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A local projection stabilization (LPS) method in space is considered to approximate the 

evolutionary Oseen equations. Optimal error bounds with constants independent of the 

viscosity parameter are obtained in the continuous-in-time case for both the velocity and 

pressure approximation. In addition, the fully discrete case in combination with higher 

order continuous Galerkin–Petrov (cGP) methods is studied. Error estimates of order k + 1 

are proved, where k denotes the polynomial degree in time, assuming that the convective 

term is time-independent. Numerical results show that the predicted order is also achieved 

in the general case of time-dependent convective terms. 
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1. Introduction 

The behavior of incompressible fluid flows is modeled by the incompressible Navier–Stokes equations. Analyzing numer-

ical schemes for these equations faces several difficulties. First, the unresolved problem of the uniqueness of the weak solu-

tion of the Navier–Stokes equations in three dimensions requires to assume uniqueness, which is usually done by assuming

sufficient regularity of the weak solution. Moreover, the estimate of the nonlinear term often uses the Gronwall lemma, such

that an exponential factor occurs in the error bounds, depending on some norm of the velocity, e.g., on ‖∇u ‖ ∞ 

as in [20] .

As result, the obtained estimates are by far too pessimistic in practice. For these reasons, this paper will deal, with respect

to the numerical analysis, with a related but simpler problem, namely the evolutionary or transient Oseen equations. They

read in dimensionless form as follows: 

Find u (t, x ) : (0 , T ] × � → R 

d , d ∈ {2, 3}, and p(t, x ) : (0 , T ] × � → R such that 

∂ t u − ν�u + ( b · ∇) u + σu + ∇p = f in (0 , T ] × �, 

di v u = 0 in (0 , T ] × �, (1) 

u = 0 on (0 , T ] × ∂�, 

u (0 , ·) = u in �, 
0 
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where � ⊂ R 

d is a bounded domain with polyhedral Lipschitz boundary ∂�, ν = Re −1 
> 0 (viscosity) and σ > 0 are positive

constants, b ( t , x ) is a given velocity field with di v b = 0 , u 0 is the initial velocity field, and T is a given final time. Without

loss of generality, one can assume σ > 0, since if it is not the case then a simple change of variable transforms the problem

into (1) with σ > 0, see [19, Section 1] . 

The numerical solution of (1) requires discretizations in time and space. Concerning the temporal discretization, contin-

uous Galerkin–Petrov methods of order k ≥ 1, cGP( k ), will be considered. With respect to space, finite element methods will

be studied. Since the paper will study the convection-dominated regime, where ν is smaller than an appropriate norm of b

by several orders of magnitude, a stabilization of the standard finite element discretization becomes necessary. 

Considering the situation that the viscosity is much smaller than the convection, it is well known that stabilized dis-

cretizations have to be applied. The most popular stabilized finite element method is probably the streamline upwind

Petrov–Galerkin (SUPG) method from [16,22] . Often, the SUPG stabilization is used in combination with the pressure-

stabilization Petrov–Galerkin (PSPG) method, [29] . However, the SUPG/PSPG method possesses some drawbacks, see [15] :

it introduces a velocity-pressure coupling for which no physical explanation is known and the non-symmetry of the stabi-

lization might be of disadvantage. In the time-dependent case, the consistent application of the method leads to a number

of additional terms which have to be assembled, see [28,31] . Because of the drawbacks of the SUPG/PSPG method, we think

that it is worth to investigate different approaches in detail, in particular such approaches that are symmetric and that do

not introduce an additional velocity-pressure coupling. Local projection stabilization (LPS) methods belong to this class of

methods and will be the topic of this paper. 

A different approach from this class was studied recently in [19] , where a grad-div stabilized method is used to discretize

the evolutionary Oseen equations. Optimal bounds for the divergence of the velocity and the L 2 ( �) norm of the pressure

are proved for this method. 

The LPS method was originally proposed for the Stokes problem in [12] and it was successfully extended to transport

problems in [13] . Finite element analysis for the LPS method applied to the stationary Oseen equations can be found in

[14,34] and to convection-diffusion-reaction problems in [5,7,11,35] . The stabilization term of the LPS method is based on a

projection that is defined on the finite element space which approximates the solution and which maps into a discontinu-

ous space. Compared with the standard Galerkin approach, the LPS method provides additional control over (parts of) the

fluctuation of the gradient. The method is weakly consistent and the construction should lead to a consistency error that

does not spoil the optimal rate of convergence. Originally, the LPS method was proposed as a two-level approach defin-

ing the projection spaces on coarser grids. This approach leads to additional couplings between neighboring mesh cell and

consequently, the sparsity of the matrix decreases. This drawback does not appear in the one-level approach, where both

spaces are defined on the same grid. In this approach, the approximation spaces have to be enriched in comparison with the

standard finite element spaces. The additional degrees of freedoms that are introduced by the enrichment can be eliminated

using static condensation. Altogether, the one-level approach is, in our opinion, more appealing from the point of view of

implementation and this variant of the LPS method will be considered in this paper. 

LPS stabilized finite element methods for the evolutionary Oseen problem were studied in [18] . In this paper, the stream-

line derivative is stabilized with the LPS methodology and an additional augmentation with a grad-div stabilization term is

used. Note that this method is a different LPS method than studied here. In the general case, error bounds were derived

in [18] under the condition that a certain measure of the mesh size is of the same order as the square root of the viscos-

ity. To avoid the restriction on the mesh size for small viscosity, finite element spaces were then considered that satisfy a

certain element-wise compatibility condition between the finite element velocity space and the projection space. Optimal

error bounds for the pressure were not obtained in [18] . A similar LPS method, applied to the time-dependent Navier–Stokes

equations, was analyzed in [8] and error estimates for the velocity in the continuous-in-time case were proved. An analysis

of the fully discretized so-called high-order term-by-term LPS method was presented in [2] . 

As mentioned above, cGP( k ) methods, which treat the temporal derivative in a finite element manner, will be considered

as temporal discretization. For incompressible flow problems, usually θ-schemes are used. These schemes are simple to

implement, however, they are at most of second order, like the Crank–Nicolson scheme or the fractional-step θ-scheme.

In addition, they do not allow an efficient adaptive time step control. There are only few studies, e.g., [24,27,30] , which

consider higher order schemes, like diagonally implicit Runge–Kutta (DIRK) methods, Rosenbrock–Wanner (ROW) methods,

or just cGP(2). To the best of our knowledge, there is no numerical analysis available for the first two classes of schemes

applied to incompressible flow problems or even to convection-diffusion equations. The situation is different for cGP( k ),

which are a class of finite element methods in time using discrete solution spaces with continuous piecewise polynomials

of degree less than or equal to k and test spaces consisting of discontinuous polynomials of degree up to order k − 1 . This

setup enables the performance of a standard time marching algorithm and it does not require the solution of a global system

in space and time as in space-time finite element methods. 

The cGP method in time for the heat equation was investigated in [10] . Optimal error estimates and super-convergence

results were derived at the end point of the discrete time intervals. For nonlinear systems of ordinary differential equations

in d space dimensions, the methods cGP( k ) were studied in [37] even in an abstract Hilbert space setting. A-stability and

optimal error estimates were proved. It was also shown that cGP( k ) methods have an energy decreasing property for the

gradient flow equation of an energy functional. In [5] , transient convection-diffusion-reaction equations were considered

using cGP( k ) in time combined with LPS in space. Optimal a-priori error estimates were derived for the fully discrete scheme.
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It was shown numerically that cGP( k ) is super-convergent of order (k + 2) in the integrated norm and of order 2 k at discrete

time points. In addition, the obtained results were compared with discontinuous Galerkin (dG) time stepping schemes.

Numerical studies for the time-dependent Stokes equations in [23] , the evolutionary Oseen equations in [4] , and transient

convection-diffusion-reaction equations in [5] showed the expected orders of convergence for cGP( k ), k ∈ {1, 2}. The dG( k )

method was analyzed for the transient Stokes equations in [1] . In addition, the higher order convergence of cGP(2) compared

with the discontinuous Galerkin discretization dG(1), both methods possessing the same complexity, was demonstrated. An

efficient adaptive time step control can be performed with cGP( k ) methods, e.g., as applied in [3] to transient convection-

diffusion-reaction equations. The adaptive time step control is based on a post-processed discrete solution, which can be

computed with affordable costs. It was shown that the adaptive time step control leads to lengths of the time steps that

properly reflect the dynamics of the solution. 

However, there is also a certain drawback of cGP( k ) methods for k ≥ 2: a coupled system of k equations has to be solved

at each time instance. Utilizing a clever construction proposed in [37] , the coupling is not strong, but it cannot be removed

completely. Efficient solvers for this coupled problem in case of the Navier–Stokes equations were studied in [24] , where a

coupled multigrid method with Vanka-type smoothers was used. 

Altogether, cGP( k ) is in our opinion an attractive alternative to θ-schemes since a higher order in time can be achieved

and an efficient and inexpensive time step control is possible. 

The goal of this paper consists in studying the combination of the LPS method in space with the cGP( k ) method in time.

The numerical analysis will be performed for the transient Oseen Eqs. (1) . Thus, this paper presents the first numerical

analysis of a higher order time stepping scheme for an incompressible flow problem with convection. In the continuous-in-

time case, optimal error bounds for velocity and pressure with constants that do not depend on the viscosity parameter ν
are derived with the assumption that the solution is sufficiently smooth. In addition, error estimates for the fully discrete

problem of order k + 1 are proved, assuming, as in other recently published papers, that the convective term does not

depend on time. Numerical results show that the predicted order can be also observed in the case of time-dependent

convective terms. 

The remainder of the paper is organized as follows: Section 2 introduces the basic notation, it presents some preliminar-

ies, and the semi-discretization (continuous-in-time) of the LPS method will be described. In Section 3 , the error bounds for

the semi-discrete problem are derived. Section 4 presents the error analysis of the fully discrete problem using a temporal

discretization with a cGP( k ) method. Numerical studies can be found in Section 5 . 

2. Preliminaries 

Throughout this paper, standard notation and conventions will be used. For a measurable set G ⊂ R 

d , the inner product in

L 2 ( G ), L 2 ( G ) d , and L 2 ( G ) d × d will be denoted by ( · , · ) G . The norm and the semi-norm in W 

m , p ( G ) are given by ‖ · ‖ m , p , G and

| · | m , p , G , respectively. In the case p = 2 , H 

m ( G ), ‖ · ‖ m , G , and | · | m , G are written instead of W 

m , 2 ( G ), ‖ · ‖ m , 2, G , and | · | m , 2, G .

If G = �, the index G in inner products, norms, and semi-norms will be omitted. The dual pairing between a space Z and its

dual Z ′ will be denoted by 〈 · , · 〉 . The temporal derivative of a function f is denoted by ∂ t f and the i th temporal derivative

by ∂ i t f . The subspace of functions from H 

1 ( �) having a vanishing boundary trace is denoted by H 

1 
0 
(�) with H 

−1 (�) being

its dual space with the associated norm ‖ v ‖ −1 = sup ϕ∈ H 1 
0 
(�) \{ 0 } 

〈 v ,ϕ〉 
‖∇ϕ‖ 0 . Let Z be a Banach space with norm ‖ · ‖ Z , then the

following spaces are defined 

L 2 (0 , t; Z) := 

{
v : (0 , t) → Z : 

∫ t 

0 

‖ v (s ) ‖ 

2 
Z ds < ∞ 

}
, 

H 

1 (0 , t; Z) := 

{
v ∈ L 2 (0 , t; Z) : ∂ t v ∈ L 2 (0 , t; Z) 

}
, 

C(0 , t; Z) := { v : (0 , t) → Z : v is continuous with respect to time } , 
where ∂ t v is the temporal derivative of v in the sense of distributions. If t = T , then the abbreviations L 2 ( Z ), H 

1 ( Z ), and C ( Z )

are used and it will not be indicated whether it is a scalar-valued or vector-valued space. 

