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A finite element error analysis of a local projection stabilization (LPS) method for the time-dependent
Navier–Stokes equations is presented. The focus is on the high-order term-by-term stabilization method that
has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure
of standard LPS methods is replaced by an interpolation-stabilized structure. The main contribution is on
proving, theoretically and numerically, the optimal convergence order of the arising fully discrete scheme.
In addition, the asymptotic energy balance is obtained for slightly smooth flows. Numerical studies support
the analytical results and illustrate the potential of the method for the simulation of turbulent flows. Smooth
unsteady flows are simulated with optimal order of accuracy.
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1. Introduction

In the present paper, we address the numerical analysis of fully discrete schemes arising from Finite
Element (FE) Local Projection Stabilization (LPS) methods that approximate the unsteady Navier–
Stokes Equations (NSE). We mainly focus here on the high-order term-by-term stabilization method
(cf. Chacón Rebollo et al., 2013). This method is a particular type of LPS scheme, which constitutes a
low-cost, accurate solver for incompressible flows, despite being only weakly consistent. It differs from the
standard LPS methods (cf. Braack & Burman, 2006; Knobloch & Lube, 2009) because it uses continuous
buffer functions, it does not need enriched FE spaces, it does not need element-wise projections satisfying
suitable orthogonality properties, and it does not need multiple meshes. An interpolant-stabilized structure

© The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



1438 N. AHMED ET AL.

replaces the projection-stabilized structure of standard LPS methods. The interpolation operator takes its
values in a continuous buffer space, different from the discrete velocity space, but defined on the same
mesh, constituted by standard polynomials with one degree less than the FE space for the velocity. This
approach gives rise to a method with reduced computational cost for some choices of the interpolation
operator.

LPS schemes were originally proposed for the Stokes problem (Becker & Braack, 2001), and then suc-
cessfully extended to transport problems (cf. Becker & Braack, 2004; Matthies et al., 2008; Roos et al.,
2008; Knobloch, 2010; Ahmed et al., 2011; Barrenechea et al., 2013). As classical stabilization pro-
cedures, these discretizations are based upon an ‘augmented’ variational formulation of the flow equa-
tions, which includes additional terms to the standard Galerkin discretization. They allow to circumvent
the discrete inf–sup condition and to use equal order interpolation for velocity and pressure, and they
also provide stabilization of convection-dominant effects. Different variants of LPS methods have been
investigated during the recent years for incompressible flow problems. The main common feature is
that the stabilization terms only act on the small scales of the flow, thus ensuring a higher accuracy with
respect to more classical stabilization procedures, such as penalty-stabilized methods (cf. Chacón Rebollo,
1998). For a detailed description of different variants of LPS schemes, we refer to He & Tobiska (2012),
Knobloch & Lube (2009) and Tobiska & Winkel (2010).

The main contribution of this work is to prove, for the proposed method, the optimal convergence
accuracy of the arising fully (space–time) discrete scheme (semi-implicit in time), which, to the best of our
knowledge, cannot be found in the literature so far. Parallel to the current paper, a fully discrete LPS method
was analyzed in Arndt et al. (2016), which uses however inf–sup stable FEs and a pressure-projection
scheme.

LPS methods are well-understood for the Oseen problem (cf. Braack & Burman, 2006; Braack et al.,
2007; Matthies et al., 2007; Dallmann et al., 2016; Matthies & Tobiska, 2015). Recent attempts for the
extension of the numerical analysis of LPS methods to the time-dependent incompressible NSE can be
found in Arndt et al. (2015), Burman & Fernández (2007), and also in Chacón Rebollo et al. (2014) for
the LPS method analyzed in the present paper. However, the analysis in Chacón Rebollo et al. (2014)
proves only stability and weak convergence of the proposed method in natural norms, while in Arndt et al.
(2015) and Burman & Fernández (2007) just the space semidiscrete problem is considered. Thus, the
present paper aims to complement the available results with the extension of the error analysis to the fully
discrete incompressible evolution NSE. Since LPS methods may be cast in the variational multi-scale
(VMS) framework (cf. Braack & Burman, 2006), the present paper also constitutes a step forward to the
survey and classification of VMS methods (see Ahmed et al. (2015) for a recent detailed review of VMS
methods for the simulation of turbulent incompressible flows). The connection to VMS methods was a
motivation to perform the studies presented in this paper.

In this paper, optimal error estimates for smooth unsteady solutions are proved on the basis of specific
inf–sup conditions. The error analysis permits to show the strong convergence of the proposed method
for slightly smooth flows (i.e., (u, p) ∈ C0(H2) × C0(H1) at least) and a subsequent asymptotic energy
balance of the system. The convergence order decreases with the regularity of the flow, but potentially
maintaining these schemes as suitable and useful tools for the simulation of turbulent flows. We also
include numerical tests for the three-dimensional Beltrami flow in laminar regime that agree well with
the theoretical expectations of the performed numerical analysis. Finally, numerical studies for a plane
mixing layer problem confirm that good accuracy is achieved for simulating a high Reynolds number
flow on coarse grids.

The outline of the paper is as follows: In Section 2 we introduce the model problem and its con-
tinuous variational formulation for time-dependent NSE. In Section 3 we describe the proposed LPS
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approximation of the incompressible evolution NSE, commonly referred to as high-order term-by-term
stabilization, and we state its main properties. Section 4 is devoted to the numerical analysis (stability and
error estimates) of the arising fully discrete scheme, and to the study of the asymptotic energy balance of
the system. In Section 5 we present numerical studies to test on the one hand the theoretical predictions
of the performed numerical analysis, and to show on the other hand the potential of the proposed method
for simulating turbulent flows on relatively coarse grids. Section 6 states the main conclusions of the
paper.

2. Time-dependent NSE: model problem and variational formulation

We introduce an initial-boundary value problem (IBVP) for the incompressible evolution NSE. For the
sake of simplicity, we just impose homogeneous Dirichlet boundary condition on the whole boundary.
More general inflow boundary conditions may be taken into account by standard lifting techniques
for NSE. Also, the treatment of general nonlinear wall law boundary conditions may be found in
Chacón Rebollo & Lewandowski (2014).

Let [0, T ] be the time interval, and Ω a bounded polyhedral domain in Rd , d = 2 or 3, with a
Lipschitz-continuous boundary Γ = ∂Ω . The transient NSE for an incompressible fluid are given by

Find u : Ω × (0, T) −→ Rd and p : Ω × (0, T) −→ R such that:

⎧⎪⎪⎨⎪⎪⎩
∂tu + ∇ · (u ⊗ u)− 2ν∇ · D(u)+ ∇p = f in Ω × (0, T),

∇ · u = 0 in Ω × (0, T),
u = 0 on Γ × (0, T),

u(x, 0) = u0(x) in Ω ,

(2.1)

where u⊗u is the tensor function of components uiuj, and D(u) is the symmetric deformation tensor given
by D(u) = (1/2)(∇u+(∇u)t). The unknowns are the velocity u and the pressure p of the incompressible
fluid. The data are the source term f , which represents a body force per mass unit (typically the gravity),
the kinematic viscosity ν of the fluid, which is a positive constant, and the initial velocity u0.

To define the weak formulation of problem (2.1) we need to introduce some useful notations for
spaces. We consider the Sobolev spaces Hs(Ω), s ∈ R, Lp(Ω) and Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞. We
shall use the following notation for vector-valued Sobolev spaces: Hs, Lp and Wm,p, respectively, shall
denote [Hs(Ω)]d , [Lp(Ω)]d and [Wm,p(Ω)]d (similarly for tensor spaces of dimension d × d). Also, the
parabolic Bochner function spaces Lp(0, T ; X) and Lp(0, T ; X), where X (X) stands for a scalar (vector-
valued) Sobolev space, shall be denoted by Lp(X) and Lp(X), respectively. In order to give a variational
formulation of problem (2.1) let us consider the velocity space:

H1
0 = [H1

0 (Ω)]d = {
w ∈ [H1(Ω)]d : w = 0 on Γ

}
.

This is a closed linear subspace of H1, and thus a Hilbert space endowed with the H1-norm. Thanks to
Korn’s inequality (cf. Horgan, 1995), the H1-norm is equivalent on H1

0 to the norm ‖w‖H1
0

= ‖D(w)‖L2 .
Also, let us introduce the space of divergence-free functions:

H1
0,div = {

w ∈ H1
0 : ∇ · w = 0 a.e. in Ω

}
.
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The space H1
0,div is a closed linear subspace of H1

0, and thus a Hilbert space endowed with the H1-norm.
We shall consider the following variational formulation of (2.1):

Given f ∈ L2(H−1) and u0 ∈ H−1, find u ∈ L∞(L2) ∩ L2(H1
0,div), P ∈ L2(L2

0) such that:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
∫ T

0
(u(t), v)Ωϕ′(t) dt − 〈u0, v〉ϕ(0)

+
∫ T

0
[b(u(t); u(t), v)+ a(u(t), v)]ϕ(t) dt

+
∫ T

0
(P(t), ∇ · v)Ωϕ′(t) dt =

∫ T

0
〈f (t), v〉ϕ(t) dt,

(2.2)

for any v ∈ H1
0, ϕ ∈ D([0, T ]) such that ϕ(T) = 0, where 〈·, ·〉 stands for the duality pairing between H1

0

and its dual H−1. The forms b and a are given by

b(w; u, v) = 1

2
[(w · ∇ u, v)Ω − (w · ∇ v, u)Ω ], (2.3)

a(u, v) = 2ν (D(u), D(v))Ω , (2.4)

for u, v, w ∈ H1
0. Semicolons (; ) are used for forms that are nonlinear with respect to its first argument.

