vertices x1, x2, x3 have the same distance h from xi whereas
the distance of x4 from xi is h′. Then γi2 = 4 h/(h + h′). If u ∈ P1(R2) satisfies
u4 = umax

i , then ui − u2 = (umax
i − ui)h/h′ and hence (6.6) may hold with j = 2

only if h ≤ 3h′.

We finish this section by stating that the definition of the limiter presented
in this work introduces explicit geometric information about the mesh into the
method. This is not the standard way of defining the limiters (as the usual defi-
nitions use only the matrix entries and the solution values), and is different from
the one used in Ref. 28, but it has been proved to be of fundamental importance
to ensure linearity preservation on general meshes.

xi
x1

x4

x3

x2

h

h

h

h’

Fig. 3. Patch ∆i for constructing a counterexample in Remark 6.3.
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7. Numerical Studies

The numerical studies will illustrate the properties of the AFC scheme (2.10), (2.11)
with the limiter proposed in Sec. 4 for the convection–diffusion–reaction equation
from Sec. 5. If not specified otherwise, the parameters γi from (4.1) are defined by
the formula (6.5). In addition, the results will be compared with those obtained
with the limiter from Ref. 25. The limiter from Ref. 25 can be considered as a
standard limiter for algebraic stabilizations of steady-state convection–diffusion–
reaction equations.

For the sake of brevity, only results computed on a distorted mesh, see Fig. 4
(left), will be presented in detail. The mesh was constructed starting from the
Delaunay mesh depicted in Fig. 4 (right) by shifting interior nodes to the right by
half of the horizontal mesh width on each even horizontal mesh line. Therefore, for
most of the diagonal edges, the sum of the two angles opposite the edge is greater
than 5π/4 and hence the mesh is not of Delaunay type. We shall characterize the
meshes by the number of edges ne along one horizontal (or equally vertical) mesh
line (thus, ne = 6 for both meshes in Fig. 4).

Results for three examples will be presented. In the first example, the order of
convergence is studied, in both the convection-dominated and diffusion-dominated
regime. The second example investigates the linearity preservation property. Finally,
a standard test problem with boundary layers and an interior layer is considered.

The nonlinear discrete problems were solved with a damped Newton’s method.

Example 7.1. Polynomial solution. Problem (5.1) is considered with Ω = (0, 1)2,
b = (3, 2)T , c = 1, ub = 0, and the right-hand side g is chosen so that, for a given
value of ε,

u(x, y) = 100x2(1 − x)2y(1 − y)(1 − 2y)

is the solution of (5.1).

The order of convergence of the error eh := u−uh measured in various norms for
the limiter proposed in Sec. 4 is presented in Table 1 for the convection-dominated
case and in Table 2 for the diffusion-dominated regime. In addition, the tables show
the consistency error d

1/2
h (uh) := dh(uh; ihu, ihu)1/2, cf. estimate (5.9).

Fig. 4. Distorted mesh used in the simulations (left) and starting point for its construction
(right).
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Table 1. Example 7.1, ε = 10−8, numerical results for αij from Sec. 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 2.722e−2 1.15 1.401e+0 0.02 9.086e−2 1.76 7.428e−2 1.21
32 1.035e−2 1.40 1.041e+0 0.43 2.287e−2 1.99 2.563e−2 1.54
64 5.099e−3 1.02 8.907e−1 0.23 6.219e−3 1.88 1.113e−2 1.20

128 2.555e−3 1.00 8.952e−1 −0.01 2.308e−3 1.43 5.240e−3 1.09
256 1.299e−3 0.98 8.991e−1 −0.01 8.409e−4 1.46 2.538e−3 1.05

Table 2. Example 7.1, ε = 10, numerical results for αij from Sec. 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 1.786e−2 1.74 4.726e−1 0.87 9.284e−1 1.13 1.522e+0 0.88
32 4.218e−3 2.08 2.404e−1 0.98 3.035e−1 1.61 7.633e−1 1.00
64 1.016e−3 2.05 1.213e−1 0.99 1.077e−1 1.49 3.841e−1 0.99

128 2.545e−4 2.00 6.082e−2 1.00 3.816e−2 1.50 1.924e−1 1.00
256 6.439e−5 1.98 3.045e−2 1.00 1.361e−2 1.49 9.632e−2 1.00
512 1.628e−5 1.98 1.524e−2 1.00 4.896e−3 1.47 4.819e−2 1.00

Concerning the convection-dominated case, results for the limiter from Ref. 25
on a mesh of the same type can be found in Table 6 from Ref. 7. Comparing the
results, it can be seen that for both limiters the convergence orders of eh are similar
in all three norms. We could observe that this statement holds also for other meshes,
in particular for more regular ones.

The situation is much different in the diffusion-dominated regime. Whereas the
limiter from Sec. 4 leads to errors that decay with an optimal rate, see Table 2,
the method with the limiter from Ref. 25 does not converge at all, cf. Table 10
from Ref. 7. This favorable behavior of the new limiter seems to be important in
situations where the convection field is a flow field. In this case, there might be
subregions of the domain in which the problem is diffusion-dominated.