In order to derive a variational form of (1) , the spaces 

V := H 

1 
0 (�) d , Q := L 2 0 (�) , X := 

{
v ∈ L 2 (V ) , ∂ t v ∈ L 2 (V 

′ ) 
}

and the bilinear form 

a 
(
( u , p) ; ( v , q ) 

)
:= ν(∇ u , ∇ v ) + (( b · ∇) u , v ) + (σu , v ) − (di v v , p) + (di v u , q ) 

are introduced. Then, a variational form of (1) reads as follows: 

Find u ∈ X and p ∈ L 2 ( Q ) such that 

〈 ∂ t u (t) , v (t) 〉 + a 
(
( u (t) , p(t)) ; ( v (t) , q (t)) 

)
= ( f (t) , v (t)) ∀ v ∈ L 2 (V ) , q ∈ L 2 (Q ) (2) 

for almost all t ∈ (0, T ] and u (0 , ·) = u 0 . Note that this initial condition is well defined since functions belonging to X are

continuous in time. 

If the initial condition u 0 is different from 0 , the velocity u can be decomposed in the form 

u (t) = u 0 + ψ (t) , ψ ∈ X 0 := { v ∈ X : v (0 , ·) = 0 } . 
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Then for the given initial velocity field u 0 , one has to find u = u 0 + ψ (t) , with ψ( t ) ∈ X 0 , and p ∈ L 2 ( Q ), where ( ψ, p ) is the

solution of the problem 

(∂ t ψ (t) , v (t)) + a 
(
( ψ (t) , p(t)) ; ( v (t) , q (t)) 

)
= ( g (t) , v (t)) 

with 

( g , v ) = ( f , v ) − ν(∇ u 0 , ∇ v ) − (( b · ∇) u 0 , v ) − (σu 0 , v ) . 

For this reason, one can assume u 0 = 0 , which will be done in the sequel. Note that this choice of the initial condition will

result in error bounds that do not contain contributions depending on u 0 . 

Let 	 : L 2 ( �) d → H 

div be the Leray projector that maps each function in L 2 ( �) d onto its divergence-free part, where the

Hilbert space H 

div is defined by H 

div = { v ∈ L 2 (�) d : ∇ · v = 0 , v · n | ∂� = 0 } . The Stokes operator in � is defined by 

A : D(A ) ⊂ H 

div → H 

div , A = −	�, D(A ) = H 

2 (�) d ∩ V 

div , 

where the space V div = 

{
v ∈ H 

1 
0 
(�) d : ∇ · v = 0 

}
is equipped with the inner product of H 

1 
0 
(�) d . 

Let {T h } be a family of quasi-uniform triangulations of � into compact d -simplices, quadrilaterals, or hexahedra such that

� = ∪ K∈T h K. The diameter of K ∈ T h will be denoted by h K and the mesh size h is defined by h := max 
K∈T h 

h K . Let Y h ⊂ H 

1 
0 
(�)

be a finite element space of scalar, continuous, piecewise mapped polynomial functions over T h . The finite element space V h

for approximating the velocity field is given by V h := Y d 
h 

∩ V . The pressure is discretized using a finite element space Q h ⊂ Q

of continuous or discontinuous functions with respect to T h . In this paper, inf-sup stable pairs ( V h , Q h ) will be considered,

i.e., there is a positive constant β0 , independent of the triangulation, such that 

inf 
q h ∈ Q h \{ 0 } 

sup 

v h ∈ V h \{ 0 } 
(di v v h , q h ) 
| v h | 1 ‖ q h ‖ 0 

≥ β0 > 0 . (3)

Since it is assumed that the family of meshes is quasi-uniform, the following inverse inequality holds 

‖ v h ‖ m,K ≤ C inv h 

l−m 

K ‖ v h ‖ l,K , (4)

for each v h ∈ V h and 0 ≤ l ≤ m ≤ 1, e.g., see [17, Theorem 3.2.6] . 

The space of discretely divergence-free functions is denoted by 

V 

div 
h = { v h ∈ V h : (∇ · v h , q h ) = 0 ∀ q h ∈ Q h } . 

The linear operator A h : V div 
h 

→ V div 
h 

is defined by 

(A h v h , w h ) = (∇ v h , ∇ w h ) ∀ w h ∈ V 

div 
h . (5)

From (5) , one concludes that 

‖ A 

1 / 2 

h 
v h ‖ 0 = ‖∇ v h ‖ 0 , ‖∇A 

−1 / 2 

h 
v h ‖ 0 = ‖ v h ‖ 0 ∀ v h ∈ V 

div 
h . (6)

The so-called discrete Leray projection 	div 
h 

: L 2 (�) d → V div 
h 

, being the L 2 -orthogonal projection of L 2 ( �) d onto V div 
h 

, is

given by 

(	div 
h v , w h ) = ( v , w h ) ∀ w h ∈ V 

div 
h . (7)

By definition, it follows that this projection is stable in the L 2 norm: ‖ 	div 
h 

v ‖ 0 ≤ ‖ v ‖ 0 for all v ∈ L 2 ( �) d . 

The continuous-in-time standard Galerkin finite element method applied to (2) consists in finding u h ∈ H 

1 ( V h ) and

p h ∈ L 2 ( Q h ) such that 

(∂ t u h (t) , v h ) + a 
(
( u h (t) , p h (t)) ; ( v h , q h ) 

)
= ( f (t) , v h ) ∀ v h ∈ V h , q h ∈ Q h . 

In the convection-dominated case, it is well-known that this method is unstable, unless h is sufficiently small. The use of a

stabilized discretization is necessary. 

This paper concentrates on the one-level variant of the LPS method in which approximation and projection spaces are

defined on the same mesh. Let D (K) , K ∈ T h , be local finite-dimensional spaces and πK : L 
2 ( K ) → D ( K ) the local L 2 projection

into D ( K ). The local fluctuation operator κK : L 
2 ( K ) → L 2 ( K ) is given by κK v := v − πK v . It is applied component-wise to vector-

valued and tensor-valued arguments. The stabilization term S h is defined by 

S h ( u h , v h ) := 

∑ 

K∈T h 
μK 

(
κK ∇ u h , κK ∇ v h 

)
K 
, 

where { μK }, K ∈ T h , are non-negative constants. This kind of LPS method gives additional control on the fluctuation of the

gradient. Also other variants of LPS methods are possible, e.g., by replacing in both arguments of S h ( · , · ) the gradient ∇w h

by the derivative in the streamline direction ( b ·∇) w h or, even better [32,33] , by ( b K ·∇) w h , where b K is a piecewise constant

approximation of b . But in this method, one has to add the grad-div term (d i v u h , d i v v h ) to S h , see [36] . 
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For performing the numerical analysis, the linear operator C h : V div 
h 

→ V div 
h 

with 

(C h v h , w h ) = 

∑ 

K∈T h 
μK (κK ∇ v h , κK ∇ w h ) K ∀ v h , w h ∈ V 

div 
h , (8)

the linear operator D h : L 
2 (�) → V div 

h 
with 

(D h q, w h ) = (di v w h , q ) ∀ w h ∈ V 

div 
h , (9)

the stabilized bilinear form 

a h 
(
( u , p) , ( v , q ) 

)
= a 

(
( u , p) ; ( v , q ) 

)
+ S h ( u , v ) 

on the product space ( V h , Q h ), and the mesh-dependent norm 

∣∣∣∣∣∣v ∣∣∣∣∣∣ := 

{ 

ν
∣∣v ∣∣2 

1 
+ σ

∥∥v 
∥∥2 

0 
+ 

∑ 

K∈T h 
μK ‖ κK ∇ v ‖ 

2 
0 ,K 

} 1 / 2 

are introduced. 

It will be assumed that b ∈ L ∞ ( L ∞ ( �) ∩ H 

div ( �)) and ∇ · b (t) = 0 for almost all t ∈ [0, T ]. Then, a straightforward calcula-

tion shows that 

a h ( ( v h , q h ) , ( v h , q h ) ) = 

∣∣∣∣∣∣v h ∣∣∣∣∣∣2 ∀ v h ∈ V h , q h ∈ Q h . (10) 

The semi-discrete LPS problem reads: 

Find u h ∈ H 

1 ( V h ) and p h ∈ L 2 ( Q h ) such that for almost every t ∈ (0, T ] (
∂ t u h , v h 

)
+ a h 

((
u h , p h 

)
; ( v h , q h ) 

)
= 

(
f , v h 

) ∀ v h ∈ V h , q h ∈ Q h . (11) 

For performing the analysis of LPS schemes, certain compatibility conditions between the approximation space and local

projection space have to be satisfied, see [34] . 

Assumption A1 There are interpolation operators j h : H 

2 ( �) d → V h and i h : H 

2 ( �) → Q h with the approximation properties∥∥w − j h w 

∥∥
0 ,K 

+ h K 

∣∣w − j h w 

∣∣
1 ,K 

≤ Ch 

l 
K 

∥∥w 

∥∥
l,K 

∀ w ∈ H 

l 
(
K 

)d 
, 2 ≤ l ≤ r + 1 , ∥∥q − i h q 

∥∥
0 ,K 

+ h K 

∣∣q − i h q 
∣∣

1 ,K 
≤ Ch 

l 
K 

∥∥q 
∥∥

l,K 
∀ q ∈ H 

l 
(
K 

)
, 2 ≤ l ≤ r, 

} 

(12) 

for all K ∈ T h . The pressure interpolation operator i h satisfies the orthogonality condition 

(q − i h q, r h ) K = 0 ∀ q ∈ Q ∩ H 

2 (�) , r h ∈ D (K) . (13) 

The pairs V h /Q h = Q r / P 

disc 
r−1 

together with D (K) = P r−1 (K) fulfill for r ≥ 2 assumption A1 if j h is the usual Lagrangian interpo-

lation operator and i h the L 2 projection. Further examples of inf-sup stable pairs V h / Q h , associated interpolation operators j h 
and i h , and projection spaces satisfying assumption A1 can be found in [36] . 

Assumption A2 The fluctuation operator satisfies the approximation property ∥∥κK q 
∥∥

0 ,K 
≤ Ch 

l 
K 

∣∣q ∣∣
l,K 

∀ K ∈ T h , ∀ q ∈ H 

l (K) , 0 ≤ l ≤ r. (14)

For performing the numerical analysis, the steady-state Stokes problem 

−ν�u + ∇p = g in �, 

u = 0 on ∂�, (15) 

∇ · u = 0 in �, 

will be considered. The standard Galerkin approximation ( u h , p h ) ∈ V h × Q h is the solution of the mixed finite element ap-

proximation to (15) , given by 

ν(∇ u h , ∇ v h ) − (di v v h , p h ) = ( g , v h ) ∀ v h ∈ V h , (16) 

(∇ · u h , q h ) = 0 ∀ q h ∈ Q h . 

From [21,25] , it is known that the following estimates hold 

‖ u − u h ‖ 1 ≤ C 

(
inf 

v h ∈ V h 
‖ u − v h ‖ 1 + ν−1 inf 

q h ∈ Q h 
‖ p − q h ‖ 0 

)
, (17) 

‖ p − p h ‖ 0 ≤ C 

(
ν inf 

v h ∈ V h 
‖ u − v h ‖ 1 + inf 

q h ∈ Q h 
‖ p − q h ‖ 0 

)
, (18) 
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‖ u − u h ‖ 0 ≤ Ch 

(
inf 

v h ∈ V h 
‖ u − v h ‖ 1 + ν−1 inf 

q h ∈ Q h 
‖ p − q h ‖ 0 

)
. (19)

It can be observed that the error bounds for the velocity depend on a negative power of ν . 

As suggested in [19] , a projection of ( u , p ) into V h × Q h is used in the finite element analysis, where the bounds for the

velocity are uniform in ν . Let ( u , p ) be the solution of (1) with u ∈ H 

1 
(
V ∩ H 

l+1 (�) d 
)
, p ∈ L 2 ( Q ∩ H 

l ( �)), l ≥ 1, and define the

right-hand side of the Stokes problem (15) by 

g = f − ∂ t u − ( b · ∇) u − σu − ∇p, (20)

such that ( u , 0) is the solution of (15) . Denoting the corresponding Galerkin approximation in V h × Q h by ( s h , l h ), one obtains

from (17) –(19) 

‖ u − s h ‖ 0 + h ‖ u − s h ‖ 1 ≤ Ch 

l+1 ‖ u ‖ l+1 , (21)

‖ l h ‖ 0 ≤ Cνh 

l ‖ u ‖ l+1 , (22)

where the constant C does not depend on ν . 

