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Abstract Various realizations of variational multiscale

(VMS) methods for simulating turbulent incompressible

flows have been proposed in the past fifteen years. All of

these realizations obey the basic principles of VMS

methods: they are based on the variational formulation of

the incompressible Navier–Stokes equations and the scale

separation is defined by projections. However, apart from

these common basic features, the various VMS methods

look quite different. In this review, the derivation of the

different VMS methods is presented in some detail and

their relation among each other and also to other dis-

cretizations is discussed. Another emphasis consists in

giving an overview about known results from the numeri-

cal analysis of the VMS methods. A few results are pre-

sented in detail to highlight the used mathematical tools.

Furthermore, the literature presenting numerical studies

with the VMS methods is surveyed and the obtained results

are summarized.

1 Introduction

The accurate numerical simulation of turbulence is one of

the more challenging scientific problems, with wide clas-

sical applications such as engineering, weather, and climate

forecasting, for instance, besides more recent applications

in medicine, astrophysics, or oceanography, among others.

Fluid mechanics establishes that the motion of a viscous

fluid is governed by the Navier–Stokes equations, which

constitute the basic model to perform numerical simula-

tions of turbulent flows: Let X 2 Rd, d 2 f2; 3g, be a

bounded domain with Lipschitz boundary C and (0, T) be a

bounded time interval, then these equations are given by:

Find a velocity field u : ð0; TÞ � X ! Rd and a pressure

field p : ð0; TÞ � X ! R such that

otu� 2mr �D uð Þ þ ðu � rÞuþrp ¼ f in ð0; T� � X;

r � u ¼ 0 in ½0; T � � X:

ð1Þ

These equations have to be equipped with an initial con-

dition u0 at t ¼ 0 and with boundary conditions on the

boundary C of X. The velocity deformation tensor is the

symmetric part of the velocity gradient D uð Þ ¼ ðruþ
ruTÞ=2. Given data are the dimensionless kinematic vis-

cosity m and the body forces f . The first equation in (1)

models the conservation of momentum and the second

equation, the so-called continuity equation, models the

conservation of mass.

Flows at Reynolds number beyond the turbulence

threshold develop a wide range of space and time scales
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with nonlinear interactions and a seemingly random

behavior. Large eddies generate smaller and smaller eddies

by inertial effects, until these reach the viscous length

scale, below which they are destroyed by molecular fric-

tion. The computational complexity associated to the

accurate numerical simulation of such a wide range of

space-time scales makes direct numerical simulations

(DNS) of the Navier–Stokes equations for flows at large

Reynolds numbers nowadays impossible. It is estimated

that if the improvement of the computational resources

continues at the same rate, an accurate computation of all

scales of a turbulent flow will be possible only by the end

of the XXIth century.

Meanwhile, ‘‘turbulence’’ models aim to simulate sta-

tistical means of turbulent flows (RANS –Reynolds Aver-

aged Navier–Stokes– models), or rather their larger scales

(LES –Large Eddy Simulation– models). The traditional

models are based upon statistical theories of equilibrium

turbulence at large Reynolds numbers: The generation of

small eddies draws energy from the large eddies, and the

total energy drawn may be estimated by statistical simi-

larity properties, basically the Kolmogorov theory that

applies to eddies located in the inertial range, in which only

the convection effects are relevant. The effect of the cre-

ation of small eddies on the large ones is modeled by

means of an equivalent diffusion, named the ‘‘eddy diffu-

sion’’ or ‘‘eddy viscosity’’. The actual mathematical

structure of this eddy diffusion is built by similarity argu-

ments in such a way that the dissipated deformation energy

of the resolved scales equals the estimated energy drawn by

the unresolved scales. In RANS models the eddy diffusion

affects all the flow scales, leading to an excessive damping

of large scales. However, RANS models (in particular the

most popular one, the k � � model) are widely used in

engineering due to their robustness and economy of com-

putational time (see [38, Chapter 4]).

Classical (explicit) LES models are formally obtained

by convolution of the Navier–Stokes equations with a

smoothing kernel. The large scales are determined by a

cutoff length, that should be placed within the inertial

range, and the eddy viscosity acts usually directly on all

resolved scales. LES models provide more accurate results

than RANS models, in particular for unsteady flows,

although they are much more costly and thus much less

used in industrial applications. LES models (as RANS

models) are systems of partial differential equations, that

need to be endowed with initial and boundary conditions,

and solved numerically. The convolution with the

smoothing kernel destroys the no-slip boundary conditions,

generating a source of errors, e.g., see [51]. The numerical

discretization leads to an additional numerical diffusion,

needed to reach stability. The accurate numerical simula-

tion of LES models thus needs high-order discretizations to

prevent that the numerical diffusion masks the eddy

diffusion.

Variational multiscale (VMS) models propose an alter-

native to the ‘‘standard’’ turbulence modeling. VMS mod-

els are increasingly used as a promising and successful

approach that seeks to simulate large scale structures in

turbulent flows. However, there are fundamental differ-

ences between VMS methods and LES methods. In con-

trast to LES methods, VMS methods consider large scales

which are defined by projection into appropriate function

spaces. Moreover, VMS methods are based on the varia-

tional formulation of the model problem, while the LES

methods consider the strong form of the model problem.

One of the promising features of the derived variational

formulation and the use of the projection for defining the

scales is that the boundary conditions are incorporated into

the mathematical analysis in a natural way. Thus, com-

pared to classical LES based on filtering, the VMS

approach does not face difficulties associated to inhomo-

geneous non-commutative filters in wall-bounded flows,

and as consequence is mathematically consistent also in the

presence of boundaries.

VMS models were introduced in the seminal papers [80,

83] as a general technique to model the subgrid scales in

the numerical solution of partial differential equations. In

parallel, in [71] was introduced an alternative technique for

multiscale subgrid modeling. The application of VMS

modeling to the simulation of turbulent flows was proposed

in [85].

VMS methods have experienced a fast development, in

particular their application to the simulation of turbulent

flows that has led to well-established models. A relevant

achievement of some of these models (the residual-based

VMS models) is that they do not need any modeling of the

subgrid scales by statistical theories of turbulence, in par-

ticular they do not include eddy viscosity. The numerical

diffusion inherent to those models plays the role of the

eddy diffusion.

There essentially exist two classes of VMS turbulence

models, depending on the resolution levels number of the

scales:

• Two-scale VMS models The large and small scales are

respectively approximated by discrete spaces. A cou-

pled set of equations for large and small scales is

derived, where each of them is driven by the residual

associated to the other. The small scales are either

modeled or resolved, leading to

– Residual-based VMS models The unresolved scales

themselves are modeled in terms of the large scales,

and their modeled expression is inserted in the

resolved scale equations, leading to a single set of

equations for the resolved scales, with additional
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stabilizing terms modeling the action of the unre-

solved scales. In particular, for the orthogonal

subscales (OSS) model, if all inertial interactions

are kept in the modeled terms, the numerical

diffusion generated by this residual-based VMS

model is asymptotically equivalent, as the Reynolds

number increases to infinity, to the eddy diffusion

dissipated by the unresolved scales. Thus, the

residual-based procedure does not make use of the

statistical theory of equilibrium turbulence, and no

ad-hoc eddy viscosity modeling is required. Further,

it retains numerical consistency in the finite element

equations. This approach, which hence rely on

purely numerical artifacts without any modification

of the continuous problem, was seldom followed, the

MILES (Monotone Integrated LES) approach [21]

being the main exception, until the (residual-based)

VMS models were introduced in the seminal papers

[80, 83] and subsequently proposed as implicit LES

techniques (ILES) for turbulent flows in [10, 44]. It is

worth emphasizing that, while ILES techniques are

usually considered to be based on the addition of

purely dissipative numerical terms, see [126, Sec-

tions 5.3.4], this is not the case for instance of the

OSS model with dynamic subscales that allow to

model backscatter similar to dynamic LES closures,

as shown in [118] and discussed in Sect. 5.1.

• Three-scale VMS models: The flow is decomposed into

large resolved, small resolved, and unresolved scales. A

coupled set of equations for large and small resolved

scales is derived. The effect of the unresolved scales on

the resolved ones is modeled by means of an eddy

viscosity term that only acts directly on the small

resolved scales.

– Residual-free bubble VMS models: The small scales

are approximated by ‘‘bubble’’ finite elements

which are residual-free to take into account the

effect of the unresolved scales. The final model

consists of a coupled system of partial differential

equations for large and small resolved scales of the

flow.

– Projection-based VMS models: The large and small

resolved scales are jointly discretized in a single

discrete space. A projection operator into an

underlying large resolved scale space is used to

construct the small resolved scales that appear in

the eddy viscosity term.

– Algebraic VMS models: These models are similar to

the projection-based models, but the projection

operator is built at the algebraic level of the model,

once the model is written as a set of nonlinear

equations in Rn.

This classification of VMS methods also creates a division

in the family of turbulence models separating those that use

eddy diffusion (in a more or less sophisticated manner) to

model the effect of subgrid scales, and those (residual-

based) that use a direct modeling of the subgrid scale flow

by approximating the related equations.

The aim of this review consists in presenting the dif-

ferent VMS methods in a structured manner, comparing

their derivation, numerical analysis (when available), and

their ability to solve turbulent flow problems. There are

already reviews of VMS methods available in [62, 89, 92].

It is intended to update these reviews, thereby putting

special emphasis on the comparisons of formulations of the

methods and on aspects from numerical analysis.

1.1 Nomenclature

Standard symbols will be used for Lebesgue and Sobolev

spaces. To simplify notations, the domain is omitted if the

space is with respect to X and vector-valued spaces are

denoted by bold symbols, e.g., L2 ¼ ½L2ðXÞ�d

að�; �Þ Weak form of the viscous term

A �; �; �ð Þ Trilinear form for the left-hand side of Navier–

Stokes equations

bð�; �; �Þ Weak form of the convective term

bsð�; �; �Þ Skew-symmetric form of the convective term

cð�; �; �Þ Trilinear form defining a turbulence model

f Right-hand side of Navier–Stokes equations

f ð�Þ Linear form for the right-hand side of Navier–

Stokes equations

h Mesh width

hK Local mesh width for mesh cell K

K Mesh cell

M Macro element

n Outward pointing unit normal on C
p Continuous pressure

p Large scale pressure

bp Small resolved scale pressure

ph Resolved scale pressure

p0 Unresolved scale pressure

Pk Finite element space of degree k on simplices

Qk Finite element space of degree k on

quadrilaterals or hexahedra

T Final time

T h Triangulation

u Continuous velocity

u Large scale velocity

bu Small resolved scale velocity

uh Resolved scale velocity

u0 Unresolved scale velocity

U ðu; pÞT
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Vl
hðXÞ Pl on simplices, Ql on quadrilaterals or

hexahedra

X Space for continuous velocity

X� Dual space of X

X; Y Resolved scales (two-scale VMS) or large scales

(three-scale VMS)

bX; bY Small resolved scales (three-scale VMS)

X0; Y 0 Unresolved scales

Xdiv Space of weakly divergence-free functions

Xh Finite element velocity space

Xh;div Finite element velocity space with discretely

divergence-free functions

Y Space for continuous pressure

Yh Finite element pressure space

Z X � Y

C Boundary of X
d Filter width

m Dimensionless viscosity

mT Turbulent viscosity

I Identity operator

ph;P Projection operators

sm Stabilization parameter for velocity

sc Stabilization parameter for pressure, grad-div

parameter

X Bounded domain

ð�; �Þ Inner product in L2ðXÞ or L2ðXÞ
ð�; �Þx Inner product in L2ðxÞ or L2ðxÞ
k � kk Norm in HkðXÞ
k � kk;x Norm in HkðxÞ
k � kk;p Norm in Wk;pðXÞ
j � jk Seminorm in HkðXÞ
j � jk;x Seminorm in HkðxÞ
j � jk;p;x Seminorm in Wk;pðxÞ
k � kF Frobenius norm of a tensor

2 Finite Element Methods for the Incompressible
Navier–Stokes Equations

As already mentioned, VMS methods are based on the

variational formulation of the Navier–Stokes equations (1).

This section introduces this formulation and some proper-

ties are summarized. Then, the basic finite element dis-

cretization, the so-called Galerkin method, is given and

important properties are stated.

2.1 The Incompressible Navier–Stokes Equations

For simplicity of presentation, the case of homogeneous

Dirichlet boundary conditions

u ¼ 0 in ð0; TÞ � C

will be considered. Then the appropriate function spaces

for velocity and pressure are given by

X ¼ H1
0ðXÞ

� �d¼ v 2 H1ðXÞ
� �d

: v ¼ 0 on C
n o

;

Y ¼ L20ðXÞ ¼ q 2 L2ðXÞ :

Z

X
q dx ¼ 0

� �

:

The variational formulation of (1) is derived by multiplying

the momentum equation with test functions v 2 X, the

continuity equation with test functions q 2 Y , and with

integration by parts of the viscous term and the pressure

term. The resulting variational formulation reads as fol-

lows: Find ðu; pÞ : ð0; TÞ ! X � Y such that for all

ðv; qÞ 2 X � Y

d

dt
ðu; vÞ þ aðu; vÞ þ bðu; u; vÞ � ðr � v; pÞ ¼ hf ; vi in D�ð0; TÞ;

ðr � u; qÞ ¼ 0 inD�ð0; TÞ;
uð0; xÞ ¼ u0ðxÞ in X:

ð2Þ

Here, h�; �i denotes the duality pairing between X and its

dual X� ¼ H�1ðXÞ½ �d and D�ð0; TÞ is the space of distri-

butions on (0, T). The forms a and b are given by

aðu; vÞ ¼ 2mðD uð Þ;D vð ÞÞ; bðu; v;wÞ ¼ ððu � rÞv;wÞ;
u; v;w 2 X:

Using that u is divergence-free, one finds that

2mðD uð Þ;D vð ÞÞ ¼ mðru;rvÞ:

Applying Hölder’s inequality, Sobolev imbeddings, inter-

polation theorems in Sobolev spaces, Poincaré’s and

Korn’s inequality one gets the estimate

bðu; v;wÞ�Ckuk1=20 kD uð Þk1=20 kD vð Þk0kD wð Þk0
8 u; v;w 2 X:

ð3Þ

For studying the existence of a velocity solution of (2),

this system is usually considered in the subspace of

divergence-free functions

Xdiv ¼ v 2 X : ðr � v; qÞ ¼ 0 for all q 2 Yf g:

The second equation of (2) states that u 2 Xdiv for almost

every time. For test functions from Xdiv, the pressure term

in the first equation vanishes such that only the velocity is

left. Then, the velocity solution of (2) can be computed by

solving the following problem: Find u : ð0; TÞ ! Xdiv

such that for all v 2 Xdiv

hotu; vi þ aðu; vÞ þ bðu; u; vÞ ¼ hf ; vi in ð0; TÞ;
uð0; xÞ ¼ u0ðxÞ in X:

ð4Þ
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An appropriately defined variational velocity solution

satisfies [58, 134]

u 2 L2 0; T ;Xdivð Þ \ L1 0; T;L2
divðXÞÞ

�

ð5Þ

with

L2
divðXÞ ¼ v : v 2 L2ðXÞ;r � v ¼ 0; v � njC ¼ 0g

�

In this space, the divergence has to be understood in the

sense of distributions and the boundary condition in the

sense of traces. The initial condition also makes sense in

L2ðXÞ as from (5) u is weakly continuous from [0, T] into

L2ðXÞ.
The existence of a variational velocity solution can be

proved in several ways, e.g., by considering a sequence of

regularized problems [107], with the Galerkin method [78],

or with the semi-group method [133]. However, the

uniqueness of the weak solution is an open problem for the

practical relevant three-dimensional case. Uniqueness can

be proved with stronger regularity assumptions than (5),

e.g., with the assumption [130]

u 2 Ls 0; T ;LqðXÞð Þ with
3

q
þ 2

s
� 1:

The unresolved question of the uniqueness of a variational

solution possesses some impact on the numerical analysis

of discretizations of turbulence models. Topics like error

estimates are studied usually with the assumption of a

unique solution of the variational problem. To ensure this

property for the three-dimensional situation, one has to

require a regularity of the solution which is stronger than in

the formulation of the variational problem. But in partic-

ular for turbulent flows, it is counterintuitive to assume

additional regularity of the solution.

2.2 The Galerkin Finite Element Method

The basic idea of finite element methods consists in

replacing the infinite-dimensional spaces ðX; YÞ in the

definition of the weak problem (2) with finite-dimensional

spaces ðXh; YhÞ. Here, only the case of conforming finite

element methods will be considered, i.e., the finite-di-

mensional spaces are subspaces of the infinite-dimensional

spaces Xh � X and Yh � Y .

This section will describe the basic finite element dis-

cretization, the so-called Galerkin discretization. Analyti-

cal tools which will be needed in the finite element error

analysis will be introduced.

The continuous-in-time Galerkin finite element dis-

cretization of the Navier–Stokes equations (2) reads as

follows: Find ðuh; phÞ : ð0; TÞ ! Xh � Yh such that for all

ðvh; qhÞ 2 Xh � Yh

where u0;hðxÞ is an approximation of the initial condition in

the finite element space and bsðuh; uh; vhÞ is a skew-sym-

metric form of the convective term, e.g.,

bsðu; v;wÞ ¼
1

2
bðu; v;wÞ � bðu;w; vÞð Þ: ð7Þ

Note that in the case u 2 Xdiv it holds

bðu; v;wÞ ¼ bsðu; v;wÞ. From (3) one obtains directly

bsðu; v;wÞ�Ckuk1=20 kD uð Þk1=20 kD vð Þk0kD wð Þk0
8 u; v;w 2 X:

ð8Þ

For problem (6) to be well posed, the finite element

spaces have to satisfy the so-called discrete inf-sup

condition

inf
qh2Yh;qh 6¼0

sup
vh2Xh;vh 6¼0

r � vh; qhð Þ
krvhk0kqhk0

	 b[ 0; ð9Þ

with b constant independent of the triangulation, [8, 24].

Given a regular triangulation T h of X into a set fKg of

simplices, or quadrilaterals (2D)/hexahedra (3D), the diam-

eter of a mesh cell K is denoted by hK and h ¼ maxK2T h
hK .

The space of continuous functions whose restriction to each

mesh cell of T h is a polynomial of degree less than or equal

to k is denoted by Pk. The space Qk consists of continuous

functions whose restriction to each mesh cell is in each

variable is a polynomial of degree less than or equal to

k. Popular pairs of spaces that satisfy (9) on simplicial

meshes are the pairs from the Taylor–Hood family Pk=Pk�1,

k	 2 from [77] and the MINI element Pbub
1 =P1 from [6]. In

Pbub
1 , the space P1 is enriched with local bubble functions

(i.e., functions that vanish at the boundaries of all elements

of T h). On hexahedral meshes, again the Taylor–Hood pairs

Qk=Qk�1, k	 2, are popular, but also pairs with discontin-

uous pressure Qk=P
disc
k�1, k	 2.

ðotuh; vhÞ þ aðuh; vhÞ þ bsðuh; uh; vhÞ � ðr � vh; phÞ ¼ hf h; vhi in ð0; TÞ
ðr � uh; qhÞ ¼ 0 in ð0; TÞ;

uhð0; xÞ ¼ u0;hðxÞ in X;

ð6Þ
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Let Xh;div be the space of discretely divergence-free

functions

Xh;div ¼ vh 2 Xh : ðr � vh; qhÞ ¼ 0 for all qh 2 Yhf g:

Note that for all pairs of finite element spaces introduced

above it holds Xh;div 6� Xdiv, i.e., the discretely divergence-

free finite element functions are generally not divergence-

free. This issue and possible remedies are discussed com-

prehensively in the survey [102].

With the discrete inf-sup condition (9), the velocity

finite element solution of (6) can be computed equivalently

by solving: Find uh 2 Xh;div such that for all vh 2 Xh;div

ðotuh; vhÞ þ aðuh; vhÞ þ bsðuh; uh; vhÞ ¼ hf h; vhi in ð0; TÞ
ð10Þ

and uhð0; xÞ ¼ u0;hðxÞ. This formulation of the problem

will be used in the finite element analysis.

Analytical tools which are often applied in the finite

element error analysis comprise Young’s inequality

ab� t

p
ap þ t�q=p

q
bq; a; b; p; q; t 2 R;

1

p
þ 1

q
¼ 1;

p; q 2 ð1;1Þ;
ð11Þ

for t[ 0, Poincaré’s inequality in X

kvk0 �Ckrvk0 8 v 2 X; ð12Þ

and Korn’s inequality in X

krvk0 �CkD vð Þk0 8 v 2 X: ð13Þ

Since the triangulations are assumed to be regular, the

following inverse inequality holds for each vh 2 Xh and

each mesh cell K 2 T h, e.g., see [40, Theorem 3.2.6],

kvhkm;K � cinvh
l�m
K kvhkl;K ; 0� l�m: ð14Þ

The Stokes projection is the solution of the following

problem: Find ~uh 2 Xh;div such that

ð2mrðuðt; �Þ � ~uhÞ;rvhÞ ¼ ðpðt; �Þ;r � vhÞ 8 vh 2 Xh;div:

ð15Þ

Let uðt; �Þ 2 ðHkðXÞÞd; pðt; �Þ 2 Hk�1ðXÞ, k	 1, and Xh

possess a ðk � 1Þth order approximation property, e.g., Xh

is the finite element space Pk�1 on simplicial meshes or

Qk�1 on quadrilateral/hexahedral meshes. Then a scaling

argument of [75, Lemma 5.3] gives the approximation

properties of the Stokes projection

ku� ~uhk0 þ hkrðu� ~uhÞk0

�Chk kuðt; �Þkk þ
1

m
kpðt; �Þkk�1

� 	

;
ð16Þ

and

kotðu� ~uhÞk0 þ hkotðrðu� ~uhÞÞk0

�Chk kuðt; �Þkk þ
1

m
kpðt; �Þkk�1

� 	

;
ð17Þ

where the constants depend only on X. Even for t ¼ 0, the

pressure can be well defined, e.g., see [74].

Finally, a stability estimate and an error estimate for the

finite element velocity solution will be given. The pre-

sentation of the proofs will be omitted for the sake of

brevity. However, the principal approach for deriving

results of this kind is the same as for VMS methods, e.g.,

see Sect. 8.4 for a detailed presentation.

Lemma 1 Let u0;h 2 Xh;div and f 2 L2ð0; t;X0Þ, then the

finite element problem (10) has a unique solution uh 2 Xh

and it holds for all t 2 ð0; TÞ that

kuhðtÞk20 þ mkruhk2L2ð0;t;L2Þ � ku0;hk20 þ
1

m
kfk2L2ð0;t;X0Þ:

ð18Þ

The stability bound (18) depends on the inverse of m.

Theorem 1 Let X � Rd , d 2 f2; 3g, be a bounded

domain with polyhedral and Lipschitz continuous bound-

ary, let f 2 L2 0; T;X0ð Þ, u0 2 L2divðXÞ, and u0;h 2 Xh;div. In

addition, the following regularities are assumed for the

solution of (2)

otu 2 L2 0;T;X0ð Þ; ru 2 L4 0;T ;L2
� 


; p 2 L2 0;T ;L2
� 


:

ð19Þ

Then the following error estimate holds for the solution uh
of (10) and for all t 2 ð0;TÞ

k u�uhð ÞðtÞk20þmkr u�uhð Þk2L2ð0;t;L2Þ

�C

(

k u� Ihuð ÞðtÞk20þmkr u� Ihuð Þk2L2ð0;t;L2Þ

þexp
C

m3
kruk4L4ð0;t;L2Þ

� 	

"

ku0;h� Ihuð0Þk20

þmkr u� Ihuð Þk2L2ð0;t;L2Þ þm�1
�

kot u� Ihuð Þk2L2ð0;t;X0Þ

þkr u� Ihuð Þk2L4ð0;t;L2Þkruk2L4ð0;t;L2Þ

þ inf
qh2L2ð0;t;QhÞ

kp�qhk2L2ð0;t;L2Þ
�

þ 1

m3=2
ku0;hk20þ

1

m
kfk2L2ð0;t;X0Þ

� 	

kr u� Ihuð Þk2L4ð0;t;L2Þ

#)

;

ð20Þ

where IhuðtÞ is a projection of optimal order at time t, e.g.,

the Stokes projection, otIhu 2 L2 0; T;X0ð Þ is assumed.
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It can be seen that the error bound (20) scales like the

exponential of m�3.

3 Basic Concepts of VMS Methods

This section discusses basic concepts of VMS methods.

Starting point of all VMS methods is the separation of the

flow field into resolved and unresolved scales. It should be

emphasized once more that although this approach is in

principle the same as in LES, the definition of the scales is

different. VMS methods which use just resolved and

unresolved scales belong to the class of two-scale VMS

methods. However, the VMS methodology allows further

decompositions of the resolved scales. The most common

approach of this kind is a decomposition of these scales

into large resolved scales (or large scales) and small

resolved scales, leading finally to a so-called three-scale

VMS method.

The principal ideas behind two-scale and three-scale

VMS methods will be discussed below. For clearness of

presentation, the weak formulation (2) of the Navier–

Stokes equations will be expressed in a short form as fol-

lows: Find ðu; pÞ : ð0; TÞ ! X � Y satisfying

A u; ðu; pÞ; ðv; qÞð Þ ¼ f ðvÞ 8 ðv; qÞ 2 X � Y ð21Þ

with uð0; xÞ ¼ u0ðxÞ, where A �; �; �ð Þ stands for the left-

hand side of (2) and f ð�Þ for the right-hand side of (2).

3.1 Two-Scale VMS Methods

A two-scale VMS method uses a decomposition of the

scales in resolved scales u; pð Þ and unresolved scales

u0; p0ð Þ such that

u ¼ uþ u0; p ¼ pþ p0 ð22Þ

with the underlying direct sum decomposition

X ¼ X 
 X0; Y ¼ Y 
 Y 0: ð23Þ

It should be emphasized once more that the decomposition

of the scales and the spaces is performed with variational

projections.

Inserting decomposition (22) in (21), using the same

decomposition for the test functions, and the linearity of

the variational formulation with respect to the test func-

tions gives

• an equation for the resolved scales

A u; u; pð Þ; v; qð Þð Þ þ A u; u0; p0ð Þ; v; qð Þð Þ ¼ f vð Þ;
ð24Þ

• and an equation for the unresolved scales

A u; u; pð Þ; v0; q0ð Þð Þ þ A u; u0; p0ð Þ; v0; q0ð Þð Þ ¼ f v0ð Þ:
ð25Þ

To simplify notations, define

U ¼
u

p

� 	

; V ¼
v

q

� 	

; and so on.