Note that b(w; v, v) = 0 for all w, v ∈ H1
0. The physical pressure is the time derivative of the unknown

P : p = ∂tP ∈ H−1(L2
0) = H1

0 (0, T ; L2
0)

′. The interest of considering P as unknown instead of p is
that there are high technical difficulties to obtain uniform bounds for the discrete pressures in a Banach
space of space–time functions (see Chacón Rebollo & Lewandowski, 2014, Remark 10.2), while we
shall obtain uniform bounds in the Banach space L∞(L2) for the numerical approximation of P (see
estimate (4.6) of Theorem 4.3). It is known that for domains which satisfy the cone condition, as bounded
polyhedral domains, P ∈ L∞(L2) (e.g., see Galdi, 2000, Remark 2.5). We notice, however, that for
practical computations one would approximate the physical pressure p, and P is introduced just for the
numerical analysis. Also, note that the initial condition takes place in H−1

div, since u ∈ C0([0, T ], H−1
div)

(see Chacón Rebollo & Lewandowski, 2014, Sect. 10.2), with obvious notation.

3. An LPS model

Let {Th}h>0 be a family of affine-equivalent, conforming (i.e., without hanging nodes) and regular tri-
angulations of Ω , formed by triangles or quadrilaterals (d = 2), tetrahedra or hexahedra (d = 3). For
any mesh cell K ∈ Th, its diameter will be denoted by hK and h = maxK∈Th hK .

Given an integer l ≥ 0 and a mesh cell K ∈ Th, denote by Rl(K) either Pl(K) (i.e., the space of
Lagrange polynomials of degree ≤ l, defined on K), if the grids are formed by triangles (d = 2) or
tetrahedra (d = 3), or Ql(K) (i.e., the space of Lagrange polynomials of degree ≤ l on each variable,
defined on K), if the family of triangulations is formed by quadrilaterals (d = 2) or hexahedra (d = 3).
We consider the following FE spaces for the velocity:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y l
h = V l

h(Ω) = {vh ∈ C0(Ω) : vh|K ∈ Rl(K), ∀K ∈ Th},

Yl
h = [Y l

h]d = {vh ∈ [C0(Ω)]d : vh|K ∈ [Rl(K)]d , ∀K ∈ Th},

Xh = Yl
h ∩ H1

0.

(3.1)
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Hereafter, Yl
h (resp., Y l

h) will constitute the discrete foreground vector-valued (respectively, scalar) spaces
in which we will work on.

We approximate the weak formulation (2.2) of the IBVP (2.1) for the incompressible evolution NSE
by a high-order term-by-term stabilization procedure in space (cf. Chacón Rebollo et al., 2013). To state
this unsteady LPS discretization, consider a positive integer number N and define Δt = T/N , tn = nΔt,
n = 0, 1, . . . , N . We compute the approximations un

h, pn
h to un = u(·, tn) and pn = p(·, tn) by

• Initialization. Set:

u0
h = u0h.

• Iteration. For n = 0, 1, . . . , N − 1:
Given un

h ∈ Xh, find (un+1
h , pn+1

h ) ∈ Xh × Mh such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
un+1

h − un
h

Δt
, vh

)
Ω

+ b(un
h, un+1

h , vh)+ a(un+1
h , vh)

−(pn+1
h , ∇ · vh)Ω + sconv(un

h, un+1
h , vh)+ sdiv(u

n+1
h , vh) = 〈f n+1

, vh〉,

(∇ · un+1
h , qh)Ω + spres(p

n+1
h , qh) = 0,

(3.2)

for any (vh, qh) ∈ Xh × Mh, where Mh = Y l
h ∩ L2

0 , f
n+1

is the average value of f in [tn, tn+1]:

f
n+1 = 1

Δt

∫ tn+1

tn

f (s) ds,

and u0h is some stable approximation to u0 belonging to Xh, e.g., the discrete Stokes projection.

The forms sconv, sdiv and spres in (3.2) correspond to a high-order term-by-term stabilized method (cf.
Chacón Rebollo et al., 2013), and are given by

sconv(un
h, un+1

h , vh) =
∑
K∈Th

τν,K(σ
∗
h (u

n
h · ∇un+1

h ), σ ∗
h (u

n
h · ∇vh))K , (3.3)

sdiv(u
n+1
h , vh) =

∑
K∈Th

τd,K(σ
∗
h (∇ · un+1

h ), σ ∗
h (∇ · vh))K , (3.4)

spres(p
n+1
h , qh) =

∑
K∈Th

τp,K(σ
∗
h (∇pn+1

h ), σ ∗
h (∇qh))K . (3.5)

Here, τν,K , τd,K and τp,K are stabilization coefficients for convection, divergence and pressure gradient,
respectively, and σ ∗

h = Id − σh, where σh is some locally stable projection or interpolation operator from
L2 on the foreground vector-valued space Yl−1

h (also called ‘buffer space’ in this context): there exists a
constant C > 0 such that for any K ∈ Th

‖σh(v)‖L2(K) ≤ C ‖v‖L2(ωK )
, ∀v ∈ L2, (3.6)
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where ωK is the union of all mesh cells whose intersection with K is not empty (note that the mesh cells
are compact). Actually, σh is globally stable in L2(Ω)-norm, due to the regularity of the mesh. We also
assume that σh satisfies optimal error estimates: There exists a constant C > 0 only depending on p,Ω , d
and the aspect ratio of the family of triangulations such that

‖v − σh(v)‖Wm,p ≤ C hs−m+d/p−d/2|v|Hs , (3.7)

for m ∈ {0, 1}, and v ∈ Hs, m + 1 ≤ s ≤ l (see, for instance, Ciarlet, 2002), where |v|Hs denotes the
seminorm of v in Hs. In practical implementations, we chooseσh as a Scott–Zhang-like linear interpolation
operator in the space Yl−1

h (cf. Scott & Zhang, 1990). In case of (3.4), σh denotes an operator between
the scalar spaces L2 and Y l−1

h , but we use the same notation for the sake of simplicity. Actually, if
needed, specific stabilizations for convection, divergence and pressure gradient may be used, through
different approximation operators. For the subsequent numerical analysis we need the following technical
hypothesis on the stabilization coefficients:

Hypothesis 3.1 The stabilization coefficients τp,K , τd,K and τν,K satisfy the following conditions:

α1h2
K ≤ τp,K ≤ α2h2

K , 0 < τd,K ≤ β, 0 < τν,K ≤ γ h2
K , (3.8)

for all K ∈ Th, and some positive constants α1, α2, β, γ independent of h.

Remark 3.2 The proposed spatial discretization is a term-by-term interpolation-stabilized method with
increased accuracy with respect to the pure penalty term-by-term stabilized method (cf. Chacón Rebollo,
1998). It presents the same structure of the Streamline Derivative-based (SD-based) LPS model (cf.
Braack & Burman, 2006; Knobloch & Lube, 2009), but it differs from it because at the same time it uses
continuous buffer functions, it does not need enriched FE spaces, it does not need a projection with local
orthogonality properties, and it does not need different nested meshes.

The high-order term-by-term stabilization procedure by using a Scott–Zhang-like interpolation oper-
ator has been successfully applied to the Oseen problem (cf. Chacón Rebollo et al., 2013). Moreover, it
has been extended to the evolution NSE (cf. Chacón Rebollo et al., 2014) and the primitive equations
of the ocean (cf. Chacón Rebollo et al., 2014), and recently shown by numerical experiments that, since
this method is only approximately consistent, the addition of a multi-scale Smagorinsky term to the high-
order term-by-term stabilization scheme can help to counter-balance the accumulation of sub-grid energy
due to its diffusive nature, providing slight additional accuracy (cf. Chacón Rebollo et al., 2015b). This
recently proposed projection-based VMS turbulence model (called VMS-S model; see Chacón Rebollo
& Lewandowski, 2014; Rubino, 2014; Ahmed et al., 2015; Chacón Rebollo et al., 2015a,b) has thus
a dual nature, as it results in a combination of (high-order term-by-term) stabilization and (projection)
VMS–LES modeling. The analysis of the multi-scale Smagorinsky term may be found in Ahmed et al.
(2015), Chacón Rebollo et al. (2015a,b), Chacón Rebollo & Lewandowski (2014) and Rubino (2014).

Remark 3.3 The chosen discretization in time gives rise to a semi-implicit Euler scheme, since the
discretization of the convection terms is semi-implicit, while that of the remaining terms is implicit. Note
that scheme (3.2) consists of a high-order discretization method in space (optimal for smooth solutions,
as we will prove in Section 4.3 by an error analysis) although, for the sake of simplicity, we shall only
consider a first-order discretization in time to perform the numerical analysis. This approach allows to
achieve the stability of the scheme in L∞(L2) ∩ L2(H1) for the velocities. These stability properties are
also shared by more general θ -schemes (e.g., the Crank–Nicolson scheme).
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4. Analysis of the discrete model

In this section we perform the numerical analysis of the proposed unsteady model (3.2), which we will
call in the sequel STAB model. For technical reasons we assume throughout the work that the family
of triangulations {Th}h>0 is uniformly regular (also called quasi-uniform): There exist two constants
C1, C2 > 0 independent of h such that

∀K ∈ Th, C1 h ≤ hK ≤ C2ρK ,

where ρK is the diameter of the ball inscribed in K . Actually, this technical hypothesis may be relaxed
to the more general case of regular grids, but we keep it to focus the analysis on the new aspects of the
method, and to not unnecessarily lengthen it.

4.1 Technical background

This section provides some technical results that are required for the numerical analysis. Throughout the
paper, we shall denote by C, C1, C2, . . . constants that may vary from a line to another, but which are
always independent of h, Δt, and ν. We define the scalar product:

(·, ·)τ : L2 × L2 → R, (f , g)τ =
∑
K∈Th

τK(f , g)K ,

where τ denotes either τν , τd , or τp, and its associated norm:

‖f ‖τ = (f , f )1/2τ .