Remark 1. Assuming the necessary smoothness in time and considering (15) with 

g = g i = ∂ i t ( f − ∂ t u − ( b · ∇) u − σu − ∇p ) , i ≥ 1 , 

one can derive error bounds of form (21) and (22) also for ∂ i t u − s h ( g 
i ) and l h ( g 

i ), where s h ( g 
i ) and l h ( g 

i ) denote the solution

of (16) with right-hand side g = g i . Hence, the estimates 

‖ ∂ i t u − s h ( g 
i ) ‖ 0 + h ‖ ∂ i t u − s h ( g 

i ) ‖ 1 ≤ Ch 

l+1 ‖ ∂ i t u ‖ l+1 , 

‖ l h ( g 
i ) ‖ 0 ≤ Cνh 

l ‖ ∂ i t u ‖ l+1 , 

can be derived. 

3. Error analysis for the continuous-in-time case 

In this section, error bounds for velocity and pressure will be derived with constants independent of ν for a sufficiently

smooth solution. The analysis follows the lines of [19] . 

Theorem 1. Let ( u , p ) be the solution of (2) and let ( u h , p h ) be the solution of (11) . Assume b ∈ L ∞ ( L ∞ ) and the regularities 

( u , p) ∈ L 2 (H 

r+1 ) × L 2 (H 

r ) , ∂ t u ∈ L 2 (H 

r ) . (23)

Choosing the stabilization parameters of the LPS method such that μK ∼ 1 with respect to the mesh width, then the following

error estimate holds for all t ∈ (0, T ] 

‖ ( u − u h )(t) ‖ 

2 
0 + ν‖∇( u − u h ) ‖ 

2 
L 2 (0 ,t;L 2 ) + σ‖ u − u h ‖ 

2 
L 2 (0 ,t;L 2 ) + 

∑ 

K∈T h 
μK ‖ κK ∇( u − u h ) ‖ 

2 
L 2 (0 ,t;L 2 (K)) 

≤ Ch 

2 r 
(‖ u ‖ 

2 
L 2 (0 ,t;H r+1 ) + ‖ ∂ t u ‖ 

2 
L 2 (0 ,t;H r ) + ‖ p‖ 

2 
L 2 (0 ,t;H r ) 

)
, (24)

where C = C 
(
σ, ‖ b ‖ L ∞ (0 ,t;L ∞ ) 

)
is independent of ν and h. 

Proof. The proof of the error bound is based on the comparison of ( u h , p h ) with the approximation ( s h , l h ) of the Stokes

equations with right-hand side (20) . Let e h = u h − s h , then a direct calculation yields 

(∂ t e h , v h ) + a h (( e h , p h − l h ) , ( v h , q h )) 
= (∂ t ( u − s h ) , v h ) + (( b · ∇)( u − s h ) + σ ( u − s h ) , v h ) 

+(∇p, v h ) − S h ( s h , v h ) ∀ v h ∈ V h , q h ∈ Q h . (25)

Taking ( v h , q h ) = ( e h , p h − l h ) in (25) , one gets with integrating by parts, using that e h has discrete divergence equal to zero,

and (13) 

(∇p, e h ) = −(p, ∇ · e h ) = −(p − i h p, ∇ · e h ) = (i h p − p, κK ∇ · e h ) . 
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With the Cauchy–Schwarz inequality and Hölder’s inequality, it follows that 

1 

2 

d 

dt 
‖ e h ‖ 

2 
0 + ν‖∇ e h ‖ 

2 
0 + σ‖ e h ‖ 

2 
0 + 

∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
0 ,K 

≤ ‖ ∂ t ( u − s h ) ‖ 0 ‖ e h ‖ 0 + ‖ b ‖ ∞ 

‖∇( u − s h ) ‖ 0 ‖ e h ‖ 0 + σ‖ u − s h ‖ 0 ‖ e h ‖ 0 

+ 

( ∑ 

K∈T h 
μ−1 

K ‖ p − i h p‖ 

2 
0 ,K 

) 1 / 2 ( ∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
0 ,K 

) 1 / 2 

+ | S h ( s h , e h ) | . 

Now, the term with the stabilization has to be bounded. The Cauchy–Schwarz inequality gives 

S h ( s h , e h ) = S h ( s h − u , e h ) + S h ( u , e h ) 

≤ S 1 / 2 
h 

( s h − u , s h − u ) S 1 / 2 
h 

( e h , e h ) + S 1 / 2 
h 

( u , u ) S 1 / 2 
h 

( e h , e h ) . (26) 

Applying the stability of the fluctuation operator κK and the choice μK ∼ 1 of the stabilization parameters yields 

S h ( s h , e h ) ≤ C ( ‖ s h − u ‖ 1 + ‖ κK ∇ u ‖ 0 ) 

( ∑ 

K∈T h 
‖ κK ∇ e h ‖ 

2 
0 ,K 

) 1 / 2 

, (27) 

such that 

1 

2 

d 

dt 
‖ e h ‖ 

2 
0 + ν‖∇ e h ‖ 

2 
0 + σ‖ e h ‖ 

2 
0 + 

∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
0 ,K 

≤ ‖ ∂ t ( u − s h ) ‖ 0 ‖ e h ‖ 0 + ‖ b ‖ ∞ 

‖∇( u − s h ) ‖ 0 ‖ e h ‖ 0 + σ‖ u − s h ‖ 0 ‖ e h ‖ 0 

+ C 
(‖ p − i h p‖ 0 + ‖ s h − u ‖ 1 + ‖ κK ∇ u ‖ 0 

)( ∑ 

K∈T h 
‖ κK ∇ e h ‖ 

2 
0 ,K 

) 1 / 2 

. 

With Young’s inequality and hiding terms on the left-hand side, one obtains 

d 

dt 
‖ e h ‖ 

2 
0 + 2 ν‖∇ e h ‖ 

2 
0 + σ‖ e h ‖ 

2 
0 + 

∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
0 ,K 

≤ C 
(‖ ∂ t ( u − s h ) ‖ 

2 
0 + ‖ b ‖ 

2 
∞ 

‖∇( u − s h ) ‖ 

2 
0 + σ 2 ‖ u − s h ‖ 

2 
0 

)
+ C 

(‖ p − i h p‖ 

2 
0 + ‖ s h − u ‖ 

2 
1 + ‖ κK ∇ u ‖ 

2 
0 

)
. (28) 

Assuming now for t ≤ T the regularities (23) , integrating (28) on (0, t ), taking into account that e h (0) = 0 , since u 0 = 0 , and

applying estimates (21), (12) , and (14) , one gets 

‖ e h (t) ‖ 

2 
0 + 2 ν‖∇ e h ‖ 

2 
L 2 (0 ,t;L 2 ) + σ‖ e h ‖ 

2 
L 2 (0 ,t;L 2 ) + 

∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
L 2 (0 ,t;L 2 (K)) 

≤ Ch 

2 r 
(‖ u ‖ 

2 
L 2 (0 ,t;H r+1 ) + ‖ ∂ t u ‖ 

2 
L 2 (0 ,t;H r ) + ‖ p‖ 

2 
L 2 (0 ,t;H r ) 

)
, (29) 

where C = C 
(
σ, ‖ b ‖ L ∞ (0 ,t;L ∞ ) 

)
is independent of ν and h . 

The final result is obtained by applying the triangle inequality to the left-hand side of (24) and using (29) and (21) . �

In the next step of the error analysis, a bound for the pressure error will be derived. 

Theorem 2. Let the assumptions of Theorem 1 hold and let ν ≤ 1, then it holds 

‖ p − p h ‖ L 2 (0 ,t;L 2 ) ≤ Ch 

r ∀ t ∈ (0 , T ] , (30)

where C = C 
(
β−1 

0 
, ‖ u ‖ L 2 (0 ,t;H r+1 ) , ‖ ∂ t u ‖ L 2 (0 ,t;H r ) , ‖ p‖ L 2 (0 ,t;H r ) , σ, ‖ b ‖ L ∞ (0 ,t;L ∞ ) 

)
is independent of ν and h. 

Proof. As usual, the bound is derived on the basis of the discrete inf-sup condition (3) . It turns out that the derivation

requires in particular a bound for ‖ ∂ t e h ‖ −1 , which will be proved first. By definition, it is 

‖ ∂ t e h ‖ −1 = sup 

ϕ ∈ H 1 
0 
(�) d \{ 0 } 

| 〈 ∂ t e h , ϕ 〉 | 
‖∇ ϕ ‖ 0 

. 

The first step consists in reducing the bound of ‖ ∂ t e h ‖ −1 to a bound of ‖ A 

−1 / 2 
h 

∂ t e h ‖ 0 . From [9, Lemma 3.11] , it is known

that 

‖ ∂ t e h ‖ −1 ≤ Ch ‖ ∂ t e h ‖ 0 + C‖ A 

−1 / 2 	∂ t e h ‖ 0 , (31)

where 	 is the Leray projector introduced in Section 2 . Applying [9, (2.15)] gives 

‖ A 

−1 / 2 	∂ t e h ‖ 0 ≤ Ch ‖ ∂ t e h ‖ 0 + ‖ A 

−1 / 2 

h 
∂ t e h ‖ 0 , (32)
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with A h defined in (5) . From (31), (32) , the symmetry of A h , (6) , and the inverse inequality (4) , it follows that 

‖ ∂ t e h ‖ −1 ≤ C h ‖ ∂ t e h ‖ 0 + C ‖ A 

−1 / 2 

h 
∂ t e h ‖ 0 

= C h ‖ A 

1 / 2 

h 
A 

−1 / 2 

h 
∂ t e h ‖ 0 + C ‖ A 

−1 / 2 

h 
∂ t e h ‖ 0 

= C h ‖∇(A 

−1 / 2 

h 
∂ t e h ) ‖ 0 + C ‖ A 

−1 / 2 

h 
∂ t e h ‖ 0 

≤ C‖ A 

−1 / 2 

h 
∂ t e h ‖ 0 . (33)

Next, a bound for ‖ A 

−1 / 2 
h 

∂ t e h ‖ 0 will be derived. Projecting the error equation (25) onto the discretely divergence-free space

 

div 
h 

and using integration by parts yields 

(∂ t e h , v h ) + ν(∇ e h , ∇ v h ) + (( b · ∇) e h + σ e h , v h ) + S h ( e h , v h ) 
= (∂ t ( u − s h ) , v h ) + (( b · ∇)( u − s h ) + σ ( u − s h ) , v h ) − S h ( s h , v h ) − (p − i h p, ∇ · v h ) . 

Utilizing (9) , one finds (p − i h p, ∇ · v h ) = (D h (p − i h p) , v h ) , such that 

∂ t e h = −νA h e h − 	div 
h 

(
( b · ∇) e h + σ e h 

)
− C h e h + 	div 

h 

(
∂ t ( u − s h ) 

)
+	div 

h 

(
( b · ∇)( u − s h ) + σ ( u − s h ) 

)
− C h ( s h ) − D h (p − i h p) . (34)

With (8) , the Cauchy–Schwarz inequality, (6) , the L 2 stability of the fluctuation operator κK , and μK ∼ 1, one obtains for all

v h ∈ V div 
h 

‖ A 

−1 / 2 

h 
C h v h ‖ 0 = sup 

w h ∈ V div 
h 

\{ 0 } 

|〈 C h v h , A 

−1 / 2 

h 
w h 〉| 

‖ w h ‖ 0 

= sup 

w h ∈ V div 
h 

\{ 0 } 

| ∑ 

K∈T h μK (κK ∇ v h , κK ∇(A 

−1 / 2 

h 
w h )) 0 ,K | 

‖ w h ‖ 0 

≤ sup 

w h ∈ V div 
h 

\{ 0 } 

(∑ 

K∈T h μK ‖ κK ∇ v h ‖ 

2 
0 ,K 

)1 / 2 
C‖∇(A 

−1 / 2 

h 
w h ) ‖ 0 

‖ w h ‖ 0 

≤ C sup 

w h ∈ V div 
h 

\{ 0 } 

(∑ 

K∈T h μK ‖ κK ∇ v h ‖ 

2 
0 ,K 

)1 / 2 ‖ w h ‖ 0 

‖ w h ‖ 0 

= C 

( ∑ 

K∈T h 
μK ‖ κK ∇ v h ‖ 

2 
0 ,K 

) 1 / 2 

. (35)

Applying the above argument to ‖ A 

−1 / 2 
h 

D h (p − i h p) ‖ 0 yields 

‖ A 

−1 / 2 

h 
D h (p − i h p) ‖ 0 ≤ C‖ p − i h p‖ 0 . (36)

Definition (7) and the symmetry of A h gives for any g ∈ L 2 ( �) d the equality (A 

−1 / 2 
h 

	div 
h 

g , v h ) = ( g , A 

−1 / 2 
h 

v h ) for all v h ∈ V div 
h 

.