Now, the form A �; �; �ð Þ is decomposed into its linear part

and the trilinear convective term

A u;U;Vð Þ ¼ Alin U;Vð Þ þ bðu; u; vÞ:

Then, (25) can be written in the form

AU U0;V0ð Þ þ b u0; u0; v0ð Þ ¼ Res U
� 


;V0
 �

ð26Þ

with

AU U0;V0ð Þ ¼ Alin U0;V0ð Þ þ b u0; u; v0ð Þ þ b u; u0; v0ð Þ;
Res U
� 


;V0
 �

¼ f ðv0Þ � Alin U;V0� 


� b u; u; v0ð Þ:

Using the linearity of Alin �; �ð Þ and the trilinearity of

bð�; �; �Þ, a straightforward calculation gives that the oper-

ator AU U0;V0ð Þ is the Gâteaux derivative of Að�; �; �Þ at U in

the direction of U0

Equation (26) provides an interpretation of the unre-

solved scales in terms of the resolved scales: The unre-

solved scales are a function of the residual of the resolved

scales. Hence, there is a representation of the form

U0 ¼ FU Res U
� 
� 


: ð27Þ

lim
e!0

A uþ eu0;U þ eU0;V0� 


� A u;U;V0� 


e

¼ lim
e!0

Alin U þ eU0;V0� 


þ b uþ eu0; uþ eu0; v0ð Þ � Alin U;V0� 


� b u; u; v0ð Þ
e

¼ Alin U0;V0ð Þ þ b u0; u; v0ð Þ þ b u; u0; v0ð Þ:
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Inserting this representation in (24) gives an equation for

the resolved scales.

The operator FU is generally not known. However, its

knowledge is even not necessary since if the unresolved

scales are modeled with this operator, then Eq. (24) has the

same complexity as the Navier–Stokes equations. In this

case there is no turbulence modeling. Two-scale VMS

methods aim to approximate FU. Note that the model for

FU does not need to rely on considerations from the physics

of turbulent flows, it might be derived just with mathe-

matical arguments. In Sects. 4, 5, and 6 concrete approa-

ches will be presented.

3.2 Three-Scale VMS Methods

In a three-scale VMS method, the flow field is decomposed

into large (resolved) scales, small resolved scales, and

unresolved scales. Applying this scale separation to the

underlying solution and test spaces and specifying a direct

sum decomposition yields

X ¼ X 
 bX 
 X0; Y ¼ Y 
 bY 
 Y 0;

where the three scales are denoted by, respectively, ðÞ, bðÞ
and ðÞ0. Accordingly, one performs the scale decomposition

of the solution

u ¼ uþ bu þ u0; p ¼ pþ bp þ p0

and likewise for the test functions v ¼ vþ bv þ v0, and

q ¼ qþ bq þ q0.
In the same way as for the two-scale VMS methods, the

derivation of a three-scale VMS method starts by consid-

ering the variational form (21) of the Navier–Stokes

equations for the different scales of the test function, using

again that the variational form is linear with respect to the

test functions. This approach results in a coupled system of

three equations with respect to the large scales, small

resolved scales, and unresolved scales, which are defined as

follows: Find ðu; pÞ : ð0; TÞ ! X � Y satisfying for all

ðv; qÞ 2 X � Y

– the large-scale problem

A u; ðu; pÞ; ðv; qÞð Þ þ A u; ðbu; bpÞ; ðv; qÞð Þ
þ A u; ðu0; p0Þ; ðv; qÞð Þ ¼ f ðvÞ;

ð28Þ

– the small resolved scale problem

A u; ðu; pÞ; ðbv; bqÞð Þ þ A u; ðbu; bpÞ; ðbv; bqÞð Þ
þ A u; ðu0; p0Þ; ðbv; bqÞð Þ ¼ f ðbvÞ;

ð29Þ

– and the problem for the unresolved scales

A u; ðu; pÞ; ðv0; q0Þð Þ þ A u; ðbu; bpÞ; ðv0; q0Þð Þ
þ A u; ðu0; p0Þ; ðv0; q0Þð Þ ¼ fðv0Þ:

ð30Þ

In the modeling step of a three-scale VMS method, the

following assumptions are taken into account:

• First, it is not intended to explicitly resolve any

quantities which are termed ‘‘unresolved’’. Hence,

Eq. (30) for the unresolved scales is neglected.

• It is further assumed that the direct influence of the

unresolved scales on the large scales is negligible, i.e.,

in (28) it is set

A u; ðu0; p0Þ; ðv; qÞð Þ ¼ 0:

• Finally, the influence of the unresolved scales onto the

small resolved scales is modeled, i.e., in (29) it is used

A u; ðu0; p0Þ; ðbv; bqÞð Þ � c u; ðu; pÞ; ðbu; bpÞ; ðbv; bqÞð Þ:
ð31Þ

The turbulence model cð�; �; �Þ will be discussed below.

The above assumptions lead to an abstract three-scale

VMS method that reads as a coupled system of the form:

Find ðu; pÞ � ðbu; bpÞ 2 ðX; YÞ � ðbX; bY Þ satisfying
A
�

uþ bu; ðu; pÞ;ðv; qÞ



þ A
�

uþ bu; ðbu; bpÞ; ðv; qÞ



¼ fðvÞ
ð32Þ

A
�

uþ bu; ðu; pÞ;ðbv; bqÞ



þ A
�

uþ bu; ðbu; bpÞ; ðbv; bqÞ



þ c
�

uþ bu; ðu; pÞ; ðbu; bpÞ; ðbv; bqÞ



¼ f ðbvÞ
ð33Þ

for all ðv; qÞ � ðbv; bqÞ 2 ðX; YÞ � ðbX ; bY Þ.
This problem may be reduced to a monolithic equations

system for the unknowns uh ¼ uþ bu, ph ¼ pþ bp by

introducing the spaces Xh ¼ X 
 bX and Yh ¼ Y 
 bY , and

the restriction operators

Pm : Xh 7!X and Pc : Yh 7!Y

by

Pmuh ¼ u; Pcph ¼ p whenever uh ¼ uþ bu;
and ph ¼ pþ bp:

Summing up (32) and (33) one obtains the equivalent

problem: Find ðuh; phÞ 2 ðXh; YhÞ satisfying

A
�

uh; ðuh; phÞ; ðvh; qhÞ



þ c
�

uh;Pðuh; phÞ; ðI �PÞ
� ðuh; phÞ; ðI �PÞðvh; qhÞ




¼ fðvhÞ
ð34Þ

for all ðvh; qhÞ 2 ðXh; YhÞ, where for brevity the notation

P ¼ ðPm;PcÞ is used, and I denote the component-wise

extension of the identity operator to vector-valued

functions.

A characteristic feature of a three-scale VMS method is

that the turbulence model cð�; �; �Þ acts directly only on the

small resolved scales. However, due to the coupling of the
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small resolved and the large scales in (32) and (33), the

model cð�; �; �Þ influences the large scales indirectly. In

contrast to this situation, the turbulence model in a classical

LES method acts directly on all resolved scales.

To specify a concrete three-scale VMS method, one has

to define the spaces for the large and small resolved scales

and a model cð�; �; �Þ.
For a finite element discretization of (32)–(33), there are

two principal approaches for choosing appropriate spaces:

• In the first approach, standard finite element spaces are

used for the large scales ðX � YÞ. The finite element

spaces for the small resolved scales ðbX � bY Þ require a

higher resolution than the spaces for the large scales

since they should represent smaller scales. A proposal

consists in using bubble functions on the mesh cells for

the small resolved scales. A detailed description of this

approach is discussed in Sect. 7.

• The second way for choosing the spaces consists in

using a common standard finite element space for all

resolved scales and an additional large scale space.

Methods of this type will be addressed in Sects. 8

and 9.

In its turn, the discretization of (34) requires a common

space Xh � Yh for the resolved scales and a restriction

operator on the large resolved scales. This operator may be

defined by interpolation or projection on a coarser grid.

The explicit space of large resolved scales is not needed, it

is implicitly considered by means of the restriction opera-

tor. This kind of methods will be addressed in Sects. 6 and

10.

The choice of the turbulence model cð�; �; �Þ in (31) may

be guided by physical ideas in turbulence modeling. For

VMS methods, widely used turbulence models are eddy

viscosity models of Smagorinsky type. Writing cð�; �; �Þ in
the form

c u; ðu; pÞ; ðbu; bpÞ; ðbv; bqÞð Þ :¼ ðmTD buð Þ;D bvð ÞÞ; ð35Þ

three different versions of the Smagorinsky model within

VMS methods can be distinguished, where the second part

of the name refers to D buð Þ in (35):

• the ‘small–small’ model

mT ¼ CSd
2kD buð ÞkF; ð36Þ

• the ‘large–small’ model

mT ¼ CSd
2kD uð ÞkF; ð37Þ

• the ‘all–small’ model

mT ¼ CSd
2kD bu þ uð ÞkF: ð38Þ

Here CS denotes a user-chosen constant, d a scaling factor

related to themeshwidth, and k � kF the Frobenius tensor norm.

The Smagorinsky model is also a widely used model in

LES. Its advantages and drawbacks are well known. The

most severe drawback is that it introduces too much vis-

cosity. To reduce this drawback, in [60, 108] the so-called

dynamic Smagorinsky model was proposed, which com-

putes CS a posteriori as a function in time and space, i.e.,

CS ¼ CSðt; xÞ. The use of the dynamic Smagorinsky model

is very popular in LES. Also a three-scale VMS method

with Smagorinsky model (with constant CS) can be inter-

preted as an approach to reduce the viscosity introduced

with this model. Here, the reduction comes from the feature

that the turbulence model is applied directly only to the

small resolved scales and not to all resolved scales.

4 Two-Scale Residual-Based VMS Method

A two-scale VMS method which is based on modeling

residuals was proposed in [10]. The resulting method can

be considered as a generalization of classical stabilization

methods for the Navier–Stokes equations.

4.1 Derivation

Starting point of the derivation of this method is a

decomposition of the spaces of form (23). The resolved

scales are defined either by the L2 projection or the elliptic

projection. Note that the decomposition of X into a direct

sum induces that both the resolved and the unresolved

velocity scales have homogeneous Dirichlet boundary data

as the functions in X.

Next, a perturbation series for a potentially small

quantity is considered. This quantity is

e ¼ Res U
� 
�

�

�

�

ðX�YÞ0 . For this quantity to be small, X � Y

has to be sufficiently large. In fact, it is assumed that the

larger X � Y , the better U approximates U and the smaller

is Res U
� 


. The perturbation series is of the form

U0 ¼ eU0
1 þ e2U0

2 þ . . . ¼
X
1

i¼1

eiU0
i: ð39Þ

In particular, if e ¼ 0, i.e., Res U
� 


¼ 0, then U0 ¼
FU Res U

� 
� 


¼ 0.

Inserting the perturbation series (39) in the terms of

Eq. (26) for the unresolved scales leads to

AU

X
1

i¼1

eiU0
i;V

0

 !

¼
X
1

i¼1

eiAU U0
i;V

0� 


and

A Review of VMS Methods for the Simulation of Turbulent Incompressible Flows 123

123



b
X
1

i¼1

eiu0i;
X
1

i¼1

eiu0i; v
0

 !

¼ e2b u01; u
0
1; v

0� 


þ e3½b u01; u
0
2; v

0� 


þ b u02; u
0
1; v

0� 


� þ . . .

¼
X
1

i¼2

ei
X
i�1

j¼1

b u0j; u
0
i�j; v

0
� �

 !

:

These terms can be inserted in (26) giving

X
1

i¼1

eiAU U0
i;V

0� 


þ
X
1

i¼2

ei
X
i�1

j¼1

b u0j; u
0
i�j; v

0
� �

 !

¼ e
Res U
� 


Res U
� 
�

�

�

�

ðX�YÞ0
;V0

* +

:

Collecting terms with respect to e yields

AU U0
1;V

0� 


¼
Res U
� 


Res U
� 
�

�

�

�

ðX�YÞ0
;V0

* +

;

AU U0
i;V

0� 


¼�
X
i�1

j¼1

b u0j; u
0
i�j; v

0
� �

i	 2:

ð40Þ

Hence, one obtains a system of variational problems where

the computation of U0
i requires the knowledge of all U0

j

with j\i. All equation of this system have the same linear

operator on the left-hand side.

In [10] it is proposed to truncate the series (39) after the

first term, i.e.,

U0 � eU0
1 ¼ Res U

� 
�

�

�

�

ðX�YÞ0U
0
1: ð41Þ

The function U0
1 can be obtained formally by solving the

linear partial differential equation (40) with the operator

AU U0
1;V

0� 


. However, solving (40) analytically is gener-

ally not possible and the unresolved scale test functions are

in practice not available. From the mathematical point of

view, there is a formal representation of the solution of (40)

with a so-called fine-scale Green’s operator

U0
1 ¼ G0

U

Res U
� 


Res U
� 
�

�

�

�

ðX�YÞ0

 !

: ð42Þ

In [10] it is proposed to use a linear approximation of this

operator

U0
1 � s

Res U
� 


Res U
� 
�

�

�

�

ðX�YÞ0
;

where s is a 4� 4 tensor-valued function. Thus, the model

of the unresolved scales, denoted by ~U
0
, becomes

~U
0 ¼ e ~U

0
1 ¼ sRes U

� 


:

Now, this approach will be applied to the Navier–Stokes

equations (2). There, the approximation of the resolved

scales uh; phð Þ is computed in a standard finite element

space. It is proposed in [10] that the parameter s is a

diagonal tensor-valued functions, i.e.,

s ¼
sm 0

0T sc

� 	

¼

sm 0 0 0

0 sm 0 0

0 0 sm 0

0 0 0 sc

0

B

B

B

@

1

C

C

C

A

: ð43Þ

The model of the unresolved scales has the form

~U
0 ¼sRes

uh

ph

� 	� 	

¼
sm f � otuh þ mDuh � uh � rð Þuh �rphð Þ

�sc r � uhð Þ

� 	

¼
resm;h

resc;h

� 	

:

ð44Þ

This model can be inserted in the large scale equation (24).

In [10] it is proposed to neglect the models of the terms

otu
0; vhð Þ and 2m D u0ð Þ;D vhð Þð Þ:

Defining the large scales with one of the projections

mentioned at the beginning of this section, then one of

these terms will vanish already in the derivation of the

method, the first term if the L2ðXÞ projection is used and

the second term in case of the elliptic projection. Addi-

tionally, the term of the continuity equation with respect to

the unresolved scales in (24) is integrated by parts.

Inserting (44) in (24) and using the described modifi-

cations gives the resolved scale equation: Find uh :

ð0; TÞ ! Xh; ph : ð0; TÞ ! Yh satisfying

otuh; vhð Þ þ 2mD uhð Þ;D vhð Þð Þ þ b uh; uh; vhð Þ þ r � uh; qhð Þ
� r � vh; phð Þ � resm;h;rqh

� 


� resc;h;r � vh
� 


þ b resm;h; uh; vh
� 


þ b uh; resm;h; vh
� 


þ b resm;h; resm;h; vh
� 


¼ hf ; vhi
ð45Þ

for all vh; qhð Þ 2 Xh � Yh.

Concerning the actual choice of the convective term, it

is advisable from the practical point of view that one does

not need to compute a derivative of the residual of the

momentum equation. For this reason, it is proposed in [10]

to use the following form of the convective term, which is

obtained from the divergence form with integration by

parts

bðu; v;wÞ ¼ r � uvT
� 


;w
� 


¼ � uvT ;rw
� 


: ð46Þ

Direct calculations show that
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ðrvÞu ¼ ðu � rÞv ð47Þ

and

ðuvT ;rwÞ ¼
Z

X
ðuvTÞ : rw dx

¼
Z

X
v � ðrwTuÞ dx ¼ ðv;rwTuÞ:

ð48Þ

In the convective term of the resolved scales b uh; uh; vhð Þ
there is no residual and one can use in practice any other

form of the convective term proposed in the literature.

In analogy to LES models, the terms b resm;h; uh; vh
� 


and b uh; resm;h; vh
� 


are called cross-stress terms. For the

first cross-stress term, one obtains from (46), (48), and (47)

b resm;h; uh; vh
� 


¼� resm;h uhð ÞT ;rvh
� 


¼� rvhð ÞTresm;h; uh
� 


¼�
Z

X
resm;h

� 
T rvhð Þuh dx

¼� resm;h; rvhð Þuh
� 


¼� resm;h; uh � rð Þvh
� 


ð49Þ

and for the second cross-stress term with (46) and (48)

b uh; resm;h; vh
� 


¼ � uh resm;h

� 
T
;rvh

� �

¼ � resm;h; rvhð ÞTuh
� 


:
ð50Þ

The last convective term is called subgrid (or Reynolds-

stress) term, again in analogy to LES, and from (46) it is

given by

b resm;h; resm;h; vh
� 


¼ � ðresm;h ðresm;h

� 
T
;rvh

� �

: ð51Þ

As already mentioned, a diagonal tensor is used for s

with the components sm and sc, see (43). The proposal for

choosing sm and sc in [10] is based on dimensional argu-

ments and not on numerical analysis. A derivation of the

stabilization parameter sm for compressible flow equations

based on such arguments can be found in [131]. In this

paper, a product of a Jacobian matrix, s, and the transposed

of the Jacobian is considered. The dimensional arguments

lead to the conclusion that the blocks of this product are

dimensionally equivalent to some other matrix. Based on

this conclusion, an ansatz for the product is proposed,

which contains the other matrix, and then the stabilization

parameter is derived. Since the whole derivation is some-

what involved, its details will not be presented here but

only the results.

Consider parametric finite elements with the bijective

map FK : K̂ ! K and the inverse map F�1
K : K ! K̂

with x 7! x̂. Differentiating F�1
K leads to the definition of

the symmetric tensor G with

Gij ¼
X
3

k¼1

ox̂k

oxi

ox̂k

oxj
; i; j ¼ 1; 2; 3:

Then, the stabilization parameter proposed in [10] is given

by

sm ¼ 4

Dt2
þ uhð ÞTG uhð Þ þ cinvm

2kGk2F
� 	�1=2

; ð52Þ

where cinv is the constant in the inverse estimate (14).

For the stabilization parameter sc, the vector g with gi ¼
P3

j¼1 ox̂j=oxi is defined and the proposal in [10] consists in

setting

sc ¼ smg
Tg

� 
�1
: ð53Þ

The stabilization parameters (52) and (53) will be dis-

cussed in detail for a special case in Example 1.

Example 1 Consider the reference cube K̂ ¼ ½�1; 1�3 and
let K be a cube with edges of length h which are parallel to

the coordinate axes. Then the reference map has the form

FK : K̂ ! K; x̂ 7! 1

2

h 0 0

0 h 0

0 0 h

0

B

@

1

C

Ax̂þ b ¼ x:

Considering the inverse map, one finds that

ox̂i

oxj
¼ 2

h
sij; Gij ¼

4

h2
sij; kGk2F ¼ 48

h4
;

uhð ÞTG uhð Þ ¼ 4

h2
kuhjj22:

Then, the stabilization parameter sm becomes

sm ¼ 4

Dt2
þ 4kuhk22

h2
þ 48cinvm2

h4

 !�1=2

: ð54Þ

For the parameter sc, one obtains gi ¼ 2=h for i ¼ 1; 2; 3,

such that gTg ¼ 12=h2 and

sc ¼
h2

12sm
: ð55Þ

Now, the parameters (54) and (55) will be discussed for

the different cases in which one of the terms in (54)

dominates:

• The term 4=Dt2 dominates in (54), i.e., Dt is very small.

Then one obtains sm ¼ OðDtÞ and sc ¼ Oðh2=DtÞ.
• The term 4kuhk22=h2 dominates in (54), i.e., there is a

strong convection and Dt% h. In this case, one gets

sm ¼ OðhÞ and sc ¼ OðhÞ.
• The term 48cinvm2=h4 is dominating in (54), i.e., the

viscosity dominates or the mesh is very fine and
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Dt% h2. This situation leads to sm ¼ Oðh2Þ and

sc ¼ Oð1Þ.
Thus, the parameter choice in the second and third case is

the same as for equal-order discretizations of the Oseen

equations, see [124, Part IV, Section 3.1] or [22]. In fact,

in [10] the two-scale residual-based VMS method was

applied with equal-order non-uniform rational B-splines

(NURBS). h

Considering the physical units of the stabilization

parameters, one finds that

sm : 1
�

s2 þ m2
�

ðs2m2Þ þ m4
�

ðs2m4Þ
� 
�1=2
h i

¼ ½ s �

and

sc : s
�

m2
� 
�1
h i

¼ m2
�

s
� �

:

Thus, sm is a time scale and sc is a viscosity scale, and they

are respectively the time and viscous scales of the subgrid

flow.

For Dt ! 0 it holds that sm ! 0 and sc ! 1. An

alternative definition of the stabilization parameters for

small time steps, which avoids this behavior, was proposed

in [79].

It can be expected that the parameter in the case of using

velocity and pressure finite element spaces that satisfy the

discrete inf-sup condition (9) has to be chosen in a different

way than proposed in [10]. This expectation is based on the

different choices for the Oseen equations, see [124, Par-

t IV, Section 3.1]. In addition, numerical analysis for the

transient Oseen equations with grad-div stabilization in

[50] shows that sc ¼ Oð1Þ is the asymptotic optimal choice

in the convection-dominated regime, in contrast to sc ¼
OðhÞ as it was found in Example 1. Since to the best of our

knowledge, the two-scale residual-based VMS method was

not used so far with inf-sup stable pairs of finite element

spaces, the asymptotic correct choice of the stabilization

parameter seems to be an open problem in this case.

In [59] it is proposed to model the unresolved velocity

scales or the subgrid scale velocity with

ot ~u
0 þ 1

~sm
~u0 ¼ f � otuh � mDuh þ uh � rð Þuh þrph½ �;

ð56Þ

instead of (44). A time-dependent evolution of the unre-

solved velocity scales of this form was proposed in [48],

see also Sect. 5 for a VMS method based on time-depen-

dent orthogonal subgrid scales.

4.2 Relations to Other Methods

From (45) and (49) it follows that

b resm;h; uh; vh
� 


� resm;h;rqh
� 


¼ � resm;h; uh � rð Þvh þrqh
� 


:
ð57Þ

This term has just the form of the stabilization term of the

Streamline-Upwind Petrov–Galerkin (SUPG) method for

the convection field uh.

Inserting the concrete formula of the residual of the

continuity equation gives the term

scr � uh;r � vhð Þ; ð58Þ

which is just a so-called grad-div stabilization term.

Both terms (57) and (58) are classical stabilization terms

for the incompressible Navier–Stokes equations.

There are similarities, but also differences, to the two-

scale VMS method with orthogonal subgrid scales pre-

sented in Sect. 5. A discussion of these issues is postponed

to Sect. 5.2.

4.3 Numerical Analysis

Numerical analysis for the two-scale residual-based VMS

method (45) is not available. However, the grad-div stabi-

lization and the SUPG method are analyzed for the Stokes,

the Oseen, and the stationary Navier–Stokes equations.

The grad-div stabilization (58) arises from adding

�scrðr � uÞ ¼ 0 to the momentum equation in (1).

Deriving the discrete weak form and applying integration

by parts leads to the term scr � uh;r � vhð Þ. Since in finite

element methods the velocity is generally not weakly

divergence-free, i.e., r � uh 6¼ 0, the discretization (58) of

this term has an effect on the finite element solution.

Altogether, the grad-div stabilization can be considered as

a penalization of the violation of the continuity equation

for finite element velocities.

The grad-div stabilization was introduced in [54]. It is

well understood for the Stokes equations

�mDuþrp ¼ f in X;

r � u ¼ 0 in X
ð59Þ

and for finite element methods which satisfy the discrete

inf-sup condition (9). Numerical analysis, e.g., in [90, 117]

shows that for finite element discretizations satisfying (9)

the choice of the stabilization parameter sc ¼ Oð1Þ with

respect to the mesh width leads to optimal error estimates.

However, a good choice of sc depends usually on (un-

known) norms of the solution ðu; pÞ of (59) and on whether

or not the sequence of weakly divergence-free subspaces

contained in the discretely divergence-free spaces Xh;div

has an optimal approximation property.

The SUPG method was introduced in [28, 81] for sta-

bilizing scalar convection-dominated convection-diffusion

equations. Stabilizations of the Oseen equations and the
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stationary Navier–Stokes equations which contain the

SUPG term were analyzed in [53, 72, 111, 136], and

extensions of the analysis can be found in [110, 114, 137].

Surveys of the results are provided in [22, 124].

The SUPG stabilization (57) was studied in particular

for the Oseen equations

�mDuþ ðb � rÞuþ cuþrp ¼ f in X;

r � u ¼ 0 in X;
ð60Þ

where b is a given weakly divergence-free convection field

and cðxÞ	 0 in X. In the numerical analysis, the SUPG

method was often considered with the grad-div stabiliza-

tion (58) and the so-called pressure stabilization Petrov–

Galerkin (PSPG) method. The PSPG method, introduced in

[84], stabilizes pairs of finite element spaces that violate

the discrete inf-sup condition (9).

Altogether, the SUPG/PSPG/grad-div finite element

problem has the form: Given f 2 L2ðXÞ, find uh; phð Þ 2
Xh � Yh such that

A uh; phð Þ; vh; qhð Þð Þ ¼ L vh; qhð Þð Þ 8 vh; qhð Þ 2 Xh � Yh;

ð61Þ

with

A u; pð Þ; v; qð Þð Þ ¼ m ru;rvð Þ þ b � rð Þuþ cu; vð Þ
� r � v; pð Þ þ r � u; qð Þ þ

X

K2T h

sc;K r � u;r � vð ÞK

þ
X

E2Eh

cE pj j½ �E; qj j½ �E
� 


E
þ
X

K2T h

�mDuþ b � rð Þuð

þ cuþrp; svK b � rð Þvþ spKrqÞK
ð62Þ

and

L v; qð Þð Þ ¼ f ; vð Þ þ
X

K2T h

f ; svK b � rð Þvþ spKrq
� 


K
: ð63Þ

Here, sc;K ; cE; s
v
K ; s

p
K are local stabilization parameters and

�j j½ �E denotes the jump across the face E of a mesh cell K.

Main goals of the numerical analysis are to show the

existence and uniqueness of a solution of (61) and to prove

finite element error estimates. These estimates allow to

derive information on asymptotic optimal choices of the

stabilization parameters in (62), (63).

