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Abstract Various realizations of variational multiscale
(VMS) methods for simulating turbulent incompressible
flows have been proposed in the past fifteen years. All of
these realizations obey the basic principles of VMS
methods: they are based on the variational formulation of
the incompressible Navier—Stokes equations and the scale
separation is defined by projections. However, apart from
these common basic features, the various VMS methods
look quite different. In this review, the derivation of the
different VMS methods is presented in some detail and
their relation among each other and also to other dis-
cretizations is discussed. Another emphasis consists in
giving an overview about known results from the numeri-
cal analysis of the VMS methods. A few results are pre-
sented in detail to highlight the used mathematical tools.
Furthermore, the literature presenting numerical studies

< Samuele Rubino
samuele @us.es

Naveed Ahmed
ahmed @wias-berlin.de

Tomas Chacén Rebollo
chacon@us.es

Volker John

john@wias-berlin.de

Weierstrass Institute for Applied Analysis and Stochastics
(WIAS), Mohrenstr. 39, 10117 Berlin, Germany

2 Department EDAN and IMUS, University of Seville,
C/Tarfia s/n., 41012 Seville, Spain

Department of Mathematics and Computer Science, Free
University of Berlin, Arnimallee 6, 14195 Berlin, Germany

Laboratoire Jacques-Louis Lions, Sorbonne Universités,
UPMC Univ. Paris 06, 75005 Paris, France

with the VMS methods is surveyed and the obtained results
are summarized.

1 Introduction

The accurate numerical simulation of turbulence is one of
the more challenging scientific problems, with wide clas-
sical applications such as engineering, weather, and climate
forecasting, for instance, besides more recent applications
in medicine, astrophysics, or oceanography, among others.
Fluid mechanics establishes that the motion of a viscous
fluid is governed by the Navier—Stokes equations, which
constitute the basic model to perform numerical simula-
tions of turbulent flows: Let Q € R, d e {2,3}, be a
bounded domain with Lipschitz boundary I" and (0, T) be a
bounded time interval, then these equations are given by:

Find a velocity field # : (0,T) x @ — R? and a pressure

fieldp : (0,7) x @ — R such that
ou—2v2V-Dw)+u-Vu+Vp=f in(0,T] x Q,
V.u=0 1in[0,7] x Q.

(1)

These equations have to be equipped with an initial con-
dition uy at + =0 and with boundary conditions on the
boundary I' of Q. The velocity deformation tensor is the
symmetric part of the velocity gradient D(u) = (Vu+
Vu')/2. Given data are the dimensionless kinematic vis-
cosity v and the body forces f. The first equation in (1)
models the conservation of momentum and the second
equation, the so-called continuity equation, models the
conservation of mass.

Flows at Reynolds number beyond the turbulence
threshold develop a wide range of space and time scales
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with nonlinear interactions and a seemingly random
behavior. Large eddies generate smaller and smaller eddies
by inertial effects, until these reach the viscous length
scale, below which they are destroyed by molecular fric-
tion. The computational complexity associated to the
accurate numerical simulation of such a wide range of
space-time scales makes direct numerical simulations
(DNS) of the Navier—Stokes equations for flows at large
Reynolds numbers nowadays impossible. It is estimated
that if the improvement of the computational resources
continues at the same rate, an accurate computation of all
scales of a turbulent flow will be possible only by the end
of the XXIth century.

Meanwhile, “turbulence” models aim to simulate sta-
tistical means of turbulent flows (RANS —Reynolds Aver-
aged Navier—Stokes— models), or rather their larger scales
(LES -Large Eddy Simulation— models). The traditional
models are based upon statistical theories of equilibrium
turbulence at large Reynolds numbers: The generation of
small eddies draws energy from the large eddies, and the
total energy drawn may be estimated by statistical simi-
larity properties, basically the Kolmogorov theory that
applies to eddies located in the inertial range, in which only
the convection effects are relevant. The effect of the cre-
ation of small eddies on the large ones is modeled by
means of an equivalent diffusion, named the “eddy diffu-
sion” or “eddy viscosity”. The actual mathematical
structure of this eddy diffusion is built by similarity argu-
ments in such a way that the dissipated deformation energy
of the resolved scales equals the estimated energy drawn by
the unresolved scales. In RANS models the eddy diffusion
affects all the flow scales, leading to an excessive damping
of large scales. However, RANS models (in particular the
most popular one, the k — ¢ model) are widely used in
engineering due to their robustness and economy of com-
putational time (see [38, Chapter 4]).

Classical (explicit) LES models are formally obtained
by convolution of the Navier—Stokes equations with a
smoothing kernel. The large scales are determined by a
cutoff length, that should be placed within the inertial
range, and the eddy viscosity acts usually directly on all
resolved scales. LES models provide more accurate results
than RANS models, in particular for unsteady flows,
although they are much more costly and thus much less
used in industrial applications. LES models (as RANS
models) are systems of partial differential equations, that
need to be endowed with initial and boundary conditions,
and solved numerically. The convolution with the
smoothing kernel destroys the no-slip boundary conditions,
generating a source of errors, e.g., see [51]. The numerical
discretization leads to an additional numerical diffusion,
needed to reach stability. The accurate numerical simula-
tion of LES models thus needs high-order discretizations to
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prevent that the numerical diffusion masks the eddy
diffusion.

Variational multiscale (VMS) models propose an alter-
native to the “standard” turbulence modeling. VMS mod-
els are increasingly used as a promising and successful
approach that seeks to simulate large scale structures in
turbulent flows. However, there are fundamental differ-
ences between VMS methods and LES methods. In con-
trast to LES methods, VMS methods consider large scales
which are defined by projection into appropriate function
spaces. Moreover, VMS methods are based on the varia-
tional formulation of the model problem, while the LES
methods consider the strong form of the model problem.
One of the promising features of the derived variational
formulation and the use of the projection for defining the
scales is that the boundary conditions are incorporated into
the mathematical analysis in a natural way. Thus, com-
pared to classical LES based on filtering, the VMS
approach does not face difficulties associated to inhomo-
geneous non-commutative filters in wall-bounded flows,
and as consequence is mathematically consistent also in the
presence of boundaries.

VMS models were introduced in the seminal papers [80,
83] as a general technique to model the subgrid scales in
the numerical solution of partial differential equations. In
parallel, in [71] was introduced an alternative technique for
multiscale subgrid modeling. The application of VMS
modeling to the simulation of turbulent flows was proposed
in [85].

VMS methods have experienced a fast development, in
particular their application to the simulation of turbulent
flows that has led to well-established models. A relevant
achievement of some of these models (the residual-based
VMS models) is that they do not need any modeling of the
subgrid scales by statistical theories of turbulence, in par-
ticular they do not include eddy viscosity. The numerical
diffusion inherent to those models plays the role of the
eddy diffusion.

There essentially exist two classes of VMS turbulence
models, depending on the resolution levels number of the
scales:

e Two-scale VMS models The large and small scales are
respectively approximated by discrete spaces. A cou-
pled set of equations for large and small scales is
derived, where each of them is driven by the residual
associated to the other. The small scales are either
modeled or resolved, leading to

— Residual-based VMS models The unresolved scales
themselves are modeled in terms of the large scales,
and their modeled expression is inserted in the
resolved scale equations, leading to a single set of
equations for the resolved scales, with additional
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stabilizing terms modeling the action of the unre-
solved scales. In particular, for the orthogonal
subscales (OSS) model, if all inertial interactions
are kept in the modeled terms, the numerical
diffusion generated by this residual-based VMS
model is asymptotically equivalent, as the Reynolds
number increases to infinity, to the eddy diffusion
dissipated by the unresolved scales. Thus, the
residual-based procedure does not make use of the
statistical theory of equilibrium turbulence, and no
ad-hoc eddy viscosity modeling is required. Further,
it retains numerical consistency in the finite element
equations. This approach, which hence rely on
purely numerical artifacts without any modification
of the continuous problem, was seldom followed, the
MILES (Monotone Integrated LES) approach [21]
being the main exception, until the (residual-based)
VMS models were introduced in the seminal papers
[80, 83] and subsequently proposed as implicit LES
techniques (ILES) for turbulent flows in [10, 44]. It is
worth emphasizing that, while ILES techniques are
usually considered to be based on the addition of
purely dissipative numerical terms, see [126, Sec-
tions 5.3.4], this is not the case for instance of the
OSS model with dynamic subscales that allow to
model backscatter similar to dynamic LES closures,
as shown in [118] and discussed in Sect. 5.1.

e Three-scale VMS models: The flow is decomposed into
large resolved, small resolved, and unresolved scales. A
coupled set of equations for large and small resolved
scales is derived. The effect of the unresolved scales on
the resolved ones is modeled by means of an eddy
viscosity term that only acts directly on the small
resolved scales.

— Residual-free bubble VMS models: The small scales
are approximated by “bubble” finite elements
which are residual-free to take into account the
effect of the unresolved scales. The final model
consists of a coupled system of partial differential
equations for large and small resolved scales of the
flow.

— Projection-based VMS models: The large and small
resolved scales are jointly discretized in a single
discrete space. A projection operator into an
underlying large resolved scale space is used to
construct the small resolved scales that appear in
the eddy viscosity term.

— Algebraic VMS models: These models are similar to
the projection-based models, but the projection
operator is built at the algebraic level of the model,
once the model is written as a set of nonlinear
equations in R".

This classification of VMS methods also creates a division
in the family of turbulence models separating those that use
eddy diffusion (in a more or less sophisticated manner) to
model the effect of subgrid scales, and those (residual-
based) that use a direct modeling of the subgrid scale flow
by approximating the related equations.

The aim of this review consists in presenting the dif-
ferent VMS methods in a structured manner, comparing
their derivation, numerical analysis (when available), and
their ability to solve turbulent flow problems. There are
already reviews of VMS methods available in [62, 89, 92].
It is intended to update these reviews, thereby putting
special emphasis on the comparisons of formulations of the
methods and on aspects from numerical analysis.