It follows with v h = A 

−1 / 2 
h 

	div 
h 

g ∈ V div 
h 

and (6) that 

‖ A 

−1 / 2 

h 
	div 

h g ‖ 

2 
0 ≤ ‖ g ‖ −1 ‖∇(A 

−1 / 2 

h 
A 

−1 / 2 

h 
	div 

h g ) ‖ 0 = ‖ g ‖ −1 ‖ A 

−1 / 2 

h 
	div 

h g ‖ 0 

and hence 

‖ A 

−1 / 2 

h 
	div 

h g ‖ 0 ≤ ‖ g ‖ −1 ∀ g ∈ L 2 (�) d . (37)

In the next step, A 

−1 / 2 
h 

is applied to (34) . Using (35), (36) , and (37) leads to 

‖ A 

−1 / 2 

h 
∂ t e h ‖ 0 ≤ ν‖ A 

1 / 2 

h 
e h ‖ 0 + ‖ ( b · ∇) e h + σ e h ‖ −1 + 

( ∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
0 ,K 

) 1 / 2 

+ ‖ ∂ t ( u − s h ) ‖ −1 + ‖ ( b · ∇)( u − s h ) + σ ( u − s h ) ‖ −1 

+ 

( ∑ 

K∈T h 
μK ‖ κK ∇ s h ‖ 

2 
0 ,K 

) 1 / 2 

+ ‖ p − i h p‖ 0 . (38)

Taking the square of (38) and integrating on (0, t ) yields ∫ t 

0 

‖ A 

−1 / 2 

h 
∂ s e h (s ) ‖ 

2 
0 ds 

≤ C 

(∫ t 

0 

ν2 ‖ A 

1 / 2 

h 
e h (s ) ‖ 

2 
0 ds + 

∫ t 

0 

‖ (( b · ∇) e h + σ e h )(s ) ‖ 

2 
−1 ds 
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+ 

∫ t 

0 

∑ 

K∈T h 
μK ‖ κK ∇ e h (s ) ‖ 

2 
0 ,K ds + 

∫ t 

0 

‖ ∂ t ( u − s h )(s ) ‖ 

2 
−1 ds 

+ 

∫ t 

0 

‖ (p − i h p)(s ) ‖ 

2 
0 ds + 

∫ t 

0 

‖ (( b · ∇)( u − s h ) + σ ( u − s h ))(s ) ‖ 

2 
−1 ds 

+ 

∫ t 

0 

∑ 

K∈T h 
μK ‖ κK ∇ s h (s ) ‖ 

2 
0 ,K ds 

) 

. (39) 

It will be shown that all the terms on the right-hand side of (39) are of sufficiently high asymptotic order, concretely that

they are O(h 2 r ) . This asymptotic behavior is obtained for the first and third term directly from (29) . Using the definition of

the H 

−1 (�) d norm for the second term in (39) , applying integration by parts, and utilizing Poincaré’s inequality leads to 

‖ ( b · ∇) e h + σ e h ‖ −1 ≤ C ( ‖ b ‖ ∞ 

+ σ ) ‖ e h ‖ 0 . 

Hence, it is ∫ t 

0 

‖ (( b · ∇) e h + σ e h )(s ) ‖ 

2 
−1 ds ≤ C 

∫ t 

0 

‖ e h (s ) ‖ 

2 
0 ds, 

such that the order of convergence O(h 2 r ) can be again deduced from (29) . For estimating ‖ ∂ t ( u − s h ) ‖ −1 , the definition

of the H 

−1 (�) d norm and Poincaré’s inequality are applied, which gives a bound of this term by C‖ ∂ t ( u − s h ) ‖ 0 . Now,

(21) is applied, see Remark 1 , and using the regularity assumptions (23) , the asymptotic bound for ‖ ∂ t ( u − s h ) ‖ −1 is O(h r ) .

Consequently, the integral of its square is also bounded, giving ∫ t 

0 

‖ ∂ s ( u − s h )(s ) ‖ 

2 
−1 ds ≤ Ch 

2 r ‖ ∂ t u ‖ 

2 
L 2 (0 ,t;H r ) . 

The term involving the pressure is estimated with (12) . Arguing as in (26) –(27) yields ∫ t 

0 

∑ 

K∈T h 
μK ‖ κK ∇ s h (s ) ‖ 

2 
0 ,K ds ≤ C 

∫ t 

0 

(‖ ( s h − u )(s ) ‖ 

2 
1 + ‖ κK ∇ u (s ) ‖ 

2 
0 

)
ds 

≤ Ch 

2 r ‖ u ‖ 

2 
L 2 (0 ,t;H r+1 ) , 

where (21) and (14) were applied in the last inequality. Finally, arguing in the same way as for the second term gives 

‖ ( b · ∇)( u − s h ) + σ ( u − s h ) ‖ −1 ≤ C ( ‖ b ‖ ∞ 

+ σ ) ‖ u − s h ‖ 0 , 

from what follows that ∫ t 

0 

‖ (( b · ∇)( u − s h ) + σ ( u − s h ))(s ) ‖ 

2 
−1 ds ≤ C 

∫ t 

0 

‖ ( u − s h )(s ) ‖ 

2 
0 ds. 

The bound for this term is finished by applying (21) . Combining the estimates for (39) with (33) , it is shown that ∫ t 

0 

‖ ∂ s ( e h )(s ) ‖ 

2 
−1 ds = O(h 

2 r ) . (40) 

Using now the discrete inf-sup condition (3) and (25) , one obtains 

β0 ‖ p h − i h p‖ 0 

≤ ν‖∇ e h ‖ 0 + ‖ ( b · ∇) e h + σ e h ‖ −1 + ‖ ∂ t e h ‖ −1 + C 

( ∑ 

K∈T h 
μK ‖ κK ∇ e h ‖ 

2 
0 ,K 

) 1 / 2 

+ ‖ ∂ t ( u − s h ) ‖ −1 + ‖ ( b · ∇)( u − s h ) + σ ( u − s h ) ‖ −1 

+ C 

( ∑ 

K∈T h 
μK ‖ κK ∇ s h ‖ 

2 
0 ,K 

) 1 / 2 

+ ‖ p − i h p‖ 0 + ‖ l h ‖ 0 . 
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Taking the square and integrating on (0, t ) leads to 

β2 
0 

∫ t 

0 

‖ (p h − i h p)(s ) ‖ 

2 
0 ds 

≤ C 

(∫ t 

0 

ν2 ‖∇ e h (s ) ‖ 

2 
0 ds + 

∫ t 

0 

‖ (( b · ∇) e h + σ e h )(s ) ‖ 

2 
−1 ds 

+ 

∫ t 

0 

‖ ∂ s ( e h )(s ) ‖ 

2 
−1 ds + 

∫ t 

0 

∑ 

K∈T h 
μK ‖ κK ∇ e h (s ) ‖ 

2 
0 ,K ds 

+ 

∫ t 

0 

‖ ∂ s ( u − s h )(s ) ‖ 

2 
−1 ds + 

∫ t 

0 

‖ (( b · ∇)( u − s h )(s ) + σ ( u − s h ))(s ) ‖ 

2 
−1 ds 

+ 

∫ t 

0 

∑ 

K∈T h 
μK ‖ κK ∇ s h (s ) ‖ 

2 
0 ,K ds + 

∫ t 

0 

‖ (p − i h p)(s ) ‖ 

2 
0 ds + 

∫ t 

0 

‖ l h (s ) ‖ 

2 
0 ds 

) 

. 

Arguing exactly as in the estimates of the terms which are on the right-hand side of (39) , using (40) for bounding∫ t 
0 ‖ ∂ s ( e h )(s ) ‖ 2 −1 ds, (22) to bound the last term, and applying finally the triangle inequality, proves (30) . �

4. Error analysis for the fully discrete method with cGP( k ) 

The continuous Galerkin–Petrov method is studied as temporal discretization. Consider a partition 0 = t 0 < t 1 < · · · < t N =
T of the time interval I := [0, T ] and set I n = (t n −1 , t n ] , τn = t n − t n −1 , n = 1 , . . . N, and τ := max 1 ≤ n ≤ N τ n . For a given non-

negative integer k , the time-continuous and time-discontinuous velocity spaces are defined as follows 

X 

c 
k := { u ∈ C(V h ) : u | I n ∈ P k (I n , V h ) } , X 

dc 
k := 

{
u ∈ L 2 (V h ) : u | I n ∈ P k (I n , V h ) 

}
, 

and time-continuous and time-discontinuous pressure spaces are given by 

Y c k := { q ∈ C(Q h ) : q | I n ∈ P k (I n , Q h ) } , Y dc 
k := 

{
q ∈ L 2 (Q h ) : q | I n ∈ P k (I n , Q h ) 

}
, 

for n = 1 , . . . , N. Here, 

P k (I n , W h ) := 

{ 

u : I n → W h : u (t) = 

k ∑ 

i =0 

U i t 
i , ∀ t ∈ I n , U i ∈ W h , ∀ i 

} 

denotes the space of W h -valued polynomials of order k in time. The functions in the spaces X dc 
k 

and Y dc 
k 

are allowed to

be discontinuous at the nodes t n . Below, the combination of the LPS method as spatial discretization and the cGP( k ) time

stepping scheme is denoted by LPS/cGP. 

Denote by X c 
k, 0 

:= X c 
k 

∩ X 0 the subspace of X c 
k 

with zero initial condition and introduce a bilinear form b h given by 

b h ( ( u , p) ; ( v , q ) ) := 

∫ T 

0 

[(
∂ t u , v 

)
+ a h 

(
( u , p) ; ( v , q ) 

)]
dt. 

The LPS/cGP method reads as follows: 

Find u h,τ ∈ X c 
k, 0 

and p h,τ ∈ Y c 
k 

such that 

b h 
((

u h,τ , p h,τ

)
;
(
v h,τ , q h,τ ) 

)
= 

∫ T 

0 

(
f , v h,τ

)
dt ∀ v h,τ ∈ X 

dc 
k −1 , q h,τ ∈ Y dc 

k −1 , (41)

where the index h , τ refers to the discretization in space and time. The associated continuous problem is given by: 

Find u ∈ X and p ∈ L 2 ( Q ) such that ∫ T 

0 

[(
∂ t u (t) , v (t) 

)
+ a 

(
( u (t) , p(t)) ; ( v (t) , q (t)) 

)]
dt = 

∫ T 

0 

(
f (t) , v (t) 

)
dt (42)

for all v ∈ L 2 ( V ), q ∈ L 2 ( Q ). 

For a function w, which is smooth on each time interval I n , the operator πk −1 is defined by 

(πk −1 w ) | I n (t) = 

k ∑ 

i =1 

w ( ̃ t n,i ) ̃ L n,i (t) , (43)

where ˜ t n,i denote the Gaussian quadrature points on I n and 

˜ L n,i ∈ P k −1 (I n ) are the associated Lagrange basis functions. From

(43) , it can be concluded that πk −1 w h,τ ∈ X dc 
k −1 

for all w h,τ ∈ X c 
k 

and πk −1 q h,τ ∈ Y dc 
k −1 

for all q h,τ ∈ Y c 
k 

. Furthermore, one has

for all w h,τ ∈ X c 
k 

that 
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I n 

( w h,τ (t) − πk −1 w h,τ (t )) t j dt = 0 , j = 0 , . . . , k − 1 , n = 1 , . . . , N, (44)

where 0 denotes the zero element in V h . 