In the available analysis, the stabilization parameters for

stabilizing velocity and pressure were set to be equal

sm;K ¼ svK ¼ spK . For all K 2 T h, it is set

sm ¼ max
K2T h

sm;K ; sc ¼ max
K2T h

sc;K ; c ¼ max
E2Eh

cE:

The well-posedness of problem (61) can be proved by

deriving an inf-sup condition for the bilinear form A from

(62) with respect to an appropriate norm. The proof of this

inf-sup condition poses some restrictions on the

stabilization parameters. Then a finite element error anal-

ysis can be performed. Equilibrating terms in the error

bound gives for the convection-dominated case the fol-

lowing optimal choices of the stabilization parameters:

• for pairs of finite element spaces satisfying the discrete

inf-sup condition (9) and the polynomial degree of the

velocity space is higher by one than polynomial degree

of pressure space: sm ¼ Oðh2Þ; sc ¼ Oð1Þ, and if Yh 6�
H1ðXÞ then c ¼ OðhÞ,

• for pairs of finite element spaces that does not satisfy

the discrete inf-sup condition and the polynomial

degree of velocity and pressure space is the same:

sm ¼ OðhÞ; sc ¼ OðhÞ, and if Yh 6� H1ðXÞ then

c ¼ Oð1Þ.

In simulations of turbulent flows, the use of anisotropic

grids, in particular near the boundary, is often of great

advantage. A numerical analysis of residual-based stabi-

lized finite element methods (SUPG/PSPG/grad-div stabi-

lization) of the Oseen equations on anisotropic meshes was

performed in [2].

A numerical analysis of the SUPG stabilization for time-

dependent problems is available so far only for scalar

convection-diffusion equations in [103]. Optimal error

estimates for the backward Euler scheme and for rather

general assumptions on the data were derived for a stabi-

lization parameter sm �Dt=4. Thus, the stabilization

parameter depends on the length of the time step as in (52)

and (54).

In [88], an explicit formula for the fine-scale Green’s

function (42) was derived. This function can be expressed

in terms of the classical Green’s function and the projection

that defines the scale decomposition, see the beginning of

Sect. 4.1 for possible approaches. A detailed analytical

study of the fine-scale Green’s function was performed for

convection-diffusion equations in one dimension. It was

shown that in the convection-dominated case the form of

this function depends strongly on the projection. If the

elliptic projection is used, then the fine-scale Green’s

function possesses the desirable properties to be localized

and attenuated, in contrast to the situation for the L2

projection.

4.4 Experience in Numerical Simulations

In [10] the two-scale residual-based VMS method was

studied at an example for isotropic turbulence and at a

benchmark problem of a turbulent channel flow with

Reynolds number Res ¼ 395 based on the friction velocity

and the channel half width. For the turbulent channel flow

it was observed that the results for first and second order

statistics obtained with quadratic NURBS are almost
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identical to DNS results. A significant increase in accuracy

was observed when using second order NURBS instead of

first order NURBS (Q1 finite elements). The authors con-

sider the results with second order NURBS to be more

accurate than those obtained with a spectral Fourier method

from [87].

The two-scale residual-based VMS method from [10]

and the algebraic VMS method AVM3 described in Sect. 9,

both applied with Q1=Q1 finite elements, were compared in

[63] for a turbulent channel flow problem and a turbulent

flow in a lid driven cavity. With respect to several quan-

tities of interest, the two-scale residual-based VMS method

showed less accurate results. In these studies, the simula-

tions with the two-scale residual-based VMS method were

also somewhat less efficient. Computational studies in [65]

for a turbulent flow around a cylinder showed only small

differences between the residual-based VMS method and

AVM3. From the point of view of efficiency, both VMS

methods proved to be clearly superior to the popular

dynamic Smagorinsky model.

In [59], equation (56) was discretized in a space con-

sisting of bubble functions. The stabilization parameter ~sm
which was proposed in [59] possesses the asymptotic

behavior ~sm ¼ OðhÞ in the convection-dominated regime.

Equal-order pairs of finite element spaces, e.g., Q1=Q1,

were used in the numerical studies. These studies were

performed at the turbulent channel flow benchmark prob-

lems. It turned out that in the case of a length of the time

step that was not too small, the differences of the results

obtained with the steady-state model of the unresolved

scales (44) and the time-dependent model (56) were small.

However, for the time-dependent model (56), the results

were more robust in the sense that the length of the time

step did not possess much impact on the results. For the

steady-state model, the length of the time step enters the

definition of the stabilization parameters (52) and (53). In

particular, sm becomes small, see the discussion of the

stabilization parameters at the end of Sect. 4.1, and a

notable impact of the length of the time step on second

order statistics was observed.

A rotating turbulent flow, the so-called Taylor–Couette

flow, was successfully simulated in [9] with the two-scale

residual-based VMS method using C1 NURBS, weak

imposition of Dirichlet boundary conditions, and adaptive

grid refinement.

A direct calculation shows that the nonlinear term can

be split in the form

ðu � rÞu ¼ ðDuÞuþ 1

2
ðr � uÞ � u;

where r� u is the vorticity. A VMS method that uses a

residual-based modeling for the unresolved scales of the

terms on the right-hand side of this equation was proposed

and studied numerically in [14, 15].

A residual-based VMS method with time-dependent

subgrid scales for variable-density flows at low Mach

number was proposed in [67].

5 Two-Scale VMS Method with Orthogonal
Subscales

A residual-based VMS method that uses orthogonal sub-

scales was developed in [44] for the Navier–Stokes prob-

lem. This model is referred as orthogonal subscales (OSS)

method.

5.1 Derivation

As for the two-scale residual-based VMS method derived

in Sect. 4.1, starting point of the OSS method is a

decomposition of the spaces of form (23). The resolved

scales are represented in a standard finite element space.

The space of continuous solutions Z ¼ X � Y is decom-

posed into Z ¼ Zh 
 Z0, where Zh ¼ Xh � Yh represents

the resolved scales, and Z0 ¼ X0 � Y 0 represents the unre-

solved scales. In this context, the space Z0 is called the

space of subgrid scales or subscales. Correspondingly, the

solution is decomposed as U ¼ Uh þ U0 and the test

functions in the form V ¼ Vh þ V0. With the notations of

Sect. 3, this corresponds to X ¼ Xh, Y ¼ Yh.

The OSS method is derived as in [44] by considering

first the transient Oseen equations, so that the convection

velocity is a given solenoidal velocity field b. To present

this method, let

M ¼ diagðId; 0Þ;

where Id is the d � d identity matrix, and consider an

approximation of problem (24)–(25) in time by the trape-

zoidal rule, to analyze how does the time discretization

affect the OSS method when using finite differences.

Consider a uniform partition of the time interval [0, T] with

time step Dt. The time step level at which the algorithmic

solution is computed is denoted by a superscript. For h 2
½0; 1� and U0;n known, the trapezoidal rule applied to

Eq. (26) for the unresolved scales (with the convection

velocity u ¼ b) consists of finding U0;nþh as the solution of

the problem
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ðMdtU
0;n;V0Þ þ hLbðU0;nþhÞ;V0i

¼ hResðUnþh
h Þ;V0i8V0 2 Z0; Þ

ð64Þ

where dtU0;n ¼ 1

Dt
ðU0;nþ1 � U0;nÞ, Lb is the linear operator

defined as

LbðUÞ ¼
�mDuþ ðb � rÞuþrp

r � u

� 	

;

and ResðUnþh
h Þ is the residual associated to Unþh

h

ResðUnþh
h Þ ¼ F� MdtU

n
h þ LbðUnþh

h Þ
� �

; F ¼
f

0

� 	

:

The following notation is used throughout this section

f nþh :¼ hf nþ1 þ ð1� hÞf n; dtf
n :¼ 1

Dt
ðf nþ1 � f nÞ;

for any function f. For the sake of simplicity, it is consid-

ered throughout this section that F is time-independent and

that the force vector belongs to the finite element space, or

it is approximated by an element of this space. Equa-

tion (64) may be equivalently rewritten as

M
1

hDt
U0;nþh;V0

� 	

þ hLbðU0;nþhÞ;V0i

¼ M
1

hDt
U0;n;V0

� 	

þ hResðUnþh
h Þ;V0i;

ð65Þ

from where a closed-form expression for U0 has to be

proposed.

The residual-based OSS strategy consists in setting the

unresolved space as

Z0 ¼ Z?
h \ Z;

where Z?
h is the L2ðXÞ-orthogonal complement of Zh, and

in further approximating

Z0 � Z0
h ¼

X

K2T h

H1
0ðKÞ

" #

\ Z?
h ;

being thus Z0
h a bubble finite element space. The goals is

now to properly approximate U0 � U0
h 2 Z0

h.

Denote U0
K ¼ U0

hjK and assume that LbðU0;nþh
K Þ and

ResðUnþh
h Þ have L2ðKÞ regularity. The operator Lb

restricted to functions of H1
0ðKÞ is approximated by a

diagonal operator, so that

M
1

hDt
U0;nþh

K þ LbðU0;nþh
K Þ � M

1

hDt
þ kK

� 	

U0;nþh
K ;

ð66Þ

with kK being a d � d non-singular diagonal matrix. Then,

Eq. (65) is discretized by

U0;nþh
K � st;K M

1

hDt
U0;n

K þ ResðUnþh
h ÞjK

� 	

;V 0
K

� 	

K

¼ 0 8 K 2 T h;

for any V 0
h 2 Z0

h, V0
K ¼ V0

hjK , st;K ¼ M
1

hDt
þ s�1

K

� 	�1

,

and sK ¼ k�1
K . Thus, one obtains

U0;nþh
h � st M

1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	

;V0
h

� 	

¼ 0 8 V0
h 2 Z0

h;

where st denotes the time-dependent piecewise constant

matrix function that takes the value st;K on K. One can

prove that space Z0
h is dense in Z?

h in the L2 norm, thus

deducing

U0;nþh
h � st M

1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	

;V0
h

� 	

¼ 0 8 V0
h 2 Z?

h ;

and, as a consequence

PZ?
h

U0;nþh
h � st M

1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	� 	

¼ 0;

where PZ?
h
denotes the L2ðXÞ-orthogonal projection on Z?

h .

Since U0;nþh
h 2 Z0

h � Z?
h , then PZ?

h
ðU0;nþh

h Þ ¼ U0;nþh
h , and

U0;nþh
h ¼ PZ?

h
st M

1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	� �

:

To simplify the computations, a further approximations

may be considered

U0;nþh
h � stPZ?

h
M

1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	

: ð67Þ

Indeed, for all V0
h 2 Z0

h one could write

PZ?
h

st M
1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	� 	

;Z0
h

� 	

¼ st M
1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	

;Z0
h

� 	

¼
X

K2T h

st;K M
1

hDt
U0;n

h þ ResðUnþh
h Þ;Z0

h

� 	

K

�
X

K2T h

st;K PZ?
h

M
1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	

;Z0
h

� 	

K

¼ stPZ?
h

M
1

hDt
U0;n

h þ ResðUnþh
h Þ

� 	

;Z0
h

� 	

:

Again, from (67), since U0;n
h 2 Z0

h � Z?
h , then

PZ?
h
ðU0;n

h Þ ¼ U0;n
h , and
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U0;nþh
h � st M

1

hDt
U0;n

h þPZ?
h

ResðUnþh
h Þ

� 


� �

: ð68Þ

Next, to introduce this approximation of U0;nþh
h in the

equation for the resolved scale (24) discretized in time

(with convection velocity u ¼ b), denote by L�
b the adjoint

operator of Lb, given by

L�
bðVÞ ¼

�mDv� ðb � rÞv�rq

�r � v

� 	

:

Observe that if L�
bðVhjKÞ has L2ðKÞ regularity, then using

U0
hjoK ¼ 0 for all K 2 T h one has

MdtU
0;n;Vhð Þ þ hLbðU0;nþhÞ;Vhi � hLbðU0;nþh

h Þ;Vhi
¼ hL�

bðVhÞ;U0;nþh
h i

¼
X

K2T h

L�
bðVhÞ;U0;nþh

h

� �

K
;

where MdtU0;n;Vhð Þ ¼ 0, since MdtU0;n is orthogonal to

Zh. Also, observe that PZ?
h
ðMdtUn

hÞ ¼ 0, since MdtUn
h is a

finite element function, and PZ?
h
ðFÞ ¼ 0, because of the

hypotheses on F.

These modeling steps lead to the discretized equations

for Uh: Given Un
h, find Unþ1

h 2 Zh such that

MdtU
n
h;Vh

� 


þ hLbðUnþh
h Þ;Vhi

� L�
bðVhÞ;PZ?

h
LbðUnþh

h Þ
� 


� �

st

¼ hF;Vhi � L�
bðVhÞ;M

1

hDt
U0;n

h

� 	

st

;

ð69Þ

for all Vh 2 Zh, where ð�; �Þst stands for the inner product

defined by

ðU;VÞst ¼ ðstU;VÞX ¼
X

K2T h

st;KðU;VÞK :

In practice, as performed in Sect. 4.1, the stabilizations of

velocity and pressure are decoupled. Hence, one considers

a structure for the stabilization matrices as

st;K ¼
stm;KId 0

0T sc;K

 !

;

where stm;K ; sc;K 2 R respectively are stabilization coeffi-

cients for velocity and pressure, and

stm;K ¼ 1

hDt
þ s�1

m;K

� 	�1

. Then, the ð�; �Þst inner product has

the structure

ðU;VÞst ¼
X

K2T h

stm;Kðu; vÞK þ
X

K2T h

sc;Kðp; qÞK : ð70Þ

Inserting (70) in (69) leads to the discretized resolved scale

equations

dtu
n
h; vh

� 


þ a unþh
h ; vh

� 


þ b b; unþh
h ; vh

� 


þ r � unþh
h ; qh

� 


� r � vh; pnþh
h

� 


þ PX?
h
ðb � runþh

h þrpnþh
h Þ; b � rvh

�

þrqhÞstm þ PY?
h
ðr � unþh

h Þ;r � vh
� �

sc

¼ hf ; vhi þ
1

hdt
ðu0;nh ; b � rvh þrqhÞstm

ð71Þ

for all vh; qhð Þ 2 Xh � Yh, with obvious notation. Second

order derivatives of finite element functions within element

interiors have been neglected in (71). They are exactly zero

for linear elements, and for higher order interpolations,

disregarding them leads to a method which is still consis-

tent, in a sense pointed out in [44, Remark 4].

Problem (71) is the effective OSS method used as VMS

discretization of the transient Oseen equations, where

PX?
h
¼ I �PXh

, PY?
h
¼ I �PYh , being PXh

(resp., PYh)

the orthogonal projection on space Xh (resp., Yh) with

respect to the inner product ð�; �Þstm (resp., ð�; �Þsc ). A pos-

sible alternative is to assume that the subscales do not

change in time, and thus

U0;nþh
h ¼ U0;n

h ¼ �sPZ?
h
LbðUnþh

h Þ
� �

;

with

s ¼
smId 0

0T sc

� 	

:

This approach would lead to the same stabilization terms as

for the stationary problem. Since this basic assumption

consists of neglecting the temporal variation of the sub-

scales, these latter are called quasi-static subscales in this

context. For quasi-static subscales, the second term in the

right-hand side of (71) disappears and there is no need to

store u0;nh . However, when the quasi-static assumption is not

used (cf. [48]), subscales need to be tracked by the formula

derived from (68)

u0;nþh
h ¼ stm

1

hDt
u0;nh � stmðI �PXh

Þðb � runþh
h þrpnþh

h Þ:

As for dynamic LES closures, the OSS approach with

dynamic subscales allows to model backscatter, as shown

in [47, 118].

The extension to the Navier–Stokes problem follows by

considering b ¼ unþh in (71). A fixed point (or Picard)

algorithm could be considered for linearization (i.e., the

advection velocity is given by b ¼ unþh;i�1), which leads to
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a transient Oseen problem for the velocity unþh;i
h within

each iteration step to which applies the previous formula-

tion. However, there is an important remark to be made.

When the unknown velocity is split into its finite element

component and the subscale, this decomposition also

affects the advection velocity b, that is to say, one will have

b ¼ unþh;i�1
h þ u0;nþh;i�1

h . This splitting implies that the

velocity subscale not only need to be tracked in time, but

also along the iterative process.

In the literature, the stabilization coefficients sm;K ; sc;K
are computed by

(a) Dimensional or convergence (a priori error) analysis

(cf. [41–43]), or by

(b) Fourier analysis (cf. [44, 46]),

being the dimensional analysis approach the simplest way

to recover the expressions for sm;K ; sc;K , by taking

sK ¼ Fðm; hK ; kbk1;KÞ, where F is a matrix function whose

structure aims at equalizing the dimensions of all terms of

the method (applied in a first stage to simplified equations,

such as convection-diffusion equations). In the case (a),

one obtains for sm;K the expression

sm;K ¼ c1
m
h2K

þ c2
kbk1;K

hK

� 	�1

; ð72Þ

while in the case (b), one obtains for sm;K the expression

sm;K ¼ c1
m

h2K

� 	2

þ c2
kbk1;K

hK

� 	2
" #�1=2

; ð73Þ

where (72) and (73) yield a similar structure that takes into

account the local balance between convection and diffu-

sion, and are asymptotically equivalent in m; hK ; kbk1;K . In

both case, one has

sc;K ¼ h2K
c1sm;K

: ð74Þ

In expressions (72)–(74), c1; c2 are positive algorithmic

constants properly tuned (usually by an a priori error

analysis). In most papers on OSS, it is recommended to

take the values c1 ¼ 4; c2 ¼
ffiffiffiffiffi

c1
p ¼ 2 for linear elements (a

choice justified from the analysis of the one-dimensional

convection-diffusion equation and from many numerical

experiments), and use the same values of the algorithmic

constants for quadratic elements, but taking hK half the

element size (roughly the distance between locations of the

degrees of freedom of the element).

Remark 1 The above derivation of expression (68) for U0
h

is based upon the assumption that the operator Lb restricted

to ZhjK is approximated by a diagonal operator. This

assumption has been justified for the convection-diffusion

equation in [39].

5.2 Relations to Other Methods

The OSS method is strongly related to the two-scale

residual-based VMS method developed in [10] and

described in Sect. 4.1. Indeed, both are two-scale VMS

methods which are residual-based (see [38, Sec-

tions 11.1, 11.7.2]), that is the basic procedure is to keep

all terms in the residual-driven structure of the resolved

flow equations and to perform an approximated analytical

element-wise solution of the small-scale flow. Thus, both

methods are consistent methods, in the sense that the

continuous solution exactly satisfies the discrete equations,

whenever it is smooth enough. The two methods contain

models for the Reynolds-stress and both cross-stress terms,

in contrast to classical stabilization procedures such as

SUPG for instance, that accounts for only one of the cross-

stress terms (see Sect. 4.2), thus making both methods

powerful and efficient tools for the challenging computa-

tion of turbulent flows, specially in transient and non-

equilibrium regimes. Moreover, these procedures do not

make use of the statistical theory of equilibrium turbulence,

and no ad-hoc eddy viscosity modeling is required for both

methods. At this respect, it has been analyzed that one of

the relevant features of the OSS method is that it introduces

the right amount of numerical diffusion on the large scales

which is asymptotically equivalent, as the Reynolds num-

ber increases, to the eddy viscosity dissipated by the

unresolved scales (cf. [47, 70, 118]), given a sufficiently

fine computational mesh with characteristic mesh cell size

h in the inertial subrange of the studied (isotropic) turbulent

flow.

One may note that the main difference between the two

methods consists in the approximation of the unresolved

scales. In the OSS method, only the orthogonal projection

of the residual on the mean scales space is included.

Indeed, if one considers the quasi-static version of the OSS

method, the unresolved scales are approximated as

U0 � sPhðResðUhÞÞ; ð75Þ

where Ph ¼ PZ?
h
, while for the two-scale residual-based

VMS method this approximation holds but with the

essential difference Ph ¼ I, and thus

U0 � sðResðUhÞÞ: ð76Þ

5.3 Numerical Analysis

A numerical analysis for the OSS method applied to the

Navier–Stokes problem, with convection velocity split into
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its finite element component and the subscale, is not

available. The subgrid terms have a complex structure that

includes convective interactions between large and small

scales, thus setting serious technical problems just to prove

stability. However, several results from the numerical

analysis of the OSS method have been obtained for the

convection-diffusion-reaction equations in [42], for the

Oseen equations in [45, 48], and also for its extension to

the steady linearized primitive equations of the ocean in

[37], always in the context of uniformly regular grids.

In [42], the stability and error analysis of the OSS

method for the advection-diffusion-reaction equations is

performed, proving optimal error estimates. This analysis

have been further extended to the (stationary) Oseen

equations. In [45], it is shown that the OSS formulation

adapted to the Oseen equations is stable and optimally

convergent to smooth solutions under proper regularity

assumptions on the advection velocity, and an adequate

choice of the algorithmic parameters on which the method

depends. Also a simple modification of the OSS method

that introduces less coupling in the discrete velocity-pres-

sure equations and possesses slightly better stability prop-

erties has been analyzed: the idea is to control separately

the components of b � ruh and rph sm-orthogonal to Xh,

that is to use a sort of ‘‘term-by-term’’ stabilization, which

would lead to the stabilizing term

PX?
h
ðb � ruhÞ; b � rvh

� �

sm
þ PX?

h
ðrphÞ;rqh

� �

s0m

þ PY?
h
ðr � uhÞ;r � vh

� �

sc

to be added to the standard Galerkin formulation, where the

parameters sm and s0m could even be taken different.

Dropping the orthogonal projections, this method reduces

to a general version of the method analyzed in [32], which

has a consistency error that makes it only applicable with

P1 finite elements. In any case, the numerical analysis is

based upon specific discrete inf-sup conditions for the

stabilized approximations, which allow the use of equal

velocity-pressure interpolations and are essential for the

stability of the methods. Also, optimal control on the

streamline derivative of the velocity field is guaranteed. In

[48], the stability analysis is extended to the transient

Oseen equations with tracking in time of the subscales.

In [37], the extension of the analysis to the steady lin-

earized primitive equations is performed, by also adding a

convergence analysis. Optimal error estimates are obtained

for smooth flows, again under proper regularity assump-

tions on the advection velocity. The performed analysis is

an extension of the unified analysis of stabilized and mixed

methods carried out for Stokes equations in [33]. The main

contribution from the analytical point of view is the proof

of a specific discrete inf-sup condition for the surface

pressure, that allows to estimate its L2 norm in terms of the

subgrid scales of the surface pressure gradient, that are

specifically bounded by the OSS discretization.

5.4 Experience in Numerical Simulations

Numerical studies with OSS method applied to incom-

pressible flows may be found in numerous publications. On

the one hand, the numerical simulations were performed to

test the optimal convergence rate of the method for smooth

flows. On the other hand, the goal was to test the perfor-

mance of the method in simulating turbulent flows. Dif-

ferent variants of the method were tested, depending on the

following factors: Quasi-static or transient subscales, time-

step dependency or not of the stabilization parameter, lin-

ear or nonlinear splitting of the convective velocity with

respect to the subscales. Most of the comparisons were

performed with respect to the algebraic subgrid scale

method (ASGS), which consists in taking the subscales in

the space of the residuals, and thus is equivalent to the two-

scale residual based VMS method described in Sect. 4.1

when quasi-static subscales are used, the time-step

dependency is included in the stabilization parameter, and

the nonlinear scale splitting is applied in the finite element

equation only, and not in the subscale equation. The

numerical results highlighted the excellent accuracy of the

OSS method in the simulation of turbulent incompressible

flows.

In [44], the numerical examples presented, the classical

cavity flow problem in two dimensions at Reynolds number

Re ¼ 5000 and the two-dimensional flow around a cylinder

at Re ¼ 100, aimed to demonstrate that the OSS method

introduces less numerical diffusion than the ASGS method,

while being equally stable. In particular, peaks were better

captured. Likewise, in spite of the smaller amount of

numerical diffusion, the evolution to the steady state was

similar using the OSS and the ASGS method. Thus, the

OSS can be considered as an alternative to reach steady

states in a flow calculation. In general, considering tran-

sient subscales led to better results, both in terms of

accuracy (with higher amplitudes and frequencies, that is,

less numerical dissipation), and of stability, eliminating

some pressure oscillations in time encountered when the

subscales are considered quasi-static. However, if Dt is

much larger than sm, it seemed to be not necessary to track

the subscales in time, since considering them as quasi-static

gave very similar results. It is also stated that, concerning

the computational cost for transient calculations, the OSS

formulation was very competitive with respect to the

ASGS method, sometimes even cheaper, since less stabi-

lizing terms appear. Moreover, these terms do not depend

on the whole residual of the Navier–Stokes equations,
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which in some situations may be expensive or very difficult

to evaluate. Examples for such situations are the presence

of thermal or electromagnetic couplings, Coriolis forces,

and, above all, nonlinear viscosities, coming either from

nonlinear constitutive models or from turbulence modeling.

The case of a turbulent flow over a cuboid-shaped

surface was considered in [118]. A Reynolds number Re ¼
4500 based on the inflow velocity and obstacle height was

considered. In this work, the OSS approach with transient

subscales was implemented, and it was shown capable to

predict backscatter, as just for dynamic LES models,

mainly close to boundary and shear layers, where it is

known it could appear. Also, the possibility to add a

simple Smagorinsky model to the OSS formulation was

considered. In this case, the numerical results showed that

the numerical dissipation is of the same order as the sub-

grid dissipation introduced by adding the Smagorinsky

model, except in the zone of strong anisotropy (boundary

and shear layers), where the dissipation coming from

adding the Smagorinsky model was higher than the

numerical one. The numerical evidences obtained here

have been also experienced and summarized in [47],

where a more comprehensive comparison between the

performance of the OSS discretization for fully developed

turbulent flows with and without the Smagorinsky model

was analyzed. In particular, two long term three-dimen-

sional simulations, namely a flow over a plate and a

telescope, were reported. The first example considers a

flow over a circular plate supported on a column and

inclined. It showed how the �7=3 slope of the Kol-

mogorov pressure spectrum was well approximated by the

OSS method. The second example, the flow around a

telescope, was intended to demonstrate that the OSS

method is also applicable to real flow problems. This

problem consists in the aerodynamic analysis around a

building enclosing a large telescope, where modeling

turbulence is crucial to determine the optical quality of the

site where the telescope is placed. Again, the scientifically

relevant issue is whether or not the OSS model is able to

capture the inertial range of the Kolmogorov spectrum: it

was observed that the pressure spectrum computed by

using the OSS method displays the correct �7=3 slope

without using the Smagorinsky model. The computation of

some other relevant punctual statistics revealed, as

expected, that results are more dissipative with the addi-

tion of the Smagorinsky model than without it.