1.1 Nomenclature

Standard symbols will be used for Lebesgue and Sobolev
spaces. To simplify notations, the domain is omitted if the
space is with respect to Q and vector-valued spaces are

denoted by bold symbols, e.g., L* = [L*(Q))“

Weak form of the viscous term

Trilinear form for the left-hand side of Navier—
Stokes equations

Weak form of the convective term
Skew-symmetric form of the convective term
c Trilinear form defining a turbulence model

f Right-hand side of Navier—Stokes equations
140 Linear form for the right-hand side of Navier—
Stokes equations

Mesh width

Local mesh width for mesh cell K

Mesh cell

Macro element

Outward pointing unit normal on I’
Continuous pressure

Large scale pressure

Small resolved scale pressure

Resolved scale pressure

Unresolved scale pressure

Finite element space of degree k on simplices
Finite element space of degree k on
quadrilaterals or hexahedra

Final time

n Triangulation

Continuous velocity

Large scale velocity

Small resolved scale velocity

Resolved scale velocity

Unresolved scale velocity

U (u,p)’

E'm'm't:gmgw

SRR QN (&;U'U\

S 8
~ =
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V}l(Q) P; on simplices, Q; on quadrilaterals or
hexahedra

X Space for continuous velocity

X Dual space of X

)_(, Y Resolved scales (two-scale VMS) or large scales
(three-scale VMS)

)}7 Y Small resolved scales (three-scale VMS)

XY Unresolved scales

Xaiv Space of weakly divergence-free functions

X Finite element velocity space

X div Finite element velocity space with discretely
divergence-free functions

Y Space for continuous pressure

Y, Finite element pressure space

Y/ XxY

r Boundary of Q

0 Filter width
Dimensionless viscosity

VT Turbulent viscosity

1 Identity operator

o, IT Projection operators

Tm Stabilization parameter for velocity

Tc Stabilization parameter for pressure, grad-div
parameter

Q Bounded domain

() Inner product in L2(Q) or L*(Q)
(,')o  Inner product in L?(w) or L*(w)
Ik Norm in H*(Q)

I-lw  Norm in H(w)

- ||k,p Norm in W*7(Q)

| Ik Seminorm in H*(Q)

|- |k,(u Seminorm in H*(w)

E |k,p,w Seminorm in WX (w)

I Nl Frobenius norm of a tensor

2 Finite Element Methods for the Incompressible
Navier-Stokes Equations

As already mentioned, VMS methods are based on the
variational formulation of the Navier—Stokes equations (1).
This section introduces this formulation and some proper-
ties are summarized. Then, the basic finite element dis-
cretization, the so-called Galerkin method, is given and
important properties are stated.

2.1 The Incompressible Navier-Stokes Equations

For simplicity of presentation, the case of homogeneous
Dirichlet boundary conditions
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u=0 1in(0,T)xTI

will be considered. Then the appropriate function spaces
for velocity and pressure are given by

X = [Hy@)"={ve [H' @] v=0onr},
Y=L}(Q) = {q€L2(Q) : /g;quo}.

The variational formulation of (1) is derived by multiplying
the momentum equation with test functions v € X, the
continuity equation with test functions g € Y, and with
integration by parts of the viscous term and the pressure
term. The resulting variational formulation reads as fol-
lows: Find (u,p) : (0,T) — X x Y such that for all

(v,q) eXxY
%(u,v) +a(u,v) +b(u,u,v)— (V-v,p)={f,v) in D*(0,7),
(V-u,q)=0 inD*(0,7),
u(0,x) =uo(x) in Q.
(2)

Here, (-,-) denotes the duality pairing between X and its

dual X* = [H’I(Q)]d and D*(0,T) is the space of distri-

butions on (0, 7). The forms a and b are given by

a(u,v) =2v(D(u),D(v)), bu,v,w) = ((u-V)v,w),
u,v,weX.

Using that u is divergence-free, one finds that
2v(D(u),D(v)) = v(Vu, Vv).

Applying Holder’s inequality, Sobolev imbeddings, inter-
polation theorems in Sobolev spaces, Poincaré’s and
Korn’s inequality one gets the estimate

1/2 1/2
b(u,v, w) < Cllulg* D) [l [DE) o [DOw)],
Yu,v,welX.

(3)

For studying the existence of a velocity solution of (2),
this system is usually considered in the subspace of
divergence-free functions

Xsv={veX : (V-v,q)=0for all g €Y}

The second equation of (2) states that u € Xg;, for almost
every time. For test functions from Xyg;y, the pressure term
in the first equation vanishes such that only the velocity is
left. Then, the velocity solution of (2) can be computed by

solving the following problem: Find u : (0,7) — Xgy

such that for all v € Xg;y

) +alwy) by =) i OT),
u(0,x) =up(x) in Q.
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An appropriately defined variational velocity solution
satisfies [58, 134]

u € L*(0,T; Xqy) N L (0, T; L3, (Q)) (5)
with
L3, (@) ={v : veL*Q),V-v=0,y-n[. =0}

In this space, the divergence has to be understood in the
sense of distributions and the boundary condition in the

(Oten,vi) + a(up, vi) + bs(un, wp,v) — (V- v, pp) = {f1,, vn)
(V-up,qn) =0

up(0,x) = uo(x)

This section will describe the basic finite element dis-
cretization, the so-called Galerkin discretization. Analyti-
cal tools which will be needed in the finite element error
analysis will be introduced.

The continuous-in-time Galerkin finite element dis-
cretization of the Navier—Stokes equations (2) reads as
follows: Find (uy,py) : (0,T) — X, x ¥}, such that for all
(vh,qn) € Xp X Yy

in (0,7)
in (0,7), (6)
in Q

3

sense of traces. The initial condition also makes sense in
LZ(Q) as from (5) u is weakly continuous from [0, 77 into
L*(Q).

The existence of a variational velocity solution can be
proved in several ways, e.g., by considering a sequence of
regularized problems [107], with the Galerkin method [78],
or with the semi-group method [133]. However, the
uniqueness of the weak solution is an open problem for the
practical relevant three-dimensional case. Uniqueness can
be proved with stronger regularity assumptions than (5),
e.g., with the assumption [130]

.32

uel’(0,T;LYQ)) with 54—; <L

The unresolved question of the uniqueness of a variational
solution possesses some impact on the numerical analysis
of discretizations of turbulence models. Topics like error
estimates are studied usually with the assumption of a
unique solution of the variational problem. To ensure this
property for the three-dimensional situation, one has to
require a regularity of the solution which is stronger than in
the formulation of the variational problem. But in partic-
ular for turbulent flows, it is counterintuitive to assume
additional regularity of the solution.

2.2 The Galerkin Finite Element Method

The basic idea of finite element methods consists in
replacing the infinite-dimensional spaces (X,Y) in the
definition of the weak problem (2) with finite-dimensional
spaces (X, Y;). Here, only the case of conforming finite
element methods will be considered, i.e., the finite-di-
mensional spaces are subspaces of the infinite-dimensional
spaces X, C X and ¥, C Y.

where u ,(x) is an approximation of the initial condition in
the finite element space and bg(uy,u;,vy) is a skew-sym-
metric form of the convective term, e.g.,

bs(u,v,w) = % (b(u,v,w) — b(u,w,v)). (7)

Note that in the <case u€Xg, it holds
b(u,v,w) = bs(u,v,w). From (3) one obtains directly

1/2 1/2
by(w,v,w) < Cllallo* 1D @) o> D) lo]D )]
Vuv,welX.

(8)

For problem (6) to be well posed, the finite element
spaces have to satisfy the so-called discrete inf-sup
condition

inf su (V- v, 41)

P i o——— =>p>0, 9
qhen,qh#ovhexh.vh;éo||VVh||o||Clh||0 ®

with f constant independent of the triangulation, [8, 24].

Given a regular triangulation 7, of Q into a set {K} of
simplices, or quadrilaterals (2D)/hexahedra (3D), the diam-
eter of a mesh cell K is denoted by hx and h = maxger, hik.
The space of continuous functions whose restriction to each
mesh cell of 7, is a polynomial of degree less than or equal
to k is denoted by P. The space Oy consists of continuous
functions whose restriction to each mesh cell is in each
variable is a polynomial of degree less than or equal to
k. Popular pairs of spaces that satisfy (9) on simplicial
meshes are the pairs from the Taylor—Hood family Py /Py_1,
k> 2 from [77] and the MINI element P?**/P; from [6]. In
Pt the space P is enriched with local bubble functions
(i.e., functions that vanish at the boundaries of all elements
of 7). On hexahedral meshes, again the Taylor—-Hood pairs
Oi/Qxk-1, k> 2, are popular, but also pairs with discontin-
uous pressure Qy/PIS, k> 2.
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Let X, qiv be the space of discretely divergence-free
functions

Xpagiv =1{vn €Xn : (V-vy,q,) =0 for all g, € Yy}

Note that for all pairs of finite element spaces introduced
above it holds X, ¢iy ¢ X4y, i.e., the discretely divergence-
free finite element functions are generally not divergence-
free. This issue and possible remedies are discussed com-
prehensively in the survey [102].

With the discrete inf-sup condition (9), the velocity
finite element solution of (6) can be computed equivalently
by solving: Find u;, € X), giv such that for all v, € X, giv

(Oewn, vi) + a(un,vi) + bs(wn, un,v) = (fy,va) in (0,T)

(10)
and u;(0,x) = ug;(x). This formulation of the problem
will be used in the finite element analysis.

Analytical tools which are often applied in the finite
element error analysis comprise Young’s inequality

t /v 11
abﬁ—a”—&— bq7 Cl,b,P,C]»fERa _+_:17

p q P q

pq € (1,00),
(11)

for r > 0, Poincaré’s inequality in X
vllo <Cl[Vvlly VveX, (12)
and Korn’s inequality in X
[Wvlly<CID)lly VveX. (13)

Since the triangulations are assumed to be regular, the
following inverse inequality holds for each v, € X;, and
each mesh cell K € 7, e.g., see [40, Theorem 3.2.6],

vnll e < cinehi ™ [Vll g O<I<m. (14)

The Stokes projection is the solution of the following
problem: Find u;, € X}, gy such that

vV (u(t,-) —an), Vo) = (p(t,-), V- va) ¥ vi € Xigiv-

(15)
Let u(r,-) € (H*(Q))’,p(t,-) € H*'(Q), k>1, and X,
possess a (k — 1)th order approximation property, e.g., Xj
is the finite element space Py_; on simplicial meshes or
Qi—1 on quadrilateral/hexahedral meshes. Then a scaling

argument of [75, Lemma 5.3] gives the approximation
properties of the Stokes projection

e —anll + AV (e —a)

16
<0t (e i+ el ) "

and
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10 (e — a)llo + 210 (V (e — an)) [l

1
<0t (el +4 (el ) "

where the constants depend only on 2. Even for ¢ = 0, the
pressure can be well defined, e.g., see [74].

Finally, a stability estimate and an error estimate for the
finite element velocity solution will be given. The pre-
sentation of the proofs will be omitted for the sake of
brevity. However, the principal approach for deriving
results of this kind is the same as for VMS methods, e.g.,
see Sect. 8.4 for a detailed presentation.