The finite element analysis considers the mesh-dependent norm ∥∥v 
∥∥

cGP 
:= 

(∫ T 

0 

∣∣∣∣∣∣πk −1 v 
∣∣∣∣∣∣2 

dt + 

1 

2 

∥∥v (T ) 
∥∥2 

0 

)1 / 2 

. 

It was already observed in [5] that || · || cGP is on X c 
k 

⊂ X dc 
k 

not only a semi-norm but a norm. For completeness of pre-

sentation, the corresponding arguments are repeated here. The first term inside the definition of || v || cGP guarantees that

|| v || cGP = 0 results in a function Â·v which is on each time interval I n given by L (n ) 
k 

(t) ϕ h (x ) , where L (n ) 
k 

is the transformed

k th Legendre polynomial on I n and ϕh ∈ V h . Due to v (T ) = 0 and L (N) 
k 

(T ) = 1 the function v vanishes on the last time interval

I N . The continuity of v on I gives then v (t N−1 ) = 0 . By recursion, one obtains v = 0 on I and hence || · || cGP is a norm. 

The following lemma proves a property of the bilinear form b h that will be used in the derivation of the error bounds

for the approximation to the velocity. 

Lemma 3. Assume that b and σ are constant with respect to time. Then, there exists a constant C > 0 independent of ν , h , and

τ such that 

b h 
((

v h,τ , q h,τ

)
;
(
πk −1 v h,τ , πk −1 q h,τ

))
= ‖ v h,τ‖ 

2 
cGP ∀ ( v h,τ , q h,τ ) ∈ X 

dc 
k × Y dc 

k 

holds true. 

Proof. It is 

b h 
((

v h,τ , q h,τ

)
; (πk −1 v h,τ , πk −1 q h,τ ) 

)
= 

∫ T 

0 

[(
∂ t v h,τ , πk −1 v h,τ

)
+ a h 

((
v h,τ , q h,τ

)
;
(
πk −1 v h,τ , πk −1 q h,τ

))]
dt. 

Using the fact that the convection and reaction are time-independent functions, taking into account that ∫ T 

0 

[
−
(
q h,τ , di v πk −1 v h,τ

)
+ 

(
πk −1 q h,τ , di v v h,τ

)]
d t = 

∫ T 

0 

[
−
(
πk −1 q h,τ , d i v πk −1 v h,τ

)
+ 

(
πk −1 q h,τ , d i v πk −1 v h,τ

)]
d t = 0 ,

and (10) , one obtains ∫ T 

0 

a h 
((

v h,τ , q h,τ

)
;
(
πk −1 v h,τ , πk −1 q h,τ

))
dt 

= 

∫ T 

0 

a h 
((

πk −1 v h,τ , πk −1 q h,τ

)
;
(
πk −1 v h,τ , πk −1 q h,τ

))
dt = 

∫ T 

0 

||| πk −1 v h,τ ||| 2 dt. 

Concerning the first term, it is noted that ∂ t v h , τ is a discontinuous function in time of degree k − 1 . Using v h,τ (0) = 0

yields ∫ T 

0 

(
∂ t v h,τ , πk −1 v h,τ

)
dt = 

∫ T 

0 

(
∂ t v h,τ , v h,τ

)
d t = 

1 

2 

∫ T 

0 

d 

d t 

∥∥v h,τ

∥∥2 

0 
d t 

= 

1 

2 

∥∥v h,τ (T ) 
∥∥2 

0 
. �

The derivation of error bounds makes use of a time interpolation 

˜ w ∈ C(H) of a sufficiently smooth function w, where H

can be either a velocity space V or a pressure space Q , and 

˜ w | I n ∈ P k (I n , H) , defined by 

˜ w (t n −1 ) = w (t n −1 ) , ˜ w (t n ) = w (t n ) , 

∫ 
I n 

(w (t) − ˜ w (t ) , z(t )) dt = 0 , (45)

for all z ∈ P k −2 (I n , H) . The standard interpolation error estimate (∫ 
I n 

‖ w − ˜ w ‖ 

2 
m 

dt 

)1 / 2 

≤ Cτ k +1 
n 

(∫ 
I n 

‖ w 

(k +1) ‖ 

2 
m 

dt 

)1 / 2 

(46) 

holds true for m ∈ {0, 1} and all time intervals I n , n = 1 , . . . , N. 

Theorem 4. Assume that the spaces V h , Q h satisfy Assumptions A1 and A2 , μK ∼ 1 for all K ∈ T h , and ν ≤ 1 . Let ( u , p ) be the

solution of (42) and ( u h , τ , p h , τ ) the solution of (41) . Further, assume that the solution ( u , p ) is smooth enough such that all the

norms on the right-hand side of (47) are bounded. Then, there exists a positive constant C independent of ν , h , and τ such that

the error estimate ∥∥u − u h,τ

∥∥
cGP 

≤ C h 

r 
(‖ u ‖ L 2 (H r+1 ) + ‖ u ‖ H 1 (H r ) + ‖ p‖ L 2 (H r ) + h ‖ u (T ) ‖ r+1 

)
+ C τ k +1 ‖ u ‖ H k +1 (H 1 ) (47) 

is valid. 
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Proof. The error analysis starts by decomposing the error e h,τ = u h,τ − u into θh := ̃

 s h − u and ξh,τ := u h,τ − ˜ s h , with the

velocity solution 

˜ s h of (16) , where g in (20) is defined as −ν� ˜ u . Then, it is 

u h,τ − u = e h,τ = θh + ξh,τ . 

For the discrete error ξh , τ Lemma 3 gives 

‖ ξh,τ‖ 

2 
cGP = b h 

(
( ξh,τ , p h,τ ) ; (πk −1 ξh,τ , πk −1 p h,τ ) 

)
. (48)

Applying a straightforward calculation yields 

b h 
(
( ξh,τ , p h,τ ) ; (πk −1 ξh,τ , πk −1 p h,τ ) 

)
= 

∫ T 

0 

(
∂ t u − ∂ t ̃  s h , πk −1 ξh,τ

)
dt + 

∫ T 

0 

ν
(∇ ( u − ˜ s h ) , ∇ (πk −1 ξh,τ ) 

)
dt 

+ 

∫ T 

0 

(
( b · ∇)( u − ˜ s h ) , πk −1 ξh,τ

)
d t + 

∫ T 

0 

(
σ ( u − ˜ s h ) , πk −1 ξh,τ

)
d t 

+ 

∫ T 

0 

(∇p, πk −1 ξh,τ ) dt −
∫ T 

0 

S h ( ̃ s h , πk −1 ξh,τ ) dt. (49)

The six terms on the right-hand side have to be bounded. 

For the first one, the error is split in two terms ∫ T 

0 

(
∂ t u − ∂ t ̃  s h , πk −1 ξh,τ

)
dt = 

∫ T 

0 

(
∂ t ( u − ˜ u ) , πk −1 ξh,τ

)
d t + 

∫ T 

0 

(
∂ t ( ̃  u − ˜ s h ) , πk −1 ξh,τ

)
d t. (50)

Integration by parts and using (45) yield for the first term on the right-hand side of (50) ∫ T 

0 

(
∂ t ( u − ˜ u ) , πk −1 ξh,τ

)
d t = 

N ∑ 

n =1 

(
−

∫ 
I n 

( u − ˜ u , ∂ t (πk −1 ξ)) d t + ( u − ˜ u , πk −1 ξhτ ) 

∣∣∣t n 

t n −1 

)
= 0 . (51)

For the second term on the right-hand side of (50) , the application of the Cauchy–Schwarz inequality and (21) gives ∫ T 

0 

(
∂ t ( ̃  u − ˜ s h ) , πk −1 ξh,τ

)
dt 

≤
N ∑ 

n =1 

∫ 
I n 

‖ ∂ t ̃  u − ∂ t ̃  s h ‖ 0 ‖ πk −1 ξh,τ‖ 0 dt 

≤
( 

N ∑ 

n =1 

∫ 
I n 

‖ ∂ t ̃  u − ∂ t ̃  s h ‖ 

2 
0 dt 

) 1 / 2 ( 

N ∑ 

n =1 

‖ πk −1 ξh,τ‖ 

2 
0 dt 

) 1 / 2 

≤ Ch 

r 

( 

N ∑ 

n =1 

∫ 
I n 

‖ ∂ t ̃  u ‖ 

2 
r dt 

) 1 / 2 ( 

N ∑ 

n =1 

∫ 
I n 

σ‖ πk −1 ξh,τ‖ 

2 
0 dt 

) 1 / 2 

≤ Ch 

r ‖ u ‖ H 1 (H r ) ‖ ξh,τ‖ cGP , (52)

where in the last estimate the inequality ‖ ̃ u ‖ H 1 (H r ) ≤ C‖ u ‖ H 1 (H r ) was applied. Thus, from (50), (51) , and (52) one derives

the bound for the first term on the right-hand side of (49) ∫ T 

0 

(
∂ t u − ∂ t ̃  s h , πk −1 ξh,τ

)
dt ≤ Ch 

r ‖ u ‖ H 1 (H r ) ‖ ξ‖ cGP . (53)

To bound the third term on the right-hand side of (49) , the error splitting ∫ T 

0 

(
( b · ∇)( u − ˜ s h ) , πk −1 ξh,τ

)
dt = 

∫ T 

0 

(
( b · ∇)( u − ˜ u ) , πk −1 ξh,τ

)
d t + 

∫ T 

0 

(
( b · ∇)( ̃  u − ˜ s h ) , πk −1 ξh,τ

)
d t 

is used. Then, applying (46) and (21) yields ∫ T 

0 

(
( b · ∇)( u − ˜ s h ) , πk −1 ξh,τ

)
dt 

≤
∫ T 

0 

‖ b ‖ ∞ 

(‖ u − ˜ u ‖ 1 + ‖ ̃

 u − ˜ s h ‖ 1 

)‖ πk −1 ξh,τ‖ 0 dt 

≤ C 

⎡ ⎣ 

( 

N ∑ 

n =1 

τ 2 k +2 
n 

∫ 
I n 

‖ u 

(k +1) ‖ 

2 
1 dt 

) 1 / 2 

+ 

( 

h 

2 r 
N ∑ 

n =1 

∫ 
I n 

‖ ̃

 u ‖ 

2 
r+1 dt 

) 1 / 2 
⎤ ⎦ 

( 

N ∑ 

n =1 

∫ 
I n 

||| πk −1 ξ||| 2 0 dt 

) 1 / 2 
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≤
(
C τ k +1 ‖ u ‖ H k +1 (H 1 ) + C h 

r ‖ u ‖ L 2 (H r+1 ) 

)‖ ξh,τ‖ cGP . (54) 

Arguing exactly as before gives for the second and the fourth term on the right-hand side of (49) 

∫ T 

0 

ν
(∇ ( u − ˜ s h ) , ∇ (πk −1 ξh,τ ) 

)
d t + 

∫ T 

0 

(
σ ( u − ˜ s h ) , πk −1 ξh,τ

)
d t 

≤
(
C(ν1 / 2 + σ 1 / 2 h ) h 

r ‖ u ‖ L 2 (H r+1 ) + C(ν1 / 2 + σ 1 / 2 ) τ k +1 ‖ u ‖ H k +1 (H 1 ) 

)‖ ξh,τ‖ cGP . (55) 

To bound the fifth term on the right-hand side of (49) observe that 

∫ T 

0 

(∇p, πk −1 ξh,τ ) dt = 

∫ T 

0 

−(p, ∇ · πk −1 ξh,τ ) dt = 

∫ T 

0 

−(p, πk −1 ∇ · ξh,τ ) dt, 

since the time projection πk −1 and the divergence commute. In addition, it is 

∫ 
I n 

(i h p, πk −1 ∇ · ξh,τ ) dt = 

∫ 
I n 

(πk −1 (i h p) , πk −1 ∇ · ξh,τ ) dt = 

∫ 
I n 

(πk −1 (i h p) , ∇ · ξh,τ ) dt = 0 , (56) 

since ˜ s h has discrete divergence equal to zero and the relation 

∫ 
I n 
(∇ · u h,τ , q h,τ ) dt = 0 holds by definition for all q h,τ ∈ Y dc 

k −1 
.