Finally, an assessment of the OSS formulation modeling

turbulent flows was performed in [49]. The OSS formula-

tion was tested for the decay of homogeneous isotropic

turbulence (DHIT), the Taylor–Green vortex (TGV) prob-

lem, and the turbulent channel flow (TCF). Thus, both

bounded and unbounded flows are considered.

The DHIT problem consists in analyzing the statistics of

the turbulent flow in a 3D box of size X ¼ ð0; 2pÞ3 with

periodic boundary conditions in all directions, which is

started with a field having a predetermined energy spec-

trum. Structured meshed with N3 linear, quadratic, and

cubic hexahedral elements (Q1;Q2;Q3, respectively) were

used, taking the mesh width h ¼ 1=32; 1=64; 1=128, so that

the h-p refinement analysis is also performed, as in [10].

The viscosity value was set such that the associated Taylor-

microscale Reynolds number is Rek ¼ 952, which results

in m � 3:5� 10�4.

The TGV problem aimed to show, in a relatively simple

flow, the basic turbulence decay mechanisms like the tur-

bulent energy cascade, the production of small eddies, and

the enhancement of dissipation by the stretching of vortex

lines. The computational domain is the unit cube with

periodical boundary conditions. The initial flow generates 8

vortices with the same vortex scale. The problem is solved

using Re ¼ 1600. The same structured meshes and ele-

ments as in the DHIT problem were used. The TGV test is

characterized by its laminar evolution at the initial time

steps, when the flow is strongly anisotropic due to the

structured large-scale vortices directly related to the initial

condition. If the Reynolds number is large enough, the

vortex-stretching process, which activates the energy cas-

cade effect, transfers energy from large to small scales and

the flow becomes unstable and turbulent. According to

[23], the flow becomes nearly isotropic for Re	 1000.

The TCF problem consists of a fluid that flows between

two parallel walls driven by an imposed pressure gradient

which is defined by the Reynolds number based on the wall

shear velocity, Res. The attention was restricted to the

cases Res 2 f180; 395g. The problem was solved using the

coarsest mesh from previous test, 323 linear hexahedral

(Q1) mesh cells, with refinement in the wall-normal

direction following a hyperbolic function.

Overall, OSS and ASGS yielded similar results, all

displaying the features of turbulent flows when reproducing

global outputs such as energy spectra. These methods were

stable and converged to reference solutions, both when the

mesh was refined and when the polynomial order was

increased. Further, the effect of small time steps when the

stabilization parameters depend on them has been ana-

lyzed. Apart from the quality of the results, the OSS

method with dynamic subscales was convenient in terms of

numerical performance. It required more nonlinear itera-

tions than ASGS, but less iterations of the linear solver,

altogether leading to lower computational cost. This fact

has been explained by plotting the number of solver iter-

ations required to converge as the time step size is reduced,

for a fixed mesh in space. The number of iterations (and as

a result the condition number of the system matrix) blew up
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exponentially for ASGS whereas it remained bounded for

OSS. In both formulations, ASGS and OSS, the use of

dynamic subscales has been found to be crucial for non-

linear convergence. In fact, in some cases quasi-static

subscales failed to converge.

All these numerical experiments suggest that the

dynamic nonlinear OSS model turns out to be really high-

performing in terms of efficiency and robustness, showing

enormous potential in simulating turbulent flows, also with

respect to purely classical LES model, such as the dynamic

Smagorinsky model [52] or the adaptive local deconvolu-

tion model [76] specifically designed as an implicit LES

model, when using a similar number of degrees of freedom.

In particular, an excellent agreement with respect to DNS

data was recovered on coarser meshes, in terms of total

kinetic energy evolution, computation of energy spectra

(�5=3 law), dissipation rate evolution, and specific statis-

tics of first and second order (such as mean streamwise

velocity, root mean square velocity fluctuations, Reynolds

shear stress). The results also showed that the dynamic

nonlinear OSS formulation results to be unconditionally

stable when the skew-symmetric form of the convective

term is used for the resolved scale equation.

To conclude this section, the high capability of the OSS

method in modeling turbulence without any additional

eddy viscosity term was pointed out, which is due to its

intrinsic dissipative structure, which furnishes an additional

argument in favor of the position to consider turbulence

modeling a numerical issue.

6 Local Projection Stabilization (LPS) Methods
as Two-Scale VMS Methods

Local Projection Stabilization (LPS) methods are stabi-

lization methods that provide specific stabilization of any

single operator term that could be a source of instability for

the numerical discretization. They were introduced in [12]

and they could be viewed as simplifications of the methods

described in Sects. 4 and 5. LPS methods are not fully

consistent, but are of optimal order with respect to the finite

element interpolation. Moreover they are simpler to

implement than residual-based methods.

6.1 Basic Ideas and Derivation

As a single rule, the structure of LPS method is achieved

by retaining in the OSS method (69) the specific interac-

tions that stabilize convection or pressure gradient, and by

changing the global L2 projection by local L2 projections.

This leads to a family of methods, associated to the choice

of the actual local L2 projection. The main derivation of

LPS methods will be introduced for the Oseen equations

(60). The stabilization effect is achieved by adding least-

squares terms that give a weighted control on the fluctua-

tions of the quantity of interest. This control is based upon

a projection operation ph : L2ðXÞ7!Dh into a discontinuous

finite element space Dh (the ‘‘projection’’space). This space

is built on a grid Mh formed by macro-elements built from

the grid T h. The component-wise extension of ph to vector

functions is denoted by ph. The LPS approximation of the

Oseen equations reads: Find ðuh; phÞ 2 Xh � Yh such that

for any ðvh; qhÞ 2 Xh � Yh,

Aððuh; phÞ; ðvh; qhÞÞ þ Shððuh; phÞ; ðvh; qhÞÞ ¼ hf ; vhi;
ð77Þ

where

Aððuh; phÞ; ðvh; qhÞÞ ¼ mðruh;rvhÞ þ ðb � ruh þ c uh; vhÞ
� ðr � vh; phÞ þ ðr � uh; qhÞ;

and

Shððuh;phÞ; ðvh;qhÞÞ ¼
X

M2Mh

sM jhðb � ruhÞ;jhðb � rvhÞð ÞK

þ
X

M2Mh

lM jhðrphÞ;jhðrqhÞð ÞK :

ð78Þ

Here, jh ¼ I � ph is the ‘‘fluctuation’’operator, while sM
and lM are stabilization coefficients. Additional terms

stabilizing (for instance) the discretization of the diver-

gence (grad-div term) can be added.

The stability of LPS methods is based upon local inf-sup

conditions (see Sect. 6.2 below): The local restriction

XhðMÞ of the velocity space Xh (the ‘‘approxima-

tion’’space) to any macro-element M 2 Mh must be rich

enough in degrees of freedom with respect to DhðMÞ, much

as in mixed methods the global velocity space Xh must be

rich enough with respect to the pressure space Yh to achieve

the discrete inf-sup condition (9). With this purpose, two

main approaches of LPS methods have been proposed (see

[73]): In the one-level approach, the approximation space is

enriched such that the local inf-sup condition holds and

both Xh and Dh are built on the same mesh. In the two-

level approach, the projection space is built on a coarser

mesh level to satisfy the local inf-sup condition. It is

possible to consider overlapping sets of macro elements

(see [13]).

6.2 Numerical Analysis

In [115], a general stability and convergence theory of LPS

schemes for the Oseen equations is given, see also [124,

Part IV,Sections 4 and 5] for a comprehensive
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presentation. A priori error estimates were obtained, with

the same optimal order of convergence as for the SUPG/

PSPG method. The key idea in the error analysis of the

local projection scheme is the construction of an inter-

polant into Xh which exhibits an additional orthogonality

property with respect to the discontinuous space Dh. To

describe this analysis to some extent, assume that the dis-

crete velocity and pressure spaces are built as

Xh ¼ H1
0ðXÞ

� �d\Zd
h , Yh ¼ L20ðXÞ \ Zh, where Zh is a stan-

dard finite element space of polynomial order r without

containing essential boundary conditions. The following

assumptions are assumed to hold:

Assumption A1 There exists an interpolation operator

ih : H
1ðXÞ 7! Zh such that ih : H

1
0ðXÞ7!Zh \ H1

0ðXÞ, and for

all w 2 HlðMÞ, M 2 Mh

kw� ihwk0;M þ hM jw� ihwj1;M �C hlM jwjl;xðMÞ;

1� l� r þ 1;
ð79Þ

on a suitable patch xðMÞ � M.

Assumption A2 The fluctuation operator jh ¼ I � ph
satisfies

kjhqk0;M �C hlM jqjl;M 8 q 2 HlðMÞ; 8 M 2 Mh;

0� l� r:

Assumption A3 There is a positive constant b such that

the local inf-sup condition

inf
qh2DhðMÞ

sup
vh2ZhðMÞ

ðvh; qhÞM
kvhk0;M kqhk0;M

	 b 8 M 2 Mh; h[ 0

holds, where DhðMÞ :¼ fdhjM : dh 2 Dhg and

ZhðMÞ :¼ fwhjM : wh 2 Zhg.

Assumptions A1 and A3 ensure stability of the LPS

discretization (77), in the sense that if maxfm; c; sM;
h2M=lMg�C for all M 2 Mh, then, there is a constant

c[ 0 independent of m and h such that

inf
ðvh;qhÞ2Xh�Yh

sup
ðwh;rhÞ2Xh�Yh

ðAþ ShÞððvh; qhÞðwh; rhÞÞ
jjðvh; qhÞjjh jjðwh; rhÞjjh

	 c;

where the jj � jjh denotes the grid-dependent norm

jjðv; qÞjjh :¼
�

m jvj1 þ c kvk0 þ ðmþ cÞ kqk0
þ Shððv; qÞ; ðv; qÞÞ

�1=2
:

Optimal error estimates are obtained under assumptions

A1, A2 and A3: Assuming that the solution ðu; pÞ of the

Oseen equations (60) belongs to ½H1
0ðXÞ \ Hrþ1ðXÞ�d�

L20ðXÞ \ Hrþ1ðXÞ, the choice of stabilization parameters

sM ’ hM=kbkr;1;M and lM ’ hM is asymptotically optimal

and leads to

jjðu;pÞ�ðuh;phÞjjh

�C
X

M2Mh

ðmþhMÞh2rM kuk2rþ1;xðMÞ þkpk2rþ1;xðMÞ

� �

 !1=2

:

The key for the proof of this result is the existence of an

interpolation operator jh :H
1ðXÞ7!Zh satisfying the fol-

lowing orthogonality and approximation properties:

ðw� jhw; qhÞ ¼ 0 8 qh 2 Dh; w 2 H1ðXÞ;
kw� jhwk0;M þ hM jw� jhwj1;M �C hlM kwkl;xðMÞ

8 w 2 HlðXÞ;

with 1� l� r þ 1, for all M 2 Mh, where xðMÞ is the

union of all elements ofMh that intersect M. The existence

of such an interpolation operator turns out to be a conse-

quence of Assumptions 1 and 3.

Assumptions A1 and A2 are standard in finite element

approximations, and are satisfied by well-known families

of them. However, the local inf-sup condition required by

A3 is less standard. Several families of finite element

spaces satisfying this assumption may be found in refer-

ences [12, 13, 73, 115], among others.

Recently, extensions of the analysis of LPS methods to

the instationary Navier–Stokes equations have been

developed. In [4], the case of inf-sup stable pairs of finite

element spaces was considered, where the second term in

Sh from (78) can be neglected. In addition, a grad-div

stabilization term (58) was introduced in the discrete

problem. For the continuous-in-time case, error estimates

were proved with constants that do not depend on inverse

powers of m. To obtain this property, the grad-div term

played an essential role. The analysis was extended in [3,

5] to fully discrete problems with BDF2 as temporal dis-

cretization and a decoupling of velocity and pressure

computation via a pressure projection scheme.

6.3 LPS by Interpolation

A further simplification of LPS schemes is achieved when

the local L2 projection operator ph is replaced by an

interpolation operator from ½L2ðXÞ�d onto a projection

space Dh formed by continuous finite elements (see [34]).

To describe this approach, assume that the discrete velocity

and pressure spaces Xh and Yh are formed by piecewise

polynomial functions of degree l at most

Xh ¼ ðVl
hðXÞ \ H1

0ðXÞÞ
d; Yh ¼ Vl

hðXÞ \ L20ðXÞ; ð80Þ

where Vl
h ¼ Pl on simplices and Vl

h ¼ Ql on quadrilaterals

or hexahedra. It is assumed that ph is some stable approx-

imation operator from ½L2ðXÞ�d into Dh ¼ Vl�1
h ðXÞ

� �d
. This

interpolant may be defined as
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8 x 2 X ; phðvÞðxÞ ¼
X

a2N
PhðvÞðaÞuaðxÞ; ð81Þ

where N is the set of Lagrange interpolation nodes of

Vl
hðXÞ, ua are the Lagrange basis functions associated toN

andPh is some interpolation operator by local averaging of

Scott–Zhang or Clément kind. PhðvÞðaÞ may be reduced to

a single nodal value if v is piecewise smooth. The fluctu-

ation operator jh ¼ I � ph satisfies also the following

extension of Assumption 2: There exists a constant Cp,

independent of h, such that

8 vh 2 ½Wl;pðXÞ�d ; 8 K 2 T h ;

jjhðvhÞjr;p;K �Cp h
l�r
K jvhjl;p;xðKÞ;

ð82Þ

for r ¼ f0; 1g; 1� p� þ1; r� l. These two assumptions

are verified by quasi-local approximation operators such as

the Girault–Lions [61], Bernardi–Maday–Rapetti [16], or

Scott–Zhang [129] type operators and local L2 interpolation

operators such as those considered in standard LPS methods

[115]. The LPS method by interpolation is still stated by

(77), but assuming that the grids T h and Mh coincide.

The stability of this LPS method by interpolation fol-

lows from a specific inf-sup condition, that will be stated,

for simplicity, for uniformly regular grids. That is, there

exist two positive constants C1 and C2 such that

C1 h� hK �C2 h; 8K 2 T h; 8 h[ 0:

Lemma 2 Assume that the family of grids is uniformly

regular. Then, the following inf-sup condition holds

8 qh 2 Yh ; kqhk0 �C sup
vh2Xh

ðr � vh; qhÞ
jvhj1

þ hkjhðrqhÞk0
� 	

:

ð83Þ

Proof The proof is based upon an inf-sup condition,

which is the global equivalent of the local inf-sup condi-

tions of LPS methods (Assumption 3), that is stated without

proof

8 gh 2 Vl�1
h ðXÞ ; kghk0 �C sup

vh2Vl
h
ðXÞ\H1

0
ðXÞ

ðvh; ghÞ
kvhk0

: ð84Þ

As phðrqhÞ 2 Vl�1
h

� �d
, the inf-sup condition (84) yields

kphðrqhÞk0 �C sup
vh2Xh

ðphðrqhÞ; vhÞ
kvhk0

: ð85Þ

As jh ¼ I � ph, it follows that

jðphðrqhÞ; vhÞj � jðrqh; vhÞj þ kjhðrqhÞk0kvhk0:

With the inverse estimate (14), one finds

h sup
vh2Xh

ðphðrqhÞ;vhÞ
kvhk0

�C sup
vh2Xh

ðrqh;vhÞ
jvhj1

þhkjhðrqhÞk0
� 	

:

Substituting this inequality in (85) yields

h kphðrqhÞk0 �C sup
vh2Xh

ðr � vh; qhÞ
jvhj1

þ h kjhðrqhÞk0
� 	

:

ð86Þ

By [139], there exist two positive constants C1 and C2

independent of h such that

8 qh 2 Yh; C1kqhk0 � sup
vh2Xh

ðr � vh; qhÞ
jvhj1

þ C2h krqhk0:

ð87Þ

Since krqhk0 �kjhðrqhÞk0 þ kphðrqhÞk0, combining

(86) and (87) completes the proof. h

The inf-sup condition (83) is the basis for the stability of

the method as stated in the following theorem.

Theorem 2 Assume that the grids are uniformly regular,

f 2 ½L2ðXÞ�d, b 2 ½LrðXÞ�d for some r[ d and the stabi-

lized coefficients sK and lK are of order h2K . Then the

discrete problem (77) has a unique solution. Moreover,

there exists a constant C[ 0, independent of h and m, such
that

mjuhj1 þ
ffiffiffi

m
p

Shððuh; phÞ; ðuh; phÞÞ1=2 �kfk�1; ð88Þ

kphk0 �C 1þ 1
ffiffiffi

m
p þ

kbk0;r
ffiffiffi

m
p þ

kbk0;r
m

þ c

� 	

kfk0: ð89Þ

Proof Problem (77) is equivalent to a square linear sys-

tem of dim Xh ? dim Yh equations. Hence uniqueness of

the solution is equivalent to its existence. So one can

proceed assuming that there exists a solution and prove that

it is unique. And to prove this, it is enough to prove esti-

mates (88) and (89). It is assumed for brevity that

c ¼ constant[ 0.

1) Setting vh ¼ uh and qh ¼ ph in (77) gives

m juhj21 þ c kuhk20 þ Shððuh; phÞ; ðuh; phÞÞ ¼ hf ; uhi:

Then, it follows that

juhj1 �
1

m
kfk�1; kuhk0 �

1

c
kfk0; Shððuh; phÞ;

ðuh; phÞÞ�
1

4m
kfk2�1:

ð90Þ

2) To obtain the pressure estimate, the inf-sup condition

(83) is used

Ckphk0 � sup
vh2Xh

ðr � vh; phÞ
jvhj1

þ h kjhðrphÞk0 :¼ I þ II:

As lK ’ h2, the second term is bounded by

jIIj � Shððuh; phÞ; ðuh; phÞÞ1=2 �
C
ffiffiffi

m
p kfk�1:
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To bound the first term, take qh ¼ 0 in (77), leading to

ðr � vh;phÞ¼ðb �ruh;vhÞþ mðruh;rvhÞþ cðuh;vhÞ
þ
X

K2T h

sKðjhðb �ruhÞ;jhðb �rvhÞÞK �hf ;vhi:

ð91Þ

Due to the third estimate in (90), the stabilizing term has

the bound

X

K2T h

sKðjhðb � ruhÞ; jhðb � rvhÞÞK

�

�

�

�

�

�

�

�

�

�

� C
ffiffiffi

m
p kfk�1kjhðb � rvhÞks;

ð92Þ

where for r 2 L2ðXÞ, krks ¼
X

K2T h

sKkrk20;K

 !1=2

: The

support of the P1 basis functions associated to the grid T h

is denoted by Oi, i ¼ 1; . . .;R. Then, X ¼
[
R

i¼1

Oi, and any

mesh cell K 2 T h belongs to at most m macroelements Oi,

for some m independent of h. This property follows from

the regularity of the family of grids. Then, one gets

kjhðb � rvhÞk2s �C h2
X
R

i¼1

kjhðb � rvhÞk20;Oi
: ð93Þ

As ph is locally stable and b 2 ½LrðXÞ�d , r[ d, it follows

that

kjhðb � rvhÞk2s �C h2
X
R

i¼1

X

K�Oi

kb � rvhk20;xðKÞ

�C h2
X
R

i¼1

X

K�Oi

kbk20;r;xðKÞkrvhk20;r�;xðKÞ;

with 1=r þ 1=r� ¼ 1=2. Due to the uniform regularity of

the grids, the inverse estimate

8 K 2 T h; 8 p 2 PlðKÞ ; kpk0;r�;K � Ĉ hd=r
��d=2 kpk0;K

holds. Then, krvhk20;r�;xðKÞ � Ĉ h2d=r
��d

X

T�xðKÞ
krvhk20;T

and therefore one obtains the following estimate

kjhðb �rvhÞk2s�Ch2ð1�d=rÞ
X
R

i¼1

X

K�Oi

kbk20;r;xðKÞkrvhk20;xðKÞ

�Ch2ð1�d=rÞkbk20;rkrvhk20;

where it was used that a mesh cell belongs to at most

m macroelements. Combining the last inequality with (92)

gives

X

K2T h

sKðjhðb � ruhÞ; jhðb � rvhÞÞK

�

�

�

�

�

�

�

�

�

�

� C
ffiffiffi

m
p h1�d=rkfk�1 kbk0;r krvhk0:

To bound the remaining terms in (91), one uses (90)

jðb � ruh; vhÞ þ m ðruh;rvhÞ þ c ðuh; vhÞ � hf ; vhij

�C
�

ðmþ kbk0;rÞjuhj1 þ c kfk0 þ kfk�1

�

jvhj1

�C 1þ
kbk0;r
m

þ c

� 	

kfk0jvhj1:

Finally, by substituting the two last inequalities into (91)

one obtains

jIj �C 1þ
kbk0;r
ffiffiffi

m
p þ

kbk0;r
m

þ c

� 	

kfk0: ð94Þ

Combining the estimates for I and II with the inf-sup

condition (84) one deduces (89). h

The error estimates are based upon this stability result,

and the approximation properties of operator ph. The proof

will be omitted for brevity.

Theorem 3 Assume that the hypotheses of Theorem 2

hold, that the operator ph satisfies (82), that b 2 ½HsðXÞ�d
with s[ l� 1 and that the solution of the Oseen problem

(60) verifies ðu; pÞ 2 ½Hlþ1ðXÞ�d � HlðXÞ. Then the fol-

lowing error estimates hold:

ju� uhj1 �Cðkbks; kfk0; mÞ hl; ð95Þ

kp� phk0 �Cðkbks; kfk0; mÞ hl; ð96Þ

where Cðkbks; kfk0; mÞ is a constant depending on kbks;
kfk0 and m that grows as 1=

ffiffiffi

m
p

.

These stability and error estimates also hold for general

regular grids (not uniformly regular), although the proof is

much more involved (see [34]). Moreover, in [1], a finite

element error analysis of the LPS method by interpolation

for the time-dependent Navier–Stokes equations is

presented.

6.4 Application to the Simulation of Turbulent

Flows

A finite element three-scales projection-based VMS-LPS

steady turbulence model that includes general non-linear

wall laws is presented in [36, 125]. Good accuracy is

obtained with benchmark turbulent flow problems on

coarse grids. This is a model with the structure (34) that

includes a multi-scale Smagorinsky modeling of the eddy
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viscosity, which contains the restriction to the sub-filter

scales through a projection/interpolation operator (intro-

duced in Sect. 3.2), and a LPS by interpolation stabilization

of convection and pressure gradient, in order to use the

same interpolation for velocity and pressure. In addition, it

includes wall-laws modeling of the turbulent boundary

layer. This provides a discretization with a reduced com-

putational cost, but that keeps the same high-order accu-

racy with respect to standard projection-stabilized methods.

This model is presented here without wall-laws for brevity.

The numerical experiences with this model are presented in

Sect. 10.5.

Consider the steady version of the Navier-Stokes equa-

tions (2): Find ðu; pÞ 2 X � Y such that for all

ðv; qÞ 2 X � Y

aðu; vÞ þ bðu; u; vÞ � ðr � v; pÞ ¼ hf ; vi;
ðr � u; qÞ ¼ 0:

ð97Þ

These equations are discretized by approximating the

spaces X and Y by the spaces Xh and Yh defined by (80),

and the variational formulation by: Find ðuh; phÞ 2 Xh � Yh
such that:

aðuh; vhÞ þ bsðuh;uh; vhÞ � ðph;r � vhÞ
þ cðuh; uh; vhÞ þ sconvðuh; uh; vhÞ ¼ hf ; vhi;
ðr � uh; qhÞ þ spresðph; qhÞ ¼ 0;

ð98Þ

for any ðvh; qhÞ 2 Xh � Yh.

The trilinear form bs is the skew-symmetric one of the

convection form b given in (7). The use of bs instead of b is

needed to keep a correct energy balance at the discrete

level, that follows as bsðuh; vh; vhÞ ¼ 0:

The form c is associated to the VMS-Smagorinsky

modeling of the eddy viscosity (35)

cðuh; uh; vhÞ ¼ 2ðmTðbuhÞDðbuhÞ;DðbvhÞÞ; ð99Þ

where the eddy viscosity mT is defined by (36)

mTðvÞðxÞ ¼ ðCShKÞ2kDðvjKÞðxÞkF for x 2 K;

and

buh ¼ q�huh; bvh ¼ q�hvh; q�h ¼ I � qh;

Here, qh is a uniformly stable (in H1ðXÞ-norm) interpola-

tion operator (the ‘‘restriction’’operator) on bXh, where

bXh ¼ ½Vl�1
h ðXÞ�d; ð100Þ

or

bXh ¼ ½Vl
HðXÞ�

d; ð101Þ

and Vl
HðXÞ in (101) is a sub-space of Vl

hðXÞ with larger grid
size H[ h (typically, H ¼ 2h or H ¼ 3h). The restriction

operator qh must be uniformly bounded with respect to h,

satisfy optimal error estimates (79), and preserve the slip

boundary conditions. In the framework of Sect. 3.2, the

large scales space is given by

Xh ¼ ðI � qhÞXh;

However neither the space Xh nor bXh appears in the dis-

cretization, only the restriction operator qh is needed.

In this way, this VMS method appears as a LES method

where the cutoff length d is of the same order as the grid

size h. This size of the cutoff length is reasonable as setting

d 
 h then the numerical solution would solve scales

much smaller than the modeled ones, while setting d � h

would generate a large error in the computation of the

modeled scales.

The forms sconv and spres in (98) correspond to a LPS

method, given by

sconvðuh; uh; vhÞ ¼
X

K2T h

sm;Kðr�hðuh � ruhÞ; r�hðuh � rvhÞÞK ;

spresðph; qhÞ ¼
X

K2T h

sc;Kðr�hðrphÞ; r�hðrqhÞÞK :

Here, r�h ¼ I � rh, where rh is some locally stable (in the

L2 norm) projection or interpolation operator on the pro-

jection space Dh ¼ Vl�1
h ðXÞ

� �d
, satisfying optimal error

estimates, similarly to operator ph given by (81). Also, sm;K
and sc;K are stabilization coefficients for convection and

pressure gradient, respectively, given by

sc;K ¼ sm;K ¼ c1
mþ mTjK
ðhK=lÞ2

" #

þ c2
UK

ðhK=lÞ

� �

( )�1

; ð102Þ

by adapting the expressions (72), where mTjK is the local

mean value for the eddy viscosity on the mesh cell K, and

UK is the mean speed on K.

Model (98) includes the main features and assumptions

of a three-scale VMS method. The method is based on a

variational formulation and the decomposition of the scales

is defined by projection in the large-scales space Xh. The

turbulence model is applied only to the small resolved

scales.