Lemma 1 Let upy, € Xy aiy and f € L*(0,£;X'), then the
finite element problem (10) has a unique solution u; € X,
and it holds for all t € (0,T) that
1
2 2 2 2
leen (@) llg + VIVl 0 1a2) < ltonllo + 5 WUz 0. -

(18)

The stability bound (18) depends on the inverse of v.

Theorem 1 Let QCRY, de {2,3}, be a bounded
domain with polyhedral and Lipschitz continuous bound-
ary, let f € L*(0,T;X'), ug € LﬁiV(Q), and ugp, € Xy div. In
addition, the following regularities are assumed for the
solution of (2)

ou € L*(0,T;X'), VueL*(0,T;L?), peL?*(0,T;L%).
(19)

Then the following error estimate holds for the solution uy
of (10) and for all t € (0,T)

ot =104 (1) |24 V11 (= ) 2 00

< C{ 1o = Tyae) (1) 15+ VIV (2 = o) [ 0,122

o — Inue (0)[[5

C
+exp (V—3|Vu|24(o,z;1}>)

2 — 2
VIV 0= 10) 0y " (181 0 = F) 0o

IV (= Bt [0 a2 | V2 240 a2

inf —gnlPora. )
+th Lgl(loﬁt; o) lp—aqs ||L2(O,t‘L2)
e (o2 4 2112 0 )1V 0= Bt
V372 0.2 1lo v L2(0,5:X") R )N L4(0,6L2) )
(20)

where Iu(t) is a projection of optimal order at time t, e.g.,
the Stokes projection, 0,Iu € L*(0,T;X') is assumed.
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It can be seen that the error bound (20) scales like the
exponential of v—3

3 Basic Concepts of VMS Methods

This section discusses basic concepts of VMS methods.
Starting point of all VMS methods is the separation of the
flow field into resolved and unresolved scales. It should be
emphasized once more that although this approach is in
principle the same as in LES, the definition of the scales is
different. VMS methods which use just resolved and
unresolved scales belong to the class of two-scale VMS
methods. However, the VMS methodology allows further
decompositions of the resolved scales. The most common
approach of this kind is a decomposition of these scales
into large resolved scales (or large scales) and small
resolved scales, leading finally to a so-called three-scale
VMS method.

The principal ideas behind two-scale and three-scale
VMS methods will be discussed below. For clearness of
presentation, the weak formulation (2) of the Navier—
Stokes equations will be expressed in a short form as fol-
lows: Find (u,p) : (0,7) — X x Y satisfying

A; (u,p), (v.q)) =f(v) V (v,q) €X xY (21

with u(0,x) = up(x), where A(:;-,-) stands for the left-
hand side of (2) and f(-) for the right-hand side of (2).

3.1 Two-Scale YVMS Methods

A two-scale VMS method uses a decomposition of the
scales in resolved scales (@,p) and unresolved scales
(u',p’) such that

u=u+u, p=p+yp (22)

Inserting decomposition (22) in (21), using the same
decomposition for the test functions, and the linearity of
the variational formulation with respect to the test func-
tions gives

e an equation for the resolved scales

A(u; (@,p), (v,9)) + Aw; (', '), (v,9)) =f(v),
(24)
e and an equation for the unresolved scales
A(u; (ﬁaﬁ)’ (V’, q,)) +A(u; (u/’p,)’ (V’, q,)) :f(v/)'
(25)

To simplify notations, define

u v
U—( >, V—( ), and so on.
4 q

Now, the form A(+;-,-) is decomposed into its linear part
and the trilinear convective term

Aw; U, V) =AU, V) + b(u,u,v).

Then, (25) can be written in the form

Ay(U', V') + b’ ,u',v') = (Res(U), V') (26)
with

Ap(U, V') = AU, V') + b, u,v') + b(@,u',v'),
(Res(U), V') = f(v') — A (U, V') — b(u,u,v').

Using the linearity of Aj,(-,-) and the trilinearity of
b(-,-,-), a straightforward calculation gives that the oper-
ator Ay(U’, V') is the Giteaux derivative of A(+;+,-) at U in
the direction of U’

A+ el U 'V —A@-T. V'
l,in% (u—i—su,U—&-aU?,V) (w; U, V")
i Ain(U+eU V') +b(a+eu',u+eu' V) — A (U, V') — b(u,u,v")
= lim
e—0 &

=AU, V) + bW uv') + bu,u',v).

with the underlying direct sum decomposition

X=XaX, Y=YaY. (23)

It should be emphasized once more that the decomposition
of the scales and the spaces is performed with variational
projections.

Equation (26) provides an interpretation of the unre-
solved scales in terms of the resolved scales: The unre-
solved scales are a function of the residual of the resolved
scales. Hence, there is a representation of the form

U' = Fy(Res(U)). (27)
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Inserting this representation in (24) gives an equation for
the resolved scales.

The operator Fy is generally not known. However, its
knowledge is even not necessary since if the unresolved
scales are modeled with this operator, then Eq. (24) has the
same complexity as the Navier-Stokes equations. In this
case there is no turbulence modeling. Two-scale VMS
methods aim to approximate Fy. Note that the model for
Fy does not need to rely on considerations from the physics
of turbulent flows, it might be derived just with mathe-
matical arguments. In Sects. 4, 5, and 6 concrete approa-
ches will be presented.

3.2 Three-Scale VMS Methods

In a three-scale VMS method, the flow field is decomposed
into large (resolved) scales, small resolved scales, and
unresolved scales. Applying this scale separation to the
underlying solution and test spaces and specifying a direct

sum decomposition yields
X=XaoXaoX, Y=YaYaY,

where the three scales are denoted by, respectively, (), ()A

and ()'. Accordingly, one performs the scale decomposition
of the solution

u=u+u+u, p=p+p+p

and likewise for the test functions v =% +v +v/, and
9=q+q+4.

In the same way as for the two-scale VMS methods, the
derivation of a three-scale VMS method starts by consid-
ering the variational form (21) of the Navier—Stokes
equations for the different scales of the test function, using
again that the variational form is linear with respect to the
test functions. This approach results in a coupled system of
three equations with respect to the large scales, small
resolved scales, and unresolved scales, which are defined as
follows: Find (u,p): (0,T) — X x Y satisfying for all
(v,q) eX xY

— the large-scale problem

Alu; (@,p), (v,q)) + Alu; (u,p), (7,9))

A @), (.9)) = 7). 2
— the small resolved scale problem
Aw; 7). (7.)) +A(w: (@.5), (7.9)) 29)
+Aw; (@,p), (v,9) =f(),
— and the problem for the unresolved scales
Alw; @,p), (V' q')) + A(w; (w,p), (V' q)) (30)

+Au; (', p"), (v, 4) = ().
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In the modeling step of a three-scale VMS method, the
following assumptions are taken into account:

e First, it is not intended to explicitly resolve any
quantities which are termed ‘“unresolved”. Hence,
Eq. (30) for the unresolved scales is neglected.

e It is further assumed that the direct influence of the
unresolved scales on the large scales is negligible, i.e.,
in (28) it is set

Alw; (', p'), (v,9)) = 0.

e Finally, the influence of the unresolved scales onto the
small resolved scales is modeled, i.e., in (29) it is used

Alu; (', p'), (v,q)) ~ c(u; (,p), (@,p), (¥V,9))-
(31)
The turbulence model c(-; -, -) will be discussed below.

The above assumptions lead to an abstract three-scale
VMS method that reads as a coupled system of the form:

Find (#,p) x (&,p) € (X,Y) x (X, Y) satisfying
A + u; @,p),(7,9)) + A +u; (@,p), (7,9)) =)

(32)
A(u +u; (ﬁvl_))v(i)\v /q\) +A(ﬁ + u; (ﬁaﬁ)a (i’\a 2]))
+ C(ﬁ"_ ii; (Ev_)’ (ﬁvﬁ)v (/‘;7 /q\)) :f(/v\)
(33)

for all (7,9) x (¥,q) € (X,Y) x (X, Y).

This problem may be reduced to a monolithic equations
system for the unknowns w,=u-+u, p,=p+p by
introducing the spaces X, = X ® X and Y, =Y®Y,and
the restriction operators
o, :X,—X andIl, :Y,—Y
by
H,u, =u, II.p, =p whenever u, =u+1u,

and p, =p+p.

Summing up (32) and (33) one obtains the equivalent
problem: Find (u;,py) € (X, Yy) satisfying

A(up; (wn,pn), Vnogn)) + ¢ (wn; I (wp, py), (I — IT)
X (wp,pn), I =) (Vi qn)) = f(vi)

for all (v,qn) € (Xi,Ys), where for brevity the notation
Il = (I, I1.) is used, and I denote the component-wise
extension of the identity operator to vector-valued
functions.

A characteristic feature of a three-scale VMS method is
that the turbulence model ¢(+; -, -) acts directly only on the
small resolved scales. However, due to the coupling of the

(34)
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small resolved and the large scales in (32) and (33), the
model ¢(-;-,-) influences the large scales indirectly. In
contrast to this situation, the turbulence model in a classical
LES method acts directly on all resolved scales.

To specify a concrete three-scale VMS method, one has
to define the spaces for the large and small resolved scales
and a model c(-;-,-).

For a finite element discretization of (32)—(33), there are
two principal approaches for choosing appropriate spaces:

e In the first approach, standard finite element spaces are
used for the large scales (X x Y). The finite element

spaces for the small resolved scales ()A( X )A’) require a
higher resolution than the spaces for the large scales
since they should represent smaller scales. A proposal
consists in using bubble functions on the mesh cells for
the small resolved scales. A detailed description of this
approach is discussed in Sect. 7.

e The second way for choosing the spaces consists in
using a common standard finite element space for all
resolved scales and an additional large scale space.
Methods of this type will be addressed in Sects. 8
and 9.

In its turn, the discretization of (34) requires a common
space X x Y, for the resolved scales and a restriction
operator on the large resolved scales. This operator may be
defined by interpolation or projection on a coarser grid.
The explicit space of large resolved scales is not needed, it
is implicitly considered by means of the restriction opera-
tor. This kind of methods will be addressed in Sects. 6 and
10.