Thus, for the fifth term on the right-hand side of (49) , integration by parts with respect to space, applying the orthogonality

condition (13) , using (56) , μK ∼ 1, and (12) lead to 

∫ T 

0 

(∇p, πk −1 ξh,τ ) dt 

= 

∫ T 

0 

(i h p − p, πk −1 ∇ · ξh,τ ) dt = 

∫ T 

0 

∑ 

k ∈T h 
(i h p − p, κK πk −1 ∇ · ξh,τ ) K dt 

≤
∫ T 

0 

( ∑ 

K∈T h 
μ−1 

K ‖ i h p − p‖ 

2 
0 ,K 

) 1 / 2 ( ∑ 

K∈T h 
μK ‖ κK ∇πk −1 ξh,τ‖ 

2 
0 ,K 

) 1 / 2 

dt 

≤ C 

(∫ T 

0 

‖ i h p − p‖ 

2 
0 dt 

)1 / 2 

‖ ξh,τ‖ cGP ≤ Ch 

r ‖ p‖ L 2 (H r ) ‖ ξh,τ‖ cGP . (57) 

Finally, to bound the last term on the right-hand side of (49) , the following decomposition is considered 

∫ T 

0 

S h ( ̃ s h , πk −1 ξh,τ ) dt = 

∫ T 

0 

S h ( ̃ s h − ˜ u , πk −1 ξh,τ ) dt 

+ 

∫ T 

0 

S h ( ̃  u − u , πk −1 ξh,τ ) dt + 

∫ T 

0 

S h ( u , πk −1 ξh,τ ) dt. (58) 

For the first term on the right-hand side of (58) , the L 2 stability of the fluctuation operator κK , μK ∼ 1, and (21) are applied

to obtain ∫ T 

0 

S h ( ̃ s h − ˜ u , πk −1 ξh,τ ) dt 

≤
∫ T 

0 

( ∑ 

K∈T h 
μK ‖ κK ∇( ̃ s h − ˜ u ) ‖ 

2 
0 ,K 

) 1 / 2 ( ∑ 

K∈T h 
μK ‖ κK πk −1 ∇ ξh,τ‖ 

2 
0 ,K 

) 1 / 2 

dt 

≤
( ∫ T 

0 

∑ 

K∈T h 
μK ‖ κK ∇( ̃ s h − ˜ u ) ‖ 

2 
0 ,K dt 

) 1 / 2 (∫ T 

0 

||| πk −1 ξh,τ ||| 2 dt 

)1 / 2 

≤ Ch 

r ‖ u ‖ L 2 (H r+1 ) ‖ ξh,τ‖ cGP . (59) 

Applying the stability of the fluctuation operator κK , μK ∼ 1, and (46) gives for the second term on the right-hand side of

(58) 
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∫ T 

0 

S h ( ̃  u − u , πk −1 ξh,τ ) dt 

≤
∫ T 

0 

( ∑ 

K∈T h 
μK ‖ κK ∇( ̃  u − u ) ‖ 

2 
0 ,K 

) 1 / 2 ( ∑ 

K∈T h 
μK ‖ κK πk −1 ∇ ξh,τ‖ 

2 
0 ,K 

) 1 / 2 

dt 

≤
( ∫ T 

0 

∑ 

K∈T h 
μK ‖ κK ∇( ̃  u − u ) ‖ 

2 
0 ,K dt 

) 1 / 2 (∫ T 

0 

||| πk −1 ξh,τ ||| 2 dt 

)1 / 2 

≤ Cτ k +1 ‖ u ‖ H k +1 (H 1 ) ‖ ξh,τ‖ cGP . (60)

To finish the estimate of the last term on the right-hand side of (49) , the Cauchy–Schwarz inequality, the approximation

properties (14) of the fluctuation operator κK , and μK ∼ 1 are used to get 

∫ T 

0 

S h ( u , πk −1 ξh,τ ) dt 

≤
∫ T 

0 

( ∑ 

K∈T h 
μK ‖ κK ∇ u ‖ 

2 
0 ,K 

) 1 / 2 ( ∑ 

K∈T h 
μK ‖ κK πk −1 ∇ ξh,τ‖ 

2 
0 ,K 

) 1 / 2 

dt 

≤
( ∫ T 

0 

∑ 

K∈T h 
μK ‖ κK (∇ u ) ‖ 

2 
0 ,K dt 

) 1 / 2 (∫ T 

0 

||| πk −1 ξh,τ ||| 2 dt 

)1 / 2 

≤ Ch 

r ‖ u ‖ L 2 (H r+1 ) ‖ ξh,τ‖ cGP . (61)

Inserting (59), (60) , and (61) in (58) gives 

∫ T 

0 

S h ( ̃ s h , πk −1 ξh,τ ) dt ≤
(
C h 

r ‖ u ‖ L 2 (H r+1 ) + C τ k +1 ‖ u ‖ H k +1 (H 1 ) 

)‖ ξh,τ‖ cGP . (62)

Inserting (49) in (48) and utilizing (53), (54), (55), (57) , and (62) lead to 

‖ ξh,τ‖ cGP ≤ Ch 

r 
[ 
‖ u ‖ L 2 (H r+1 ) + ‖ u ‖ H 1 (H r ) + ‖ p‖ L 2 (H r ) 

] 
+ Cτ k +1 ‖ u ‖ H k +1 (H 1 ) . (63)

Applying the triangle inequality, the bound (21) , and the interpolation error estimates in time gives the statement of the

theorem. �

Arguing similarly as in [5, Theorem 4.4] , one can prove the following theorem. 

Theorem 5. Under the assumptions of Theorem 4 , the following error estimate is valid (∫ T 

0 

‖ u (t) − u h,τ (t ) ‖ 

2 
0 dt 

)1 / 2 

≤ C(1 + T 1 / 2 ) h 

r 
[‖ u ‖ L 2 (H r+1 ) + ‖ u ‖ H 1 (H r ) + ‖ p‖ L 2 (H r ) 

]
+ C(1 + T 1 / 2 ) τ k +1 ‖ u ‖ H k +1 (H 1 ) , (64)

with C independent of ν , h , and τ . 

Proof. Denoting as before ξh,τ = u h,τ − ˜ s h . Applying the ideas leading to (63) on [0, t n ], n = 1 , . . . , N, instead of on [0, T ]

gives 

∫ t n 

0 

||| πk −1 ξh,τ (t) ||| 2 dt + 

1 

2 

‖ ξh,τ (t n ) ‖ 

2 
0 ≤ Ch 

2 r 
[ 
‖ u ‖ 

2 
L 2 (H r+1 ) + ‖ u ‖ 

2 
H 1 (H r ) + ‖ p‖ 

2 
L 2 (H r ) 

] 
+ Cτ 2 k +2 ‖ u ‖ 

2 
H k +1 (H 1 ) 

, 

where the norms on the right-hand side were extended from [0, t n ] to [0, T ] by using that these norms do not decrease by

extending the time interval. After having neglected the non-negative integral on the left-hand side and having multiplied by
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τ n , the summation over n = 1 , . . . , N yields 

N ∑ 

n =1 

τn ‖ ξh,τ (t n ) ‖ 

2 
0 ≤

( 

N ∑ 

n =1 

τn 

) 

Ch 

2 r 
[ 
‖ u ‖ 

2 
L 2 (H r+1 ) + ‖ u ‖ 

2 
H 1 (H r ) + ‖ p‖ 

2 
L 2 (H r ) 

] 
+ 

( 

N ∑ 

n =1 

τn 

) 

Cτ 2 k +2 ‖ u ‖ 

2 
H k +1 (H 1 ) 

. (65) 

Since ξh , τ is a piecewise polynomial of degree less than or equal to k in time, the equivalence of all norms in finite-

dimensional spaces gives ∫ t n 

t n −1 

‖ ξh,τ‖ 

2 
0 dt ≤ C k 

(∫ t n 

t n −1 

‖ πk −1 ξh,τ (t) ‖ 

2 
0 dt + τn ‖ ξh,τ (t n ) ‖ 

2 
0 

)
, 

where C k depends on the polynomial degree k but it is independent of τ n and h . Hence, applying (65) and (63) leads to ∫ T 

0 

‖ u h,τ (t) − ˜ s h (t) ‖ 

2 
0 dt ≤ C k 

N ∑ 

n =1 

(∫ t n 

t n −1 

‖ πk −1 ξh,τ (t) ‖ 

2 
0 dt + τn ‖ ξh,τ (t n ) ‖ 

2 
0 

)
≤ C k 

( ∫ T 

0 

||| πk −1 ξh,τ (t) ||| 2 0 dt + 

N ∑ 

n =1 

τn ‖ ξh,τ (t n ) ‖ 

2 
0 

) 

≤ C(1 + T ) h 

2 r 
[ 
‖ u ‖ 

2 
L 2 (H r+1 ) + ‖ u ‖ 

2 
H 1 (H r ) + ‖ p‖ 

2 
L 2 (H r ) 

] 
+ C(1 + T ) τ 2 k +2 ‖ u ‖ 

2 
H k +1 (H 1 ) 

. (66) 

Now, the statement of the theorem follows by applying the triangle inequality and the time interpolation error estimates

(46) together with (21) . �

Theorem 6. Let the assumptions of Theorem 4 hold and let in addition ( u , p ) be smooth enough such that the norms on the

right-hand side of (67) are bounded. Then, there exists a positive constant C independent of ν , h , and τ such that the error

estimate (∫ T 

0 

‖ πk −1 

(
p h,τ (t) − p(t) 

)‖ 

2 
0 dt 

)1 / 2 

≤ C(1 + T ) h 

r 
[‖ u ‖ H 1 (H r+1 ) + ‖ u ‖ H 2 (H r ) + ‖ p‖ H 1 (H r ) 

]
+ C(1 + T ) τ k (1 + τ ) ‖ u ‖ H k +2 (H 1 ) + Cτ k +1 ‖ p‖ H k +1 (L 2 ) + Ch 

r 
[‖ u ‖ L 2 (H r+1 ) + ‖ u ‖ H 1 (H r ) + ‖ p‖ H 1 (H r ) 

]
(67) 

holds. 

Proof. A straightforward calculation shows that for all v h,τ ∈ X d c 
k −1 

and q h,τ ∈ Y d c 
k −1 

, it holds 

b h (( u h,τ − ˜ s h , p h,τ ) ; ( v h,τ , q h,τ )) 

= 

∫ T 

0 

(∂ t ξh,τ , v h,τ ) dt + 

∫ T 

0 

ν(∇ ξh,τ , ∇ v h,τ ) dt + 

∫ T 

0 

(
( b · ∇) ξh,τ , v h,τ

)
dt 

+ 

∫ T 

0 

σ ( ξh,τ , v h,τ ) dt −
∫ T 

0 

(∇ · v h,τ , p h,τ ) dt + 

∫ T 

0 

S h ( ξh,τ , v h,τ ) dt 

= 

∫ T 

0 

(∂ t ( u − ˜ s h ) , v h,τ ) dt + 

∫ T 

0 

ν(∇( u − ˜ s h ) , ∇ v h,τ ) dt 

+ 

∫ T 

0 

(( b · ∇)( u − ˜ s h ) , v h,τ ) dt + 

∫ T 

0 

σ ( u − ˜ s h , v h,τ ) dt −
∫ T 

0 

S h ( ̃ s h , v h,τ ) dt + 

∫ T 

0 

(∇p, v h,τ ) dt. 