Here, the steady version will be considered while the

unsteady one will be studied in Sect. 10. This model has a

relatively simple structure as a turbulence model. It may be

programmed with ease from an existing finite element

solver for Navier–Stokes equations. The main difficulty is

the computation of the interpolation operators that appear

in the stabilizing and eddy diffusion terms, but it may

simply be computed from point wise values of the func-

tions to interpolate, as was mentioned in Sect. 6.3.

The existence of solutions of model (98) is based upon a

linearization of the model equations: Given wh 2 Xh, find

ðzh; rhÞ 2 Xh � Yh such that
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aðzh; vhÞ þ bsðwh; zh; vhÞ � ðrh;r � vhÞ
þ cðwh; zh; vhÞ þ sconvðwh; zh; vhÞ ¼ hf ; vhi;
ðr � zh; qhÞ þ spresðrh; qhÞ ¼ 0;

ð103Þ

for any ðvh; qhÞ 2 Xh � Yh. The mapping wh 2 Xh 7!zh 2
Xh admits a fixed point by Brouwer’s Fixed Point Theo-

rem which is the solution of model (98). This follows from

the stability estimates (that are stated here just for the

solution of (98)):

m kDðuhÞk0 þ cðuh; uh; uhÞ
þ sconvðuh; uh; uhÞ þ spresðph; phÞ�C kfk�1;

kphk0 �C 1þ 1
ffiffiffi

m
p þ juhj1

ffiffiffi

m
p þ juhj1

m

� 	

kfk0;
ð104Þ

where the second estimate is obtained from the first one

and the inf-sup condition (84), similarly to (94). A con-

vergence result of solutions of (98) to a solution of the

steady-state Navier–Stokes equations (97) can be proved.

Theorem 4 The sequence fðuh; phÞgh[ 0 of solutions of

the VMS-LPS model (98) contains a sub-sequence which is

weakly convergent in ½H1ðXÞ�d � L2ðXÞ to a solution of the

steady Navier–Stokes equations (97).

Proof (Sketch) The eddy viscosity and convection-stabi-

lization terms vanish in the limit due to the estimates

jcðuh; uh; vhÞj
jsconvðuh; uh; vhÞj

ð105Þ

The pressure stabilizing term also vanishes in the limit. To

prove this, one uses a representation formula. By [33],

there exists a family of vectorial bubble finite element

spaces Zh (formed by functions that vanish on the edges of

all elements), a family of bilinear uniformly continuous

and uniformly coercive forms on ½H1
0ðXÞ�

d
, Shð�; �Þ such

that

spresðrh; qhÞ ¼ ShðRhðr�hðrrhÞÞ;Rhðr�hðrqhÞÞÞ
8 rh; qh 2 Yh:

Here, Rh : ½H�1ðXÞ�d ! Zh is the static condensation

operator associated to Sh, defined as: Given

u 2 ½H�1ðXÞ�d, RhðuÞ is the only element of Zh that sat-

isfies: ShðRhðuÞ; zhÞ ¼ hu; zhi; 8 zh 2 Zh: Then

spresðph; phÞ ¼ShðRhðr�hðrphÞÞ;Rhðr�hðrphÞÞÞ;

and by estimate (104), one deduces that the sequence

fRhðr�hðrphÞÞgh[ 0 is uniformly bounded in ½H1
0ðXÞ�

d
.

Then, this sequence is weakly convergent to zero in ½H1
0ðXÞ�

d
,

see [32, Lemma 4.1]. Assume that q 2 DðXÞ \ L20ðXÞ. Then,
r�hðrqhÞ strongly converges to zero in L2ðXÞ. As

spresðph; qhÞ ¼ ShðRhðr�hðrphÞÞ;Rhðr�hðrqhÞÞÞ
¼ hr�hðrqhÞ;Rhðr�hðrphÞÞi;

one concludes that

lim
h!0

spresðph; qhÞ ¼ 0:

The remaining terms in (98) pass to the limit in a standard

way. One then concludes that the limit ðu; pÞ satisfies

formulation (97) for all v 2 X and q 2 DðXÞ \ L20ðXÞ. By
density it also holds for q 2 Y ¼ L20ðXÞ. h

For smooth velocity and pressure ðu; pÞ and small data,

method (98) satisfies error estimates of optimal order. It

also satisfies an asymptotic energy balance: Indeed, define

the deformation energy ED, the subgrid eddy dissipation

energy ES, and the energy ESC and ESP, respectively, cor-

responding to the convection and the pressure stabilizing

terms by:

EDðuÞ ¼ aðu; uÞ ¼ 2m kDðuÞk22;

ESðuhÞ ¼ cðuh; uh; uhÞ ¼ 2
X

K2T h

ðCShKÞ2
Z

K

jDðbuhÞj3 dx;

ESCðuhÞ ¼ sconvðuh; uh; uhÞ ¼
X

K2T h

sv;K kr�hðuh � ruhÞk22;K ;

ESPðphÞ ¼ spresðph; phÞ ¼
X

K2T h

sc;K kr�hðrphÞk22;K :

ð106Þ

Then, if the sequence fðuh; phÞgh[ 0 is strongly convergent

in ½H1ðXÞ�d � L2ðXÞ to a solution ðu; pÞ of the Navier-

Stokes equations (2) with regularity ½H2ðXÞ�d � H1ðXÞ, it
holds

lim
h!0

EDðuhÞ ¼ EDðuÞ; lim
h!0

ESðuhÞ ¼ lim
h!0

ESCðuhÞ

¼ lim
h!0

ESPðphÞ ¼ 0;

and then

lim
h!0

½EDðuhÞ þ ESðuhÞ þ ESCðuhÞ þ ESPðphÞ� ¼ EDðuÞ;

Thus, the total energy balance is asymptotically maintained

in such a way that the deformation energy passes to the

limit. In addition, the dissipated eddy energy and the sub-

grid energy due to stabilizing terms asymptotically vanish.

If the the sequence fðuh; phÞgh[ 0 is only weakly con-

vergent in ½H1ðXÞ�d � L2ðXÞ to ðu; pÞ, one cannot ensure

that lim
h!0

ESPðphÞ ¼ 0. Thus, it is only possible to prove an

asymptotic energy inequality of the form

EDðuÞ� lim inf
h!0

½EDðuhÞ þ ESðuhÞ þ ESCðuhÞ þ ESPðphÞ�:
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7 Three-Scale Bubble VMS Method

This section presents the bubble VMS methodology with a

three-scale decomposition of the flow field using bubble

functions for the small resolved velocity scales. Bubble

VMS methods can be considered as a direct realization of a

three-scale VMS method for finite elements by discretizing

both equations (32) and (33) with a finite element method.

Earlier direct realizations used Fourier spectral methods, at

least in the direction of homogeneous isotropic turbulence,

and a separation into large and small resolved scales was

performed via the norm of the wave number vector, e.g.,

see [86, 87].

7.1 Derivation

There are several realizations of bubble VMS methods

which differ in some details, e.g., see [31, 62, 68, 69, 98,

112, 113]. Here, exemplary the derivation of one of these

realizations is presented.

Consider the decomposition of the resolved scales

ðuh; phÞ into large scales ðu; pÞ and small resolved scales

ðbu; bpÞ. Equation (32) for the large scale test function, after

having neglected the coupling terms of the large and the

unresolved scales, takes the form

ðotuh; vÞ þ 2mD uhð Þ;D vð Þð Þ þ b uh; uh; vð Þ � r � v; phð Þ
þ r � uh; qð Þ ¼ ðf ; vÞ:

Applying the splitting of the resolved scales yields

ðotu; vÞ þ 2mD uð Þ;D vð Þð Þ þ b u; u; vð Þ � r � v; pð Þ
þ r � u; qð Þ
¼ ðf ; vÞ �

�

ðotbu; vÞ þ 2mD buð Þ;D vð Þð Þ
þ b uh; bu; vð Þ þ b bu; u; vð Þ � r � v; bpð Þ þ r � bu; qð Þ

�

:

ð107Þ

Similarly, one derives an equation for the small resolved

scale test function

ðotbu;bvÞ þ 2ðmþ mTÞD buð Þ;D bvð Þð Þ þ b uh; bu;bvð Þ
� r � bv; bpð Þ þ r � bu; bqð Þ
¼ ðf ;bvÞ �

�

ðotu;bvÞ þ 2mD uð Þ;D bvð Þð Þ
þ b uh; u; bvð Þ � r � bv; pð Þ þ r � u; bqð Þ

�

:

ð108Þ

Here, the eddy viscosity term is already included, which

models the effect of the unresolved scales onto the small

resolved scales with mT being the subgrid turbulent

viscosity.

In bubble finite element VMS methods, standard finite

element spaces are used for the large scales,

X � Y ¼ Xh � Yh. As pointed out in Sect. 3.2, the main

goal of the bubble finite element VMS method is to use a

higher resolution spaces for the approximation of the

resolved scales compared with the spaces used for the large

scale. This goal can be achieved either by using higher

order finite elements, or by refining the mesh, or by the

combination of both approaches. However, a practical

problem that arises with all these approaches is the com-

putational cost of the solution process for the small

resolved scale problem (108) which is much higher than for

solving the large scale problem (107). In order to obtain an

efficient method, a bubble VMS method can be used, in the

sense that the small resolved scale problem (108) is con-

sidered in a space of bubble functions for the velocity.

Recall that a function v 2 H1ðXÞ is called a bubble func-

tion with respect to a mesh triangulation T h if vjK 2 H1
0ðKÞ

for all mesh cells K 2 T h.

With respect to the model for the small resolved scale

pressure, it was proposed in [62, 68, 69] to model the small

resolved scale pressure in the form

bp ¼ �
X

K2T h

sc r � uð Þ; ð109Þ

which is the same model as proposed in [10] for the two-

scale residual-based VMS, see Sect. 4.1. In (109),

fscgK2T h
is a family of stabilization parameters which are

usually defined to be piecewise constant. Using this pro-

posal, the small resolved pressure does not appear any

longer in the large scale equation but its influence on the

large scales is modeled. The contribution of the small

resolved pressure (109) into the large scale equation leads

to a so-called grad-div stabilization term. Since the small

resolved pressure bp disappeared, a divergence constraint

for the small resolved velocity bu is no longer required.

And, since there is no longer a divergence constraint for bu,

it does not make sense to have a term with this contribution

in the divergence constraint for the large scale equation

(107). Hence, all terms in the model (107) and (108)

coming from the divergence constraint which includes

small resolved scales will be neglected by setting

ðr � bu; qÞ ¼ ðr � u; bqÞ ¼ ðr � bu; bqÞ ¼ 0:

Inserting these modifications in the small resolved scale

problem (108), one obtains a simplified vector-valued

equation for bu. Motivated by the desire to construct an

efficient method, the small resolved velocity is searched in

a bubble space. Note that the space of these bubble func-

tions bXbub is infinite-dimensional. However, from the

practical point of view, this space has to be a finite-di-

mensional space.

Usually, some further simplifying assumptions are made

for the terms with the small resolved velocity scales. The

equation for the small resolved velocity scales is only

solved once for each time step, i.e., at the beginning, which

yields the solution buð1Þ. Consequently, this equation is
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linearized and all terms with u are treated explicitly.

Therefore, the temporal derivatives in (107) and (108) have

to be modified. Denoting quantities at time level n with a

subscript n, one can use for the large scale equation (107)

otbu � bu
nþ1 � bun

Dtnþ1

� bu
ð1Þ � bun

Dtnþ1

; ð110Þ

where Dtnþ1 ¼ tnþ1 � tn is the current time step. In the

small resolved scale equation, one assumes that the tem-

poral change in the large scales can be neglected, i.e.,

otu ¼ 0. Moreover, for reasons of efficiency, the gradient

form of the viscous term is used in the small resolved scale

equation and some right-hand side terms in the large scale

equation. With the gradient form, the small resolved scale

equation decouples into three scalar equations since the

system matrix becomes a block diagonal matrix.

Inserting the models and the simplifying assumptions

for the small resolved scales into (107) and (108) leads to

the following system of equations: Find u : ½0; T� ! X, p :

ð0; T� ! Y satisfying

ðotu; vÞ þ 2mD uð Þ;D vð Þð Þ þ b u; u; vð Þ � r � v; pð Þ
þ r � u; qð Þ þ

X

K2T h

scðr � u;r � vÞK

¼ ðf ; vÞ �
�

bu
ð1Þ � bun

Dtnþ1

; v

 !

þ mrbuð1Þ;rv
� �

þ b un þ buð1Þ
; buð1Þ; v

� �

þ b bu
ð1Þ
; un; v

� �

�

ð111Þ

for all ðv; qÞ 2 X � Y . The equation for computing the

small resolved scales buð1Þ : ½0; T � ! bXbub reads as

bu
ð1Þ � bun

Dtnþ1

; bv

 !

þ ðmþ mTÞrbuð1Þ
;rbv

� �

þ b unh; bu
ð1Þ
; bv

� �

¼ ðf ;bvÞ �
�

�

mrun;rbv



þ b unh; u
n;bv

� 


� ðr � bv; pnÞ

þ
X

K2T h

scðr � un;r � bvÞK
�

ð112Þ

for all bv 2 bXbub.

Note that both models for the small resolved scale (109)

and (112) can be interpreted in the way that the small

resolved scales are driven from the residual of the large

scales. The small resolved pressure is driven from the

residual of the continuity equation and the small resolved

velocity from the residual of the momentum equation.

In all bubble VMS methods, a principal question arises

concerning an unphysical property introduced by using

bubble functions for modeling the small resolved scales.

These scales are represented by the bubble functions and

are allowed to move within a mesh cell but, due to the

homogeneous Dirichlet boundary conditions on the faces of

the mesh cells, they cannot move directly from one mesh

cell to their neighbors. Hence, the small resolved scales are

bound to the mesh cells and there will be no direct inter-

action between these scales across the mesh cell bound-

aries. However, by the coupling of the small resolved

scales to the large scales in (111), the information con-

tained in the small resolved scales is distributed indirectly

to the other mesh cells.

7.2 Relations to Other Methods

The use of bubble functions for stabilizing dominant con-

vection was already proposed independently of VMS

methods. These bubble functions solve equations with the

residual obtained with a standard finite element method.

For this reason, this approach is called residual-free bubble

(RFB) method. This idea was first proposed for scalar

convection-diffusion equations in [27] and applications to

laminar incompressible flows can be found, e.g., in [57].

Thus, the bubble VMS method can be considered as a

generalization of the RFB method in the sense that a tur-

bulence model is introduced in the equation for the small

resolved velocity scales.

7.3 Numerical Analysis

A numerical analysis for the bubble VMS method as pre-

sented in Sect. 7.1 does not seem to be available. However,

error estimates for the closely related RFB method were

derived for convection-diffusion equations and the Oseen

equations.

Concerning scalar convection-diffusion equations, a

priori error estimates for finite elements on simplicial

meshes were proved in [7, 25, 26]. The case of bilinear

elements was studied in [122].

In [55], an approximate RFB method for the Oseen

equations is analyzed for the non-conforming Crouzeix–

Raviart pair of finite element spaces. It was shown that the

exact RFB method is identical to some SUPG-type stabi-

lization in the case of constant coefficients. This SUPG-

type stabilization was used as approximation for the RFB

method. An optimal estimate for the error in a norm

including the stabilization could be proved with a constant

independent of inverse powers of m.

7.4 Experience in Numerical Simulations

The use of a bubble VMS method requires to approximate

the solution in the infinite-dimensional bubble space. In
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[62, 68, 69, 98] each mesh cell was triangulated with a

local grid and an approximation of the small resolved

velocity with Q1 finite elements was computed. In contrast,

bubbles with a fixed polynomial degree were used in [31,

112, 113]. The methods from [31, 112, 113] do not use an

eddy viscosity model in the bubble equations but a stabi-

lization is obtained by applying an upwind-type method to

the convective term. Another option that was studied in

[31, 98, 113] was to use quasi-static small resolved scales,

i.e., to neglect the temporal derivative for the bubble

functions. This approach saves to store the values for the

small resolved scales from the previous discrete time.

A comparison of a bubble VMS method with the unu-

sual stabilized finite element method (USFEM) from [56]

and the Smagorinsky LES model (with dynamic CS or fixed

CS ¼ 0:1) was presented in [69]. To stabilize the used

equal-order pairs of finite element spaces, the Pressure

Stabilization Petrov–Galerkin (PSPG) method was applied.

As already mentioned, the local systems in the bubble

VMS method were solved on local grids in each hexahedral

mesh with Q1 elements. For the use of the dynamic

Smagorinsky model in the bubble VMS, a second local grid

was applied that was somewhat finer than the first local

grid. The numerical studies included turbulent circulating

flow in a lid-driven cavity at various Reynolds numbers

and a plane mixing layer example in two dimensions. For

lid-driven cavity flow, the bubble VMS method led, in

comparison with the USFEM and the other methods, to a

remarkable good results.

Numerical studies in [98] compared the bubble VMS

method with the projection-based VMS method presented

in Sect. 8. Benchmark problems of turbulent channel flows

were considered with the inf-sup stable finite element pair

Q2=P
disc
1 on hexahedral grids. For the bubble VMS method

inf-sup stable pairs of finite elements on anisotropic grids

were used. The static Smagorinsky models (38) with CS ¼
1 and (37) with CS 2 f0:5; 1g were used for the bubble

VMS method. For quantities of interest, numerical studies

for the flow at Res ¼ 195 showed slightly better results for

the quasi-static bubble VMS method compared with the

projection-based VMS method. On the other hand, the

projection-based VMS method gave superior results at

Res ¼ 395. It is mentioned that the implementation of the

bubble VMS was rather complicated. In addition, it turned

out that the dominating term of the model is the grad-div

term which evolves from modeling the small resolved

pressure. Incorporating only this term, without modeling

the small resolved velocity, led to stable simulations.

However, applying in addition to the grad-div stabilization

also the bubble model for the small resolved velocity

improved the accuracy of the results. It is also mentioned

that the large values of CS were needed for the solution of

the problem (112) on the coarse grids (5� 5� 5 sub cells)

for the local problems. Altogether, the use of the bubble

VMS method is not recommended in [98].

In summary, bubble VMS methods which approximate

the solution for the small resolved velocity on local grids

were implemented and studied from two groups. None of

these groups seems to use this type of VMS method any

longer.

The bubble VMS method from [112, 113] was studied in

[113] at an isotropic turbulence problem, a turbulent

channel flow, and a turbulent flow around a cylinder. It was

shown that similar results can be obtained as, e.g., with the

two-scale residual-based VMS method presented in Sect. 4

and the AVM3 method described in Sect. 9. It was

observed that with quasi-static small resolved scales the

method loses stability for small time steps. The method

from [112, 113] was improved in [31]. The improved

method can be applied also on tetrahedral grids and in the

case of quasi-static small resolved scales there is no

instability for small time steps. For a turbulent channel

flow problem, simulated with the P1=P1 finite element

method, similar results were obtained as with the residual-

based VMS method from Sect. 4 with Q1=Q1 finite ele-

ments. Results computed with P2=P2 finite elements were

considerably more accurate than results with P1=P1 for the

same number of degrees of freedom.

8 Three-Scale Velocity Deformation Tensor
Projection-Based VMS Method

This section presents a method where the scale separation

into large and small resolved scales is defined with the

velocity deformation tensor. Having defined in this way

small resolved velocity scales, an additional viscous term is

introduced where the turbulence model is acting directly

only on the small resolved scales. To shorten notation, this

method is called in this section just ‘‘three-scale projection-

based VMS method’’.

8.1 Definition of the Method

First, the projection-based VMS method will be defined. It

will be shown in Sect. 8.2 that a special case fits perfectly

into the general concept of a three-scale VMS method

described in Sect. 3.2.

Let Xh � Yh be finite element spaces for the velocity and

pressure which satisfy the discrete inf-sup stability condi-

tion (9), let LH be a finite-dimensional space of symmetric

d � d tensor-valued functions defined on X and let mT be a

non-negative function that might depend on the finite ele-

ment velocity and pressure and on the mesh width. Then,
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the semidiscrete projection-based VMS method (continu-

ous-in-time) is defined as follows: Find uh : ½0; T � ! Xh;

ph : ð0; T� ! Yh, and GH : ½0; T� ! LH satisfying

otuh; vhð Þ þ ð2mD uhð Þ;D vhð ÞÞ þ bðuh; uh; vhÞ
� r � vh; phð Þ þ 2mT uh; hð Þ D uhð Þ �GHð Þ;D vhð Þð Þ
¼ hf ; vhi r � uh; qhð Þ ¼ 0

D uhð Þ �GH ; LHð Þ ¼ 0;

ð113Þ

for all vh; qhð Þ 2 Xh � Yh and LH 2 LH .

The main features and assumptions of a three-scale

VMS method can be observed quite well already in (113).

The method is based on a variational formulation and the

decomposition of the scales is defined by projection in the

last equation of (113). The large scales are represented by

GH and the small resolved scales by D uhð Þ �GH . Thus

D uhð Þ represents all resolved scales. In the last term on the

left-hand side of the first equation in (113) it can be seen

that the turbulence model is applied directly only to the

small resolved scales.

The method (113) was proposed in [93] based on ideas

from [105]. To apply this method, one has to choose two

parameters: the additional viscosity mT uh; hð Þ and the

space LH .

Concerning mT uh; hð Þ, numerical studies with method

(113) presented in [93, 98, 99, 104, 123] used a

Smagorinsky models of the form

mT ¼ CSd
2kD uhð ÞkF; ð114Þ

mT ¼ CSd
2kD uhð Þ �GHkF; ð115Þ

mT ¼ CS

d2

jKj1=2
kD uhð Þ �GHkL2ðKÞ: ð116Þ

The other parameter in (113) is the space of symmetric

tensors LH . The last equation in (113) states that the tensor

GH is just the L2 Xð Þ projection of D uhð Þ into LH:

PLH : L ! LH ; D vð Þ ! PLHD vð Þ ¼ GH

PLHD vð Þ �D vð Þ; LHð Þ ¼ 0 8 LH 2 LH : ð117Þ

With this notation and using the short form (21), one can

reformulate (113) as follows: Find uh : ½0; T � ! Xh; ph :

ð0; T� ! Yh satisfying

A uh; uh; phð Þ; vh; qhð Þð Þ
þ 2mT uh; hð Þ I � PLHð ÞD uhð Þ;D vhð Þð Þ ¼ fðvhÞ

ð118Þ

for all vh; qhð Þ 2 Xh � Yh.

The space LH plays the role of a large scale space such

that I � PLHð ÞD uhð Þ represents small resolved scales of

D uhð Þ. Of course, only scales should be subtracted from

D uhð Þ that are contained in this tensor. Hence, it is required
that LH � fD vhð Þ : vh 2 Xhg.

Since LH represents large scales, it has to be in some

sense a coarse finite element space. Similarly to LPS

methods, there are essentially two possibilities:

• If Xh is a higher order finite element space, LH can be

defined as low order finite element space on the same

grid as Xh. This approach is studied in [93] and it will

be discussed below.

• The second possibility, in particular if Xh is a low order

discretization, consists in defining LH on a coarser grid,

see [96] for a study of this approach in the case of

convection-dominated convection-diffusion equations.

Since D uhð Þ is a discontinuous piecewise polynomial

tensor, choosing its L2ðXÞ projection in the same way

seems to be natural. Thus, LH should consist of discon-

tinuous piecewise polynomial tensors as well. It was

elaborated in [93] that for the sake of an efficient imple-

mentation of the one-grid method, the use of discontinuous

tensors for LH is mandatory.

A projection-based VMS method which computes the

projection in a post-processing step was proposed and

studied in [106]. That means, in the first step of this

approach, one can use the Galerkin finite element dis-

cretization of the Navier–Stokes equations. Using the

solution obtained in this step, one computes in a second

step the final solution by applying a projection. In [106] the

projection is constructed in such a way that it has the form

of the eddy viscosity term in (113). This approach can be

considered as an operator splitting. Its advantage is that it is

not intrusive, i.e., one can use for the first step an existing

code and needs to implement the projection only as an add-

on.

8.2 Imbedding of the Method into the Basic Concept

of a Three-Scale VMS Method

In the case mT being a positive constant, method (113) can

be transformed to the abstract form (32)–(33) of a three-

scale VMS method. To this end, the three-scale partitioning

given in Sect. 3.2 has to be described by appropriately

chosen function spaces and projections.

Clearly, the continuous pair of spaces X; Yð Þ contains all
scales. The finite element spaces Xh; Yhð Þ contain the large

and the small resolved scales.

Let XH � H1 Xð Þ½ �d be a discrete space such that

LH ¼ D XHð Þ. The space XH should be coarser than Xh. But

in the definition of XH , no essential boundary conditions,

like no-slip conditions, are incorporated. Thus, in general

XH 6� Xh. The pair of spaces for the large scales is given by

XH ; YHð Þ where YH is chosen such that a discrete inf-sup

condition of type (9) is fulfilled for XH ; YHð Þ. Then, the
large scales PHu of the velocity are defined by an elliptic
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projection into XH and the large scales PHp of the pressure

by the L2ðXÞ projection into YH ; PH : X; Yð Þ ! XH ; YHð Þ
D u� PHuð Þ;D vHð Þð Þ ¼ 0 8 vH 2 XH ;

u� PHu; 1ð Þ ¼ 0;

p� PHp; qHð Þ ¼ 0 8 qH 2 YH :

ð119Þ

Lemma 3 Commutation of the definition of the large

scales and differentiation. Let v 2 X, LH ¼ D XHð Þ and

denote by PLHD vð Þ the L2ðXÞ projection of D vð Þ into LH
defined in the last equation of (113). Then

PLHD vð Þ ¼ D PHvð Þ 8 v 2 X: ð120Þ

Proof From LH ¼ D VHð Þ and PLHD vð Þ 2 LH it follows

that there is a wH 2 XH such that PLHD vð Þ ¼ D wHð Þ.
Using the last equation of (113) gives

D v� wHð Þ; LHð Þ ¼ 0 8 LH 2 LH : ð121Þ

On the other hand, since LH ¼ D XHð Þ, (119) is equivalent
to

D v� PHvð Þ; LHð Þ ¼ 0 8 LH 2 LH : ð122Þ

The statement of the lemma follows now directly from

(121) and (122) since the elliptic projection is unique. h

Let mT be a positive constant. A straightforward calcu-

lation, using that PLH is a L2ðXÞ projection and ðI � PLH Þ is
in the orthogonal complement, shows that

mT I � PLHð ÞD uhð Þ;D vhð Þð Þ ¼ mT I � PLHð ÞD uhð Þ;ð
I � PLHð ÞD vhð ÞÞ:

Thus, (118) can be reformulated as follows: Find uh :

½0; T� ! Xh; ph : ð0; T � ! Yh satisfying

A uh; uh; phð Þ; vh; qhð Þð Þ
þ 2mT I � PLHð ÞD uhð Þ; I � PLHð ÞD vhð Þð Þ ¼ f ðvhÞ

ð123Þ

for all vh; qhð Þ 2 Xh � Yh. Decomposing Xh ¼ XH þ bXh

and Yh ¼ YH þ bYh with bXh ¼ I � PHð ÞXh, bYh ¼ I � PHð Þ
Yh, one obtains with (120)

I�PLHð ÞD vhð Þ¼D vh�PHvhð Þ¼D I�PHð Þvhð Þ¼D bvhð Þ:

The decompositions uh ¼ uH þ buh, ph ¼ pH þbpH ,
vh ¼ vH þbvh, and qh ¼ qH þbqH are inserted into (123).