The choice of the turbulence model ¢(+; -, -) in (31) may
be guided by physical ideas in turbulence modeling. For
VMS methods, widely used turbulence models are eddy
viscosity models of Smagorinsky type. Writing ¢(-;-,-) in
the form

c(u; (®,p), (w,p), (v,q)) := (viD(w), D(¥)), (35)

three different versions of the Smagorinsky model within
VMS methods can be distinguished, where the second part
of the name refers to D (%) in (35):

e the ‘small-small’ model

vr = Cs&°||D(@) |, (36)
e the ‘large—small’ model

vr = Cs&?||D(@)]|, (37)
e the ‘all-small’ model

vr = Cs8%||D(@ + @) (38)

Here Cg denotes a user-chosen constant, ¢ a scaling factor
related to the mesh width, and || - || the Frobenius tensor norm.

The Smagorinsky model is also a widely used model in
LES. Its advantages and drawbacks are well known. The
most severe drawback is that it introduces too much vis-
cosity. To reduce this drawback, in [60, 108] the so-called
dynamic Smagorinsky model was proposed, which com-
putes Cys a posteriori as a function in time and space, i.e.,
Cs = Cs(t,x). The use of the dynamic Smagorinsky model
is very popular in LES. Also a three-scale VMS method
with Smagorinsky model (with constant Cs) can be inter-
preted as an approach to reduce the viscosity introduced
with this model. Here, the reduction comes from the feature
that the turbulence model is applied directly only to the
small resolved scales and not to all resolved scales.

4 Two-Scale Residual-Based VMS Method

A two-scale VMS method which is based on modeling
residuals was proposed in [10]. The resulting method can
be considered as a generalization of classical stabilization
methods for the Navier—Stokes equations.

4.1 Derivation

Starting point of the derivation of this method is a
decomposition of the spaces of form (23). The resolved
scales are defined either by the L? projection or the elliptic
projection. Note that the decomposition of X into a direct
sum induces that both the resolved and the unresolved
velocity scales have homogeneous Dirichlet boundary data
as the functions in X.

Next, a perturbation series for a potentially small
quantity is considered. This quantity is
&= HRes(U)H<X”),. For this quantity to be small, X x ¥
has to be sufficiently large. In fact, it is assumed that the
larger X x Y, the better U approximates U and the smaller
is Res (U) The perturbation series is of the form

o0
U'=eU)+&Uy+...=Y &U, (39)
=1
In particular, if ¢é=0, ie, Res(U) =0, then U =
Fy(Res(U)) = 0.

Inserting the perturbation series (39) in the terms of
Eq. (26) for the unresolved scales leads to

Ay (Zl U, V/> = Zl dAy (UL V')

and
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o0 o0
il il
b E sui,g gu;,v
i=1 i=1

b)) + 2 b{a ) + bt )] .
[e'e] i—1
—z( (il )).
) j=1

These terms can be inserted in (26) giving

z:giAU(U;,v’ +Z£<Zb( w,ul_,v ))

Collecting terms with respect to ¢ yields

Res(U)

Ap(U V) = —— 2y,
vV <||Res<v>||my >
Zb(I, " ) i>2.

Hence, one obtains a system of variational problems where
the computation of U} requires the knowledge of all U;

(40)
U/ V/ _

with j<i. All equation of this system have the same linear
operator on the left-hand side.

In [10] it is proposed to truncate the series (39) after the
first term, i.e.,

U ~eU| =

(U)H(XXY)’UII' (41)

The function U can be obtained formally by solving the
linear partial differential equation (40) with the operator
Ay(U},V'). However, solving (40) analytically is gener-
ally not possible and the unresolved scale test functions are
in practice not available. From the mathematical point of
view, there is a formal representation of the solution of (40)
with a so-called fine-scale Green’s operator

U -G (R"_S—(U)> 42)
: v HReS(U)H(XxY)’

In [10] it is proposed to use a linear approximation of this
operator

Res(U)
[Res(U) [ .y

where 7 is a 4 X 4 tensor-valued function. Thus, the model

d
U=~

i

of the unresolved scales, denoted by 17/, becomes

U =¢U, = tRes(U).
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Now, this approach will be applied to the Navier—Stokes
equations (2). There, the approximation of the resolved
scales (uj,,p;) is computed in a standard finite element
space. It is proposed in [10] that the parameter 7 is a
diagonal tensor-valued functions, i.e.,

twm 0 0 0
Tm 0 0 Tm 0 0
pr— = . 43
! (0T rc) 0 0 w, O (43)
0 0 0 =

The model of the unresolved scales has the form

(1)

:<Tm(f_atuh+‘)4‘uh_ (uh'v)uh _vph)) (44)

_Tc(v'uh)
resmj
“\reses )

This model can be inserted in the large scale equation (24).
In [10] it is proposed to neglect the models of the terms

(0, vy) and  2v(D(u'), D(vy)).

Defining the large scales with one of the projections
mentioned at the beginning of this section, then one of
these terms will vanish already in the derivation of the
method, the first term if the L?(Q) projection is used and
the second term in case of the elliptic projection. Addi-
tionally, the term of the continuity equation with respect to
the unresolved scales in (24) is integrated by parts.

Inserting (44) in (24) and using the described modifi-
cations gives the resolved scale equation: Find u;, :
(0,T) — Xy, pp : (0,T) — Y, satisfying
(O, vi) + (2vD(up), D(wh)) + b(un, un, va) + (V- up, qn)

- (v . Vh,Ph) - (resm,h; VQh) - (resc‘ha V- vh)

+ b(resmu, un,vi) + b(wy, resmp, vi)

+ b(resm i, r€Smp, Vi) = (f, Vi)

(45)
for all (v, qn) € X, X Yy,

Concerning the actual choice of the convective term, it
is advisable from the practical point of view that one does
not need to compute a derivative of the residual of the
momentum equation. For this reason, it is proposed in [10]
to use the following form of the convective term, which is

obtained from the divergence form with integration by

parts
b(u,v,w) =

(V- (") w) =

Direct calculations show that

—(w", Vw). (46)
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(VWu=(u-V)y (47)

and

(wv',Vw) = /Q("V ) : Vw dx (48)
= / v (Vwiu) dx = (v,Vw'u).
Q

In the convective term of the resolved scales b(uy, uy, v;)
there is no residual and one can use in practice any other
form of the convective term proposed in the literature.

In analogy to LES models, the terms b(resm, up,vp)
and b(uh, resm i, vh) are called cross-stress terms. For the
first cross-stress term, one obtains from (46), (48), and (47)

b(resmp, up,vi) = — (resmu(us)’, Vvy)

= — ((Vv) resm, up)
=_ /Q(resmyh)T(Vvh)uh dx (49)

=- (resm,fn (Vvh)uh)
= — (resmy, (wy - V)vp)

and for the second cross-stress term with (46) and (48)

b(up, resmp, vy) = — (uh (resm‘h)T, Vvh)

(50)
= —(resmy, (Vvi) up).

The last convective term is called subgrid (or Reynolds-
stress) term, again in analogy to LES, and from (46) it is
given by

b(resm , reSm . Vi) = —((resm,h((resm,h)T,Vvh). (51)

As already mentioned, a diagonal tensor is used for 7
with the components 1, and 1., see (43). The proposal for
choosing 7, and 7. in [10] is based on dimensional argu-
ments and not on numerical analysis. A derivation of the
stabilization parameter t,, for compressible flow equations
based on such arguments can be found in [131]. In this
paper, a product of a Jacobian matrix, 7, and the transposed
of the Jacobian is considered. The dimensional arguments
lead to the conclusion that the blocks of this product are
dimensionally equivalent to some other matrix. Based on
this conclusion, an ansatz for the product is proposed,
which contains the other matrix, and then the stabilization
parameter is derived. Since the whole derivation is some-
what involved, its details will not be presented here but
only the results.

Consider parametric finite elements with the bijective
map Fx : K — K and the inverse map Fg' : K — K
with x +— x. Differentiating F¢' leads to the definition of
the symmetric tensor &G with

Then, the stabilization parameter proposed in [10] is given
by

4 “1)2
Tm = (R + (uh)TG(uh) + Cian2||G||12:> s (52)

where cj,y is the constant in the inverse estimate (14).

For the stabilization parameter 7., the vector g with g; =
Zle 0x;/0x; is defined and the proposal in [10] consists in
setting

o= (tmg’g) " (53)

The stabilization parameters (52) and (53) will be dis-
cussed in detail for a special case in Example 1.

Example 1~ Consider the reference cube K = [—1,1]* and
let K be a cube with edges of length & which are parallel to
the coordinate axes. Then the reference map has the form

h 0 0
Fx : K—K, ¥—=|0 h 0]|f+b=x.
0 0 h

Considering the inverse map, one finds that

ox; 2 4 , 48

a—szﬁfzj, Gij:ﬁfijv ||G||F:h_47
4

()" G (uy) = ﬁ”uh”%-

Then, the stabilization parameter t,, becomes

4 Allupl 48cin? e
_ hll2 inv
Tm = (—Aﬂ b > : (54)

For the parameter 7., one obtains g; = 2/h for i = 1,2,3,

such that g’g = 12/h? and
h2

T 2t

(55)

Tc

Now, the parameters (54) and (55) will be discussed for
the different cases in which one of the terms in (54)
dominates:

e The term 4/At2 dominates in (54), i.e., 4t is very small.
Then one obtains 1, = O(4t) and 7. = O(h*/At).

e The term 4Huh||§/h2 dominates in (54), i.e., there is a
strong convection and A¢2Z h. In this case, one gets
Tm = O(h) and 1. = O(h).

e The term 48ci,,v?>/h* is dominating in (54), i.e., the
viscosity dominates or the mesh is very fine and
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At h*. This situation leads to 1, = O(h*) and
7. = O(1).

Thus, the parameter choice in the second and third case is
the same as for equal-order discretizations of the Oseen
equations, see [124, Part IV, Section 3.1] or [22]. In fact,
in [10] the two-scale residual-based VMS method was
applied with equal-order non-uniform rational B-splines
(NURBS). O

Considering the physical units of the stabilization
parameters, one finds that

Tm {(1/s2 + mz/(szmz) + m4/(s2m4))71/2} =[s]
and

Te [(s/mz)il} = [mz/s].

Thus, ., is a time scale and 1 is a viscosity scale, and they
are respectively the time and viscous scales of the subgrid
flow.

For At — 0 it holds that 7, — 0 and 7. — oco. An
alternative definition of the stabilization parameters for
small time steps, which avoids this behavior, was proposed
in [79].