From this equation, one obtains ∫ T 

0 

(p h,τ − i h ̃  p , ∇ · v h,τ ) dt 

= 

∫ T 

0 

(p − i h ̃  p , ∇ · v h,τ ) dt + 

∫ T 

0 

(∂ t ξh,τ , v h,τ ) dt + 

∫ T 

0 

ν(∇ ξh,τ , ∇ v h,τ ) dt 

+ 

∫ T 

0 

(( b · ∇) ξh,τ , v h,τ ) dt + 

∫ T 

0 

σ ( ξh,τ , v h,τ ) dt + 

∫ T 

0 

S h ( ξh,τ , v h,τ ) dt 

+ 

∫ T 

0 

(∂ t ( ̃ s h − u ) , v h,τ ) dt + 

∫ T 

0 

ν(∇( ̃ s h − u ) , ∇ v h,τ ) dt 

+ 

∫ T 

(( b · ∇)( ̃ s h − u ) , v h,τ ) dt + 

∫ T 

σ ( ̃ s h − u , v h,τ ) dt + 

∫ T 

S h ( ̃ s h , v h,τ ) dt. (68) 

0 0 0 
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To derive the error estimates, the Gaussian quadrature rule with k points will be used for the numerical integration of the

time integral. Hence, one has ∫ T 

0 

q 2 k −1 (t) dt = 

N ∑ 

n =1 

τn 

2 

k ∑ 

i =1 

ˆ ω i q 2 k −1 ( ̃ t n,i ) (69)

for all q 2 k −1 ∈ P 2 k −1 (I n ) , where ˜ t n,i denote the corresponding quadrature points on I n and ˆ ω i are the weights of the Gaussian

formula on (−1 , 1) which satisfy ˆ ω i > 0 . Let ˜ t n, 0 = t n −1 be an additional point. 

Using the discrete inf-sup condition (3) , one can construct w h,τ ∈ P k (I n , V h ) such that 

β0 ‖ πk −1 

(
p h,τ ( ̃ t n,i ) − i h ̃  p ( ̃ t n,i ) 

)‖ 

2 
0 ≤

(
πk −1 

(
p h,τ ( ̃ t n,i ) − i h ̃  p ( ̃ t n,i ) 

)
, ∇ · w h,τ ( ̃ t n,i ) 

)
, (70)

‖ w h,τ ( ̃ t n,i ) ‖ 1 = ‖ πk −1 

(
p h,τ ( ̃ t n,i ) − i h ̃  p ( ̃ t n,i ) 

)‖ 0 . (71)

Since w h,τ ∈ P k (I n , V h ) , it follows that πk −1 w h,τ ∈ P k −1 (I n , V h ) . Setting v h,τ = πk −1 w h,τ and using (43), (44) , one obtains ∫ T 

0 

(p h,τ − i h ̃  p , ∇ · v h,τ ) dt = 

N ∑ 

n =1 

∫ 
I n 

(
(p h,τ − i h ̃  p ) , πk −1 (∇ · w h,τ ) 

)
dt 

= 

N ∑ 

n =1 

∫ 
I n 

(
πk −1 (p h,τ − i h ̃  p ) , ∇ · w h,τ

)
dt 

≥ β0 

∫ T 

0 

‖ πk −1 (p h,τ − i h ̃  p ) ‖ 

2 
0 dt, (72)

where the exactness of the quadrature rule for polynomials of degree (2 k − 1) , the positivity of the quadrature weights,

(69) , and (70) were used. 

Setting v h,τ = πk −1 w h,τ in (68) , using (72) , the assumption that b and σ are constants with respect to time, and (43) , it

follows that 

β0 

∫ T 

0 

‖ πk −1 (p h,τ − i h ̃  p ) ‖ 

2 
0 dt 

≤
∫ T 

0 

(
p h,τ − i h ̃  p , πk −1 (∇ · w h,τ ) 

)
dt 

= 

∫ T 

0 

(πk −1 (p − i h ̃  p ) , πk −1 (∇ · w h,τ )) dt + 

∫ T 

0 

(∂ t ξh,τ , πk −1 w h,τ ) dt 

+ 

∫ T 

0 

ν(πk −1 (∇ ξh,τ ) , πk −1 (∇ w h,τ )) dt + 

∫ T 

0 

(( b · ∇) πk −1 ξh,τ , πk −1 w h,τ ) dt 

+ 

∫ T 

0 

σ (πk −1 ξh,τ , πk −1 w h,τ ) dt + 

∫ T 

0 

S h (πk −1 ξh,τ , πk −1 w h,τ ) dt 

+ 

∫ T 

0 

(∂ t ( ̃ s h − u ) , πk −1 w h,τ ) dt + 

∫ T 

0 

ν(πk −1 ∇( ̃ s h − u ) , πk −1 (∇ w h,τ )) dt 

+ 

∫ T 

0 

(πk −1 ( b · ∇)( ̃ s h − u ) h,τ , πk −1 w h,τ ) dt 

+ 

∫ T 

0 

σ (πk −1 ( ̃ s h − u ) , πk −1 w h,τ ) dt + 

∫ T 

0 

S h (πk −1 ̃ s h , πk −1 w h,τ ) dt. (73)

The seventh term on the right-hand side of (73) is decomposed in the form ∫ T 

0 

(∂ t ( ̃ s h − u ) , πk −1 w h,τ ) dt = 

∫ T 

0 

(∂ t ( ̃ s h − ˜ u ) , πk −1 w h,τ ) dt + 

∫ T 

0 

(∂ t ( ̃  u − u ) , πk −1 w h,τ ) dt. 

For the second term on the right-hand side, integrating by parts with respect to time and using (45) yield ∫ T 

0 

(∂ t ( ̃  u − u ) , πk −1 w h,τ ) dt = −
N ∑ 

n =1 

(∫ 
I n 

( ̃  u − u , ∂ t (πk −1 w h,τ )) dt + ( u − ˜ u , πk −1 w h,τ ) 

∣∣∣t n 

t n −1 

)
= 0 . 

It follows that ∫ T 

0 

(∂ t ( ̃ s h − u ) , πk −1 w h,τ ) dt ≤
∫ T 

0 

‖ ∂ t ( ̃ s h − ˜ u ) ‖ 0 ‖ πk −1 w h,τ‖ 0 dt 

≤ C 

∫ T 

‖ ∂ t ( ̃ s h − ˜ u ) ‖ 0 ‖∇πk −1 w h,τ‖ 0 dt, 

0 



320 N. Ahmed et al. / Applied Mathematics and Computation 333 (2018) 304–324 

 

 

 

 

 

where Poincaré’s inequality was applied in the last line. 

Using (69), (43) , and (71) gives ∫ T 

0 

‖∇πk −1 w h,τ‖ 

2 
0 dt = 

N ∑ 

n =1 

τn 

2 

k ∑ 

i =1 

ˆ ω i ‖ πk −1 ∇ w h ( ̃ t n,i ) ‖ 

2 
0 

≤ C 

N ∑ 

n =1 

τn 

2 

k ∑ 

i =1 

ˆ ω i ‖∇ w h ( ̃ t n,i ) ‖ 

2 
0 

= C 

N ∑ 

n =1 

τn 

2 

k ∑ 

i =1 

ˆ ω i ‖ πk −1 

(
p h,τ ( ̃ t n,i ) − i h ̃  p ( ̃ t n,i ) 

)‖ 

2 
0 

= C 

∫ T 

0 

‖ πk −1 

(
p h,τ − i h ̃  p 

)‖ 

2 
0 dt, (74) 

where ˜ t n,i , i = 1 , . . . , k, denote the node of Gaussian quadrature on I n and ˆ ω i , i = 1 , . . . , k, are the corresponding weights on

[ −1 , 1] . 

Applying (74) yields ∫ T 

0 

(∂ t ( ̃ s h − u ) , πk −1 w h,τ ) dt ≤ C 

∫ T 

0 

‖ ∂ t ( ̃ s h − ˜ u ) ‖ 

2 
0 dt + 

β0 

12 

∫ T 

0 

‖ πk −1 

(
p h,τ − i h ̃  p 

)‖ 

2 
0 dt. 

Arguing in the same way for the rest of the terms on the right-hand side of (73) leads to ∫ T 

0 

‖ πk −1 (p h,τ − i h ̃  p ) ‖ 

2 
0 dt 

≤ C 

[ ∫ T 

0 

‖ πk −1 (p − i h ̃  p ) ‖ 

2 
0 dt + 

∫ T 

0 

‖ ∂ t ξh,τ‖ 

2 
−1 dt + 

∫ T 

0 

||| πk −1 ξh,τ ||| 2 dt 

+ 

∫ T 

0 

‖ ∂ t ( ̃ s h − ˜ u ) ‖ 

2 
0 dt + 

∫ T 

0 

ν‖ πk −1 ∇( ̃ s h − u ) ‖ 

2 
0 dt 

+ 

∫ T 

0 

(‖ b ‖ ∞ 

+ σ ) ‖ πk −1 ( ̃ s h − u ) ‖ 

2 
0 dt + 

∫ T 

0 

∑ 

K∈T h 
μK ‖ κK πk −1 ∇ ̃

 s h ‖ 

2 
0 ,K dt 

] 
. (75) 

Now, the terms on the right-hand side of (75) need to be bounded. The estimates for the third term follows from Theorem 4 .

In the following, the L 2 stability of the projection πk −1 and the interpolation operator with respect to time, i.e., ‖ πk −1 v ‖ 0 ≤
C‖ v ‖ 0 and ‖ ̃ v ‖ 0 ≤ C‖ v ‖ 0 will be often used. For the first term on the right-hand side of (75) , applying (46) and (13) gives ∫ T 

0 

‖ πk −1 (p − i h ̃  p ) ‖ 

2 
0 dt ≤ C 

(∫ T 

0 

‖ p − ˜ p ‖ 

2 
0 dt + 

∫ T 

0 

‖ ̃

 p − i h ̃  p ‖ 

2 
0 dt 

)
≤ C τ 2 k +2 

∫ T 

0 

‖ p (k +1) ‖ 

2 
0 dt + C h 

2 r 

∫ T 

0 

‖ ̃

 p ‖ 

2 
r dt 

≤ C 
(
τ 2 k +2 ‖ p‖ 

2 
H k +1 (L 2 ) 

+ h 

2 r ‖ p‖ 

2 
L 2 (H r ) 

)
. 

For bounding the second term on the right-hand side of (75) , one first observes that 
∫ T 

0 ‖ ∂ t ξh,τ‖ −1 dt ≤ ∫ T 
0 ‖ ∂ t ξh,τ‖ 0 dt .

Now, since it is assumed that b and σ are independent of t , the error bounds for ‖ ξh , τ‖ 0 can also be applied to its time

derivative so that applying (66) to ∂ t ξh , τ leads to ∫ T 

0 

‖ ∂ t ξh,τ‖ 

2 
0 dt ≤ C(1 + T ) h 

2 r 
[ 
‖ ∂ t u ‖ 

2 
L 2 (H r+1 ) + ‖ ∂ t u ‖ 

2 
H 1 (H r ) + ‖ ∂ t p‖ 

2 
L 2 (H r ) 

] 
+ C(1 + T ) τ 2 k ‖ ∂ t u ‖ 

2 
H k +1 (H 1 ) 

. 

For the truncation errors involving ˜ s h − u (the last four terms), one argues as in Theorem 4 to get ∫ T 

0 

‖ ∂ t ( ̃ s h − ˜ u ) ‖ 

2 
0 dt ≤ Ch 

2 r ‖ u ‖ 

2 
H 1 (H r ) , ∫ T 

0 

ν‖ πk −1 ∇( ̃ s h − u ) ‖ 

2 
0 dt ≤ Cν

(
h 

2 r ‖ u ‖ 

2 
L 2 (H r+1 ) + τ 2 k +2 ‖ u ‖ 

2 
H k +1 (H 1 ) 

)
, ∫ T 

0 

(‖ b ‖ ∞ 

+ σ ) ‖ ̃

 s h − u ‖ 

2 
0 dt ≤ C 

(
h 

2 r ‖ u ‖ 

2 
L 2 (H r ) + τ 2 k +2 ‖ u ‖ 

2 
H k +1 (H 1 ) 

)
. 

