Applied Mathematics Letters 63 (2017) 65-70

Contents lists available at ScienceDirect nAnPP"“' ]
athematics

Applied Mathematics Letters

www.elsevier.com /locate/aml —

[sogeometric analysis for flows around a cylinder @CmssMark

Jannis Bulling®, Volker John"*, Petr Knobloch*

? Federal Institute for Materials Research and Testing (BAM), 12200 Berlin, Germany

b Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin
e. V. (WIAS), Mohrenstr. 39, 10117 Berlin, Germany

¢ Free University of Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195
Berlin, Germany

4 Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University in
Prague, Sokolovskd 83, 18675 Praha 8, Czech Republic

ARTICLE INFO ABSTRACT
Article history: This note studies the accuracy of Isogeometric Analysis (IGA) applied in the
Received 29 April 2016 simulation of incompressible flows around a cylinder in two and three dimensions.

Received in revised form 23 July
2016

Accepted 23 July 2016

Available online 29 July 2016

Quantities of interest, like the drag coefficient, the lift coefficient, and the difference
of the pressure between the front and the back of the cylinder are monitored. Results
computed with standard finite element methods are used for comparison.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:

Isogeometric Analysis (IGA)
Flow around a cylinder
Drag coefficient

Lift coefficient

1. Introduction

Isogeometric Analysis (IGA) is a rather new approach for the discretization of partial differential equations
which was proposed in [1]. It can use non-uniform rational B-splines (NURBS) for the parametrization of
the domain and at the same time as basis functions of the finite-dimensional function spaces applied in the
discretization. Compared with finite element methods, the basis functions of IGA are smoother and in some
situations, curved boundaries of the domain can be represented exactly. However, the implementation of IGA
is somewhat more involved, the incorporation of essential boundary conditions is not as straightforward, and
the desire to apply standard techniques known from finite element methods, like adaptive grid refinement,
requires a non-trivial extension of the standard IGA approach. There is the question if the quality (accuracy)
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of the solutions obtained with IGA justifies the effort to face these difficulties. This question can be
answered only with careful numerical studies. This note constitutes a contribution in this direction for
the incompressible Navier—Stokes equations.

IGA for incompressible flow problems has been investigated from the analytical and numerical point of
view, e.g., in [2-8]. In particular, it was clarified that counterparts of the popular Taylor—Hood pairs of finite
element spaces satisfy a discrete inf-sup condition [2,3]. Even divergence-free versions of IGA were proposed
in [5-7], whose implementation is however considerably more involved compared with a standard IGA.

This note aims at contributing to the assessment of IGA by studying incompressible flows around cylinders
in two and three dimensions. The results for quantities of interest, like the drag and lift coefficients, are
compared with the corresponding results obtained with finite element methods.

2. Flows around a cylinder

Let 2 C RY, d € {2,3}, be a domain. The steady-state incompressible Navier-Stokes equations without
body forces are given by

—vAu+ (u-V)u+Vp =0 in {2,

1
V-u=0 in {2, (1)

where wu is the velocity, p is the pressure, and v is a dimensionless viscosity. In addition, appropriate boundary
conditions have to be prescribed.

The numerical studies consider flows around cylinders. Flows around bodies constitute standard situations
in applications. For such flows, important quantities of interest are the drag and lift coefficients at the body.
Also the difference of the pressure between upstream and downstream faces of the body is of importance.
The considered examples were proposed in [9].

The finite element results presented in this note were computed with the code MOONMD [10]. An
isoparametric approximation of curved boundaries was used. Drag and lift coefficients were computed, for
both the IGA and the finite element simulations, with volume integrals as described in detail in [11]. The
IGA was implemented in OCTAVE and the correct implementation was checked at examples with prescribed
solution [12]. The nonlinear systems of equations were solved until the Euclidean norm of the difference of
two subsequent iterates (velocity and pressure) was smaller than 10~6. Smaller tolerances and using also
the Euclidean norm of the residual vector as stopping criterion gave quantitatively very similar results. The
linear systems of equations were solved with the solver LINSOLVE provided by OCTAVE.

2.1. Two-dimensional flow around a cylinder

The domain for this example and the initial grid for the finite element simulations are shown in Fig. 1.
This example is further given by v = 1073 in (1), the inlet boundary condition

1.2 T
U(O,l‘g) = <04121‘2(041 - IZ?Q), 0> 3

no-slip boundary conditions at the upper and lower wall and at the cylinder, and the do-nothing boundary
condition (vVu — pll) n = 0 at the outlet, where n is the outward pointing normal vector and I the identity
tensor. The Reynolds number of this flow, based on the mean inflow velocity, the diameter of the cylinder,
and the viscosity of the fluid is Re = 20.

IGA relies on computations on a reference square (or cube in three dimensions). To this end, 2 is
parametrized, i.e., the domain is divided into so-called patches and these patches are pulled back to the
reference domain. It was already observed in [13], where scalar convection—diffusion equations and also
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Fig. 1. Two-dimensional flow around a cylinder: Domain and coarsest finite element grid.
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Fig. 2. Two-dimensional flow around a cylinder: Parametrizations of 2 into patches: $24,..., 2, left to right, top to bottom. The

thick colored lines give the decomposition into patches, the thin lines the corresponding coarsest grids, and the dots the quadrature
points. Note that 26 is more refined at the cylinder than (2». (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

a domain with a hole were considered, that the parametrization possesses a considerable impact on the
accuracy of the solution. To the best of our knowledge, there are no guidelines on how to parametrize more
complicated domains in an optimal way. Here, results for several parametrizations of 2 will be presented,
see I'ig. 2.