Lemma 4.1 Assume that Hypothesis 3.1 holds. Then, for all z, g ∈ L2, the following conditions are
satisfied:

C1

∑
K∈Th

h2
K‖z‖2

L2(K)
≤ ‖z‖2

τp
≤ C2

∑
K∈Th

h2
K‖z‖2

L2(K)
, (4.1)

‖z‖2
τd

≤ C3

∑
K∈Th

‖z‖2
L2(K)

, ‖z‖2
τν

≤ C4

∑
K∈Th

h2
K‖z‖2

L2(K)
(4.2)

and

‖σ ∗
h (g)‖τp ≤ C5 h‖g‖L2 , (4.3)

‖σ ∗
h (g)‖τd ≤ C6 ‖g‖L2 , ‖σ ∗

h (g)‖τν ≤ C7 h‖g‖L2 . (4.4)

Proof. Estimates (4.1) and (4.2) immediately follow from (3.8).
Let g ∈ L2. By applying the second part of (4.1) to σ ∗

h (g), we obtain

‖σ ∗
h (g)‖2

τp
≤ C2

∑
K∈Th

h2
K‖σ ∗

h (g)‖2
L2(K)

≤ C2 h2‖σ ∗
h (g)‖2

L2 ≤ C h2‖g‖2
L2 ,
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where we have used the global version of stability estimate (3.6), due to the regularity of the mesh.
Similarly, by applying (4.2) to σ ∗

h (g), we obtain

‖σ ∗
h (g)‖2

τd
≤ C ‖g‖2

L2 , ‖σ ∗
h (g)‖2

τν
≤ C h2‖g‖2

L2 .

Thus, the estimates (4.3) and (4.4) can be deduced. �

We next state a specific discrete inf–sup condition for the stabilized approximation that is essential
for the stability of method (3.2). The main difficulty in its proof stems from the fact that the interpolation
operator σh takes values in Yl−1

h , thus reducing the effective number of degrees of freedom (d.o.f.) of the
foreground velocity space Yl

h.

Lemma 4.2 Assume that Hypothesis 3.1 holds. Then, we have the following inf–sup condition:

∀qh ∈ Mh, ‖qh‖L2 ≤ C

(
sup

vh∈Xh

(∇ · vh, qh)Ω

‖D(vh)‖L2
+ ‖σ ∗

h (∇qh)‖τp
)

, (4.5)

for some positive constant C independent of h.

The proof of this lemma can be derived from Chacón Rebollo et al. (2013). Note that the discrete
inf–sup condition (4.5) can be extended to a more complex condition that holds for a regular family of
triangulations.

4.2 Existence and stability results

Let us first show results on existence, uniqueness of a solution and the stability of method (3.2). To state
them, we shall consider the following discrete functions:

• uh is the piecewise linear in time function with values on Xh such that uh(tn) = un
h.

• p̃h is the piecewise constant in time function that takes the value pn+1
h on (tn, tn+1).

• Ph(t) =
∫ t

0
p̃h(s) ds.

For simplicity of notation we do not make explicit the dependence of these functions upon Δt.

Theorem 4.3 Assume that Hypothesis 3.1 holds, and let f ∈ L2(H−1), u0 ∈ L2. Then, problem (3.2)
admits a unique solution that satisfies the estimate:

‖uh‖L∞(L2) +
√
ν‖D(uh)‖L2(L2) + ‖Ph‖L∞(L2) ≤ C

(
‖u0‖L2 + 1√

ν
‖f‖L2(H−1)

)
, (4.6)

where C > 0 is a constant independent of h and Δt.

The proof of this theorem can be directly derived by the one performed for the VMS-S model in
Chacón Rebollo et al. (2015a).
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Remark 4.4 In Chacón Rebollo et al. (2015a), the following stability estimate was derived:

‖σ ∗
h (uh · ∇uh)‖L2(τν ) ≤ C

(
‖u0‖L2 + 1√

ν
‖f‖L2(H−1)

)
.

Thus, the convective stabilization term provides some control as ν → 0 of a range of small scales of the
convective derivative, actually those scales that are not representable in the buffer space Yl−1

h by means of
the operator σh. The large scales σh(uh(t) ·∇uh(t)) of the convective derivative, which can be represented
in the buffer space, are directly bounded in a weak sense by the convection term in discretization (3.2)
for a large class of operators σh (see Remark 3.4 in Chacón Rebollo et al. (2014)).

4.3 Error estimates

We next prove error estimates for the approximation of the unsteady NSE (2.2) by the discrete model (3.2).
We obtain these estimates for rather general fluid viscosities (and not just for relatively high viscosities,
as in the steady case, see Rubino, 2014; Chacón Rebollo et al., 2015b). If the flow is regular enough, we
obtain convergence of optimal order, and the order decreases with the regularity. As already mentioned in
the introduction, to the best of our knowledge, in the literature there is no proof concerning a priori error
estimates for the fully discrete incompressible evolutionary NSE with local projection as a stabilization
in space.

To state this result we start with the discrete version of the Gronwall’s lemma:

Lemma 4.5 (Chacón Rebollo & Lewandowski, 2014, Lemma 10.4) Let {αn}N
n=0, {βn}N

n=0 be two finite
sequences of non-negative real numbers such that

(1 − CnΔt)αn+1 ≤ (1 + DnΔt)αn + βn, for n = 0, 1, . . . , N − 1,

for two finite sequences of non-negative real numbers {Cn}N
n=0, {Dn}N

n=0.
Assume Δt ≤ 1/(2 max

n=0,1,...,N−1
Cn). Then

max
n=0,1,...,N

αn ≤ α0 e2ΔtSN + 2 e2ΔtSN−1

N−1∑
n=0

βn, (4.7)

where SN =
N−1∑
n=0

(Cn + Dn).

We are now in position to prove the following error estimate result:

Theorem 4.6 Assume that Hypothesis 3.1 holds, the data verify f ∈ C0(H−1), ∂tf ∈ L2(H−1), u0 ∈ Hs+1,
and that the solution (u, p) of the unsteady NSE (2.2) has augmented regularity, i.e., (u, p) ∈ C0(Hs+1)×
C0(Hs), 2 ≤ s ≤ l, such that ∂ttu ∈ L2(L2). Assume in addition that there is a constant C independent
of h and Δt such that Ch ≤ Δt and that ‖u0 − u0h‖H1 = O(hs). Then, the following error estimate for a
solution {uh, ph} of the fully discrete STAB model (3.2) holds:

‖u − uh‖�∞(L2) +
√
ν‖D(u − uh)‖�2(L2) + ‖P̃ − Ph‖�∞(L2)

≤
√

C̃eC̃
[
hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)
+ 1

)
+Δt

]
, (4.8)



1446 N. AHMED ET AL.

for C̃ = C(T)(1 + ν−1)‖u‖2
L∞(Hs+1)

and C(T) > 0 an increasing function of T independent of h and Δt,
where we are using the following notation:

‖u − uh‖�∞(L2) = max
n=1,...,N

‖un − un
h‖L2 ,

‖D(u − uh)‖�2(L2) =
[

N∑
n=1

Δt‖D(un − un
h)‖2

L2

]1/2

,

‖P̃ − Ph‖�∞(L2) = max
n=1,...,N

‖P̃n − Pn
h‖L2 ,

being P̃ =
∫ t

0
p̃(·, s) ds, with p̃ the piecewise constant in time function that takes the value pn+1

on (tn, tn+1), and P̃n = P̃(·, tn), Pn
h = Ph(tn).

Proof. The proof will be split into four main steps. Throughout the proof, it will be assumed that 0 < h,
Δt ≤ 1.

Step 1: Error equation. We consider an approximation ûn
h = Rhun ∈ Xh ⊂ Yl

h of un = u(·, tn) ∈ H1
0

satisfying:

(un − ûn
h, vh)Ω = 0, ∀vh ∈ Yl−1

h , n = 0, 1, . . .N . (4.9)

Note that such interpolant Rh exists and satisfies optimal approximation properties as the standard nodal
Lagrange interpolant (cf. Ciarlet, 2002): there exists a constant C > 0 only depending on p,Ω , d and the
aspect ratio of the family of triangulations such that

‖un − ûn
h‖Wm,p ≤ C hs+1−m+d/p−d/2|un|Hs+1 , n = 0, 1, . . .N , (4.10)

for m ∈ {0, 1}. This has been proved in Chacón Rebollo et al. (2013, Lemma 3.7) (note that, due to the
required augmented regularity the solution (u, p) is continuous in space, by Sobolev imbedding theorem).
Also, let p̂n

h = Thpn ∈ Mh (pn = p(·, tn)) with Th the standard FE interpolation operator that satisfies
optimal approximation properties (cf. Ciarlet, 2002): there exists a constant C > 0 only depending on
p,Ω , d and the aspect ratio of the family of triangulations such that

‖pn − p̂n
h‖Wm,p ≤ C hs−m+d/p−d/2|pn|Hs , n = 0, 1, . . .N , (4.11)

for m ∈ {0, 1}.
Let us define the errors in velocity and pressure by en

h = ûn
h − un

h, λn
h = p̂n

h − pn
h, respectively. As

∂ttu ∈ L2(L2), then ∂tu ∈ C0([0, T ], L2). Also, as f ∈ C0(H−1), (u, p) ∈ C0(Hs+1)× C0(Hs) with s ≥ 2,
then the unsteady NSE (2.2) yields:⎧⎨⎩