It can be expected that the parameter in the case of using
velocity and pressure finite element spaces that satisfy the
discrete inf-sup condition (9) has to be chosen in a different
way than proposed in [10]. This expectation is based on the
different choices for the Oseen equations, see [124, Par-
t IV, Section 3.1]. In addition, numerical analysis for the
transient Oseen equations with grad-div stabilization in
[50] shows that 7. = O(1) is the asymptotic optimal choice
in the convection-dominated regime, in contrast to 1, =
O(h) as it was found in Example 1. Since to the best of our
knowledge, the two-scale residual-based VMS method was
not used so far with inf-sup stable pairs of finite element
spaces, the asymptotic correct choice of the stabilization
parameter seems to be an open problem in this case.

In [59] it is proposed to model the unresolved velocity
scales or the subgrid scale velocity with

~/ 1 ~/
o' + —u' =f — [Quy — vAu, + (uy - Vuy, + Vpy),

Tm

(56)
instead of (44). A time-dependent evolution of the unre-
solved velocity scales of this form was proposed in [48],
see also Sect. 5 for a VMS method based on time-depen-
dent orthogonal subgrid scales.

4.2 Relations to Other Methods

From (45) and (49) it follows that
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b(resmu, un,vi) — (reSmpu, Vn)

= —(resm,h, (wp - Vv + th). (57)

This term has just the form of the stabilization term of the
Streamline-Upwind Petrov—Galerkin (SUPG) method for
the convection field u;,.

Inserting the concrete formula of the residual of the
continuity equation gives the term

(’CCV -uh,V 'Vh), (58)

which is just a so-called grad-div stabilization term.

Both terms (57) and (58) are classical stabilization terms
for the incompressible Navier—Stokes equations.

There are similarities, but also differences, to the two-
scale VMS method with orthogonal subgrid scales pre-
sented in Sect. 5. A discussion of these issues is postponed
to Sect. 5.2.

4.3 Numerical Analysis

Numerical analysis for the two-scale residual-based VMS
method (45) is not available. However, the grad-div stabi-
lization and the SUPG method are analyzed for the Stokes,
the Oseen, and the stationary Navier—Stokes equations.

The grad-div stabilization (58) arises from adding
—1.V(V-u) =0 to the momentum equation in (1).
Deriving the discrete weak form and applying integration
by parts leads to the term (z.V - u;,, V - v;). Since in finite
element methods the velocity is generally not weakly
divergence-free, i.e., V - u; # 0, the discretization (58) of
this term has an effect on the finite element solution.
Altogether, the grad-div stabilization can be considered as
a penalization of the violation of the continuity equation
for finite element velocities.

The grad-div stabilization was introduced in [54]. It is
well understood for the Stokes equations

—vAu+Vp=f inQ,

59
V-u=0 1inQ (59)

and for finite element methods which satisfy the discrete
inf-sup condition (9). Numerical analysis, e.g., in [90, 117]
shows that for finite element discretizations satisfying (9)
the choice of the stabilization parameter 7. = O(1) with
respect to the mesh width leads to optimal error estimates.
However, a good choice of 7. depends usually on (un-
known) norms of the solution (u, p) of (59) and on whether
or not the sequence of weakly divergence-free subspaces
contained in the discretely divergence-free spaces X giv
has an optimal approximation property.

The SUPG method was introduced in [28, 81] for sta-
bilizing scalar convection-dominated convection-diffusion
equations. Stabilizations of the Oseen equations and the
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stationary Navier—Stokes equations which contain the
SUPG term were analyzed in [53, 72, 111, 136], and
extensions of the analysis can be found in [110, 114, 137].
Surveys of the results are provided in [22, 124].

The SUPG stabilization (57) was studied in particular
for the Oseen equations

—vAu+ b -Vu+cu+Vp=f
V-u=0

in Q,

60
in Q, (60)

where b is a given weakly divergence-free convection field
and ¢(x) >0 in Q. In the numerical analysis, the SUPG
method was often considered with the grad-div stabiliza-
tion (58) and the so-called pressure stabilization Petrov—
Galerkin (PSPG) method. The PSPG method, introduced in
[84], stabilizes pairs of finite element spaces that violate
the discrete inf-sup condition (9).

Altogether, the SUPG/PSPG/grad-div finite element
problem has the form: Given f € L*(Q), find (uy,p;) €

X, X Y, such that
A((uhaph)7 (vhaqh)) v (vh7Qh) S Xh X Yh;

(61)

= L((vh, q11))

with
A((u,p), (v,q)) = v(Vu,Vv) + ((b - V)u + cu,v)
—(V-v,p)+(V-u,q) + Z tex(V-u,V-v)g
KET/,
+ > ve(lpl e Lal 1g) g+ D (—vAu+ (b - V)u
Ee&y, KeTy
+cu+ Vp, (b - Vv + % V),
(62)
and
L((v.9)) + Y (kb VY +%Va) (63

KeT),

Here, Tk, Vg, Tk, Tx are local stabilization parameters and
[ ] ] denotes the jump across the face E of a mesh cell K.

Main goals of the numerical analysis are to show the
existence and uniqueness of a solution of (61) and to prove
finite element error estimates. These estimates allow to
derive information on asymptotic optimal choices of the
stabilization parameters in (62), (63).

In the available analysis, the stabilization parameters for
stabilizing velocity and pressure were set to be equal
Tmk = Ty = Tg. For all K € T, it is set

Y = maxyg.
E€&y

Tm = Irg}g% Tmk, Tc= II(IE’IT%, TeK>s
The well-posedness of problem (61) can be proved by
deriving an inf-sup condition for the bilinear form A from
(62) with respect to an appropriate norm. The proof of this

inf-sup condition poses some restrictions on the

stabilization parameters. Then a finite element error anal-
ysis can be performed. Equilibrating terms in the error
bound gives for the convection-dominated case the fol-
lowing optimal choices of the stabilization parameters:

e for pairs of finite element spaces satisfying the discrete
inf-sup condition (9) and the polynomial degree of the
velocity space is higher by one than polynomial degree
of pressure space: t, = O(h?),7. = O(1), and if Y, ¢
H'(Q) then y = O(h),

e for pairs of finite element spaces that does not satisfy
the discrete inf-sup condition and the polynomial
degree of velocity and pressure space is the same:
T = O(h),7c = O(h), and if Y, ¢ H'(Q) then
y=0O(1).

In simulations of turbulent flows, the use of anisotropic
grids, in particular near the boundary, is often of great
advantage. A numerical analysis of residual-based stabi-
lized finite element methods (SUPG/PSPG/grad-div stabi-
lization) of the Oseen equations on anisotropic meshes was
performed in [2].

A numerical analysis of the SUPG stabilization for time-
dependent problems is available so far only for scalar
convection-diffusion equations in [103]. Optimal error
estimates for the backward Euler scheme and for rather
general assumptions on the data were derived for a stabi-
lization parameter t, < A4z/4. Thus, the stabilization
parameter depends on the length of the time step as in (52)
and (54).

In [88], an explicit formula for the fine-scale Green’s
function (42) was derived. This function can be expressed
in terms of the classical Green’s function and the projection
that defines the scale decomposition, see the beginning of
Sect. 4.1 for possible approaches. A detailed analytical
study of the fine-scale Green’s function was performed for
convection-diffusion equations in one dimension. It was
shown that in the convection-dominated case the form of
this function depends strongly on the projection. If the
elliptic projection is used, then the fine-scale Green’s
function possesses the desirable properties to be localized
and attenuated,
projection.

in contrast to the situation for the L2

4.4 Experience in Numerical Simulations

In [10] the two-scale residual-based VMS method was
studied at an example for isotropic turbulence and at a
benchmark problem of a turbulent channel flow with
Reynolds number Re, = 395 based on the friction velocity
and the channel half width. For the turbulent channel flow
it was observed that the results for first and second order
statistics obtained with quadratic NURBS are almost
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identical to DNS results. A significant increase in accuracy
was observed when using second order NURBS instead of
first order NURBS (Q; finite elements). The authors con-
sider the results with second order NURBS to be more
accurate than those obtained with a spectral Fourier method
from [87].

The two-scale residual-based VMS method from [10]
and the algebraic VMS method AVM? described in Sect. 9,
both applied with Q;/Q; finite elements, were compared in
[63] for a turbulent channel flow problem and a turbulent
flow in a lid driven cavity. With respect to several quan-
tities of interest, the two-scale residual-based VMS method
showed less accurate results. In these studies, the simula-
tions with the two-scale residual-based VMS method were
also somewhat less efficient. Computational studies in [65]
for a turbulent flow around a cylinder showed only small
differences between the residual-based VMS method and
AVM3. From the point of view of efficiency, both VMS
methods proved to be clearly superior to the popular
dynamic Smagorinsky model.

In [59], equation (56) was discretized in a space con-
sisting of bubble functions. The stabilization parameter Ty,
which was proposed in [59] possesses the asymptotic
behavior 7, = O(h) in the convection-dominated regime.
Equal-order pairs of finite element spaces, e.g., 01/01,
were used in the numerical studies. These studies were
performed at the turbulent channel flow benchmark prob-
lems. It turned out that in the case of a length of the time
step that was not too small, the differences of the results
obtained with the steady-state model of the unresolved
scales (44) and the time-dependent model (56) were small.
However, for the time-dependent model (56), the results
were more robust in the sense that the length of the time
step did not possess much impact on the results. For the
steady-state model, the length of the time step enters the
definition of the stabilization parameters (52) and (53). In
particular, 7, becomes small, see the discussion of the
stabilization parameters at the end of Sect. 4.1, and a
notable impact of the length of the time step on second
order statistics was observed.

A rotating turbulent flow, the so-called Taylor—Couette
flow, was successfully simulated in [9] with the two-scale
residual-based VMS method using C' NURBS, weak
imposition of Dirichlet boundary conditions, and adaptive
grid refinement.

A direct calculation shows that the nonlinear term can
be split in the form

(u-Vu = (Du)u +%(V Xu)Xu,
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where V X u is the vorticity. A VMS method that uses a
residual-based modeling for the unresolved scales of the
terms on the right-hand side of this equation was proposed
and studied numerically in [14, 15].

A residual-based VMS method with time-dependent
subgrid scales for variable-density flows at low Mach
number was proposed in [67].

S Two-Scale VMS Method with Orthogonal
Subscales

A residual-based VMS method that uses orthogonal sub-
scales was developed in [44] for the Navier—Stokes prob-
lem. This model is referred as orthogonal subscales (OSS)
method.

5.1 Derivation

As for the two-scale residual-based VMS method derived
in Sect. 4.1, starting point of the OSS method is a
decomposition of the spaces of form (23). The resolved
scales are represented in a standard finite element space.
The space of continuous solutions Z = X x Y is decom-
posed into Z = Z, ® Z', where Z, = X;, X Y, represents
the resolved scales, and Z' = X’ x Y’ represents the unre-
solved scales. In this context, the space Z’ is called the
space of subgrid scales or subscales. Correspondingly, the
solution is decomposed as U =U, + U’ and the test
functions in the form V = V;, + V’. With the notations of
Sect. 3, this corresponds to X=X,,Y=Y,.