We believe that the optimal convergence of the limiter proposed in Sec. 4 is
connected with its linearity preservation property on general simplicial meshes. A
similar behavior has been observed in Ref. 30, where linearity preserving limiters

Table 3. Example 7.1, ε = 10, numerical results for αij from Sec. 4 and γi replaced
by γi/4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 4.543e−2 0.91 5.801e−1 0.68 2.753e+0 0.32 2.051e+0 0.65
32 3.095e−2 0.55 3.939e−1 0.56 2.362e+0 0.22 1.404e+0 0.55
64 2.622e−2 0.24 3.138e−1 0.33 2.199e+0 0.10 1.127e+0 0.32

128 2.428e−2 0.11 2.826e−1 0.15 2.118e+0 0.05 1.018e+0 0.15
256 2.341e−2 0.05 2.707e−1 0.06 2.078e+0 0.03 9.756e−1 0.06
512 2.301e−2 0.03 2.660e−1 0.03 2.059e+0 0.01 9.582e−1 0.03
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are used to approximate a diffusion problem. The theoretical justification of this
statement is not yet available, and will be the topic of our future research.

Further evidence in support of the above claim is given in Table 3. Here we
present results obtained with the limiter from Sec. 4 for parameters γi defined
as a quarter of the value provided by the formula (6.5). Then the method is not
linearity preserving and we observe that the errors of the approximate solutions do
not converge to zero.

Example 7.2. Linear solution. The data for this example were chosen to be Ω =
(0, 1)2, ε = 10−8, b = (2y − x,−3x + y)T , c = 0, and the boundary condition ub

and the right-hand side g were set so that

u(x, y) = 2x + 3y

is the solution of (5.1).

This example serves for showing on the one hand the linearity preservation of
the limiter from Sec. 4 on the considered distorted mesh. On the other hand, it also
demonstrates that the limiter from Ref. 25 does not possess this property. Results
for simulations with ne = 8 are presented in Fig. 5 and for a closer inspection also
a cross-section of the two solutions is shown in Fig. 6. The limiter proposed in
Sec. 4 provides a solution which is virtually the analytical solution (the maximum
error is of the order of 10−10, which is in accordance with the stopping criterion for
the nonlinear iteration). For the limiter from Ref. 25, the violation of the linearity
preservation is clearly visible.

Example 7.3. Solution with layers. The final example considers a standard test
problem defined in Ref. 19. This problem is given by Ω = (0, 1)2, ε = 10−8, b =
(cos(−π/3), sin(−π/3))T , c = 0, g = 0, and the boundary condition

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,

1 else.

 0
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Fig. 5. Example 7.2, solution with the limiter from Sec. 4 (left) and that from Ref. 25 (right).



March 2, 2017 10:21 WSPC/103-M3AS 1750008

An algebraic flux correction scheme 545

Fig. 6. Example 7.2, cross-section of the solutions at y = 0.5.

Note that the boundary condition from Example 7.3 can be easily changed to an
infinitely smooth function that coincides with ub from Example 7.3 at all boundary
vertices of the mesh used for the computations presented in this section. Then
Example 7.3 also formally fits into the framework considered in Sec. 5.

The solutions computed with both limiters are presented in Figs. 7 and 8. It
can be observed that both definitions of the limiters provide an acceptable solution.
They obey the DMP and all boundary layers are sharp. A close look at the interior
layer, in particular at the bottom, shows that the layer of the solution computed
with the limiter from Sec. 4 is a little bit sharper. Also, a slight smearing of the
boundary layer at y = 0 is visible for the limiter from Ref. 25.
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Fig. 7. Example 7.3, solutions obtained with the limiter defined in Sec. 4 (left) and the limiter
from Ref. 25 (right).
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Fig. 8. Example 7.3, solutions obtained with the limiter defined in Sec. 4 (left) and the limiter
from Ref. 25 (right). Both solutions respect the discrete maximum principle. The solution with
the proposed limiter shows a sharper interior layer, especially at the bottom. A slight smearing
can be observed along the boundary layer at y = 0 for the limiter from Ref. 25.

8. Conclusions and Outlook

This paper proposed a new limiter for algebraic stabilizations of steady-state
convection–diffusion–reaction equations within the framework of finite element
methods. The main goal of the construction of the new limiter was that the resulting
scheme should obey the DMP and it should possess the linearity preservation prop-
erty on general simplicial meshes. Both properties could be achieved and proved.
The definition of the new limiter does not only rely on algebraic data but also
requires some geometric information (on the local mesh), like the limiter of Ref. 2.
We think that the enrichment of algebraic stabilizations with geometric information
is in general a promising approach for designing stabilized methods. In contrast to
the limiters of Refs. 2 and 5, the new limiter does not depend on any user-chosen
parameter (like the exponent p in case of Refs. 2 and 5) controlling the amount of
numerical diffusion added to the method, which makes the present approach more
practical.

The numerical studies showed an optimal order of convergence in the diffusion-
dominated regime, which is not present for the limiter from Ref. 25. As already
mentioned, we believe that this behavior of the new limiter is somehow connected
to the linearity preservation, but the proof is open. A further topic of our future
work will be the analysis, and possibly improvement, of algebraic stabilizations for
time-dependent problems.
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29. D. Kuzmin and J. Hämäläinen, Finite Element Methods for Computational Fluid
Dynamics: A Practical Guide, Computational Science and Engineering, Vol. 14
(SIAM, 2015).

30. D. Kuzmin, M. J. Shashkov and D. Svyatskiy, A constrained finite element method
satisfying the discrete maximum principle for anisotropic diffusion problems, J. Com-
put. Phys. 228 (2009) 3448–3463.

31. A. Mizukami and T. J. R. Hughes, A Petrov–Galerkin finite element method for
convection-dominated flows: An accurate upwinding technique for satisfying the max-
imum principle, Comput. Methods Appl. Mech. Engrg. 50 (1985) 181–193.

32. J. Xu and L. Zikatanov, A monotone finite element scheme for convection–diffusion
equations, Math. Comput. 68 (1999) 1429–1446.

33. S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids,
J. Comput. Phys. 31 (1979) 335–362.