(∂tu(t), v)Ω + b(u(t); u(t), v)+ a(u(t), v)− (p(t), ∇ · v)Ω = 〈f (t), v〉,
(∇ · u(t), q)Ω = 0,

u(0) = u0,
(4.12)
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for any (v, q) ∈ H1
0 × L2

0 , for all t ∈ [0, T ]. Subtracting (4.12) at t = tn+1 from (3.2), we obtain the error
equation:(

en+1
h − en

h

Δt
, vh

)
Ω

+ b(̂un
h, ûn+1

h , vh)− b(un
h, un+1

h , vh)+ a(en+1
h , vh)− (λn+1

h , ∇ · vh)Ω

+(∇ · en+1
h , qh)Ω = 〈εn+1

vh , vh〉 + 〈εn+1
qh , qh〉 + sconv(un

h, un+1
h , vh)

+ sdiv(u
n+1
h , vh)+ spres(p

n+1
h , qh), (4.13)

for all (vh, qh) ∈ Xh × Mh, where εn+1
vh ∈ H−1 and εn+1

qh ∈ L2 define the consistency error:

〈εn+1
vh , vh〉 = −

(
∂tun+1 − ûn+1

h − ûn
h

Δt
, vh

)
Ω

− b(un+1; un+1, vh)+ b(̂un
h, ûn+1

h , vh)

+ a(̂en+1
h , vh)− (̂λn+1

h , ∇ · vh)Ω − 〈f n+1 − f n+1, vh〉,
〈εn+1

qh , qh〉 = (∇ · ên+1
h , qh)Ω ,

and we have defined ên+1
h = ûn+1

h − un+1, λ̂n+1
h = p̂n+1

h − pn+1, f n+1 = f (·, tn+1).

Step 2: Velocity estimate. Setting vh = en+1
h , qh = λn+1

h in (4.13), using:

2(en+1
h − en

h, en+1
h )Ω = ‖en+1

h ‖2
L2 − ‖en

h‖2
L2 + ‖en+1

h − en
h‖2

L2 ,

b(en
h, ûn+1

h , en+1
h ) = b(̂un

h, ûn+1
h , en+1

h )− b(un
h, un+1

h , en+1
h ),

applying Young’s inequality, Hölder’s inequality, Korn’s inequality and the Sobolev imbedding theorem
yields:

‖en+1
h ‖2

L2 − ‖en
h‖2

L2 + ‖en+1
h − en

h‖2
L2 + 4νΔt‖D(en+1

h )‖2
L2

= 2Δt
[〈εn+1

vh , en+1
h 〉 + 〈εn+1

qh , λn+1
h 〉 − b(en

h, ûn+1
h , en+1

h )
]

+ 2Δt
[
sconv(un

h, un+1
h , en+1

h )+ sdiv(u
n+1
h , en+1

h )+ spres(p
n+1
h , λn+1

h )
]

≤ Δt
(
ν−1‖εn+1

vh ‖2
H−1 + ν‖D(en+1

h )‖2
L2

)
+ CΔt‖en

h‖L2

(‖D(̂un+1
h )‖L3 + ‖̂un+1

h ‖L∞
) ‖D(en+1

h )‖L2

+ 2Δt
[〈εn+1

qh , λn+1
h 〉 + sconv(un

h, un+1
h , en+1

h )+ sdiv(u
n+1
h , en+1

h )+ spres(p
n+1
h , λn+1

h )
]

≤ Δt
(
ν−1‖εn+1

vh ‖2
H−1 + 2ν‖D(en+1

h )‖2
L2 + Cν−1‖u‖2

L∞(Hs+1)
‖en

h‖2
L2

)
+ 2Δt

[〈εn+1
qh , λn+1

h 〉 + sconv(un
h, un+1

h , en+1
h )+ sdiv(u

n+1
h , en+1

h )+ spres(p
n+1
h , λn+1

h )
]
,

where in the last step we have used

‖D(̂un
h)‖L3 ≤ ‖D(un)‖L3 + ‖D(un)− D(̂un

h)‖L3 ≤ C‖un‖Hs+1 + Chs−d/6‖un‖Hs+1

≤ C‖u‖L∞(Hs+1),
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‖̂un
h‖L∞ ≤ ‖un‖L∞ + ‖un − ûn

h‖L∞ ≤ C‖un‖Hs+1 + Chs+1−d/2‖un‖Hs+1

≤ C‖u‖L∞(Hs+1), (4.14)

for all n = 0, 1, . . . , N , which follows by (4.10), and Sobolev imbedding theorem, since u ∈ C0(Hs+1)

with s ≥ 2, and thus, in particular, u ∈ C0(C1(Ω)). It follows that

‖en+1
h ‖2

L2 + ‖en+1
h − en

h‖2
L2 + 2νΔt‖D(en+1

h )‖2
L2

≤
(

1 + Cν−1Δt‖u‖2
L∞(Hs+1)

)
‖en

h‖2
L2 + ν−1Δt‖εn+1

vh ‖2
H−1 + 2Δt〈εn+1

qh , λn+1
h 〉

+ 2Δt
[
sconv(un

h, un+1
h , en+1

h )+ sdiv(u
n+1
h , en+1

h )+ spres(p
n+1
h , λn+1

h )
]
. (4.15)

Note that, by divergence theorem and (4.9), one has

〈εn+1
qh , λn+1

h 〉 = (∇ · ên+1
h , λn+1

h )Ω = −(̂en+1
h , σ ∗

h (∇λn+1
h ))Ω . (4.16)

By using the Cauchy–Schwarz inequality, Hypothesis 3.1, the local version of error estimate (4.10), the
regularity of the grid and Young’s inequality in the last line, we obtain

〈εn+1
qh , λn+1

h 〉 = −(̂en+1
h , σ ∗

h (∇λn+1
h ))Ω ≤

∑
K∈Th

‖̂en+1
h ‖L2(K)‖σ ∗

h (∇λn+1
h )‖L2(K)

≤ ‖σ ∗
h (∇λn+1

h )‖τp
⎛⎝∑

K∈Th

1

τp,K
‖̂en+1

h ‖2
L2(K)

⎞⎠1/2

≤ 1√
α1

‖σ ∗
h (∇λn+1

h )‖τp
⎛⎝∑

K∈Th

1

h2
K

‖̂en+1
h ‖2

L2(K)

⎞⎠1/2

≤ C√
α1

‖σ ∗
h (∇λn+1

h )‖τp‖u‖L∞(Hs+1)h
s

≤ 1

4
‖σ ∗

h (∇λn+1
h )‖2

τp
+ C‖u‖2

L∞(Hs+1)
h2s.

As pn+1
h = p̂n+1

h − λn+1
h , we have

spres(p
n+1
h , λn+1

h ) = spres(̂p
n+1
h , λn+1

h )− ‖σ ∗
h (∇λn+1

h )‖2
τp

.

Using Young’s inequality to estimate spres(̂p
n+1
h , λn+1

h ), (4.15) becomes

‖en+1
h ‖2

L2 + 2νΔt‖D(en+1
h )‖2

L2 +Δt‖σ ∗
h (∇λn+1

h )‖2
τp

≤
(

1 + Cν−1Δt‖u‖2
L∞(Hs+1)

)
‖en

h‖2
L2 + ν−1Δt‖εn+1

vh ‖2
H−1 + CΔt h2s‖u‖2

L∞(Hs+1)

+Δt
[
‖σ ∗

h (∇p̂n+1
h )‖2

τp
+ 2sconv(un

h, un+1
h , en+1

h )+ 2sdiv(u
n+1
h , en+1

h )
]
. (4.17)
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To bound ‖σ ∗
h (∇p̂n+1

h )‖τp , we add and subtract ∇p̂n+1
h and use Lemma 4.1 and the optimal error estimates

(3.7) and (4.11):

‖σ ∗
h (∇p̂n+1

h )‖τp ≤ ‖σ ∗
h (∇λ̂n+1

h )‖τp + ‖σ ∗
h (∇pn+1)‖τp

≤ C h‖∇λ̂n+1
h ‖L2 + C h‖σ ∗

h (∇pn+1)‖L2 ≤ C hs‖p‖L∞(Hs). (4.18)

Combining estimate (4.18) with (4.17), we obtain

‖en+1
h ‖2

L2 + 2νΔt‖D(en+1
h )‖2

L2 +Δt‖σ ∗
h (∇λn+1

h )‖2
τp

≤
(

1 + Cν−1Δt‖u‖2
L∞(Hs+1)

)
‖en

h‖2
L2 + ν−1Δt‖εn+1

vh ‖2
H−1

+ CΔt h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs)

)
+ 2Δt

[
sconv(un

h, un+1
h , en+1

h )+ sdiv(u
n+1
h , en+1

h )
]
. (4.19)

Arguing similarly for the forms sconv and sdiv, we have

sdiv(u
n+1
h , en+1

h ) ≤ 1

2

(
‖σ ∗

h (∇ · ûn+1
h )‖2

τd
− ‖σ ∗

h (∇ · en+1
h )‖2

τd

)
≤ C h2s‖u‖2

L∞(Hs+1)
− 1

2
‖σ ∗

h (∇ · en+1
h )‖2

τd
,

sconv(un
h, un+1

h , en+1
h ) ≤ 1

2

(‖σ ∗
h (u

n
h · ∇ûn+1

h )‖2
τν

− ‖σ ∗
h (u

n
h · ∇en+1

h )‖2
τν

)
.