The OSS method is derived as in [44] by considering
first the transient Oseen equations, so that the convection
velocity is a given solenoidal velocity field b. To present
this method, let

M= diag(ldao)a

where I, is the d X d identity matrix, and consider an
approximation of problem (24)—(25) in time by the trape-
zoidal rule, to analyze how does the time discretization
affect the OSS method when using finite differences.
Consider a uniform partition of the time interval [0, 7] with
time step At. The time step level at which the algorithmic
solution is computed is denoted by a superscript. For 0 €
[0,1] and U"" known, the trapezoidal rule applied to
Eq. (26) for the unresolved scales (with the convection
velocity u = b) consists of finding U""*? as the solution of
the problem
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(MétU/,n7 V/) + <£b(U/,n+0)’ V/>

— <Res(UZ+0), V’>VV’ e Z/,) (64)

1
where 6,U"" = yr (U™ —U'™), Ly is the linear operator
defined as
—vAu+ (b -V)u+Vp
V-u

and Res(U ™) is the residual associated to U™’

Res(V ) = F— (o0} + 2wy ). F= (1)

0

The following notation is used throughout this section
1 n n
— Z (f +1 _f )’

for any function f. For the sake of simplicity, it is consid-
ered throughout this section that F is time-independent and
that the force vector belongs to the finite element space, or
it is approximated by an element of this space. Equa-
tion (64) may be equivalently rewritten as

fn+() 9fﬂ+l ( _ 9)f}17

<M o U/ n+0 Vl) <£b(U/’n+9)7 V/>
(65)
= (MU V) + Res(p ), V),

from where a closed-form expression for U’ has to be
proposed.

The residual-based OSS strategy consists in setting the
unresolved space as

7 =7Z;NZ,

where Zj is the L?(Q)-orthogonal complement of Zj, and
in further approximating

> H(K)

KeT,

NZ;,

being thus Zj, a bubble finite element space. The goals is
now to properly approximate U’ ~ Uj, € Zj,.

Denote U, = U}|, and assume that L£,(UZ™") and
Res(U'™") have [*(K) regularity. The operator L
restricted to functions of HJ(K) is approximated by a
diagonal operator, so that

1
1,n+0 1,n+0 1,n+0
—(M U 4+ Ly (U ~ (MHA + Ak )UK ,

(66)

with Ax being a d x d non-singular diagonal matrix. Then,
Eq. (65) is discretized by

=0 VKET},,

K

| -1
for any V) € Z), V’K:V;”K, Tk = (MQA +TK1> ,

and tx = /1,}1. Thus, one obtains

<U;;"+9 T, ( o —U" +Res(U"+9)>,V;>

=0 VV,eZ,

where 7, denotes the time-dependent piecewise constant
matrix function that takes the value 7,x on K. One can
prove that space Z) is dense in Z; in the L? norm, thus
deducing

1
(U;;HO — 1:,( ﬁU/" + Res(U”“’)) ) V;l)
=0 VYV, €z,

and, as a consequence
o (U;;"“’ 7, (M Ul + Res(U"+9)>) =0,

where 11 zk denotes the L2(Q2)-orthogonal projection on Z}f.

Since U;"™ € Z,  Z}-, then IYZL(U’"H;) Ut

o, and

U;1”+0 HZL |:‘C,< ﬁ U,n + ReS(Un+6)>:|

To simplify the computations, a further approximations
may be considered

U~ o < —U" + Res(U"“’)) (67)

[T

Indeed, for all V) € Z) one could write

U;l" + Res(U”“’))) ,Z;l)
= (f; (MM U+ ReS(UZ+9)) ; ZZ)
T,[(( Ui+ Res(U;™), z’)
KET/, K
Tk <HZL ( YT —U" + Res(U”“’)) ,Z;)
€Ty K

- (nnzj( i U +Res(U”+9)>,Z;l).

Again, from (67),
I, (U)") = U, and

since  U}" €Z, CZ, then
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Ut~ [ U+ I (Res(U"”’))] (68)

04t

Next, to introduce this approximation of U; 0 0 the

equation for the resolved scale (24) discretized in time
(with convection velocity # = b), denote by £, the adjoint
operator of Lp, given by

. —vAv — (b - V)v — Vg
gm = ( : )
— . v
Observe that if £;(V,|,) has L?(K) regularity, then using
Uylo, = 0 for all K € T, one has
(MU, V) + (Ly(U"), V) ~
(L5 (Vi), U™

-3 (o),

KeT,

(Lo(U™"), V)

where (MO, U",V;,) =0, since MJ,U" is orthogonal to
Zy. Also, observe that IT,. (M6,Uy) = 0, since M6,Uy, is a

finite element function, and I1.(F) = 0, because of the

hypotheses on F.
These modeling steps lead to the discretized equations
for Uj,: Given U}, find U™ € Z;, such that

(MO,UL, V) + (Lo(UF0), Vi)
(L vi). 1 (Lo "))

— * 1 /.n
- <Fa Vh> - <£b(Vh)7 QA Uh >11’

(69)

for all V,, € Z;,, where (-,-)
defined by

., stands for the inner product

(U, V), =@U,V)g= > tuxU, V).

KeT,

In practice, as performed in Sect. 4.1, the stabilizations of
velocity and pressure are decoupled. Hence, one considers
a structure for the stabilization matrices as

‘L'ianId 0
Tt‘K = 0T ‘EC’K )

where ) ¢, 7.x € R respectively are stabilization coeffi-

cients for velocity and pressure, and

| -1
Tk = (HAt +1 K) - Then, the (-, -), inner product has

the structure

_ Z T;],K(”a")K + Z Tk (P, q)g- (70)

KeT, KeT,
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Inserting (70) in (69) leads to the discretized resolved scale
equations

(5tuh7vh) _|_a< n+0 vh) +b(b un+9 )_|_ (v 'un+97qh)
(v Vi, P n+()) (HXL( Vun+0+vpn+()) bV,

+th)f, + (HyL (V- u’f’”), V- vh)

Te

={f,vy) + 05 (u)",b - Vvh+th)

(71)
for all (v,,qn) € X, X Y, with obvious notation. Second
order derivatives of finite element functions within element
interiors have been neglected in (71). They are exactly zero
for linear elements, and for higher order interpolations,
disregarding them leads to a method which is still consis-
tent, in a sense pointed out in [44, Remark 4].

Problem (71) is the effective OSS method used as VMS
discretization of the transient Oseen equations, where
Iy, =1I—Iy,, Iy, =1— Iy, being Ilx, (resp., Ily,)
the orthogonal projection on space X (resp., Y;) with
respect to the inner product (-,-), (resp., (-,-); ). A pos-
sible alternative is to assume that the subscales do not
change in time, and thus

U = U =~ [Ly (U],

with

This approach would lead to the same stabilization terms as
for the stationary problem. Since this basic assumption
consists of neglecting the temporal variation of the sub-
scales, these latter are called quasi-static subscales in this
context. For quasi-static subscales, the second term in the
right-hand side of (71) disappears and there is no need to
store u;;”. However, when the quasi-static assumption is not
used (cf. [48]), subscales need to be tracked by the formula
derived from (68)

(I — Iy, (b - Vu ™ + Vpito).
As for dynamic LES closures, the OSS approach with
dynamic subscales allows to model backscatter, as shown
in [47, 118].

The extension to the Navier—Stokes problem follows by
considering b = w' in (71). A fixed point (or Picard)
algorithm could be considered for linearization (i.e., the
advection velocity is given by b = u"%~1), which leads to
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a transient Oseen problem for the velocity uZ“”i within

each iteration step to which applies the previous formula-
tion. However, there is an important remark to be made.
When the unknown velocity is split into its finite element
component and the subscale, this decomposition also
affects the advection velocity b, that is to say, one will have
b= uTo’Fl + u;;'”o’H. This splitting implies that the
velocity subscale not only need to be tracked in time, but
also along the iterative process.

In the literature, the stabilization coefficients 7, x, Tc x
are computed by

(a) Dimensional or convergence (a priori error) analysis
(cf. [41-43]), or by
(b) Fourier analysis (cf. [44, 46]),

being the dimensional analysis approach the simplest way

to recover the expressions for t,x,7.x, by taking
tx = F(v, hg, ||b|| . x ), where F is a matrix function whose
structure aims at equalizing the dimensions of all terms of
the method (applied in a first stage to simplified equations,
such as convection-diffusion equations). In the case (a),
one obtains for 7,, x the expression

v HbHooK B
Tmk = | C1l—7 + 2 ’ ) (72)
hi

hg
while in the case (b), one obtains for 7,, x the expression

N N
TmK — l(cl @) +<02T> ‘| 5 (73)

where (72) and (73) yield a similar structure that takes into
account the local balance between convection and diffu-
sion, and are asymptotically equivalent in v, hg, |||, x. In
both case, one has

hi

C1TmK

Te K = (74)
In expressions (72)—(74), c1,c; are positive algorithmic
constants properly tuned (usually by an a priori error
analysis). In most papers on OSS, it is recommended to
take the values ¢; = 4, ¢, = /c{ = 2 for linear elements (a
choice justified from the analysis of the one-dimensional
convection-diffusion equation and from many numerical
experiments), and use the same values of the algorithmic
constants for quadratic elements, but taking hg half the
element size (roughly the distance between locations of the
degrees of freedom of the element).

Remark 1 The above derivation of expression (68) for U),
is based upon the assumption that the operator £; restricted
to Z|y is approximated by a diagonal operator. This

assumption has been justified for the convection-diffusion
equation in [39].

5.2 Relations to Other Methods

The OSS method is strongly related to the two-scale
residual-based VMS method developed in [10] and
described in Sect. 4.1. Indeed, both are two-scale VMS
methods which are residual-based (see [38, Sec-
tions 11.1, 11.7.2]), that is the basic procedure is to keep
all terms in the residual-driven structure of the resolved
flow equations and to perform an approximated analytical
element-wise solution of the small-scale flow. Thus, both
methods are consistent methods, in the sense that the
continuous solution exactly satisfies the discrete equations,
whenever it is smooth enough. The two methods contain
models for the Reynolds-stress and both cross-stress terms,
in contrast to classical stabilization procedures such as
SUPG for instance, that accounts for only one of the cross-
stress terms (see Sect. 4.2), thus making both methods
powerful and efficient tools for the challenging computa-
tion of turbulent flows, specially in transient and non-
equilibrium regimes. Moreover, these procedures do not
make use of the statistical theory of equilibrium turbulence,
and no ad-hoc eddy viscosity modeling is required for both
methods. At this respect, it has been analyzed that one of
the relevant features of the OSS method is that it introduces
the right amount of numerical diffusion on the large scales
which is asymptotically equivalent, as the Reynolds num-
ber increases, to the eddy viscosity dissipated by the
unresolved scales (cf. [47, 70, 118]), given a sufficiently
fine computational mesh with characteristic mesh cell size
h in the inertial subrange of the studied (isotropic) turbulent
flow.