The representation of the circular boundary requires NURBS of degree two. Thus, this degree is the
smallest degree for the pressure that can be used in the IGA. Results will be presented for velocity NURBS
of order p, € {3,4} and the pressure NURBS of order p, — 1. These choices are the counterparts of the
Taylor-Hood spaces Qr/Qr—1, k € {3,4}, which were used in the finite element simulations. The initial
finite element mesh, Fig. 1, was refined uniformly.

For assessing the accuracy of the results, the reference values used in [14] were taken and the relative
errors to these values were evaluated. E.g., let cgrag be a computed approximation of the drag coefficient,
then the relative error is given by |cf,, — ci,|/|ciL, |, where ¢ is the reference value from [14]. The
relative errors versus the number of degrees of freedom are depicted in Figs. 3 and 4. It can be observed that
the parametrization of {2 indeed has a great effect on the accuracy. The best parametrizations are 25, (25,
2, and (apart of the pressure difference) 25. Note that the best parametrization in the numerical studies
in [13] was the analog of 23. Concerning drag and lift coefficients, the numerical results computed with IGA
are not more accurate than those obtained with the finite element method. For the pressure difference,
only the results obtained with parametrization {25 are notably more accurate than the finite element
results.
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Fig. 3. Results for the two-dimensional flow around a cylinder for third order velocity and second order pressure.
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Fig. 4. Results for the two-dimensional flow around a cylinder for fourth order velocity and third order pressure.

Numerical results for this example with IGA and B-splines instead of NURBS can be found in [14].
Comparing these results with the results presented in Figs. 3 and 4, one can observe that the results with
NURBS are much more accurate, see also [12, Fig. 40].

2.2. Three-dimensional flow around a cylinder

The domain of this example is given by
0= {{(0, 2.5) % (0,0.41)} \ 30,05(0.5,0.2)} % (0,0.41),

where By.05(0.5,0.2) is a circle with center (0.5,0.2) and radius 0.05. Thus, the cross-section of this domain
looks similarly like for the two-dimensional case, see Fig. 1. The viscosity is ¥ = 1073. At the outlet, a
do-nothing boundary condition was prescribed, at the inlet

T
7.
u(0,x2,x3) = <0 TE 22(0.41 — x9)x3(0.41 — x3),0, 0) ,

and no-slip boundary conditions at the other walls. The Reynolds number of this flow, based on the same
quantities as in the two-dimensional example, is Re = 20.

For simulations with the IGA, parametrizations of type (25, {2, and (s were used, compare Fig. 5
The results obtained with the corresponding patches were among the best results for the two-dimensional
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Fig. 5. Three-dimensional flow around a cylinder: Parametrizations of 2 into patches: 23, 25, and (2.
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Fig. 6. Results for the three-dimensional flow around a cylinder for the IGA with third order velocity and second order pressure and
for the finite element pairs Q2/Q1, Q3/Q2, P2/P1, and P3/Ps.

flow around a cylinder. For brevity, results for a parametrization of type 2 will not be included in the
presentation, since (% is constructed very similarly to {25 and the latter provided more accurate results for
the two-dimensional example. For computing the drag and lift coefficients with the volume integrals, one
has to use vector-valued test functions that take the value 1 in some component at the cylinder and 0 at all
other boundaries. In the simulations, the value 1 was also prescribed at the intersection of the cylinder and
the wall. The obtained results are compared with results from [15] for finite element simulations with the
Taylor—Hood pairs of spaces P;/Py—1 and Q/Qr—1, k € {2,3}.

Reference values for the drag coefficient, the lift coefficient, and the pressure difference are provided in [15].
Relative errors to these values are presented in Fig. 6. Concerning the different parametrizations used in the
IGA, 2 performed best. All finite element methods compute drag coefficients of a similar accuracy as the
best IGA approach. Concerning the lift coefficient, only Q2/Q1 and Q3/Q2 give similarly accurate results
as IGA with 2. And with respect to the pressure difference, the higher order finite element methods Ps/ Py
and Q3/Q3 are clearly more accurate than their lower order counterparts. But only the result obtained with
Q3/Q2 is of a similar order of accuracy as the result of the IGA with (2.

Since the IGA and the finite element methods are implemented in different codes, a comparison of
computing times is not meaningful. It should only be mentioned that the computing times for the IGA were
reasonable.



70 J. Bulling et al. / Applied Mathematics Letters 63 (2017) 65-70

3. Summary

This note assessed the accuracy of IGA applied to the simulation of incompressible flows around obstacles.
The dependency of the results on the chosen parametrization became obvious. For a comparable number
of degrees of freedom, the accuracy with respect to several quantities of interest of the best studied
parametrization and the best standard finite element methods is comparable.
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