Thus, from (4.19) we obtain

‖en+1
h ‖2

L2 + 2νΔt‖D(en+1
h )‖2

L2

+Δt
[
‖σ ∗

h (u
n
h · ∇en+1

h )‖2
τν

+ ‖σ ∗
h (∇ · en+1

h )‖2
τd

+ ‖σ ∗
h (∇λn+1

h )‖2
τp

]
≤
(

1 + Cν−1Δt‖u‖2
L∞(Hs+1)

)
‖en

h‖2
L2

+ CΔt
[
h2s

(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs)

)
+ ν−1‖εn+1

vh ‖2
H−1 + ‖σ ∗

h (u
n
h · ∇ûn+1

h )‖2
τν

]
. (4.20)

The estimate for ‖σ ∗
h (u

n
h · ∇ûn+1

h )‖2
τν

is rather involved, so that we discuss it in detail. By applying the
triangle inequality and Lemma 4.1, we have

‖σ ∗
h (u

n
h · ∇ûn+1

h )‖τν
≤ ‖σ ∗

h (u
n
h · ∇ ên+1

h )‖τν + ‖σ ∗
h (u

n
h · ∇un+1)‖τν

≤ C h‖un
h · ∇ ên+1

h ‖L2 + ‖σ ∗
h (u

n
h · ∇un+1)‖τν

≤ C h
(‖en

h · ∇ ên+1
h ‖L2 + ‖̂un

h · ∇ ên+1
h ‖L2

) + ‖σ ∗
h (u

n
h · ∇un+1)‖τν . (4.21)
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The first two terms in the last inequality are bounded by using Hölder’s inequality, (4.14), and the optimal
error estimate (4.10):

h
(‖en

h · ∇ ên+1
h ‖L2 + ‖̂un

h · ∇ ên+1
h ‖L2

)
≤ h

(‖en
h‖L2‖∇ ên+1

h ‖L∞ + ‖̂un
h‖L∞‖∇ ên+1

h ‖L2

)
≤ C h‖u‖L∞(Hs+1)

(‖en
h‖L2 hs−d/2 + ‖∇ ên+1

h ‖L2

)
≤ C

(
‖u‖L∞(Hs+1)‖en

h‖L2 hs+1−d/2 + ‖u‖2
L∞(Hs+1)

hs+1
)

. (4.22)

The last term in (4.21) is bounded by using again Lemma 4.1, the stability estimate (3.6), the properties
∇un+1 ∈ L∞ and (un · ∇un+1) ∈ Hs, which follow from the regularity assumptions and the Sobolev
imbedding theorem, and the optimal error estimates (3.7) and (4.10):

‖σ ∗
h (u

n
h · ∇un+1)‖τν ≤ C h‖σ ∗

h (u
n
h · ∇un+1)‖L2

≤ C h
(‖σ ∗

h (e
n
h · ∇un+1)‖L2 + ‖σ ∗

h (̂u
n
h · ∇un+1)‖L2

)
≤ C h

(‖en
h · ∇un+1‖L2 + ‖̂en

h · ∇un+1‖L2 + ‖σ ∗
h (u

n · ∇un+1)‖L2

)
≤ C h‖u‖L∞(Hs+1)

(‖en
h‖L2 + hs‖u‖L∞(Hs+1)

)
. (4.23)

Combining (4.21) with (4.22) and (4.23), we finally obtain

‖σ ∗
h (u

n
h · ∇ûn+1

h )‖τν ≤ C
(

h‖u‖L∞(Hs+1)‖en
h‖L2 + hs+1‖u‖2

L∞(Hs+1)

)
. (4.24)

Inserting (4.24) into (4.20) gives in particular

‖en+1
h ‖2

L2 + 2νΔt‖D(en+1
h )‖2

L2

+Δt
[
‖σ ∗

h (u
n
h · ∇en+1

h )‖2
τν

+ ‖σ ∗
h (∇ · en+1

h )‖2
τd

+ ‖σ ∗
h (∇λn+1

h )‖2
τp

]
≤
[
1 + C(ν−1 + h2)Δt‖u‖2

L∞(Hs+1)

]
‖en

h‖2
L2 + Cν−1‖εn+1

vh ‖2
H−1

+ C h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs) + ‖u‖4
L∞(Hs+1)

)
Δt. (4.25)

We now apply the discrete Gronwall’s lemma 4.5 with

αn = ‖en
h‖2

L2 ,

βn = C
[
ν−1‖εn+1

vh ‖2
H−1 + h2s

(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs) + ‖u‖4
L∞(Hs+1)

)]
Δt,

Cn = 0, Dn = C(ν−1 + h2)‖u‖2
L∞(Hs+1)

,
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to deduce

max
n=0,1,...,N

‖en
h‖2

L2 ≤ ‖e0
h‖2

L2 eC̃

+ C eC̃h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs) + ‖u‖4
L∞(Hs+1)

)
T

+ C eC̃ν−1
N−1∑
n=0

Δt‖εn+1
vh ‖2

H−1 , (4.26)

where C̃ = C(T)(1 + ν−1)‖u‖2
L∞(Hs+1)

, and C(T) > 0 is an increasing function of T , independent of h
andΔt. Summing (4.25) from n = 0 to n = r −1 for a positive integer r ≤ N and using (4.26), we obtain

‖er
h‖2

L2 + 2ν
r−1∑
n=0

Δt‖D(en+1
h )‖2

L2

+
r−1∑
n=0

Δt
[
‖σ ∗

h (u
n
h · ∇en+1

h )‖2
τν

+ ‖σ ∗
h (∇ · en+1

h )‖2
τd

+ ‖σ ∗
h (∇λn+1

h )‖2
τp

]

≤ C̃ max
n=0,1,...,N

‖en
h‖2

L2 + Cν−1
r−1∑
n=0

Δt‖εn+1
vh ‖2

H−1

+ C h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs) + ‖u‖4
L∞(Hs+1)

)
T

≤ C̃ eC̃

(
‖e0

h‖2
L2 + ν−1

N−1∑
n=0

Δt‖εn+1
vh ‖2

H−1

)

+ C̃ eC̃ h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs) + ‖u‖4
L∞(Hs+1)

)
. (4.27)

Step 3: Consistency velocity error estimate. For the analysis, the consistency error is decomposed

into 〈εn+1
vh , v〉 =

5∑
i=1

εi, with

ε1 = −
(
∂tun+1 − ûn+1

h − ûn
h

Δt
, v
)
Ω

, ε2 = b(̂un
h, ûn+1

h , v)− b(un+1; un+1, v),

ε3 = a(̂en+1
h , v), ε4 = −(̂λn+1

h , ∇ · v)Ω , ε5 = 〈f n+1 − f
n+1

, v〉,

where we recall that ên+1
h = ûn+1

h − un+1 and λ̂n+1
h = p̂n+1

h − pn+1. Estimates for εi, i = 1, . . . , 5, can
be directly derived from Chacón Rebollo & Lewandowski (2014, pp. 380–381), thus we skip them for
brevity. Collecting all these estimates yields

‖εn+1
vh ‖2

H−1 =
⎛⎝sup

v∈H1
0

〈εn+1
vh , v〉

‖D(v)‖L2

⎞⎠2

≤ C(Δt)−2 h2(s+1)‖u‖2
L∞(Hs+1)
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+ C h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs)

)
+ CΔt

∫ tn+1

tn

(‖∂ssu(s)‖2
L2 + ‖∂su(s)‖2

L2 + ‖∂sf (s)‖2
H−1

)
ds.

Summation over the discrete times and using the regularity assumptions on u, p and f (the norms
concerning the time derivatives of u and f are hidden in the constant) lead to

N−1∑
n=0

Δt‖εn+1
vh ‖2

H−1 ≤ C(Δt)−2 h2(s+1)‖u‖2
L∞(Hs+1)

+ C h2s
(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs)

)
+ C(Δt)2

[
‖∂ttu‖2

L2(L2)
+ ‖∂tu‖2

L2(L2)
+ ‖∂tf‖2

L2(H−1)

]
≤ C

[
(Δt)−2 h2(s+1)‖u‖2

L∞(Hs+1)
+ (Δt)2

]
+ C h2s

(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs)

)
. (4.28)

Combining (4.27) with (4.28), we obtain, for 0 < r ≤ N

‖er
h‖2

L2 + 2ν
r−1∑
n=0

Δt‖D(en+1
h )‖2

L2

+
r−1∑
n=0

Δt
[
‖σ ∗

h (u
n
h · ∇en+1

h )‖2
τν

+ ‖σ ∗
h (∇ · en+1

h )‖2
τd

+ ‖σ ∗
h (∇λn+1

h )‖2
τp

]
≤ C̃eC̃

[
‖e0

h‖2
L2 + h2s

(
‖u‖2

L∞(Hs+1)
+ ‖p‖2

L∞(Hs) + ‖u‖4
L∞(Hs+1)

)]
+ C̃eC̃

[
(Δt)−2 h2(s+1)‖u‖2

L∞(Hs+1)
+ (Δt)2

]
, (4.29)

where we recall that C̃ = C(T)(1 + ν−1)‖u‖2
Hs+1 , and C(T) > 0 is an increasing function of T . With the

notations of Theorem 4.6, we can write

‖eh‖�∞(L2) +
√
ν‖D(eh)‖�2(L2) = max

n=1,...,N
‖en

h‖L2 + √
ν

[
N∑

n=1

Δt‖D(en
h)‖2

L2

]1/2

≤
√

C̃eC̃
[
hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)
+ 1

)]
+
√

C̃eC̃
[
(Δt)−1hs+1‖u‖L∞(Hs+1) +Δt

]
≤
√

C̃eC̃
[
hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)
+ 1

)
+Δt

]
, (4.30)
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using the assumption Ch ≤ Δt. Estimate (4.8) for the velocity follows from (4.30) using the triangle
inequality:

‖u − uh‖�∞(L2) +
√
ν‖D(u − uh)‖�2(L2) ≤ ‖eh‖�∞(L2) +

√
ν‖D(eh)‖�2(L2)

+ ‖̂eh‖�∞(L2) +
√
ν‖D(̂eh)‖�2(L2),

and the optimal error estimate (4.10).