The bound for the last term (similarly as in the estimates (58) –(61) ) uses the error splitting with respect to space and time,

the L 2 stability of the fluctuation operator κK , μK ∼ 1, and the approximation properties of κK . One obtains ∫ T 

0 

∑ 

K∈T h 
μK ‖ κK πk −1 ∇ ̃

 s h ‖ 

2 
0 ,K dt 
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≤ 3 

∫ T 

0 

∑ 

K∈T h 
‖ κK ∇( ̃ s h − ˜ u ) ‖ 

2 
0 ,K dt + 3 

∫ T 

0 

∑ 

K∈T h 
‖ κK ∇( ̃  u − u ) ‖ 

2 
0 ,K dt + 3 

∫ T 

0 

∑ 

K∈T h 
‖ κK ∇ u ‖ 

2 
0 ,K dt 

≤ C 
(
h 

2 r ‖ u ‖ 

2 
L 2 (H r+1 ) + τ 2 k +2 ‖ u ‖ 

2 
H k +1 (H r+1 ) 

)
. 

The statement of the theorem follows by collecting the bounds for all terms on the right-hand side of (75) , and by

applying the triangle inequality and the bounds (13) and (46) for the interpolation errors in space and time. �

Remark 2. Instead of using 
∫ T 

0 ‖ ∂ t ξh,τ‖ 2 −1 dt ≤ ∫ T 
0 ‖ ∂ t ξh,τ‖ 2 0 dt, one could use ∫ T 

0 

‖ ∂ t ξh,τ‖ 

2 
−1 dt ≤ C 

∫ T 

0 

‖ A 

−1 / 2 

h 
∂ t ξh,τ‖ 

2 
0 dt 

and then argue as in the proof of Theorem 2 . However, since it is assumed that b is time-independent, the proof presented

above is shorter although it requires a higher regularity of the solution. 

5. Numerical studies 

Two examples will be presented that support the theoretical results obtained in the previous sections. In the first exam-

ple, an analytical solution is considered and very small time steps are applied to support the error analysis of Section 3 . In

the second example the solution is polynomial in the space such that the approximation will be exact in the spatial part and

the discretization error in time dominates. This example will support the analytical results from Section 4 . A third example

presents a brief comparison of the method studied in this paper with a different stabilized method for the evolutionary

Oseen equations. 

All simulations were performed on uniform quadrilateral grids where the coarsest grid (level 1) is obtained by dividing

the unit square into four squares. Mapped finite element spaces [17] were used, where the enriched spaces on the reference

cell ˆ K = [ −1 , 1] 2 are given by 

Q 

bubble 
r ( ̂  K ) := Q r ( ̂  K ) + span 

{
(1 − ˆ x 2 1 )(1 − ˆ x 2 2 ) ̂  x r−1 

i 
, i = 1 , 2 

}
. 

The combination Q 

bubble 
r ( ̂  K ) with D (K) = P r−1 (K) provides for r ≥ 2 suitable spaces for LPS methods, see [36] . The simula-

tions were performed with the code MooNMD [26] . 

Example 1. An example with negligible temporal error . Consider the Oseen problem (1) with � = (0 , 1) 2 , ν = 10 −10 , b = u ,

σ = 1 , and T = 1 . The right-hand side f and the initial condition u 0 were chosen such that 

u (t, x, y ) = sin (t) 

(
sin (πx ) sin (πy ) 
cos (πx ) cos (πy ) 

)
, 

p(t, x, y ) = sin (t) 
(

sin (πx ) + cos (πy ) − 2 

π

)
is the solution of (1) equipped with non-homogeneous Dirichlet boundary conditions. 

This example studies the convergence order with respect to space. To this end, the time discretization scheme cGP(2)

with the small time step length τ = 1 / 1280 was used. Numerical studies concerning the choice of stabilization parameters

for convection-dominated problems suggest that a good choice is μK ∈ (0, 1), e.g., see [6] . Based on these studies and our

own experience, the stabilization parameters were set to be μK = 0 . 1 . The convergence results for simulations with the finite

element spaces V h /Q h = Q 

bubble 
3 

/ P 

disc 
2 

and the projection space D (K) = P 2 (K) are presented in Fig. 1 and Table 1 . One can see

fourth order convergence for the L 2 ( L 2 ) norm and the L 2 norm at the final time. For all other norms on the left-hand side of

(24) and the L 2 ( L 2 ) norm of pressure, third order of convergence can be observed. It can be seen in Fig. 1 and Table 1 that

‖ κK ∇( u − u h ) ‖ L 2 (L 2 ) is the dominant term among the velocity errors on the left-hand side of (24) . Altogether, the order of

convergence is exactly as predicted in (24) and (30) . 

Example 2. An example with dominant temporal error . Let � = (0 , 1) 2 , ν = 10 −10 , b = u , σ = 1 , T = 1 and consider the Oseen

equations (1) with the prescribed solution 

u = 

(
sin (40 t) y 

cos (t) x 

)
, p(t, x, y ) = cos (40 t)(x − 0 . 5) + sin (40 t)(2 y − 1) . 

In this example, the spaces V h /Q h = Q 

bubble 
2 

/ P 

disc 
1 

and the projection space D (K) = P 1 (K) were considered. The mesh con-

sisted of 16 × 16 squares. Note that for any time t the solution can be represented exactly by functions from the finite

element spaces V h and Q h . Hence, all occurring errors will result from the temporal discretization. 

Fig. 2 and Table 2 report the order of convergence for the methods cGP( k ), k ∈ {2, 3, 4}, in combination with the LPS

method. One can observe the predicted convergence order k + 1 for the errors estimated in (47) and (64) . Also for the

pressure, order k + 1 can be seen although estimate (67) predicts only order k . 
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Fig. 1. Example 1 : Convergence of various errors with respect to the spatial mesh width. 

Table 1 

Example 1 : Various errors with respect to the spatial mesh width, e = u − u h , the order is computed 

from the results of the finest levels. 

Level ‖ e h (1) ‖ 0 ν1 / 2 ‖∇ e ‖ L 2 (L 2 ) ‖ e ‖ L 2 (L 2 ) ‖ κK ∇ e ‖ L 2 (L 2 ) ‖ p − p h ‖ L 2 (L 2 ) 

2 8.261071e −04 1.599153e −07 4.936612e −04 3.846468e −03 8.430718e −04 

3 4.890464e −05 2.035870e −08 3.063295e −05 5.139051e −04 1.026164e −04 

4 3.104466e −06 2.625447e −09 1.969092e −06 6.548987e −05 1.263452e −05 

5 2.010103e −07 3.471540e −10 1.308868e −07 8.241557e −06 1.567482e −06 

6 1.344915e −08 4.718591e −11 9.0 0 0207e −09 1.032959e −06 1.952184e −07 

Order 3.90 2.88 3.86 3.00 3.01 

Fig. 2. Example 2 : Convergence of various errors with respect to the time step, where the time step is given by τ = 0 . 1 · 2 −m +1 . 

Table 2 

Example 2 : ‖ u − u h ‖ cGP , the order is computed from the results of 

the finest levels. 

Time level cGP(2) cGP(3) cGP(4) 

1 2.123580e −01 4.621311e −02 8.992460e −03 

2 2.754030e −02 3.103225e −03 2.953547e −04 

3 3.364046e −03 1.938513e −04 9.254991e −06 

4 4.162566e −04 1.202551e −05 2.887537e −07 

5 5.191342e −05 7.495265e −07 9.017116e −09 

6 6.485677e −06 4.681011e −08 2.817272e −10 

7 8.106020e −07 2.925068e −09 8.803837e −12 

8 1.013219e −07 1.828079e −10 2.773163e −13 

Order 3.00 4.00 4.99 
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Table 3 

Example 3 : Various errors for the LPS method with cGP(2), e = u − u h , the order is 

computed from the results of the finest levels. 

Level ‖ e h (5) ‖ 0 ν1 / 2 ‖∇ e ‖ L 2 (L 2 ) ‖ e ‖ L 2 (L 2 ) ‖ p − p h ‖ L 2 (L 2 ) 

2 2.441646e −04 4.592660e −05 1.532429e −03 7.070311e −04 

3 1.817895e −05 5.706725e −06 9.696640e −05 6.520649e −05 

4 1.348730e −06 7.203769e −07 6.006353e −06 6.120355e −06 

5 1.001092e −07 9.481435e −08 3.900740e −07 6.056901e −07 

6 7.185082e −09 1.287943e −08 2.633239e −08 6.435478e −08 

Order 3.80 2.88 3.89 3.23 

Table 4 

Example 3 : Various errors for the grad-div stabilization with Crank–Nicolson 

scheme from [19] , e = u − u h , the order is computed from the results of the finest 

levels. 

Level ‖ e h (5) ‖ 0 ν1 / 2 ‖∇ e ‖ L 2 (L 2 ) ‖ e ‖ L 2 (L 2 ) ‖ p − p h ‖ L 2 (L 2 ) 

2 9.066 86 8e −05 1.433633e −05 4.850142e −04 1.893259e −04 

3 6.413237e −06 1.388954e −06 2.120568e −05 1.978418e −05 

4 7.558467e −07 2.084255e −07 1.752358e −06 2.464377e −06 

5 9.698209e −08 5.209587e −08 2.396720e −07 3.076402e −07 

6 1.138595e −08 8.287498e −09 2.151598e −08 3.860506e −08 

Order 3.09 2.65 3.48 2.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3. Comparison with a grad-div stabilized method. This example provides a brief comparison of a LPS/cGP method

with another stabilized scheme for the evolutionary Oseen problem that was studied in the literature. 

The method for comparison is the grad-div stabilization which is analyzed for the evolutionary Oseen equations in [19] .

The same example as in [19] was used with the analytical solution 

u = cos (t) 

(
sin (πx − 0 . 7) sin (πy + 0 . 2) 
cos ( πx − 0 . 7) cos (πy + 0 . 2) 

)
, 

p = cos (t)( sin (x ) cos (y ) + ( cos (1) − 1) sin (1)) . 

Numerical results for ν = 10 −6 , b = u , σ = 1 , � = (0 , 1) 2 , and T = 5 are presented. 

Both schemes were applied with respective standard configurations that are comparable. For the LPS/cGP method, cGP(2)

was used as temporal discretization. Since this is a third order method, it is natural to use also a third order spatial dis-

cretization. Our choice was V h /Q h = Q 

bubble 
3 

/ P 

disc 
2 

, like in Example 1 . Also, the same stabilization parameter μK = 0 . 1 was

utilized. Since spatial and temporal discretization are of the same order, convergence studies require the time step to be

halved if the grid is refined once. The grad-div stabilization is used in practice with standard pairs of finite element spaces

and simple temporal discretizations. This method does not require such special spaces as LPS methods. We used also a third

order method in space, namely the Taylor–Hood pair Q 3 / Q 2 . The spatial discretizations of both stabilized methods possess a

similar number of degrees of freedom on the same meshes. With respect to the temporal discretization, the Crank–Nicolson

scheme was used. This scheme is only of second order. To account for this order difference, the time step was refined by

the factor of 
√ 

8 whenever the grid was refined once (factor 2 of the mesh width). The time step on level 0 (one mesh cell)

was set to be 0.4 for both methods. The stabilization parameter for the grad-div stabilization was chosen to be the same as

in the numerical studies in [19] . 

Results with respect to some standard errors are presented in Tables 3 and 4 . It can be observed that both methods

possess a similar accuracy and the pressure errors as well as the dominant velocity errors are of at least third order. In

particular, the LPS/cGP method is competitive. 

A comprehensive numerical assessment of stabilized methods for convection-dominated incompressible flow problems is

beyond the scope of the present paper and a future topic of research. 

6. Summary 

This paper analyzed a combination of higher order continuous Galerkin–Petrov schemes in time with the one-level vari-

ant of the LPS method in space applied to the transient Oseen equations. The continuous-in-time case and the fully discrete

situation were considered. Optimal error bounds for velocity and pressure were obtained with constants that do not depend

on the viscosity parameter ν . The theoretical results were confirmed by numerical simulations. 
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