One may note that the main difference between the two
methods consists in the approximation of the unresolved
scales. In the OSS method, only the orthogonal projection
of the residual on the mean scales space is included.
Indeed, if one considers the quasi-static version of the OSS
method, the unresolved scales are approximated as

U’ ~ tIl,(Res(Uy)), (75)

where II, = I1 zis while for the two-scale residual-based

VMS method this approximation holds but with the
essential difference I1;, = I, and thus

U ~ t(Res(Uj)). (76)

5.3 Numerical Analysis

A numerical analysis for the OSS method applied to the
Navier—Stokes problem, with convection velocity split into
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its finite element component and the subscale, is not
available. The subgrid terms have a complex structure that
includes convective interactions between large and small
scales, thus setting serious technical problems just to prove
stability. However, several results from the numerical
analysis of the OSS method have been obtained for the
convection-diffusion-reaction equations in [42], for the
Oseen equations in [45, 48], and also for its extension to
the steady linearized primitive equations of the ocean in
[37], always in the context of uniformly regular grids.

In [42], the stability and error analysis of the OSS
method for the advection-diffusion-reaction equations is
performed, proving optimal error estimates. This analysis
have been further extended to the (stationary) Oseen
equations. In [45], it is shown that the OSS formulation
adapted to the Oseen equations is stable and optimally
convergent to smooth solutions under proper regularity
assumptions on the advection velocity, and an adequate
choice of the algorithmic parameters on which the method
depends. Also a simple modification of the OSS method
that introduces less coupling in the discrete velocity-pres-
sure equations and possesses slightly better stability prop-
erties has been analyzed: the idea is to control separately
the components of b - Vu;, and Vp, t,,-orthogonal to X},
that is to use a sort of “term-by-term” stabilization, which
would lead to the stabilizing term

(Hx,f (b-Vuy),b - Vvh)r +(Hxhi(VPh)v th)r/

m m

+ (HYhi(V ~uh),V-vh)r
to be added to the standard Galerkin formulation, where the
parameters 7, and 7/, could even be taken different.
Dropping the orthogonal projections, this method reduces
to a general version of the method analyzed in [32], which
has a consistency error that makes it only applicable with
P, finite elements. In any case, the numerical analysis is
based upon specific discrete inf-sup conditions for the
stabilized approximations, which allow the use of equal
velocity-pressure interpolations and are essential for the
stability of the methods. Also, optimal control on the
streamline derivative of the velocity field is guaranteed. In
[48], the stability analysis is extended to the transient
Oseen equations with tracking in time of the subscales.
In [37], the extension of the analysis to the steady lin-
earized primitive equations is performed, by also adding a
convergence analysis. Optimal error estimates are obtained
for smooth flows, again under proper regularity assump-
tions on the advection velocity. The performed analysis is
an extension of the unified analysis of stabilized and mixed
methods carried out for Stokes equations in [33]. The main
contribution from the analytical point of view is the proof
of a specific discrete inf-sup condition for the surface

@ Springer

pressure, that allows to estimate its [? norm in terms of the
subgrid scales of the surface pressure gradient, that are
specifically bounded by the OSS discretization.

5.4 Experience in Numerical Simulations

Numerical studies with OSS method applied to incom-
pressible flows may be found in numerous publications. On
the one hand, the numerical simulations were performed to
test the optimal convergence rate of the method for smooth
flows. On the other hand, the goal was to test the perfor-
mance of the method in simulating turbulent flows. Dif-
ferent variants of the method were tested, depending on the
following factors: Quasi-static or transient subscales, time-
step dependency or not of the stabilization parameter, lin-
ear or nonlinear splitting of the convective velocity with
respect to the subscales. Most of the comparisons were
performed with respect to the algebraic subgrid scale
method (ASGS), which consists in taking the subscales in
the space of the residuals, and thus is equivalent to the two-
scale residual based VMS method described in Sect. 4.1
when quasi-static subscales are used, the time-step
dependency is included in the stabilization parameter, and
the nonlinear scale splitting is applied in the finite element
equation only, and not in the subscale equation. The
numerical results highlighted the excellent accuracy of the
OSS method in the simulation of turbulent incompressible
flows.

In [44], the numerical examples presented, the classical
cavity flow problem in two dimensions at Reynolds number
Re = 5000 and the two-dimensional flow around a cylinder
at Re = 100, aimed to demonstrate that the OSS method
introduces less numerical diffusion than the ASGS method,
while being equally stable. In particular, peaks were better
captured. Likewise, in spite of the smaller amount of
numerical diffusion, the evolution to the steady state was
similar using the OSS and the ASGS method. Thus, the
OSS can be considered as an alternative to reach steady
states in a flow calculation. In general, considering tran-
sient subscales led to better results, both in terms of
accuracy (with higher amplitudes and frequencies, that is,
less numerical dissipation), and of stability, eliminating
some pressure oscillations in time encountered when the
subscales are considered quasi-static. However, if At is
much larger than 7, it seemed to be not necessary to track
the subscales in time, since considering them as quasi-static
gave very similar results. It is also stated that, concerning
the computational cost for transient calculations, the OSS
formulation was very competitive with respect to the
ASGS method, sometimes even cheaper, since less stabi-
lizing terms appear. Moreover, these terms do not depend
on the whole residual of the Navier—Stokes equations,



A Review of VMS Methods for the Simulation of Turbulent Incompressible Flows 133

which in some situations may be expensive or very difficult
to evaluate. Examples for such situations are the presence
of thermal or electromagnetic couplings, Coriolis forces,
and, above all, nonlinear viscosities, coming either from
nonlinear constitutive models or from turbulence modeling.

The case of a turbulent flow over a cuboid-shaped
surface was considered in [118]. A Reynolds number Re =
4500 based on the inflow velocity and obstacle height was
considered. In this work, the OSS approach with transient
subscales was implemented, and it was shown capable to
predict backscatter, as just for dynamic LES models,
mainly close to boundary and shear layers, where it is
known it could appear. Also, the possibility to add a
simple Smagorinsky model to the OSS formulation was
considered. In this case, the numerical results showed that
the numerical dissipation is of the same order as the sub-
grid dissipation introduced by adding the Smagorinsky
model, except in the zone of strong anisotropy (boundary
and shear layers), where the dissipation coming from
adding the Smagorinsky model was higher than the
numerical one. The numerical evidences obtained here
have been also experienced and summarized in [47],
where a more comprehensive comparison between the
performance of the OSS discretization for fully developed
turbulent flows with and without the Smagorinsky model
was analyzed. In particular, two long term three-dimen-
sional simulations, namely a flow over a plate and a
telescope, were reported. The first example considers a
flow over a circular plate supported on a column and
inclined. It showed how the —7/3 slope of the Kol-
mogorov pressure spectrum was well approximated by the
OSS method. The second example, the flow around a
telescope, was intended to demonstrate that the OSS
method is also applicable to real flow problems. This
problem consists in the aerodynamic analysis around a
building enclosing a large telescope, where modeling
turbulence is crucial to determine the optical quality of the
site where the telescope is placed. Again, the scientifically
relevant issue is whether or not the OSS model is able to
capture the inertial range of the Kolmogorov spectrum: it
was observed that the pressure spectrum computed by
using the OSS method displays the correct —7/3 slope
without using the Smagorinsky model. The computation of
some other relevant punctual statistics revealed, as
expected, that results are more dissipative with the addi-
tion of the Smagorinsky model than without it.

Finally, an assessment of the OSS formulation modeling
turbulent flows was performed in [49]. The OSS formula-
tion was tested for the decay of homogeneous isotropic
turbulence (DHIT), the Taylor—Green vortex (TGV) prob-
lem, and the turbulent channel flow (TCF). Thus, both
bounded and unbounded flows are considered.

The DHIT problem consists in analyzing the statistics of

the turbulent flow in a 3D box of size Q = (0,27)° with
periodic boundary conditions in all directions, which is
started with a field having a predetermined energy spec-
trum. Structured meshed with N3 linear, quadratic, and
cubic hexahedral elements (Q1, O, O3, respectively) were
used, taking the mesh width 4 = 1/32,1/64,1/128, so that
the h-p refinement analysis is also performed, as in [10].
The viscosity value was set such that the associated Taylor-
microscale Reynolds number is Re; = 952, which results
inv~3.5x107%

The TGV problem aimed to show, in a relatively simple
flow, the basic turbulence decay mechanisms like the tur-
bulent energy cascade, the production of small eddies, and
the enhancement of dissipation by the stretching of vortex
lines. The computational domain is the unit cube with
periodical boundary conditions. The initial flow generates 8
vortices with the same vortex scale. The problem is solved
using Re = 1600. The same structured meshes and ele-
ments as in the DHIT problem were used. The TGV test is
characterized by its laminar evolution at the initial time
steps, when the flow is strongly anisotropic due to the
structured large-scale vortices directly related to the initial
condition. If the Reynolds number is large enough, the
vortex-stretching process, which activates the energy cas-
cade effect, transfers energy from large to small scales and
the flow becomes unstable and turbulent. According to
[23], the flow becomes nearly isotropic for Re > 1000.

The TCF problem consists of a fluid that flows between
two parallel walls driven by an imposed pressure gradient
which is defined by the Reynolds number based on the wall
shear velocity, Re,. The attention was restricted to the
cases Re,; € {180,395}. The problem was solved using the
coarsest mesh from previous test, 323 linear hexahedral
(Q1) mesh cells, with refinement in the wall-normal
direction following a hyperbolic function.