Step 4: Pressure estimate. From the error equation (4.13), setting qh = 0, we have

(λn+1
h , ∇ · vh)Ω =

(
en+1

h − en
h

Δt
, vh

)
Ω

+ b(un
h, en+1

h , vh)+ b(en
h, ûn+1

h , vh)

+ a(en+1
h , vh)− 〈εn+1

vh , vh〉 − sconv(un
h, un+1

h , vh)− sdiv(u
n+1
h , vh).

Let Λn+1
h =

n∑
k=0

Δtλk+1
h =

n∑
k=0

Δt(̂pk+1
h − pk+1

h ), then summation over the discrete times gives

(Λn+1
h , ∇ · vh)Ω = (en+1

h − e0
h, vh)Ω +

n∑
k=0

Δt[b(uk
h, ek+1

h , vh)+ b(ek
h, ûk+1

h , vh)]

+
n∑

k=0

Δt[a(ek+1
h , vh)− 〈εk+1

vh , vh〉 − sconv(uk
h, uk+1

h , vh)− sdiv(u
k+1
h , vh)].

The application of the triangle inequality, a standard estimate for the convective term, the Cauchy–
Schwarz and Korn’s inequalities, the stability result (4.6) for the velocity, the regularity assumptions on
u and the optimal error estimate (4.10) yield

(Λn+1
h , ∇ · vh)Ω

‖D(vh)‖L2
≤ C

[ (‖en+1
h ‖L2 + ‖e0

h‖L2

)
+

n∑
k=0

Δt
(‖D(uk

h)‖L2‖D(ek+1
h )‖L2 + (‖D(̂ek+1

h )‖L2 + ‖D(uk+1)‖L2

) ‖D(ek
h)‖L2

)
+

n∑
k=0

Δt
(‖D(ek+1

h )‖L2 + ‖εk+1
vh ‖H−1

)
+ 1

‖D(vh)‖L2

n∑
k=0

Δt
(|sconv(uk

h, uk+1
h , vh)| + |sdiv(u

k+1
h , vh)|

) ]

≤ C(T)

[ (‖en+1
h ‖L2 + ‖e0

h‖L2 + hs‖u‖L∞(Hs+1)

)
+
⎛⎝( n∑

k=0

Δt‖D(ek+1
h )‖2

L2

)1/2

+
(

n∑
k=0

Δt‖εk+1
vh ‖2

H−1

)1/2
⎞⎠

+ 1

‖D(vh)‖L2

n∑
k=0

Δt
(|sconv(uk

h, uk+1
h , vh)| + |sdiv(u

k+1
h , vh)|

) ]
, (4.31)
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where we recall that C(T) > 0 is an increasing function of T , independent of h andΔt. The stabilization
term with respect to the divergence is bounded by the triangle inequality, the Cauchy–Schwarz inequality,
(4.4), Poincaré’s and Korn’s inequalities, ∇·uk+1 = 0 a.e. inΩ , the stability estimate (3.6) and the optimal
error estimate (4.10):

|sdiv(u
k+1
h , vh)| ≤ |sdiv(̂e

k+1
h , vh)| + |sdiv(uk+1, vh)| + |sdiv(e

k+1
h , vh)|

≤ C
(‖D(̂ek+1

h )‖L2 + ‖∇ · uk+1‖L2

) ‖D(vh)‖L2

+ C‖D(ek+1
h )‖L2‖D(vh)‖L2

≤ C
(
hs‖u‖L∞(Hs+1) + ‖D(ek+1

h )‖L2

) ‖D(vh)‖L2 . (4.32)

Using the triangle inequality, Lemma 3.4 in Chacón Rebollo et al. (2015b) and (4.10) yields

|sconv(uk
h, uk+1

h , vh)|
≤ |sconv(uk

h, êk+1
h , vh)| + |sconv(uk

h, uk+1, vh)| + |sconv(uk
h, ek+1

h , vh)|
≤ C h2+s−d/2‖u‖L∞(Hs+1)‖D(uk

h)‖2
L2‖D(vh)‖L2 + |sconv(uk

h, uk+1, vh)|
+ |sconv(uk

h, ek+1
h , vh)|. (4.33)

Again, the triangle inequality, the application of Lemma 4.1, local inverse estimates (cf. Bernardi et al.,
2004), Sobolev injections, the stability estimate (3.6) and the optimal error approximation properties
(3.7) and (4.10) give

|sconv(uk
h, uk+1, vh)| ≤ C

∑
K∈Th

h2
K‖ek

h · ∇uk+1‖L2(ωK )
‖uk

h · ∇vh‖L2(ωK )

+ C
∑
K∈Th

h2
K ‖̂ek

h · ∇uk+1‖L2(ωK )
‖uk

h · ∇vh‖L2(ωK )

+ C
∑
K∈Th

h2
K‖σ ∗

h (u
k · ∇uk+1)‖L2(K)‖uk

h · ∇vh‖L2(ωK )

≤ Ch2‖D(ek
h)‖L2‖∇uk+1‖L4 h−d/4‖D(uk

h)‖L2‖D(vh)‖L2

+ Ch2‖D(̂ek
h)‖L2‖∇uk+1‖L4 h−d/4‖D(uk

h)‖L2‖D(vh)‖L2

+ Ch2‖σ ∗
h (u

k · ∇uk+1)‖L2 h−d/4‖D(uk
h)‖L2‖D(vh)‖L2

≤ C h2−d/4‖D(ek
h)‖L2‖u‖L∞(Hs+1)‖D(uk

h)‖L2‖D(vh)‖L2

+ C h2−d/4+s‖u‖2
L∞(Hs+1)

‖D(uk
h)‖L2‖D(vh)‖L2 . (4.34)

Moreover, by using Cauchy–Schwarz inequality and the stability property (3.6), we estimate

|sconv(uk
h, ek+1

h , vh)| ≤ C
∑
K∈Th

τν,K‖σ ∗
h (u

k
h · ∇ek+1

h )‖L2(K)‖σ ∗
h (u

k
h · ∇vh)‖L2(K)

≤ C‖σ ∗
h (u

k
h · ∇ek+1

h )‖τν
⎛⎝∑

K∈Th

h2
K‖uk

h · ∇vh‖2
L2(ωK )

⎞⎠1/2

≤ C‖σ ∗
h (u

k
h · ∇ek+1

h )‖τνh1−d/4‖D(uk
h)‖L2‖D(vh)‖L2 , (4.35)
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where we have used local inverse estimates and Sobolev injections in the last inequality. Combining
(4.34) and (4.35), from (4.33) we obtain

|sconv(uk
h, uk+1

h , vh)| ≤ C h2+s−d/2‖u‖L∞(Hs+1)‖D(uk
h)‖2

L2‖D(vh)‖L2

+ C h2−d/4‖D(ek
h)‖L2‖u‖L∞(Hs+1)‖D(uk

h)‖L2‖D(vh)‖L2

+ C h2−d/4+s‖u‖2
L∞(Hs+1)

‖D(uk
h)‖L2‖D(vh)‖L2

+ C h1−d/4‖σ ∗
h (u

k
h · ∇ek+1

h )‖τν‖D(uk
h)‖L2‖D(vh)‖L2 . (4.36)

Inserting (4.32) and (4.36) in (4.31), using the Cauchy–Schwarz inequality, the stability result (4.6) for
the velocity, and taking advantage of estimate (4.29) to bound the last term in (4.36), we finally get

(Λn+1
h , ∇ · vh)Ω

‖D(vh)‖L2
≤
√

C̃eC̃

[
‖en+1

h ‖L2 + ‖e0
h‖L2

+ hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)

)
+Δt

+
(

n∑
k=0

Δt‖D(ek+1
h )‖2

L2

)1/2

+
(

n∑
k=0

Δt‖εk+1
vh ‖2

H−1

)1/2
⎤⎦. (4.37)

Thus, by the discrete inf–sup condition (4.5) and (4.28)–(4.29) it follows that

‖Λn+1
h ‖L2 ≤

√
C̃eC̃

⎡⎣ sup
k=0,1,...,N

‖ek
h‖L2 +

(
N−1∑
k=0

Δt‖D(ek+1
h )‖2

L2

)1/2

+
(

N−1∑
k=0

Δt‖εk+1
vh ‖2

H−1

)1/2

+ ‖σ ∗
h (∇Λn+1

h )‖τp

+ hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)
+ 1

)
+Δt

]
≤
√

C̃eC̃
[
hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)
+ 1

)
+Δt

]
. (4.38)

Again, using the notation introduced in the statement of Theorem 4.6, in particular we can write

‖Λh‖�∞(L2) = max
n=1,...,N

‖Λn
h‖L2

≤
√

C̃eC̃
[
hs
(
‖u‖L∞(Hs+1) + ‖p‖L∞(Hs) + ‖u‖2

L∞(Hs+1)
+ 1

)
+Δt

]
. (4.39)

Estimate (4.8) for the pressure follows from (4.39), the triangle inequality:

‖P̃ − Ph‖�∞(L2) ≤ ‖Λh‖�∞(L2) + ‖Λ̂h‖�∞(L2),

and the optimal error estimate (4.11). This concludes the proof. �
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Remark 4.7 To obtain optimal estimates with respect to the polynomial interpolation we must take s = l.
This yields

‖u − uh‖L∞(L2) +
√
ν‖D(u − uh)‖L2(L2) + ‖P − Ph‖L∞(L2)

≤
√

C̃eC̃
[
hl
(
‖u‖L∞(Hl+1) + ‖p‖L∞(Hl) + ‖u‖2

L∞(Hl+1)
+ 1

)
+Δt

]
.