Using the linearity of A �; �; �ð Þ with respect to the second

and third component and writing the arising equation for-

mally as a coupled system gives

A uH þ buh; uH ; pHð Þ; vH ; qHð Þð Þ
þ A uH þ buh; buh; bphð Þ; vH ; qHð Þð Þ ¼ f vHð Þ

ð124Þ

for all test functions vH ; qHð Þ 2 XH � YH and

A uH þ buh; uH ; pHð Þ; bvh; bqhð Þð Þ
þ A uH þ buh; buh; bphð Þ; bvh; bqhð Þð Þ
þ 2mTD buhð Þ;D bvhð Þð Þ ¼ f bvhð Þ

ð125Þ

for all test functions from bXh � bYh. The coupled system

(124)–(125) possesses exactly the form (32)–(33). The

unresolved scales are modeled only in the equation for the

small resolved scales (125) with the model

c uh; uH ; pHð Þ; buh; bphð Þ; bvh; bqhð Þð Þ ¼ 2mTD buhð Þ;D bvhð Þð Þ

and this model influences the large scales solely indirectly

by the coupling of (124) and (125).

8.3 Relations to Other Methods

Let LH � fD vhð Þ : vh 2 Xhg. The limit cases of LH lead

to two well known discrete models. In the case that

LH ¼ fD vhð Þ : vh 2 Xhg, the second term on the left-

hand side of (118) vanishes and the Galerkin finite element

discretization of the Navier–Stokes equations is recovered.

If LH ¼ fOg, one obtains an artificial viscosity stabiliza-

tion of the Navier–Stokes equations with a possible non-

linear artificial viscosity. If, e.g., mT is the Smagorinsky

eddy viscosity model, the Smagorinsky LES model is

recovered. In this sense one can say that the three-scale

projection-based VMS method is in between the Galerkin

discretization and an LES model of eddy viscosity type.

Comparing representation (113) with (144) shows that,

apart from the PSPG-type stabilization, the coarse space

projection-based VMS method and AVM3 have principally

the same form.

8.4 Numerical Analysis

A numerical analysis for projection-based VMS methods

was presented in several papers. In all cases, the principal

way of performing the analysis was the same as for the

Galerkin discretization of the Navier–Stokes equations.

The main goal was to show that the inclusion of the VMS

model leads to error bounds where certain constants

depend on a reduced Reynolds number (and not on the

Reynolds number as for the Galerkin discretization). These

results show in some sense that the projection-based VMS

method possesses a smaller complexity than the Galerkin

finite element method.

The first analysis was presented in [94] for method (113)

and the case of a constant turbulent viscosity mT. Two error

estimates with constants depending on a reduced Reynolds

number were derived. In [95], the case of mT being a

Smagorinsky-type eddy viscosity including the small
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resolved scales was studied. In this paper, the additional

viscous term is defined differently than in (113), namely as

deformation tensor of small resolved scales buh and not as

the small resolved scales of the deformation tensor

D uhð Þ �GH , i.e., differentiation and projection are inter-

changed in these definitions. The analysis for mT being a

Smagorinsky-type viscosity required the use of different

function spaces than for a constant viscosity. Finally, the

results of [94] were generalized in [123] to the case of mT
being a piecewise constant viscosity. The analysis from

[123] was extended in [109] to the case of thermally cou-

pled incompressible flows.

For the sake of keeping the presentation as simple as

possible and of concentrating on the main issue, namely the

reduced Reynolds number in the error bound, an error

estimate for the case of mT being a constant will be pre-

sented here.

For the finite element error analysis it will be assumed

that X is a bounded domain with polyhedral Lipschitz

boundary, no-slip boundary conditions are prescribed,

ðXh; YhÞ are assumed to satisfy the discrete inf-sup condi-

tion (9), and the continuous-in-time case is considered.

Concerning the parameters of the VMS method it is

assumed that mT is a positive constant and that

LH � D Xhð Þ.
If mT is a positive constant, the projection-based VMS

method can be rewritten in the form (123), i.e., it reads as:

Find uh : ½0; T � ! Xh; ph : ð0; T � ! Yh satisfying

ðotuh; vhÞ þ ð2mD uhð Þ;D vhð ÞÞ

þ bsðuh; uh; vhÞ � ðr � vh; phÞ þ ð2mTðI � PLH Þ

D uhð Þ; ðI � PLH ÞD vhð ÞÞ ¼ ðf ; vhÞ 8 vh 2 Xh

ðr � uh; qhÞ ¼ 0 8 qh 2 Yh;

ð126Þ

where the projection PLH was defined in (117).

The error analysis will be performed in the space Xh;div.

For simplicity let f ¼ f h. Then the velocity from (126) can

be computed equivalently by solving the following prob-

lem: Find uh : ½0; T� ! Xh;div such that

ðotuh; vhÞ þ ð2mD uhð Þ;D vhð ÞÞ þ bsðuh; uh; vhÞ
þ 2mTðI � PLH ÞD uhð Þ; ðI � PLH ÞD vhð Þð Þ ¼ðf ; vhÞ

ð127Þ

for all vh 2 Xh;div.

In the finite element error analysis, the error of the

solution of (126) to the solution of the Navier–Stokes

equations (2) will be studied. The goal consists in deriving

an error bound which depends in the most terms on a

reduced Reynolds number or equivalently on an increased

effective viscosity, in contrast to the error bound (20) for

the Galerkin finite element method. In the limit case

LH ¼ fOg, method (126) becomes the Smagorinsky LES

model. Finite element error estimates to the solution of the

continuous Smagorinsky LES model with constants inde-

pendent of m were derived in [91, 101].

Next, an additional viscosity will be defined. Since PLH

is an L2ðXÞ projection, it follows for v 2 X and

kD vð Þk0 [ 0 that

mTkðI � PLH ÞD vð Þk20 ¼ mT kD vð Þk20 � kPLHD vð Þk20
� �

¼ mT 1� kPLHD vð Þk20
kD vð Þk20

 !

kD vð Þk20

¼: maddðvÞkD vð Þk20:
ð128Þ

In addition, from 0�kPLHD vð Þk0 �kD vð Þk0 one obtains

0� maddðvÞ� mT: ð129Þ

Note that if v depends on t then maddðvÞ, too. From (129) it

follows that maddðvðt; �ÞÞ 2 L1ð0;TÞ if mT is bounded almost

everywhere in the time interval. If kD vð Þk0 ¼ 0 then v ¼ 0

since v 2 X. In this case, one sets maddðvÞ ¼ 0.

The finite element error analysis requires some

assumptions on the regularity of the solution and the data

of the Navier–Stokes equations. It will be assumed that

f 2 ðL2ð0;T ;X�ÞÞ; u0 2 X; ð130Þ

and that (2) possesses a solution ðu; pÞ with

ru 2 ðL4ð0; T ;L2ÞÞd�d; otu 2 ðL2ð0; T ;X�ÞÞd;
p 2 L2ð0; T; L2Þ:

ð131Þ

Note, these assumptions imply that Serrin’s condition is

fulfilled from what follows that the solution of (2) is

unique, see Sect. 2.1.

Before presenting the error analysis, an outline of the

proof, following the approach in [74, 75], will be given.

1. The stability of u and uh is proved, i.e., it is shown that

certain norms of u and uh are bounded a priori by the

data of the problem: f ; u0; m, see Lemma 4.

2. An error equation is derived by subtracting (127) from

(2) for test functions from Xh;div. The error is split into

an approximation term g and a (finite element)

remainder /h

e ¼ u� uh ¼ ðu� euhÞ � ðuh � euhÞ ¼: g� /h;

ð132Þ

where euh 2 Xh;div is a projection of u which satisfies

certain interpolation properties. An example for such a
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projection is the Stokes projection, see (15)–(17).

Then, /h is taken as test function in the error equation.

3. The right-hand side of the error equation is estimated

such that one obtains an inequality of the form

d

dt
k/hk

2
0 þ g1ðt;/hÞ� g2ðt; g; uÞ þ g3ðt; uÞk/hk

2
0;

ð133Þ

where all functions are non-negative for almost all

t 2 ½0; T �.
4. It has to be checked that Gronwall’s lemma can be

applied to (133), i.e., one has to show that all functions

in (133) belong to L1ð0; TÞ. The application of

Gronwall’s lemma yields an estimate for /h.

5. The error estimate for e is proved by applying the

triangle inequality to (132).

Lemma 4 The solution uh of the finite element problem

(127) satisfies

kuhðtÞk20 þ
Z t

0

ð2mþ 2maddðuhðsÞÞÞkD uhð ÞðsÞk20 ds

�ku0;hk20 þ
Z t

0

C

2mþ 2maddðuhðsÞÞ
kfk2X� ds:

ð134Þ

Consequently, it is uh 2 ðL1ð0; T ; L2ÞÞd and

D uhð Þ 2 ðL2ð0; T; L2ÞÞd�d
. The velocity solution of the

continuous problem (2) fulfills u 2 ðL1ð0; T; L2ÞÞd and

D uð Þ 2 ðL2ð0; T ; L2ÞÞd�d
.

Proof Setting vh ¼ uh in (127), using

ðotuh; uhÞ ¼
1

2

d

dt
kuhk20;

and the skew symmetry of bsð�; �; �Þ, the definition of madd,
(128), the standard estimate of the dual pairing, Korn’s

inequality (13), and integrating over (0, t) with t� T gives

1

2
kuhðtÞk20 þ

Z t

0

ð2mþ 2maddðuhðsÞÞÞkD uhð ÞðsÞk20 ds

� 1

2
ku0;hk20 þ

Z t

0

kf ðsÞkX�kruhðsÞk0 ds

� 1

2
ku0;hk20 þ

Z t

0

C

2mþ 2maddðuhðsÞÞ
kfðsÞk2X� ds

þ
Z t

0

2mþ 2maddðuhðsÞÞ
2

kD uhð ÞðsÞk20 ds:

Subtraction of the last term gives (134).

D uhð Þ 2 ðL2ð0; T; L2ÞÞd�d
. Taking then the supremum of

t 2 ð0; TÞ gives the statement uh 2 ðL1ð0; T ;L2ÞÞ.
The proof for the solution of the continuous problem

uses the same techniques, compare also (5) for the

regularity of an appropriately defined variational velocity

solution. h

The stability estimate (134) shows that the bound for uh
does not depend on m�1 as for the Galerkin discretization,

see (18), but on the inverse of a presumably larger viscosity

term.

Theorem 5 Let ðu; pÞ 2 X � Y be the solution of (2) and

let uh 2 Xh;div be the solution of (127) where mT 	 0 is a

constant. Let the regularity assumptions (131) be fulfilled

and let euh be a projection of u into Xh;div such that g ¼
u� euh 2 Xh;div satisfies optimal interpolation estimates of

form (16) and (17). Let the reduced Reynolds number

ReredðvhÞ defined by

ReredðvhÞ ¼ 2mþ inf
t2ð0;T �

2maddðvhðtÞÞ
� 	�1

� 2m�1: ð135Þ

Then, the error u� uh satisfies for T 	 0

kðu�uhÞðTÞk20þ Reredðuh� euhÞð Þ�1kD u�uhð Þk2L2ð0;T;L2Þ

�C inf
kh2L2ð0;T;YhÞ

(

kðu� euhÞðTÞk20

þ Reredðuh� euhÞð Þ�1kD u� euhð Þk2L2ð0;T;L2Þ

þexp C Reredðuh� euhÞð Þ3kD uð Þk4L4ð0;T ;L2Þ

� �

"

ku0;h� euhð0Þk20þðmþ mTÞkD u� euhð Þk2L2ð0;T ;L2Þ

þ Reredðuh� euhÞð Þ
h

kotðu� euhÞk2L2ð0;T;X�Þ

þkp�khk2L2ð0;T ;L2Þ þkD u� euhð Þk2L4ð0;t;L2ÞkD uð Þk2L4ð0;t;L2Þ

þ ReredðuhÞð Þ1=2ku0;hk20þ ReredðuhÞð Þ3=2kfk2L2ð0;t;X�Þ

� �

�kD u� euhð Þk2L4ð0;t;L2Þ

i

þ mTkðI�PLH ÞD uð Þk2L2ð0;T ;L2Þ

#)

ð136Þ

for arbitrary euh 2 Xh;div.

Proof The splitting of the error (132) is performed with

the help of a projection euh 2 Xh;div of u. Let t 2 ½0; T � be
arbitrary. It is required that the projection fulfills the

approximation properties (16) and (17) such that, e.g., the

Stokes projection can be chosen. Korn’s inequality (13),

(16) with k ¼ 1, and the regularity assumptions (131)

imply that

rg 2 ðL4ð0; T; L2ÞÞd�d: ð137Þ

Now, Step 2 of the proof is carried out by a straight-

forward calculation, yielding
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1

2

d

dt
k/hk

2
0 þ ð2mþ 2maddð/hÞÞkD /hð Þk20

¼ ðotg;/hÞ þ ð2mD gð Þ;D /hð ÞÞ þ ð2mTðI � PLH Þ
�D gð Þ; ðI � PLH ÞD /hð ÞÞ
þ bsðu; u;/hÞ � bsðuh; uh;/hÞ
� ð2mTðI � PLH ÞD uð Þ; ðI � PLH ÞD /hð ÞÞ
� ðp� kh;r � /hÞ

ð138Þ

with arbitrary kh 2 Yh.

In Step 3 of the proof, one has to get an inequality of

form (133) by estimating the terms on the right-hand side

of (138). All bilinear terms are estimated essentially in the

same way: using the Cauchy-Schwarz inequality (or the

estimate for the dual pairing), Korn’s inequality (13) and

Young’s inequality (11). In addition, (128) is used. One

obtains

ðotg;/hÞ�kotgkX�kr/hk0�CkotgkX�kD /hð Þk0

�2mþ2maddð/hÞ
8

kD /hð Þk20þ
C

2mþ2maddð/hÞ
kotgk2X� ;

ð2mD gð Þ;D /hð ÞÞ�2mkD gð Þk0kD /hð Þk0
� m
8
kD /hð Þk20þ8mkD gð Þk20;

ðr�/h;p�khÞ�kp�khk0kr�/hk0�Ckp�khk0kD /hð Þk0

�2mþ2maddð/hÞ
8

kD /hð Þk20þ
C

2mþ2maddð/hÞ
kp�khk20;

ðmTðI � PLH ÞD gð Þ; ðI � PLH ÞD /hð ÞÞ

� mT
16

kðI � PLH ÞD /hð Þk20 þ 4mTkðI � PLH ÞD gð Þk20

¼ maddð/hÞ
16

kD /hð Þk20 þ 4maddðgÞkD gð Þk20;

ðmTðI � PLH ÞD uð Þ; ðI � PLH ÞD /hð ÞÞ
� mTkðI � PLH ÞD uð Þk0kðI � PLH ÞD /hð Þk0

� maddð/hÞ
16

kD /hð Þk20 þ 4mTkðI � PLH ÞD uð Þk20:

The trilinear term is first decomposed into three terms. A

direct calculation gives

bsðu; u;/hÞ � bsðuh; uh;/hÞ
¼ bsðg; u;/hÞ � bsð/h; u;/hÞ þ bsðuh; g;/hÞ:

The terms on the right-hand side are estimated separately

using the estimate (8) of the trilinear term. One obtains by

applying (8) and Young’s inequality (11) for the first

term

bsðg;u;/hÞ
�Ckgk1=20 kD gð Þk1=20 kD uð Þk0kD /hð Þk0

� 2mþ 2maddð/hÞ
8

kD /hð Þk20 þ
C

2mþ 2maddð/hÞ
kgk0kD gð Þk0kD uð Þk20;

for the second term

bsð/h; u;/hÞ
�Ck/hk

1=2
0 kD uð Þk0kD /hð Þk3=20

� 2mþ 2maddð/hÞ
8

kD /hð Þk20 þ
C

ð2mþ 2maddð/hÞÞ
3

k/hk
2
0kD uð Þk40;

and for the third term

bsðuh; g;/hÞ
�Ckuhk1=20 kD uhð Þk1=20 kD gð Þk0kD /hð Þk0

� 2mþ 2maddð/hÞ
8

kD /hð Þk20 þ
C

2mþ 2maddð/hÞ
kuhk0kD uhð Þk0kD gð Þk20:

Collecting terms gives

1

2

d

dt
k/hk

2
0 þ

2mþ 2maddð/hÞ
4

kD /hð Þk20

�
"

C

2mþ 2maddð/hÞ
kotgk2X� þ ð8mþ 8maddðgÞÞkD gð Þk20

þ C

2mþ 2maddð/hÞ
kp� khk20 þ 8mTkðI � PLH ÞD uð Þk20

þ C

2mþ 2maddð/hÞ

�

kgk0kD gð Þk0kD uð Þk20

þ kuhk0kD uhð Þk0kD gð Þk20
�

#

þ
"

C

ð2mþ 2maddð/hÞÞ
3
kD uð Þk40

#

k/hk
2
0:

Applying the definition of the reduced Reynolds number

(135) and using that maddðgÞ� mT, see (129), finishes Step 3

of the proof:
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d

dt
k/hk

2
0 þ

Reredð/hÞð Þ�1

2
kD /hð Þk20

�C

"

Reredð/hÞð Þkotgk2X� þ ðmþ mTÞkD gð Þk20

þ Reredð/hÞð Þkp� khk20 þ mTkðI � PLH ÞD uð Þk20
þ Reredð/hÞð Þ

�

kgk0kD gð Þk0kD uð Þk20

þ kuhk0kD uhð Þk0kD gð Þk20
�

#

þ C Reredð/hÞð Þ3kD uð Þk40k/hk
2
0: ð139Þ

To perform Step 4 of the proof, the L1ð0; TÞ-regularity of

the terms appearing in (139) has to be studied. Let t 2
ð0; T� be arbitrary. One obtains with Poincaré’s inequality

(12), Korn’s inequality (13), the Cauchy-Schwarz

inequality, (131), and (137)
Z t

0

kgðsÞk0kD gð ÞðsÞk0kD uð ÞðsÞk20 ds

�C

Z t

0

kD gð ÞðsÞk20kD uð ÞðsÞk20 ds

�CkD gð Þk2L4ð0;t;L2ÞkD uð Þk2L4ð0;t;L2Þ\1:

Similarly it follows with Hölder’s inequality, Lemma 4,

and (137) that
Z t

0

kuhðsÞk0kD uhð ÞðsÞk0kD gð ÞðsÞk20 ds

�kuhkL1ð0;t;L2Þ

Z t

0

kD uhð ÞðsÞk0kD gð ÞðsÞk20 ds

�kuhkL1ð0;t;L2ÞkD uhð ÞkL2ð0;t;L2ÞkD gð Þk2L4ð0;t;L2Þ

�C ReredðuhÞð Þ1=2 ku0;hk20 þ ReredðuhÞkfk2L2ð0;t;X�Þ

� �

kD gð Þk2L4ð0;t;L2Þ\1:

The L1ð0; TÞ-regularity of the other terms is a direct con-

sequence of (131), (16), (17) and (137).

Applying Gronwall’s inequality and performing the last

step of the proof are straightforward. h

Even if the constants in the error bound (136) do not

depend on negative powers of m, there is an implicit

dependency on such powers via the norms of u.

For the convergence of the error bound (136), the last

term is the crucial one since in contrast to all other terms it

does not possess a factor with the interpolation error

u� euh. As the mesh width h ! 0, the last term tends to

zero if mT ! 0 or if LH tends to D Xð Þ. In both cases, the

Galerkin finite element discretization (6) of the Navier–

Stokes equations is recovered asymptotically. Otherwise, in

particular if mT and LH are fixed and h ! 0, one cannot

expect that the solution of the projection-based VMS

system converges to the solution of the continuous Navier–

Stokes equations. For fixed h and mT ! 0, the error bound

(136) tends to the estimate (20) for the Galerkin finite

element discretization of the Navier–Stokes equations.

Let ðu; pÞ 2 Hkþ1ðXÞ � HkðXÞ for all times, k	 1, and

consider the pair of spaces Pk=Pk�1 or Qk=Qk�1, k	 2.

Neglecting in the following discussion the squares at the

terms in (136), then the optimal order of convergence of

the left-hand side of (136) is hk. All interpolation errors on

the right-hand side of (136) converge at least with hk. The

last term in the error bound contains the L2 projection of

the deformation tensor into LH . Hence, it is of order Hk,

where H is the mesh parameter connected with LH . Hence,

for not spoiling the convergence of the error bound, the

additional viscosity has to be chosen such that

mT ¼ cðh=HÞ2k. In practice, e.g., if LH is defined on the

same grid as xh, an explicit value for H is not available. But

one can think of H being H ¼ Ch with C[ 1. In this case,

mT should be just a constant independent of the mesh width.

There is no improvement in the constant in the exponen-

tial, i.e., Rered ¼ 2m�1, if there is a time t at which

maddð/hðtÞÞ ¼ 0. Using the definition (128) of madd, one finds

that this situation is equivalent to kPLHD /hðtÞð Þk20 ¼
kD /hðtÞð Þk20 or equivalently, sincePLH is theL

2 projection, to

ðI � PLH ÞD uhð Þ ¼ ðI � PLH ÞD euhð Þ: ð140Þ

That means, the small resolved scales of uh and euh are the

same. However, this situation is unlikely for turbulent flows

since these scales of uh are considerably influenced by the

model that is used for the unresolvable small scales whereas

the interpolation euh does not possess any information about

this model, e.g., if euh is defined by the Stokes projection. In

this case, (140) is only likely if there are only large scales in

the flow, which is not the case in turbulent flows.

From the mathematical point of view, the difficulty

consists in the fact that the equations for laminar flows and

turbulent flows are the same, namely the Navier–Stokes

equations (1). Since the analysis is carried out for (1), it is

not possible to distinguish between the two kinds of flows

and the results must also hold for the case of laminar flows.

For such flows, maddð/hðtÞÞ may vanish and the error esti-

mate (20) of the Galerkin finite element method is recov-

ered, in which the constants depend on m�1.

8.5 Experience in Numerical Simulations

As already mentioned at the end of Sect. 8.1, the three-

scale projection-based VMS method can be implemented

as a one-grid method and as a two-grid method. For the

simulation of turbulent flows, so far only the one-grid

version was used.
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The implementation of this version is described in detail

in [93]. It turned out that choosing LH to be a space of

discontinuous tensors and using a basis that is L2 orthog-

onal are essential for an efficient implementation. Both

requirements can be easily fulfilled by choosing a basis of

piecewise Legendre polynomials. Using a discontinuous

space for LH makes also sense from the point of view that

the functions of LH are L2 projections of deformation

tensors of finite element functions, which are usually dis-

continuous functions, too.

If LH is the same space during the whole simulation, one

has to assemble four additional matrices at the initial time.

Three additional matrices have to be assembled every time

the computed velocity uh changes since these matrices

contain the factor mT and mT is chosen usually to be a

Smagorinsky-type model of form (114)–(116). After hav-

ing assembled these matrices, one has to compute few

sparse matrix-matrix products. The resulting sparse matri-

ces have to be added to the matrices obtained in the

Galerkin finite element discretization of the Navier–Stokes

equations. Satisfying the two requirements on LH stated

above, it was shown in [93] that the resulting additional

matrices possess the same sparsity pattern as the matrices

from the Galerkin method. Thus, there is no need to change

the sparsity structure of the matrices in an existing code for

simulating the incompressible Navier–Stokes equations.

The three-scale projection-based VMS method was

studied comprehensively at turbulent channel flow prob-

lems in [97, 98, 104]. Several options for choosing the

projection space (which was always static in time) and the

eddy viscosity model were compared. The simulations

were always performed on quite coarse hexahedral grids

with the Q2=P
disc
1 pair of finite element spaces. Often, the

combination of choosing LH to be the space of piecewise

constant symmetric tensors, the large-small Smagorinsky

model (114), d as twice of the length of the shortest edge of
the mesh cell, and CS ¼ 0:01 gave results which were

among the best ones (and better than for the Smagorinsky

LES model). In [104] it was shown that the projection-

based VMS method is less sensitive to the choice of the

parameters in the Smagorinsky model than the Smagorin-

sky LES model. This property is due to the fact that the

eddy viscosity model influences much less scales directly

in the VMS approach compared with the LES method.

In [98] it was concluded that the choice of LH has a

much larger impact on the results compared with the choice

of mT. Based on this observation, a method for choosing the

space LH adaptively was proposed in [99]. The basic idea

of this method consists in applying a lot of eddy viscosity

in strongly turbulent regions and to switch off the eddy

viscosity in laminar regions. The local turbulence intensity

was estimated with the size of the local small resolved

scales kD uhð Þ �GHkL2ðKÞ. Based on these local values,

four spaces were assigned to LHðKÞ:

• LHðKÞ ¼ fOg: the eddy viscosity is applied locally to

all resolved scales,

• LHðKÞ ¼ P0ðKÞ,
• LHðKÞ ¼ P1ðKÞ,
• LHðKÞ ¼ D XhðKÞð Þ: the eddy viscosity is switched off

locally.

The proof of concept for this method as well as a number of

parameter studies for choosing the adaptive projection

space can be found in [99]. It turned out that the projection

space was chosen in the studied examples (turbulent

channel flow, turbulent flow around a cylinder) as it was

expected. With appropriately chosen parameters in the

selection process for the local projection spaces, the results

for the channel flow problem were better than with static

spaces for LH . For the turbulent flow around the cylinder,

the results were similar. Every change of the space LH
requires a new assembling of all seven additional matrices.

The use of the three-scale projection-based VMS

method with adaptive choice of the projection space on

tetrahedral grids with the Bernardi–Raugel element [17] is

described and studied in [100].

In [123], the three-scale projection-based VMS method

was studied in combination with a grad-div stabilization

term. Numerical studies for an isotropic turbulence exam-

ple showed that the grad-div term dominates the VMS

term.

Usually, the computing times of the projection-based

VMS method with static projection space are a few percent

longer than for the Smagorinsky LES model (but the results

are more accurate). Applying the adaptive choice of the

projection space leads usually again to somewhat longer

computing times.