Thus, the error bound for the STAB method (3.2) is optimal with respect to both, the time (since we
are using a first-order Euler method in time for simplicity of the analysis) and, for smooth flows, the
polynomial interpolation.

Remark 4.8 The proof of Theorem 4.6, that implies more concretely a strong convergence result for
solutions with slightly increased regularity (it is sufficient (u, p) ∈ C0(H2)× C0(H1), even if the conver-
gence order in space is limited to one, due to the pressure stabilizing term), contains as a sub-product the
asymptotic energy balance of the STAB approximation (3.2): the total energy balance is asymptotically
maintained in such a way that the sub-grid energy due to stabilizing terms asymptotically vanish (see
Chacón Rebollo et al., 2015b, Section 3.4).

This is not the case if we consider the natural minimal regularity of the continuous solution: indeed,
due to the low regularity of the weak solution, we can just prove an energy inequality, due to the dissipative
nature of the STAB approximation (3.2), by using that the sub-grid stabilizing energy terms are positive
(cf. Chacón Rebollo et al., 2015a).

5. Numerical studies

Numerical studies with the LPS method (3.2) were performed on the one hand to support the theoretical
convergence order predicted by the numerical analysis and stated in Theorem 4.6. To this end, Example 5.1
considers a three-dimensional unsteady Beltrami flow in laminar regimes which possesses an analytical
solution. On the other hand, the performance of the proposed method is studied at a high Reynolds number
flow. In Example 5.2 simulations of a two-dimensional mixing layer evolving in time at Reynolds number
Re = 104 are presented, and the obtained results are compared with results from the literature.

5.1 Laminar regime: Beltrami flow (three-dimensional)

This test is aimed to check the convergence order stated in Theorem 4.6 for the scheme (3.2) applied to
the computation of the three-dimensional Beltrami flow in laminar regimes. This example describes a
three-dimensional unsteady flow situation in which all terms in the incompressible NSE play a crucial role
(i.e., there are no degenerating terms), and for which a closed-form analytical solution exists. Although
unlikely to be physically realized, it was developed in Ethier & Steinman (1994) for benchmarking,
testing and validation of three-dimensional incompressible Navier–Stokes solvers.

Setup for numerical simulations. The problem is defined in Ω = (−1, 1)3. Its analytical solution is
given by

u1 = −a
[
ea x sin(a y ± d z)+ ea z cos(a x ± d y)

]
e−ν d2 t , (5.1)

u2 = −a
[
ea y sin(a z ± d x)+ ea x cos(a y ± d z)

]
e−ν d2 t , (5.2)

u3 = −a
[
ea z sin(a x ± d y)+ ea y cos(a z ± d x)

]
e−ν d2 t , (5.3)
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p = −a2

2

[
e2 a x + e2 a y + e2 a z + 2 sin(a x ± d y) cos(a z ± d x) ea(y+z)

+ 2 sin(a y ± d z) cos(a x ± d y) ea(z+x)

+ 2 sin(a z ± d x) cos(a y ± d z) ea(x+y)
]

e−2 ν d2 t , (5.4)

where a and d are parameters defining a family of solutions. In our simulations, they were fixed to be
a = π/4 and d = π/2, resulting in initial velocities ranging from 1.59 to −3.31 (cf. Ethier & Steinman,
1994). These velocity fields are generated by eigenfunctions of the curl operator (cf. McLaughlin &
Pironneau, 1991) in such a way that the unsteady term balances the viscous term in the momentum
equation, the velocity is divergence-free, and the convective term can be expressed as the gradient of
a scalar function (i.e., the negative of the pressure). The sign + was taken in formulas (5.1)–(5.4) to
perform the presented numerical simulations, whereas the sign − gave similar results.

Following Gravemeier (2006) and Gravemeier et al. (2004) two different flow regimes were con-
sidered, a diffusion-dominated flow with ν = 1 and a convection-dominated flow with ν = 10−3. The
Reynolds numbers based on the chosen viscosity, the length of the domain, and the maximum initial
velocity (in modulus) were Re = 6.62 and Re = 6620, respectively. The initial flow state was the same
for both the diffusion- and the convection-dominated flow regime, since the viscosity has no effect at
t = 0. Depictions of the initial velocity and pressure fields can be found in Gravemeier et al. (2004).

Due to the balance of the left-hand side terms in the momentum equation there are no body forces in
this problem, so that f = 0 in (3.2). Dirichlet boundary conditions based on (5.1)–(5.3) were applied on
all faces. The following expressions of the stabilization coefficients were used:

τν,K = τp,K =
(

1

Δt
+ 1

τ n
1,K

)−1

, τ n
1,K =

[
c1

ν

(hK/l)2
+ c2

Un
K

(hK/l)

]−1

, (5.5)

τd,K = (hK/l)2

c1τ
n
1,K

, (5.6)

by adapting the form proposed in Codina & Blasco (2002) and Codina et al. (2007), designed by asymp-
totic scaling arguments applied in the framework of stabilized methods. In (5.5)–(5.6), c1 and c2 are
user-chosen positive constants, l is the degree of the polynomial interpolation, and Un

K is some local
speed on the mesh cell K at the previous time step n (it should be Un

K ∈ L∞(K), n = 0, 1, . . . , N − 1, to
ensure (3.8)). The values of the constants c1 and c2 were chosen to be c1 = 4, c2 = √

c1 = 2 (cf. Codina,
2001), and we set Un

K = ‖un
h‖L2(K)/|K|1/2. Problem (3.2) was implemented in a FreeFem++ (cf. Hecht,

2012) code.
The main interest was in testing the convergence order in space, so that uniform meshes with

43, 53, . . . , 83 mesh cells and with P2 FEs were used for both velocity and pressure, and l = 2 in (5.5)–
(5.6). Starting with the initial field given by (5.1)–(5.3), the semi-implicit Euler scheme (3.2) was applied
for the temporal discretization with N = 16 and N = 32 time steps of length Δt = 0.00625 and
Δt = 0.003125, respectively, resulting in the final simulation time T = 0.1 in both cases. This approach
implies a 22% decay of the initial flow configuration. According to Ethier & Steinman (1994), these
setup values optimize the spatial and temporal variation while maintaining reasonable execution times.
The time steps chosen ensure that the temporal errors are almost negligible compared with the error in
space for all spatial meshes considered.
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Fig. 1. Example 5.1. Convergence of ‖u − uh‖�∞(L2) + √
ν‖D(u − uh)‖�2(L2) + ‖P̃ − Ph‖�∞(L2) for the diffusion-dominated

(ν = 1, diff.) and the convection-dominated (ν = 10−3, conv.) case (Δt = 0.00625 on the left and Δt = 0.003125 on the right).

5.1.1 Numerical results. In Fig. 1, the ‘velocity + pressure’ error curves following estimate (4.8) for
both the diffusion- and convection-dominated case are presented, related to the grid size h, here defined
as the distance between adjacent nodes per direction of the mesh cell. The expected convergence order
is O(h2), due to the use of quadratic FEs in space and the fact that the temporal error is negligible.

For both cases of this laminar flow (diffusion- and convection-dominated), Fig. 1 confirms that the
optimal order of convergence, which has to be expected from the error analysis, is achieved.

5.2 High Reynolds number regime: plane mixing layer (two-dimensional)

Numerical results for a plane mixing layer problem evolving in time at relatively high Reynolds number
are presented in this section. Mixing layers are encountered in aerodynamics, in the atmosphere or the
ocean (e.g., in the wake of mountains, in the Gulf Stream or in the Mediterranean sea), as well as in
the atmospheres of Jupiter and Saturn (at the interface between neighboring zonal jets), confer Lesieur
et al. (1988). Such a flow permits the study of transition to turbulence far from boundaries, and thus the
influence of boundaries is removed. The opportunity of considering a two-dimensional problem allows to
perform numerical simulations up to a certain level of resolution with the available computer resources.
The interaction between two- and three-dimensional turbulence related to this flow has been analyzed in
Lesieur et al. (1988).

The plane mixing layer problem has been investigated experimentally, for instance, in Brown &
Roshko (1974) for a turbulent regime as well as in Winant & Browand (1974) at moderate Reynolds
number. An extensive review of this type of flows is given in Ho & Huerre (1984). Numerically, it has
been deeply discussed in Lesieur et al. (1988), where a direct numerical simulation of a two-dimensional
temporal mixing layer problem was performed, applying a second-order finite difference method at the
high resolution of 2562 grid points with a uniform spacing in each direction. Further numerical studies
for this problem, including large eddy simulation (LES), VMS and stabilized models, may be found,
e.g., in Boersma et al. (1997), Burman (2015), Gravemeier et al. (2005), Griebel & Koster (2000), John
(2004, 2005) and Nägele & Wittum (2003). The corresponding three-dimensional case has been analyzed
numerically, e.g., in Balaras et al. (2001), John (2004, 2005) and Rogers & Moser (1994).
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Fig. 2. Example 5.2. First component of the initial velocity (without noise).

For the setup of our numerical simulations, we chose to follow the guidelines given in Gravemeier
et al. (2005), where numerical studies of a two-dimensional mixing layer problem for an LES with a three-
level VMS FE method were performed. As a benchmark, we considered the numerical results obtained
by the so-called ‘basic method’ in Gravemeier et al. (2005), which consists of a pressure stabilizing
Petrov–Galerkin Finite Element Method (FEM) with an additional grad-div stabilization term.