The three-scale projection-based VMS method with

adaptively chosen projection space was used in the simu-

lation of turbulent flows in population balance systems,

modeling droplets in clouds, in [19, 20, 128]. In all cases, a

good agreement of the simulated flow fields with experi-

mental wind tunnel data were obtained.

For the projection-based VMS method that computes the

projection as a post-processing step, it was observed in

[106] that one obtains similar results for computing iso-

tropic turbulence as for the method of form (113).

9 Three-Scale Algebraic VMS-Multigrid Methods

Algebraic VMS-multigrid methods aim at introducing an

additional viscous term in the discrete momentum equation

where the turbulent viscosity is directly applied to some
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small resolved scales. This goal is the same as for the three-

scale projection-based VMS method presented in Sect. 8.

However, the scale separation into large and small resolved

scales is performed in a completely different way in both

methods.

The algebraic variational multiscale-multigrid method

(AVM3) was proposed and applied to convection-domi-

nated convection-diffusion problems in [64]. It was further

developed and extended for application to turbulent flows

in [63, 65]. Finally, the use of a more sophisticated tur-

bulence model was proposed in [121].

9.1 Scale Separation by Plain Aggregation AMG

In AVM3, the construction of the small resolved scales uses

an idea from AMG (Algebraic Multi-Grid) methods. The

motivation for this approach comes from the desire to

define the scale separation of the resolved scales without

introducing another finite element space or another grid.

AMG methods are a proposal for transferring the ideas

of geometric multigrid methods to problems where coarser

geometric grids are not available, see [135]. To this end, a

multilevel structure is constructed that is solely based on

the matrix, which represents the problem on the given grid.

In AMG methods, coarser levels, discrete operators on

these levels, and transfer operators (restriction and pro-

longation) are constructed. For the scale separation in

AVM3, only the construction of one coarse level and the

corresponding transfer operators are needed. In AMG

methods, transfer operators play a crucial role for the

efficiency of solving the linear system of equations. There

are several possibilities for constructing coarser levels in

AMG methods, e.g., smoothed aggregation [127] or plain

aggregation [138]. It is suggested for AVM3 in [64] to use

the plain aggregation AMG to extract the small resolved

scales. The scale separation based on the plain aggregation

AMG will be described next.

The degrees of freedom on the given grid correspond to

the rows of the given matrix A. In [63, 64], some root degree

of freedom i is chosen and an aggregate is formed from the

union of all degrees of freedom j for which the matrix entry

aij does not vanish. Then, these degrees of freedom are

removed from the list, a next root degree of freedom is

chosen and this procedure is continued until all degrees of

freedom belong to an aggregate. The aggregates represent

the degrees of freedom on the next coarser level. Denoting

the fine and the coarse level in terms of the mesh width h of

the geometric grid corresponding to the fine level, then the

aggregates on the coarse levelwere denoted in [63, 64] by 3h.

Operators for the restriction of the residual R3h
h and the

prolongation of functions Ph
3h have to be defined. To this

end, consider the matrix ~A which differs from A only in the

way the Dirichlet boundary conditions are replaced with

outflow boundary conditions. Let ~A0 be a matrix whose

columns span the kernel of ~A, i.e., it holds

~A~A0 ¼ 0: ð141Þ

The matrix on the coarse grid can be defined with the so-

called Galerkin projection

~A
3h ¼ R3h

h
~APh

3h:

Denoting the matrix which spans the kernel of ~A
3h

by ~A
3h

0

gives

0 ¼ ~A
3h ~A

3h

0 ¼ R3h
h
~APh

3h
~A
3h

0 : ð142Þ

From (141) it follows that this equation is satisfied if

Ph
3h
~A
3h

0 ¼ ~A0:

Based on this relation, the operators Ph
3h and ~A

3h

0 can be

determined simultaneously, for details see [64]. Finally,

one sets

R3h
h ¼ Ph

3h

� 
T
:

Note that these operators are linear operators between

finite-dimensional spaces and thus they can be represented

with matrices. For more details on the construction of the

operators and further considerations on AMG methods, it is

referred to [64].

The operator for defining the large scales is given by

S3hh : Xh ! Xh; u3h ¼ Ph
3hR

3h
h uh;

that is, in the first step uh is restricted to the aggregates and

in the second step, the representation of the aggregates in

the finite element space is obtained. The small resolved

scales are defined by

uh ¼ u3h þ buh () buh ¼ uh � u3h: ð143Þ

InAVM3 presented in [63], the definition of the aggregates is

based on the matrix that contains the complete discretization

of the velocity-velocity coupling of the Navier–Stokes

equations, including terms coming from stabilizations.

9.2 Derivation

The derivation of Algebraic VMS-multigrid methods starts

by considering first the two-scale decomposition of the

velocity and pressure

u ¼ uh þ u0; p ¼ ph þ p0

where ðuh; phÞ 2 Xh � Yh. The same decomposition is

applied to the corresponding test functions. After having

neglected the equation with the unresolved scale test
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functions, the equation with the test function from the finite

element spaces remains

ðotuh;vhÞþ 2mD uhð Þ;D vhð Þð Þþ b uh;uh;vhð Þþ ðr �uh;qhÞ
� ðr � vh;phÞ

¼ ðf ;vhÞ�
�

ðotu0;vhÞþ 2mD u0ð Þ;D vhð Þð Þþ b uh;u
0;vhð Þ

þ b u0;uh;vhð Þþ b u0u0;vhð Þ� ðr � vh;p0Þ
�

�ðr �u0;qhÞ:

ð144Þ

Consider now the terms in the brackets, and the splitting of the

test function vh ¼ v3hþbvh. Then, the assumptions for three-

scale VMS methods from Sect. 3.2 are taken into account:

• The direct impact of the unresolved scales and the large

scales is negligible, i.e., all the terms in the brackets

with test function v3h are neglected.

• The direct impact of the unresolved scales onto the

small resolved scales is modeled with a turbulence

model, i.e., all terms in the brackets with test function

bvh are modeled. In AVM3, a Smagorinsky eddy

viscosity model of the form

r � CSh
2kD buhð ÞkFD buhð Þ

� 


¼ r � mTðbuhÞD uð Þh
� 


ð145Þ

was used, see [63].

A realization of the AVM3 can be found so far only for the

pair of finite element spaces Q1=Q1 for velocity and pres-

sure on hexahedral grids. Thus, the introduction of an

additional consistent stabilization was suggested in [63]

which includes the PSPG stabilization term as a model of

the last term on the right-hand side of (144)

ðr � u0; qhÞ �
X

K2T h

ðotuh � mDuh þ ðuh � rÞuh

þrph � f ; sm;KrqhÞK
where fsm;KgK2T h

denote the stabilization parameters. This

additional term in the AVM3 formulation circumvents the

violation of the discrete inf-sup condition in the case of

equal-order pairs of velocity-pressure finite element spaces.

Inserting the models described above in (144), the

AVM3 reads as follows: Find uh : ½0; T � ! Xh and ph :

ð0; T� ! Yh satisfying

ðotuh; vhÞ þ 2mD uhð Þ;D vhð Þð Þ þ b uh; uh; vhð Þ þ ðr � uh; qhÞ
� ðr � vh; phÞ þ 2mTðbuhÞD buhð Þ;D vhð Þð Þ
þ
X

K2T h

otuh � mDuh þ ðuh � rÞuh þrph; sm;Krqh
� 


K

¼ ðf ; vhÞ þ
X

K2T h

ðf ; sm;KrqhÞK :

ð146Þ

The small resolved scales buh are computed with the help of

the AMG approach sketched in Sect. 9.1.

In [121] it was proposed to use a more sophisticated

turbulence model than the Smagorinsky model (145), a so-

called multifractal model of u0. Multifractal modeling of

unresolved scales is based on physical considerations, see

[29, 30] for a detailed derivation. As final result, the

unresolved velocity scales can be represented in the form

u0 ¼ Csgs 1� a�4=3
� ��1=2

2�2N=3 24N=3 � 1
� �1=2

buh;

ð147Þ

see [121]. In (147), Csgs is a constant, the parameter a

comes from the definition of the large scales uah, i.e., a ¼ 3

in (143), and

N ¼ log2
hK

km

� 	

ð148Þ

is the number of cascades, which depends on the local

mesh width hK and the viscous scale length km. Model

(147) is inserted in (144).

In [121], the value Csgs ¼ 0:25 was used. The viscous

scale length is about six times larger than the Kolmogorov

scale, [121]. The following approximations were proposed

in [121] [119, Section 4.2.5]

hK

km
¼ Cm RehK

� 
3=4

with Cm ¼ 1=12:3 or Cm ¼ 1=11:2 and

RehK ¼ kD uhð ÞkFh2K
m

or RehK ¼ kuhk2hK
m

:

Thus, the value obtained on the right-hand side of (148) is

generally not a natural number. In practice, the non-natural

numbers which are computed with the right-hand side of

(148) are used for N, which can be seen, e.g., in [121,

Figure 11] or [119, Figure 4.7].

The multifractal modeling can be adapted to wall-

bounded turbulent flows and it allows backscatter, see [119,

121] for details. To enhance numerical stability, it is pro-

posed in [119, 121] to extend the multifractal model with

residual-based stabilization terms, namely the SUPG term,

the grad-div term, and the PSPG term. The arising method

is called algebraic variational multiscale-multigrid-multi-

fractal method, AVM4, in [119].

9.3 Relations to Other Methods

Since the algebraic VMS methods and the three-scale

projection-based VMS method presented in Sect. 8 have

the same principal goal, to apply a turbulent viscosity term

directly only to some small resolved scales, their final
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equations look similar, compare (146) and (113). The

additional PSPG-type stabilization in (146) was only

introduced because an equal-order pair of finite element

spaces was used in [63].

9.4 Experience in Numerical Simulations

The algebraic VMS method AVM3 was compared in [63]

with the two-scale residual-based VMS method from [10]

presented in Sect. 4. A turbulent channel flow problem and a

turbulent lid driven cavity problem were considered. The

simulations were performed for Q1=Q1 finite elements. It

was observed that the results withAVM3 weremore accurate

in several aspects and the simulations were somewhat more

efficient. Only small differences in accuracy and efficiency

between both VMS methods were observed in [65] for the

simulation of a turbulent flow around a cylinder. Both VMS

methods turned out to be clearly more efficient than the

dynamic Smagorinsky model.

AVM4 was compared in [119] also with the two-scale

residual-based VMS method from Sect. 4 and the dynamic

Smagorinsky model. Again, the simulations were per-

formed with the Q1=Q1 pair of finite element spaces. It

turned out that the adaption of the method at the wall which

is described in [119] is of great importance for computing

accurate results. For turbulent channel flows substantial

better solutions were obtained with AVM4 compared with

the other methods. Also for the turbulent flow around a

cylinder, AVM4 provided the best results near the cylinder.

The computing times of AVM4 and the residual-based

VMS method were similar.

The methods AVM3 and AVM4 were applied success-

fully also for the simulation of variable-density flows at

low Mach numbers, see [66, 120].

10 An Unsteady Three-Scale Projection-Based
VMS Method

This section studies the thee-scales projection-based VMS

turbulence model for unsteady flows (34) with the turbu-

lence modeling given by (38). It has a simplified structure

with respect to residual-based VMS models, and equally

applies to laminar and turbulent flows without further

adaptation. Globally, it provides a good compromise

between accuracy and computational complexity. Finally,

it allows a thorough numerical analysis, parallel to that of

Navier–Stokes equations, parallel to the analysis for the

velocity deformation projection-based VMS model pre-

sented in Sect. 8.

Stability in the natural L2 0; T;H1ðXÞ
� 


and

L1 0; T ;L2ðXÞ
� 


norms will be proved, so as weak

convergence to a weak solution. The asymptotic energy

balance only is valid for solutions with some additional

regularity to the natural one, otherwise one only recovers

an asymptotic energy inequality. Also, the error estimates

for smooth solutions are of optimal order with respect to

the polynomial interpolation.

The analysis of more complex VMS methods, in par-

ticular of residual-based methods requires further adapta-

tions of the analysis that is presented here. The subgrid

terms have a very complex structure that includes con-

vective interactions between large and small scales, thus

setting serious technical problems just to prove stability.

This field of numerical analysis is nowadays in progress.

10.1 Model Statement

The model stated in Sect. 6.4 is considered in its unsteady

version. However, for simplicity of notation, a stable mixed

method will be studied (see [35] for the analysis of the

unsteady stabilized approximation with wall-laws), actu-

ally the Taylor–Hood pair of spaces: Xh ¼ ½Vl
hðXÞ�

d
,

Yh ¼ Vl�1
h ðXÞ, l	 2, are considered, where it is assumed

that the domain X is bounded and polygonal (when d ¼ 2)

or polyhedral (when d ¼ 3). The family of couples of

spaces ðXh; YhÞ satisfies the discrete inf-sup condition (9).

Two kinds of spaces of small resolved scales are consid-

ered: the space bXh may be formed either by polynomials of

degree smaller than those of Xh:

bXh ¼ Vk
hðXÞ

� �d
; with 1� k\l; ð149Þ

or by polynomials of the same degree constructed on a

coarser grid:

bXh ¼ ½Vl
HðXÞ�

d; ð150Þ

where typically H ¼ q h for some q	 2. A stable restric-

tion operator qh : X 7!bXh satisfying optimal error esti-

mates is associated to the method.

The following projection-based VMS model with

Smagorinsky projection-based eddy viscosity model is

considered: Find ðuh; phÞ 2 Xh � Yh such that

d

dt
ðuh; uhÞ þ bsðuh; uh; uhÞ þ aðuh; uhÞ � ðr � uh; phÞ

þcðuh; uh; uhÞ ¼ hf ; uhi;
ðr � uh; qhÞ ¼ 0;

uhð0Þ ¼ u0;h;

ð151Þ

for all ðuh; qhÞ 2 Xh � Yh, where u0;h is the Stokes pro-

jection of uhð0Þ on Xh and the form c is again given by (99)

cðuh; uh; vhÞ ¼ ð2mTðuhÞDðbuhÞ;DðbvhÞÞ;
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with

buh ¼ ðI � qhÞuh; bvh ¼ ðI � qhÞvh;

where I is the identity operator, and the eddy diffusion mT is

defined by the small-small (36)VMS-Smagorinskymodeling.

The role of the small scale (or high frequency) com-

ponents buh ¼ ðI � qhÞuh that appear in the eddy diffusion

term c is to absorb the energy consumed in the formation of

small eddies in the inertial range (the unresolved scales).

So the basic grid to build the space Xh should be fine

enough to ensure that this space covers the large scales and

an initial segment of the inertial range. Only the large

scales are expected to be solved accurately.

In practice, a full space-time discretized model should be

used. For the sake of simplicity, as amodel problem the semi-

implicit Euler discretization of (151) will be considered:

• Initialization. u0h ¼ u0;h:

• Iteration. For n ¼ 0; 1; . . .;N � 1: Assume that unh 2 Xh

is known. Compute unþ1
h 2 Xh, p

nþ1
h 2 Yh such that for

all uh 2 Xh, qh 2 Yh

unþ1
h � unh
Dt

; uh

� 	

þ bsðunh; unþ1
h ; uhÞ þ aðunþ1

h ; uhÞ

þ cðunþ1
h ; unþ1

h ; uhÞ � ðpnþ1
h ;r � uhÞ ¼ hf nþ1; uhi;

ðr � unþ1
h ; qhÞ ¼ 0;

ð152Þ

where Dt ¼ T=N for some integer number N 	 1, and

f nþ1 is the average value of f in ðtn; tnþ1Þ.
The main hints for the analysis of model (152), following

[38], are stated next. The main point is to prove the weak

convergence of the solution provided by this model to a

weak solution of the Navier–Stokes equations.

10.2 Stability and Convergence Analysis

To perform the numerical analysis of model (152) assume

that the family of triangulations fT hgh[ 0 is regular.

Important properties of the form c defined by (99) are

summarized in the following lemma.

Lemma 5

(i) The form c is non-negative, in the sense that

cðw; u; uÞ	 0; for all w; u 2 H1ðXÞ:

(ii) For any uh; wh 2 Xh,

jcðuh; uh;whÞj �C1 h
2�d=2 kDðbuhÞk20 kDðbwhÞk0:

ð153Þ

(iii) For all w; u 2 W1;3ðXÞ,
cðw;w;w� uÞ � cðu; u;w� uÞ	C2 h

2

kDðbw � buÞk30;3;X:
ð154Þ

(iv) For all uh; wh; zh 2 Xh,

jcðwh;wh; zhÞ � cðuh; uh; zhÞj
�C3 h

2�d=2 ðkDðwhÞk0 þ kDðuhÞk0ÞkDðzhÞk0
kDðwh � uhÞk0;

ð155Þ

where the constants C1, C2 and C3 only depend on

d, X, and the aspect ratio of the family of

triangulations.

Let B be a Banach space. Consider the following semi-

discrete norms,

kuhklpðBÞ ¼
X
N

n¼0

Dtkunhk
p
B

 !1=p

; kuhkl1ðBÞ ¼ max
n¼0;...;N

kunhkB;

where uh ¼ðu0h;u1h; . . .;uNh Þ 2BNþ1. Also, consider the

piecewise in time function ~ph : ð0;TÞ! Yh that takes the

value pnh in the time interval ðtn; tnþ1Þ, and its primitive in

time Ph,

PhðtÞ :¼
Z t

0

~phðsÞ ds:

To pass to the limit in the discrete formulation to a solution

of the Navier–Stokes equations, it is sufficient to obtain an

estimate of Ph instead of ~ph, which is much simpler from

the analytical point of view. Consider also the time incre-

ment of the velocity, sduhðtÞ ¼ uhðt þ dÞ � uhðtÞ.
The stability of method (152) is given in the following

theorem.

Theorem 6 Assume that the family of grids fT hgh[ 0 is

regular, f 2 ½H�1ðXÞ�d, and u0 2 L2ðXÞ. Then model (152)

admits a unique solution, which satisfies the following

estimates:

kuhkl1ðL2ðXÞÞ þ
ffiffiffi

m
p

kuhkl2ðH1ðXÞÞ þ h kDðbuhÞk3=2l3ðL3ðXÞÞ

�C1 kuð0Þk0 þ
1
ffiffiffi

m
p kfkl2ðH�1ðXÞÞ

� 	

;

ð156Þ

ksduhðtÞk2L2ð0;T�d;L2ðXÞÞ �C2 d
1=2; for 0\d\T; ð157Þ

and

kPhkl1ðL2ðXÞÞ �C2; ð158Þ
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for some constant C1 [ 0 independent of h, Dt and m, and
some constant C2 [ 0 independent of h and Dt, where

h ¼ min
K2T h

hK .

Proof The proof is performed in several steps.

Existence and uniqueness of solutions of discrete

problem. Problem (152) can be written as

Find unþ1
h 2 Xh, p

nþ1
h 2 Yh such that for all wh 2 Xh,

qh 2 Yh,

~aðunþ1
h ;whÞ þ bsðunh; unþ1

h ;whÞ þ cðunþ1
h ; unþ1

h ;whÞ

� ðr � wh; p
nþ1
h Þ ¼ h~f nþ1

;whi;
ðr � unþ1

h ; qhÞ ¼ 0;

where ~aðu;wÞ ¼ 1

Dt
ðu;wÞ þ aðu;wÞ and ~f

nþ1 ¼ f nþ1þ
unh
Dt
. The form ~a is an inner product on the space H1

0ðXÞ that

generates a norm equivalent to the H1 norm. The existence

of a solution follows from Brouwer’s fixed point theorem

that uses the positiveness of form c and the inf-sup con-

dition (9). The uniqueness of solutions is a consequence of

the well-posedness of the discrete problem (see [38,

Chapter9]).

Velocity estimates. Setting wh ¼ unþ1
h and qh ¼ pnþ1

h in

(152) yields

1

2
kunþ1

h k20 þ
1

2
kunþ1

h � unhk
2
0 þ Dt mkDðunþ1

h Þk20 þ C2
S h

2 Dt

kDðbunþ1
h Þk30;3;X � 1

2
kunhk

2
0 þ Dt\f nþ1; unþ1

h [ :

ð159Þ

Using Young’s inequality one obtains

kunþ1
h k20 þ kunþ1

h � unhk
2
0 þ Dt mkDðunþ1

h Þk20 þ 2C2
S h

2 Dt

kDðbunþ1
h Þk30;3;X �kunhk

2
0 þ 4Dtm�1kf nþ1k2H�1 :

ð160Þ

Then, if k�N � 1, it follows that

kukþ1
h k20 þ

X
k

n¼0

kunþ1
h � unhk

2
0 þ m Dt

X
k

n¼0

kDðukþ1
h Þk20þ

2C2
S h

2 Dt
X
k

n¼0

kDðukþ1
h Þk30;3;X �ku0hk

2
0 þ 4Dt m�1

�
X
k

n¼0

kf nþ1k2H�1 :

ð161Þ

Estimate (156) follows, because ku0;hk0 �kuð0Þk0.
Velocity time increment estimates. Problem (152) is

restated in the form

ðotuhðtÞ;whÞ þ bsð~uhðt � DtÞ; ~uhðtÞ;whÞ þ að~uhðtÞ;whÞ
þ cð~uhðtÞ; ~uh;whÞ � ð~phðtÞ;r � whÞ ¼ h~f hðtÞ;whi
ðr � ~uhðtÞ; qhÞ ¼ 0;

ð162Þ

a:e: in ½0; T �, where uh : ½0; T � ! Xh is the piecewise

linear-in-time function that takes the value unh at

t ¼ tn ¼ nDt; ~uh : ð�Dt; TÞ ! Xh is the piecewise con-

stant function that takes the value unþ1
h on ðtn; tnþ1Þ, and

~uhðtÞ ¼ u0h in ð�Dt; 0Þ; and ~ph;
~f h : ð0; TÞ ! Yh respec-

tively are the piecewise constant-in-time functions that take

the value pnh and f nþ1 in the time interval ðtn; tnþ1Þ. Inte-
grating (162) in ðt; t þ dÞ for t 2 ½0; T � d� gives

ðsduhðtÞ;whÞ ¼
Z tþd

t

hF hðsÞ;whi ds

þ
Z tþd

t

ð~phðsÞ;r � whÞ dt;
ð163Þ

where

hF hðsÞ;wi ¼ � bsð~uhðs� DtÞ; ~uhðsÞ;wÞ � að~uhðsÞ;wÞ
� cð~uhðsÞ; ~uhðsÞ;wÞ þ h~f hðsÞ;wi; for all

w 2 H1
0ðXÞ:

Using ðr � sduhðtÞ; ~phðsÞÞ ¼ 0 yields

Z T�d

0

ksduhðtÞk20 dt ¼
Z T�d

0

Z tþd

t

hF hðsÞ; sduhðtÞi ds dt;

ð164Þ

From estimate (153), it follows that

kF hðsÞkH�1�C
h

1þk~uhðs�DtÞk21þð1þCh2ÞkDð~uhðsÞÞk20

þkDð~uhðsÞÞk0þk~f hðsÞkH�1

i

:

Thanks to the stability estimate (156), one deduces that

F h2L1ðH�1Þ, and kF hkL1ðH�1Þ�C for some constant

C[0 independent of h and Dt. By Fubini’s theorem, the

right-hand side of (164) is estimated by

Z T�d

0

ksduhðtÞk20 dt ¼
Z T

0

Z s

s�d
hF hðsÞ; gsduhðtÞi dt ds

�

�

�

�

�

�

�

�

� d1=2 kF hkL1ðH�1Þ kDðsduhÞkL2ðH1Þ

�Cd1=2kuhkL2ðH1Þ �C d1=2;

where ev denotes the extension by zero outside ½0; T � d� of
a function v. Then (157) follows.

Estimate of the primitive of the pressure. Let wh 2 Xh.

Equation (162) yields
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ðPhðtÞ;whÞ ¼ðuhðtÞ � u0h;whÞ �
Z t

0

hF hðsÞ;whi ds

�C kuhkl1ðL2Þ þ ku0hk0 þ kFkL1ðH�1Þ

� �

kwhk1 �C kwhk1:

Estimate (158) follows from the inf-sup condition (9). h

The convergence of model (152) to the Navier–Stokes

equations is based upon the stability estimates from The-

orem 6, combined with some compactness properties of

injections between parabolic spaces. To state them, let

consider the Nikolskii spaces

Nr;pð0; T ;BÞ ¼ ff 2 Lpð0; T ;BÞ such that

kfk ~N
r;p\þ1g;

for r 2 ½0; 1�; p 2 ½0;1� with

kfk ~N
r;p ¼ sup

d[ 0

1

dr
ksdfkLpð0;T�d;BÞ:

The space Nr;pð0; T ;BÞ is a Banach space if it is endowed

with the norm

kfkNr;pð0;T ;BÞ ¼ kfkLpð0;T ;BÞ þ kf k ~N
r;p :

The following Simon’s compactness theorem holds (cf.

[132]).

Lemma 6 Let X, B, Y be Banach spaces such that

X ,!B ,! Y where the injection X ,!B is compact. Then

the injection

Lpð0; T;XÞ \ Nr;pð0; T ; YÞ,!Lpð0; T ;BÞ
with 0\r\1; 1� p� þ1

is compact.

Observe that by estimates (156) and (157) the functions

uh are uniformly bounded in N1=4;2ðL2Þ. Now, the con-

vergence theorem can be stated.

Theorem 7 Assume that the family of triangulations

fT hgh[ 0 is regular, f 2 L2ðH�1Þ and u0 2 L2ðXÞ. Then
the sequence fðuh; phÞgh[ 0 provided by method (152)

contains a subsequence that is weakly convergent in

L2ðH1Þ � H�1ðL2Þ to a weak solution ðu; pÞ of the

unsteady Navier–Stokes equations.

Proof The proof is performed in several steps.

Extraction of convergent subsequences. By estimates

(156) and (157), the functions uh are uniformly bounded in

L2ð0;T ;H1Þ, in L1ð0; T ;L2Þ, and in N1=4;2ð0; T ;L2Þ. As the
injection H1ðXÞ,!LrðXÞ is compact for 1� r\2d=ðd � 2Þ,
by Lemma 6 with X ¼ H1ðXÞ, B ¼ Lr, and Y ¼ L2ðXÞ, one
deduces that the sequence fuhgh[ 0 is compact in

L2ð0;T ;LrÞ. Then the sequence fuhgh[ 0 contains a subse-

quence (that is denoted in the same way) which is strongly

convergent in L2ð0; T ;LrÞ, weakly in L2ð0; T ;H1Þ, and

weakly-* in L1ð0; T;L2Þ to some u. Also, by estimate (158),

the sequence fPhgh[ 0 is uniformly bounded inL1ð0; T ; L2Þ.
Then it contains a subsequence (that can be assumed to be a

subsequence of the preceding one) which is weakly-*

convergent in L1ð0; T ; L2Þ to some P. It will be proved in

the sequel that the pair ðu; otPÞ is a weak solution of Navier–
Stokes equations.

Limit of the momentum conservation equation. The

momentum conservation equation in (162) may be re-

written as

�
Z T

0

ðuhðtÞ;whÞu0ðtÞ dt � ðuh0;whÞuð0Þ

þ
Z T

0

bsð~u�h ðtÞ; ~uhðtÞ;whÞuðtÞ dt

þ
Z T

0

að~uhðtÞ;whÞuðtÞ dt

þ
Z T

0

cð~uhðtÞ; ~uhðtÞ;whÞuðtÞ dt

þ
Z T

0

ðPhðtÞ;r � whÞu0ðtÞ dt

¼
Z T

0

h~f hðtÞ;whiuðtÞ dt; for all w 2 Xh;

ð165Þ

for any function u 2 Dð½0; T �Þ such that uðTÞ ¼ 0, where

~u�h : ð0; TÞ ! Xh is the piecewise constant in time func-

tion that takes the value unh on ðtn; tnþ1Þ.
By estimate (156) the sequences ~uh and ~u�h are also

uniformly bounded in L2ð0; T ;H1Þ and in L1ð0; T ;L2Þ.
Then, each one of them contains a subsequence weakly

convergent in L2ð0; T;H1Þ and weakly-* convergent in

L1ð0; T ;L2Þ to some limits. But both limits should be

equal to u since

maxfkuh � ~uhk2L2ð0;T ;L2Þ; kuh � ~u�h k
2
L2ð0;T ;L2Þg

�Dt ku0k1;2;X þ Dt
2m

kfk2L2ð0;T ;H�1Þ:

Time derivative term. Let w 2 H1
0ðXÞ. Due to the

approximation properties of Lagrange finite element spaces,

there exists a sequence fwhgh[ 0 such that wh 2 Xh that

converges to w in Xh in H1
0ðXÞ. Observe that if

z 2 L1ð0; T ;L2Þ \ L2ð0; T ;L4Þ, then by Hölder’s inequality

kzkL3ð0;T ;L3Þ � kzk1=3
L1ð0;T ;L2Þ kzk

2=3

L2ð0;T ;L4Þ:

Then, the sequences ~u�h and ~uh strongly converge to u in

L3ð0;T ;L3Þ and
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lim
ðh;DtÞ!0

Z T

0

ðuhðtÞ;whÞu0ðtÞ dt ¼
Z T

0

ðuðtÞ;wÞu0ðtÞ dt:

Convection term. Integration by parts yield

bsð~u�h ðtÞ; ~uhðtÞ;whÞ ¼ ð~u�h ðtÞ � r~uhðtÞ;whÞ

� 1

2
ðr � ~u�h ðtÞ;wh � ~uhðtÞÞ a.e. in ð0; TÞ:

As ~u�h and ~uh strongly converge to u in L3ð0; T ;L3Þ, and
weakly in L2ð0; T ;H1Þ, both terms pass to the limit and

lim
ðh;DtÞ!0

Z T

0

bsð~u�h ðtÞ; ~uhðtÞ;whÞuðtÞ dt

¼
Z T

0

bsðuðtÞ; uðtÞ;wÞuðtÞ dt:

Diffusion terms. As ~uhðtÞ is weakly convergent to u in

L2ð0;T ;H1Þ, it holds

lim
ðh;DtÞ!0

Z T

0

að~uhðtÞ;whÞuðtÞ dt ¼
Z T

0

aðuðtÞ;wÞuðtÞ dt:

Also, lim
ðh;DtÞ!0

Z T

0

cð~uhðtÞ; ~uhðtÞ;whÞuðtÞ dt ¼ 0: This state-

ment follows from (153), that yields
Z T

0

cð~uhðtÞ; ~uhðtÞ;whÞuðtÞ dt
�

�

�

�

�

�

�

�

�C h2�d=2

Z T

0

kDðuhðtÞÞk20 kDðwhÞk0 juðtÞj dt

�C h2�d=2 kDðuhÞk2L2ð0;T ;L2Þ kDðwhÞk0 kukL1ð0;TÞ:

Pressure term. As r � whðxÞu0ðtÞ is strongly convergent

in L2ð0; T ; L2Þ to r � wðxÞu0ðtÞ and ðPhÞh[ 0 is weakly-*

convergent in L1ð0; T; L2Þ to P, it follows that

lim
ðh;DtÞ!0

Z T

0

ðPh;r � whðxÞÞu0ðtÞ dt

¼
Z T

0

ðP;r � wðxÞÞu0ðtÞ dt:

Limit of the continuity equation. Consider some function

q 2 L20ðXÞ, and some interpolate qh 2 Yh, strongly con-

vergent in L20ðXÞ to q. As uh is weakly convergent to u in

H1ðXÞ, it follows that
Z T

0

ðr � uðtÞ; qÞuðtÞ dt

¼ lim
ðh;DtÞ!0

Z T

0

ðr � uhðtÞ; qhÞuðtÞ dt ¼ 0:

Conclusion. As a consequence of the preceding analysis, u

belongs to L2ð0; T ;H1
0Þ \ L1ð0; T;L2Þ, P belongs to

L1ð0; T ; L2Þ, and the pair ðu;PÞ satisfies

�
Z T

0

ðuðtÞ;wÞu0ðtÞ dt � ðu0;wÞuð0Þ

þ
Z T

0

bsðuðtÞ; uðtÞ;wÞ dt þ aðuðtÞ;wÞ½ �uðtÞ dt

þ
Z T

0

ðPðtÞ;r � wÞu0ðtÞ dt ¼
Z T

0

hfðtÞ;wiuðtÞ dt:

ð166Þ

for all w 2 H1
0ðXÞ, u 2 Dð½0; T�Þ. Thus, the pair ðu; otPÞ is

a weak solution of the Navier–Stokes equations. As Ph

weakly converges to P in L2ð0; T ; L2Þ, then ph ¼ otPh

weakly converges to p ¼ otP in H�1ð0; T ; L2Þ. h

The above proof shows that the eddy diffusion terms

vanish in the weak limit, and a standard weak solution of

Navier–Stokes equations is recovered. No eddy diffusion

concentration effects take place in the weak limit.

10.3 Error Estimates

Let Bh be a sub-space of a Banach space B. Given

u 2 C0ð½0; T �;BÞ, denote

dlpðBÞðu;BhÞ ¼ Dt
X
N

n¼0

dBðuðtnÞ;BhÞp
" #1=p

;

dl1ðBÞðu;BhÞ ¼ max
n¼0;...;N

dBðuðtnÞ;BhÞ:

Theorem 8 Assume that the family of grids fT hgh[ 0 is

regular, that the data satisfy f 2 C0ð0; T ; L2Þ,
otf 2 L2ð0; T ;H�1Þ, u0 2 W1;3ðXÞ and that the unsteady

Navier–Stokes equations (166) admit a solution ðu; pÞ 2
C0ð0; T ;W1;3Þ � C0ð0; T; L2Þ such that o2t u 2 L2ð0; T ;L2Þ.
Then the sequence fðuh; phÞgh[ 0 given by the discrete

projection-based VMS model (152) satisfies the error

estimates

ku�uhkl1ðL2Þþku�uhkl2ðH1Þ�Mðh;DtÞþCdl1ðL2Þðu;XhÞ;
ð167Þ

kP� Phkl1ðL2Þ �Mðh;DtÞ þ C dl1ðL2ÞðP; YhÞ; ð168Þ

where

Mðh;DtÞ ¼ C
h

Dt þ d0ðuð0Þ;XhÞ þ
1

Dt
dl2ðL2Þðu;XhÞ

þ dl2ðH1Þðu;XhÞ þ dl2ðL2Þðp; YhÞ

þ h2�d=2 ðdl4ðH1Þðu;XhÞ2 þ dl4ðH1Þðu; bXhÞ2Þ
i

;

ð169Þ

and C is a constant independent of h and Dt, increasing
with T.
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Proof As uðtnÞ is divergence-free, its Stokes projection,

defined by (15), satisfies the estimate kDðuðtnÞ � vnhÞk0 �
C dH1ðuðtnÞ;XhÞ. Let pnh also denote the L2ðXÞ orthogonal
projection of pðtnÞ on Yh. Define the errors in velocity and

pressure by enh ¼ unh � vnh, k
n
h ¼ pnh � pnh. Due to the regu-

larity of data and solution, the unsteady Navier–Stokes

equations (166) yield

ðotuðtÞ;wÞ þ aðuðtÞ;wÞ þ bsðuðtÞ; uðtÞ;wÞ � ðr � w; pðtÞÞ
¼ hf ðtÞ;wiðr � uðtÞ; qÞ ¼ 0; uð0Þ ¼ u0;

ð170Þ

for all w 2 H1
0ðXÞ, q 2 L20ðXÞ, for all t 2 ½0; T�. Subtracting

term by term (152) from (170) at t ¼ tnþ1 one obtains the

error equation: for all wh 2 Xh, qh 2 Yh,

enþ1
h � enh
Dt

;wh

� 	

þ aðenþ1
h ;whÞ þ bsðunh; unþ1

h ;whÞ

� bsðvnh; unþ1
h ;whÞ � ðr � wh; k

nþ1
h Þ þ cðunþ1

h ; unþ1
h ;whÞ

� cðunþ1
h ; unþ1

h ;whÞ ¼ henþ1
h ;whi; ðr � enþ1

h ; qhÞ ¼ 0;

ð171Þ

where enþ1
h 2 H�1 is the consistency error, defined by

henþ1
h ;wi ¼ otuðtnþ1Þ �

unþ1
h � vnh
Dt

;w

� 	

þ bsðuðtnþ1Þ; uðtnþ1Þ;wÞ � bsðvnh; unþ1
h ;wÞ

þ aðuðtnþ1Þ � unþ1
h ;wÞ � cðunþ1

h ; unþ1
h ;wÞ

� ðpðtnþ1Þ � pnþ1
h ;r � wÞ þ hf nþ1 � f ðtnþ1Þ;wi:

ð172Þ

Due to the monotonicity of the form c (Lemma 5 iii)), it

holds

cðunþ1
h ; unþ1

h ;whÞ � cðunþ1
h ; unþ1

h ;whÞ	C h2

kDðunþ1
h � unþ1

h Þk30;3;X 	 0:

Then the stability estimate (156) holds when unh is replaced

by the error enh,
~f
nþ1

h is replaced by enþ1
h and u0;h is replaced

by e0h. Obtaining error estimates for the velocity is then

reduced to estimate the l2ðH�1Þ norm of the consistency

error enþ1
h . In particular, the penalty term gnþ1ðwÞ ¼

cðunþ1
h ; unþ1

h ;wÞ that appears in the expression of enþ1
h has

to be bounded. Denoting benþ1
h ¼ ðI � qhÞenþ1

h and

buðtnþ1Þ ¼ ðI � qhÞuðtnþ1Þ gives

kDðbunþ1
h Þk0 �kDðbenþ1

h Þk0 þ kDðbuðtnþ1ÞÞk0
�C kDðenþ1

h Þk0 þ kDðbuðtnþ1ÞÞk0:

Combining this estimate with (153) one deduces

jgnþ1ðwÞj �C h2�d=2 kDðbunþ1
h Þk20 kDðbwÞk0

�C h2�d=2 kDðenþ1
h Þk20 þ kDðbuðtnþ1ÞÞk20

� �

kDðbwÞk0:

It follows that

X
N�1

n¼0

Dt kgnþ1k2H�1 �C h2ð2�d=2Þ

� kDðenþ1
h Þk40 þ kDðbuðtnþ1ÞÞk40

� �

�C h2ð2�d=2Þ dl4ðH1Þðu;XhÞ4
�

þ dl4ðH1Þðu; bXhÞ4
�

:

This yields the last term in the error estimate (169). The

estimates of the remaining terms in the expression (172) of

enþ1
h are obtained by means of a discrete version of the

Gronwall Lemma used in the proof of Theorem 5, to

conclude the error estimates (167) and (168). h

The error estimates (167) and (168) would be of optimal

order in space if the term h2�d=2 dl4ðH1Þðu;XhÞ2 þ dl4ðH1Þ

�

ðu; bXhÞ2Þ is at least of the same order as the term

dl2ðH1Þðu;XhÞ for sufficiently smooth u. If the spaces Xh

and bXh are given by (149), this happens if

k	 l=2þ d=4� 1. If spaces Xh and bXh are given by (150),

then this property directly holds.

10.4 Asymptotic Energy Balance

In the steady case, the subgrid eddy dissipation energy is

given by

ESðuhÞ ¼C2
S

X

K2T h

h2K

Z

K

jDðbuhÞðxÞj3 dx;

see (106). Then, ES asymptotically vanishes as h ! 0 and,

using the notation of Section 6.4, it holds

lim
h!0

½EDðuhÞ þ ESðuhÞ� ¼ EDðuÞ:

In the unsteady case, the inverse estimates

kDðbuhðtÞÞk0;3;K�Ch
�1�d=rþd=3
K kbuhðtÞk0;r;K ; for 1� r�3;

kDðbuhðtÞÞk0;3;K�Ch
�d=6
K kDðbuhðtÞÞk0;2;K ;

yield

h2K kDðbuhðtÞÞk0;3;K �C h
1�d=r
K kbuhðtÞk0;r;K kDðbuhðtÞÞk20;2;K :
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Consequently, it follows that

ESðuhÞ�C h1�d=rkbuhkL1ð0;T ;LrÞ kbuhk2L2ð0;T ;H1Þ:

Then, the subgrid energy ESðuhÞ asymptotically vanishes if

buh is bounded in L1ðLrÞ for some r[ d. However the

standard stability estimates yield uniformly bounds in

L1ðL2Þ and then one cannot ensure that the subgrid energy

asymptotically vanishes.

10.5 Experience in Numerical Simulations

Some experience in numerical simulations of models (98)

and (152) with LPS stabilization will be reported here,

respectively for steady and unsteady flows. In [36] the

results of simulations of the steady three-dimensional tur-

bulent channel flow at Res ¼ 180 with several VMS

methods on relatively coarse grids were compared:

• SMA model: The Smagorinsky LES model, given by

cðuh; uh; vhÞ ¼ 2 mTðuhÞDðuhÞ;DðvhÞð Þ;

• VMS-S model: The small-small VMS-LPS setting,

given by (36), i.e.,

cðuh; uh; vhÞ ¼ 2 mTðbuhÞDðbuhÞ;DðbvhÞð Þ;

• VMS-B model: The Berselli–Iliescu–Layton setting

[18], in which:

cðuh; uh; vhÞ ¼ 2 mTð eP
�
hDðuhÞÞ eP

�
hDðuhÞ; eP

�
hDðvhÞ

� �

;

where eP
�
h ¼ I � ePh, and ePh is an interpolation oper-

ator on a coarser P0 finite element space;

• STAB: The purely stabilized method, i e., (98), with

c ¼ 0.

Two versions of the VMS-S and the STAB methods were

tested, one with wall laws and the other with no-slip

boundary conditions.

Equal-order interpolation P2 for velocity and pressure

were used. Also, a Crank–Nicolson scheme for the tem-

poral discretization was used, combined with a lineariza-

tion of convective and subgrid eddy viscosity terms. This

approach provides a good compromise between accuracy

and computational complexity.

Table 1 displays a comparison of the L2 errors in the

stream-wise direction, with respect to the DNS results from

[116] with a grid four times finer in each space direction.

One can observe that the errors range between 11% and

24%, the best ones correspond to the VMS-S method with

no-slip boundary conditions. The accuracy provided by the

methods with wall laws is acceptable for this stream-wise

direction, although reaching too high error levels for the

homogeneous (cross-flow) directions. The use of wall laws

provides a reduction of the computing time of about 35%.

Also, Table 2 displays the normalized (by the computed

us) root mean square (r.m.s.) values of velocity fluctuations
ffiffiffiffiffiffiffiffiffi

h~u2i i
q

¼ khu2i i � huii2k1=2 (i ¼ 1; 2; 3) in wall coordinates

yþ at the upper half-width of the channel, as a measure of

the error in turbulence intensities. Only the no-slip

boundary conditions were considered, as the errors with

wall-laws were much larger. For those second-order

statistics the errors are larger than for the first order ones,

ranging around 30%. Again, the VMS-S method is in

general in good agreement with the DNS data.

Only limited numerical experience with the solution of

evolution turbulent flows with (152) is available. In [1]

method (152) with LPS stabilization of convection, diver-

gence and pressure gradient is applied to the simulation of

a high Reynolds number (Re ¼ 104) plane mixing layer

flow, with accurate results for relatively coarse grids.

Equal-order interpolation P2 for velocity and pressure is

used. Space and time accurate simulation of the pairing of

primary and secondary vortex is achieved. Quite accurate

time evolution of the vorticity thickness is computed with

grids of 160� 160 nodes. Also, model (152) with LPS

stabilization has been extended to buoyant flows. Some

recent yet unpublished results obtained by the authors show

that a similar accuracy for the natural convection of high

Rayleigh numbers (Ra) airflows in a differentially heated

Table 1 L2 norm of the deviation from the DNS profiles for the

stream-wise velocity

Methods e
hu1i
0 (yþ 2 ½0; 180�)

VMS-S (NO-SLIP BC) 0.1141

VMS-S (WALL-LAW BC) 0.1734

VMS-B (NO-SLIP BC) 0.1786

SMA (NO-SLIP BC) 0.1260

STAB (NO-SLIP BC) 0.1791

STAB (WALL-LAW BC) 0.2373

Table 2 L2 norm of the deviation from the DNS profiles for the

second-order statistics

Methods
e

ffiffiffiffiffiffi

h~u21i
p
0 e

ffiffiffiffiffiffi

h~u22i
p
0 e

ffiffiffiffiffiffi

h~u23i
p
0

e
h~u1 ~u2i
0

VMS-S (NO-SLIP BC) 0.2252 0.1652 0.1108 0.1162

VMS-B (NO-SLIP BC) 0.2281 0.2018 0.1246 0.1706

SMA (NO-SLIP BC) 0.3002 0.2236 0.1597 0.1249

STAB (NO-SLIP BC) 0.3781 0.2536 0.1955 0.1708
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plane cavity (up to Ra ¼ 107) is achieved with relatively

coarse grids.

11 Summary and Conclusions

The purpose of this article has been to present a state-of-

the-art review of VMS methods for the simulation of tur-

bulent incompressible flows. These methods are widely

used nowadays as one of the most promising and successful

approaches that seeks to simulate large scale structures in

turbulent flows, also in combination with advanced tech-

niques such as, e.g., isogeometric analysis [10, 11].

The common feature of these methods is the use of

multiple scales in modeling the turbulence, where the

scales are defined by variational projections into appro-

priate function spaces. Apart from this common feature, the

realization of VMS methods differs considerably, and a

‘‘jungle’’ of several types of VMS methods is present in the

scientific literature. So, even if there exist much research

work published on VMS turbulence models, the different

VMS methods are mainly used in the groups that proposed

them, and there is no structured presentation of them. The

present review aimed at giving such a presentation with the

emphasis on derivation, numerical analysis in the frame-

work of the finite element method, and experience in

numerical studies. In this way, the common features of

VMS methods should become clear as well as their main

differences.

Starting point was the presentation of the basic concepts

of VMS methods: The basis of all VMS methods is the

separation of the flow field into resolved and unresolved

scales. VMS methods which use just resolved and unre-

solved scales belong to the class of two-scale VMS

methods.

Within two-scale VMS methods, the residual-based

VMS method, the OSS method, and LPS methods were

presented.

The first two methods are residual-based models, since

the basic procedure consists in keeping all terms in the

residual-driven structure of the resolved flow equations and

to perform an approximated analytical solution of the small

scale flow through a diagonalization procedure, where a

proper definition of stabilization coefficients is crucial.

This procedure does not make use of the statistical theory

of equilibrium turbulence (eddy viscosity models). The

main difference between the two approaches consists in the

fact that in the OSS only the orthogonal projection of the

residual on the large scale space is used. One of its relevant

features is that it introduces a numerical diffusion on the

large scales which is asymptotically equivalent, as the

Reynolds number increases, to the eddy viscosity

dissipated by the unresolved scales, for sufficiently fine

grids. These methods are consistent.

In contrast, LPS methods can be considered as simpli-

fied methods that provide specific stabilization of any

single term that could be a source of instability for the

numerical discretization. Their structure could be achieved

by retaining in the OSS method the specific diffusive

interactions that stabilize convection, divergence, and

pressure gradient, and by changing the global L2 projection

by local L2 projections. This approach leads to a family of

methods, associated to the choice of the actual local L2

projection. The main difference with residual-based models

is that they are not fully consistent, but of optimal order

with respect to the finite element interpolation. The fact

that the stabilization enjoys the right asymptotic behavior

without full consistency allows to decouple the stabiliza-

tion of the pressure and the velocity. This feature could be

considered an important advantage with respect to the more

complex residual-based methods in view of practical

implementations such as to perform the numerical analysis,

since it leads to a simpler and less expensive structure.

Nevertheless, the VMS framework allows various other

arrangements, going beyond a two-scale decomposition, so

that other classes of VMS methods can be distinguished.

The most common approach allows a further decomposi-

tion of the resolved scales into large resolved scales (or

large scales) and small resolved scales, leading finally to a

so-called three-scale VMS method. Within three-scale

VMS methods, a bubble VMS method, velocity deforma-

tion tensor projection-based VMS methods, and algebraic

VMS-multigrid methods were discussed. All these methods

include eddy viscosity modeling in the small resolved scale

equations to model the dissipative effects of the unresolved

scales. The eddy diffusion only affects the small resolved

scales, thus reducing or even avoiding over-diffusive

effects.

There are several realizations of bubble VMS methods

which differ in some details: The derivation presented in

this work corresponds to the three-level finite element

method based on residual-free bubbles (RFB). The com-

putation and storage of the RFB functions is computa-

tionally quite consuming and several simplifications to

solve the resolved small scale equation can be performed.

The resolved small scale pressure is not solved, but mod-

eled as in the residual-based VMS methods. On the one

hand, the diffusive grad-div stabilization appears in the

large scale equation. On the other hand, this step allows to

eliminate the incompressibility restriction for the resolved

small scale velocity. Thus, the resolved small scale equa-

tions are approximated by a system of convection-diffusion

equations, where a subgrid eddy viscosity term is added to

model the effect of the unresolved scales on the small
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resolved scales. However, these equations are strongly

convection-dominated, which results in the necessity to use

large values in the coefficient of the eddy viscosity term.

From the computational point of view, the use of RFB-

based VMS methods is quite involved.

A different way of realizing a three-scale VMS method

consists in adding to the standard Galerkin formulation an

eddy viscosity term that only affects directly the small

resolved scales. These scales might be defined as the L2

projection of the velocity deformation tensor into an

appropriate large scale space, which leads to the so-called

velocity deformation tensor projection-based VMS

method. The large scale space can be defined on the same

grid as the finite element space, enabling an efficient

implementation of the method. The structure of the method

allows a thorough numerical analysis, along the same lines

as that of the Navier–Stokes equations.

Algebraic VMS-multigrid methods apply a different

definition of the large scales. In these methods, the scale

separation is performed for the velocity (and not for the

deformation tensor). This separation uses components of an

AMG method thus avoiding to introduce another finite

element space or another grid, just matrix restriction/pro-

longation operators have to be defined, thus creating a

multilevel structure starting from a coarse level.

The numerical analysis has been developed to a different

degree for the individual VMS methods. Most results are

known for LPS methods and the velocity deformation

tensor projection-based VMS method. For some other

VMS methods, at least results are available for simpler

equations or for simplifications in the formulation of the

method. Analytical results concerning the well-posedness

of the discrete problems to guarantee the existence and

uniqueness of a solution, stability results to obtain a priori

bounds on the solution, or energy estimates are certainly of

importance for practical purposes. The situation is some-

what different for error estimates of the form (20) or (136)

because the constants in the error bounds become unreal-

istic huge even for small times. However, current mathe-

matical tools do not allow to prove error estimates of a

different kind. In summary, even if there are many results

concerning the numerical analysis of VMS methods, in

comparison with other approaches for turbulence model-

ing, there are still many open questions.

VMS methods were compared in numerical studies

usually with LES methods, like the Smagorinsky LES

method or the dynamic Smagorinsky LES method. Gen-

erally, the results obtained with the VMS methods were not

worse, often even better than those of the LES methods.

Excellent results using for instance residual-based VMS

models were first presented in [10], applying isogeometric

analysis for the space approximation [82]. In the recent

years, residual-based VMS methods have demonstrated to

be able to simulate (the large scales of) transient and steady

turbulent flows with high accuracy. However, there are

relatively few comparisons of different VMS methods, see

[63, 98] for some examples. In our opinion, comparisons of

different numerical methods should be performed with the

same code. Besides using different codes for comparisons

of different VMS methods, other aspects like the choice of

the finite element spaces (inf-sup stable or equal-order,

degree of the polynomials), the concrete grid, the explicit

or semi-implicit treatment of certain terms, the time step-

ping scheme, the stopping criterion for solving the non-

linear problem, the choice of the local mesh width for

anisotropic mesh cells, the concrete choice of parameters in

the models, etc. might have an unknown influence on the

results. Since comprehensive studies of several VMS

methods within one code are not available, there will be no

recommendation of VMS methods to use. If one wishes to

apply a VMS method for the simulation of turbulent

incompressible flow problems, the decision which concrete

VMS method should be used will be guided from subjec-

tive preference and from the structure and the features of

the used code.
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109. Löwe J, Lube G (2012) A projection-based variational multi-

scale method for large-eddy simulation with application to non-

isothermal free convection problems. Math Models Methods

Appl Sci 22(2):1150011–1150031

110. Lube G, Rapin G (2006) Residual-based stabilized higher-order

FEM for a generalized Oseen problem. Math Models Methods

Appl Sci 16(7):949–966

111. Lube G, Tobiska L (1990) A nonconforming finite element

method of streamline diffusion type for the incompressible

Navier–Stokes equations. J Comput Math 8(2):147–158

112. Masud A, Calderer R (2009) A variational multiscale stabilized

formulation for the incompressible Navier–Stokes equations.

Comput Mech 44(2):145–160

113. Masud A, Calderer R (2011) A variational multiscale method for

incompressible turbulent flows: bubble functions and fine scale

fields. Comput Methods Appl Mech Engrg 200(33–36):2577–2593
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