5.2.1 Setup for numerical simulations. We used a setup similar to the one of Gravemeier et al. (2005).
The problem is defined in Ω = (0, 1)2. Free-slip boundary conditions were applied at y = 0 and y = 1,
and periodic boundary conditions were prescribed at x = 0 and x = 1. The initial velocity field is given
by a hyperbolic tangent basic profile reading:

u0 =
(

U∞ tanh((2y − 1)/δ0)

0

)
, (5.7)

where δ0 denotes the initial vorticity thickness, which will be defined below. The initial velocity
distribution (5.7) is displayed in Fig. 2.

On the initial velocity field (5.7) we superposed a white-noise divergence-free perturbation of small
amplitude by means of the streamfunction:

ψ = cnU∞ exp[−((y − 0.5)/δ0)
2] cos(αx), (5.8)
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where α = 2π/λ is the corresponding wave number with wavelength λ. This perturbation injects energy
into all the longitudinal spatial modes, according to Lesieur et al. (1988), and should reasonably approxi-
mate the case of a real mixing layer that is naturally submitted to a residual turbulence having a broadband
spectrum.

The mixing layer problem is known to be inviscid unstable. Slight perturbations of the initial condition
are amplified by the so-called Kelvin–Helmholtz instabilities. With a linear stability analysis it can be
shown that the most amplified mode corresponds to the most unstable wavelength λa = 7δ0, see Michalke
(1964). For a domain having extension Lx in the stream-wise direction, with Lx = nλa, n ∈ N, the number
of primary vortices which are expected to develop in the x-direction is equal to n. We will present
computations with four primary eddies, i.e., n = 4. Since Lx = 1, we have to choose δ0 = 1/28. We took
for the actual perturbation the sum of two waves with wavelengths 1/4 and 1/10 in terms of the domain
length, respectively. Consequently, the perturbed initial velocity was given by

u0,Pert =
(

U∞ tanh((2y − 1)/δ0)

0

)
+
(

∂yψ

−∂xψ

)
, (5.9)

with

ψ = cnU∞ exp
(−(y/δ0)

2
)
(cos(8πx)+ cos(20πx)).

The other parameters in the computations were specified to be U∞ = 1, the scaling factor cn = 10−3, and
the viscosity ν−1 = 28 · 104. The Reynolds number associated with this flow is Re = U∞δ0/ν = 104.
There are no body forces in this problem, so that f = 0 in (3.2).

The stabilization coefficients were chosen as given in (5.5) and (5.6). Three computational grids were
used, consisting of uniform 402, 802 and 1602 partitions of the domain. On these meshes, we consider
two-dimensional P2 FEs for velocities and pressure, so that l = 2 in (5.5) and (5.6). This choice gives rise
to 51 200 triangles, 102 720 d.o.f. for each scalar variable and the grid size h = √

2/160 ≈ 8.8388 · 10−3

for the finest grid.
A time unit t = δ0/U∞ was defined and an equidistant time step of length Δt = 0.35 t = 0.0125

was used. Starting with the perturbed initial velocity field (5.9), the semi-implicit Euler scheme (3.2)
was applied as temporal discretization with N = 570 time steps, resulting in a final simulation time
T = 7.125 ≈ 200 t. Statistics were collected during the complete simulation time.

5.2.2 Numerical results. For the evaluation of the computational results, we considered the vorticity
of the flow ω = ∇ × u = ∂xu2 − ∂yu1. The vorticity thickness δ(tn) is defined by

δ(tn) = 2U∞
sup

y∈[0,1]
|〈ω〉(y, tn)| , (5.10)

where the numerator indicates the velocity jump across the mixing layer, and 〈ω〉(y, tn) in the denominator
is the integral mean in the periodic direction reading as

〈ω〉(y, tn) =

∫ 1

0
ω(x, tn) dx∫ 1

0
dx

=
∫ 1

0
ω(x, tn) dx.
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In the computations, this integral was evaluated discretely for all grid lines parallel to the x-axis (cf.
John, 2005), and the maximum of these values was employed to obtain δ(tn). In the evaluation of the
computations we considered the vorticity thickness scaled by δ0.

Besides the relative vorticity thickness we also studied the temporal evolution of the total kinetic
energy, given by

Ekin(tn) = 1

2

∫
Ω

|un
h|2 dx.

In principal, an evolution exhibiting a somehow decaying total amount of kinetic energy has to be expected,
since the initial velocity distribution is subject to a nonzero viscosity, and no additional energy input is
provided.

Finally, two other aspects of the flow were recorded quantitatively: the mean velocity 〈u1〉 and the
root-mean-square (r.m.s.) of the velocity u1. The mean velocity 〈u1〉 at every node was evaluated as a
discrete time average over the complete simulation time according to

〈u1〉 = 1

N

N∑
n=1

u1(x, tn).

In addition, these nodal values were spatially averaged along the periodic x-direction in order to achieve
a final velocity profile along the y-direction. The respective r.m.s. value

√|〈u2
1〉 − 〈u1〉2| was evaluated

during this averaging procedure.
The physical evolution of the flow can be described with the help of Fig. 3. These pictures are the

result of a simulation using the proposed LPS method (3.2) on the finest grid of 160 × 160 mesh cells.
They present the evolution of the vorticity ω through meaningful nondimensional instants:

• Development of the four primary eddies. Starting with the perturbed initial condition (5.9), the four
primary vortices develop, and they can be seen clearly after about 15 time units. This behavior
corresponds to the time also observed in Gravemeier et al. (2005) using the above-mentioned basic
method on the same grid, and in Lesieur et al. (1988).

• Pairing of the four primary eddies. The (simultaneous) pairing of the four primary eddies in two
secondary eddies takes place at about 35 time units. This behavior compares again to the time observed
in Gravemeier et al. (2005) and Lesieur et al. (1988).

• Pairing of the two secondary eddies. The first pairing is succeeded by a second pairing of the two
secondary eddies into one eddy, finished at about 120 time units. This pairing is at a later point in
time in comparison with Lesieur et al. (1988) (75 time units), and it is almost comparable with the
result from Gravemeier et al. (2005) (115 time units).

• Rotation of the final eddy. After time unit 120, the final eddy rotates at a fixed position. Since
this eddy has an elliptic shape the relative vorticity thickness δ/δ0 oscillates during this stage,
see Fig. 4.

The temporal evolution of the relative vorticity thickness δ/δ0 computed with the proposed LPS
method (3.2) on the various grid levels is presented in Fig. 4. The main stages of the respective flows,
which have been characterized, can be discovered in this picture through the formation of succeeding
peaks followed by final oscillations. The maximum values of the vorticity thickness at the first pairing are
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Fig. 3. Example 5.2. Vorticity field at time units 10, 20, 30, 40, 70, 100, 115, 125, 200 (left to right, top to bottom).

in between the comparable values in Lesieur et al. (1988) (slightly lower) and Gravemeier et al. (2005)
(slightly higher), while at the second pairing, the maximal values are slightly higher. The final oscillations
are rather contained in amplitude, revealing a slightly elliptic character closer to the results from Lesieur
et al. (1988) than from Gravemeier et al. (2005), which show larger final oscillations. It can be seen that
the vorticity thickness developed differently on different grids. For instance, the coarser the grid, the later
the point in time indicating the first pairing and, simultaneously, the sooner the second pairing. However,
in contrast to the results from Gravemeier et al. (2005), the coarse 80 × 80 mesh already provides very
similar results as the finest 160 × 160 grid till the starting point of the second pairing, i.e., till time unit
80. Moreover, the actual values of the amplitudes of the various peaks are almost identical for all grids
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Fig. 4. Example 5.2. Temporal evolution of the vorticity thickness on different meshes.
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Fig. 5. Example 5.2. Temporal evolution of the total kinetic energy on different meshes.

considered. Altogether, the grid resolution had a considerable influence on the temporal development of
the vorticity thickness, but the values of the various amplitudes stayed unchanged.

Concerning the temporal evolution of the total kinetic energy, depicted in Fig. 5, it is evident that the
lower the resolution level, the higher the overall energy loss, i.e., the more dissipative is the method, as it
could be expected. Again, the coarse 80×80 mesh already gives very similar results as the finest 160×160
grid till the starting point in time of the second pairing (time unit 80), while a noticeable difference is
present between these discretization levels during the complete simulation time in the numerical results
in Gravemeier et al. (2005).
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Fig. 6. Example 5.2. Mean stream-wise velocity profiles (left) and r.m.s. stream-wise velocity fluctuations profiles (right) on
different meshes.

Figure 6 shows that the mean stream-wise velocity profiles achieved on the various grids are rather
close, and in agreement with the results obtained in Gravemeier et al. (2005). The main differences on the
various grid levels can be observed in the proximity of the free-slip boundaries. These differences become
more pronounced in the curves for the respective r.m.s. values, see also in Fig. 6. The lower numerical
resolution is clearly reflected in the smaller maximal magnitude of the r.m.s. values. Globally, the maxi-
mum values of the r.m.s. stream-wise velocity fluctuations are slightly smaller than the corresponding
values in Gravemeier et al. (2005).

6. Summary and conclusions

In this paper, we have performed a stability and error analysis of the fully discrete unsteady incompressible
NSE discretized with a particular type of LPS method, commonly referred as high-order term-by-term
stabilization method. The main contribution of the present paper is the proof of a priori error estimates for
the fully discrete scheme. The analytical results show that for sufficiently regular flow fields an optimal
order of convergence is achieved, which was confirmed by numerical simulations of three-dimensional
Beltrami flows. An asymptotic energy balance holds even for less regular flow fields.

Numerical studies of a high Reynolds number plane mixing layer problem indicate that the considered
LPS method might be also a useful tool in the challenging simulation of turbulent flows, providing reliable
numerical results with a comparatively small computational complexity, which is an extremely important
feature in the context of realistic applications in computational fluid dynamics.
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