Overall, OSS and ASGS yielded similar results, all
displaying the features of turbulent flows when reproducing
global outputs such as energy spectra. These methods were
stable and converged to reference solutions, both when the
mesh was refined and when the polynomial order was
increased. Further, the effect of small time steps when the
stabilization parameters depend on them has been ana-
lyzed. Apart from the quality of the results, the OSS
method with dynamic subscales was convenient in terms of
numerical performance. It required more nonlinear itera-
tions than ASGS, but less iterations of the linear solver,
altogether leading to lower computational cost. This fact
has been explained by plotting the number of solver iter-
ations required to converge as the time step size is reduced,
for a fixed mesh in space. The number of iterations (and as
aresult the condition number of the system matrix) blew up
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exponentially for ASGS whereas it remained bounded for
OSS. In both formulations, ASGS and OSS, the use of
dynamic subscales has been found to be crucial for non-
linear convergence. In fact, in some cases quasi-static
subscales failed to converge.

All these numerical experiments suggest that the
dynamic nonlinear OSS model turns out to be really high-
performing in terms of efficiency and robustness, showing
enormous potential in simulating turbulent flows, also with
respect to purely classical LES model, such as the dynamic
Smagorinsky model [52] or the adaptive local deconvolu-
tion model [76] specifically designed as an implicit LES
model, when using a similar number of degrees of freedom.
In particular, an excellent agreement with respect to DNS
data was recovered on coarser meshes, in terms of total
kinetic energy evolution, computation of energy spectra
(—5/3 law), dissipation rate evolution, and specific statis-
tics of first and second order (such as mean streamwise
velocity, root mean square velocity fluctuations, Reynolds
shear stress). The results also showed that the dynamic
nonlinear OSS formulation results to be unconditionally
stable when the skew-symmetric form of the convective
term is used for the resolved scale equation.

To conclude this section, the high capability of the OSS
method in modeling turbulence without any additional
eddy viscosity term was pointed out, which is due to its
intrinsic dissipative structure, which furnishes an additional
argument in favor of the position to consider turbulence
modeling a numerical issue.

6 Local Projection Stabilization (LPS) Methods
as Two-Scale VMS Methods

Local Projection Stabilization (LPS) methods are stabi-
lization methods that provide specific stabilization of any
single operator term that could be a source of instability for
the numerical discretization. They were introduced in [12]
and they could be viewed as simplifications of the methods
described in Sects. 4 and 5. LPS methods are not fully
consistent, but are of optimal order with respect to the finite
element interpolation. Moreover they are simpler to
implement than residual-based methods.

6.1 Basic Ideas and Derivation

As a single rule, the structure of LPS method is achieved
by retaining in the OSS method (69) the specific interac-
tions that stabilize convection or pressure gradient, and by
changing the global L? projection by local L? projections.
This leads to a family of methods, associated to the choice
of the actual local L? projection. The main derivation of
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LPS methods will be introduced for the Oseen equations
(60). The stabilization effect is achieved by adding least-
squares terms that give a weighted control on the fluctua-
tions of the quantity of interest. This control is based upon
a projection operation 7, : L?()— D), into a discontinuous
finite element space Dy, (the “projection”space). This space
is built on a grid M}, formed by macro-elements built from
the grid 7 j,. The component-wise extension of 7, to vector
functions is denoted by ;. The LPS approximation of the
Oseen equations reads: Find (u;,p,) € X), x Y, such that
for any (vi,qpn) € Xp X Yy,

A((un;pn), Vns qn)) + Su((@ns pr), va, qn)) = F,vn),
(77)
where

A((wn,pn), Wnyqn)) = v(Vup, Vvy) + (b - Vuy + cuy, vy)
- (v : vhaph) + (v : uthh)a

and
Si(@nspn)s vnsan)) = D v (1 (B - Vag), w0 (B - Vw1))
MeM,
+ >t (6 (Vpn), 61 (Van) ) g
MeM,,

(78)

Here, x, = I — m;, is the “fluctuation”operator, while 7,
and p,, are stabilization coefficients. Additional terms
stabilizing (for instance) the discretization of the diver-
gence (grad-div term) can be added.

The stability of LPS methods is based upon local inf-sup
conditions (see Sect. 6.2 below): The local restriction
X, (M) of the velocity space X; (the “approxima-
tion”space) to any macro-element M € M, must be rich
enough in degrees of freedom with respect to D, (M), much
as in mixed methods the global velocity space X; must be
rich enough with respect to the pressure space Y}, to achieve
the discrete inf-sup condition (9). With this purpose, two
main approaches of LPS methods have been proposed (see
[73]): In the one-level approach, the approximation space is
enriched such that the local inf-sup condition holds and
both X;, and D;, are built on the same mesh. In the two-
level approach, the projection space is built on a coarser
mesh level to satisfy the local inf-sup condition. It is
possible to consider overlapping sets of macro elements
(see [13]).

6.2 Numerical Analysis
In [115], a general stability and convergence theory of LPS

schemes for the Oseen equations is given, see also [124,
Part IV,Sections 4 and 5] for a comprehensive
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presentation. A priori error estimates were obtained, with
the same optimal order of convergence as for the SUPG/
PSPG method. The key idea in the error analysis of the
local projection scheme is the construction of an inter-
polant into X, which exhibits an additional orthogonality
property with respect to the discontinuous space Dj. To
describe this analysis to some extent, assume that the dis-
crete velocity and pressure spaces are built as
X, = [H(%(Q)]dﬂZ;f, Y, = L3(Q) N Z,, where Z,, is a stan-
dard finite element space of polynomial order r without
containing essential boundary conditions. The following
assumptions are assumed to hold:

Assumption A1 There exists an interpolation operator
in : H'(Q) — Z, such that iy, : H(Q)—Z, N H} (), and for
allw € H(M), M € M,

[w— th”o,M + e |w — th|1,M < Chfw ‘W‘I,w(M)’

(79)
1<I<r+1,

on a suitable patch w(M) D M.

Assumption A2 The fluctuation operator k, =1 — 7,
satisfies

||KhQ||0,M§Ch5v1 laiy Yaq€ H' (M), ¥ M € My,
0<i<r.

Assumption A3 There is a positive constant § such that
the local inf-sup condition

il’lf Sllp (Vh, qh)M

—Zﬁ VMEM]‘I7h>0
9n€DW(M) 7, (M) ||Vh||0,M ||‘1h||0,M

holds, where  Dy(M) := {dp|,, : din € Dy} and
Zp(M) := {wnly, : wn € Zy}.

Assumptions Al and A3 ensure stability of the LPS
discretization (77), in the sense that if max{v,c, 1y,
h2, /it < C for all M € M,, then, there is a constant
7y > 0 independent of v and /4 such that

A+S s Th
inf sup (A + Su) (v, qn) Wi, 1)) >0,
g XY ) X,y s @)y [y 7)1

where the || - ||, denotes the grid-dependent norm

Nl == [l +cellvllo + (v +¢) llgll
+ (v, ), (v, @) ]

Optimal error estimates are obtained under assumptions
Al, A2 and A3: Assuming that the solution (u,p) of the
Oseen equations (60) belongs to [H{}(Q) N H(Q)]"x
L3(Q) N H™1(Q), the choice of stabilization parameters
T = hy/||B|l, o pr and py; == hy is asymptotically optimal
and leads to

[|(e,p) = (@, i)l

1/2
<C < Z (v+har) by (Ilul\fﬂ.ww) + ||p||%+1‘w(M))> .

MeM,,

The key for the proof of this result is the existence of an
interpolation operator jj, : H' (Q)—Z, satisfying the fol-
lowing orthogonality and approximation properties:

(w—jsw,qn) =0 Y g, €Dy, we H(Q),
130 = il as + ot 10 — il g < C il I

VweH(Q),

with 1 <I<r+1, for all M € M,,, where w(M) is the
union of all elements of M, that intersect M. The existence
of such an interpolation operator turns out to be a conse-
quence of Assumptions 1 and 3.

Assumptions Al and A2 are standard in finite element
approximations, and are satisfied by well-known families
of them. However, the local inf-sup condition required by
A3 is less standard. Several families of finite element
spaces satisfying this assumption may be found in refer-
ences [12, 13, 73, 115], among others.

Recently, extensions of the analysis of LPS methods to
the instationary Navier—Stokes equations have been
developed. In [4], the case of inf-sup stable pairs of finite
element spaces was considered, where the second term in
Sy from (78) can be neglected. In addition, a grad-div
stabilization term (58) was introduced in the discrete
problem. For the continuous-in-time case, error estimates
were proved with constants that do not depend on inverse
powers of v. To obtain this property, the grad-div term
played an essential role. The analysis was extended in [3,
5] to fully discrete problems with BDF2 as temporal dis-
cretization and a decoupling of velocity and pressure
computation via a pressure projection scheme.

6.3 LPS by Interpolation

A further simplification of LPS schemes is achieved when
the local L? projection operator m, is replaced by an
interpolation operator from [L2(2)]* onto a projection
space D;, formed by continuous finite elements (see [34]).
To describe this approach, assume that the discrete velocity
and pressure spaces X; and Yj are formed by piecewise
polynomial functions of degree / at most

X, = (Vi@ NH(Q), Y= Vi(Q)NI5(Q),  (80)

where V) = P, on simplices and V} = Q; on quadrilaterals
or hexahedra. It is assumed that 7 is some stable approx-

imation operator from [L2(2)]* into D, = ViH(Q)] “_ This
interpolant may be defined as
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VxeQ, mb)(x) = Zﬂh(v)(a)%(x)a

aeN

(81)

where N is the set of Lagrange interpolation nodes of
VI(Q), ¢, are the Lagrange basis functions associated to N/
and I} is some interpolation operator by local averaging of
Scott—Zhang or Clément kind. IT,(v)(a) may be reduced to
a single nodal value if v is piecewise smooth. The fluctu-
ation operator k, = I — m;, satisfies also the following
extension of Assumption 2: There exists a constant C,,
independent of A, such that

Vv, e [WP(Q) VK eT,,

L (82)
|kh (Vh)|r.p,l( < CP th ‘vh|l,p,w(1()’

forr ={0,1}, 1 <p < + 00, r <[ These two assumptions
are verified by quasi-local approximation operators such as
the Girault-Lions [61], Bernardi-Maday—Rapetti [16], or
Scott—Zhang [129] type operators and local L? interpolation
operators such as those considered in standard LPS methods
[115]. The LPS method by interpolation is still stated by
(77), but assuming that the grids 7, and M, coincide.

The stability of this LPS method by interpolation fol-
lows from a specific inf-sup condition, that will be stated,
for simplicity, for uniformly regular grids. That is, there
exist two positive constants C; and C, such that

Cih<hg<Cyh, VKETh,Vh>O.

Lemma 2 Assume that the family of grids is uniformly
regular. Then, the following inf-sup condition holds

+h|xh<wh>||o)-

(83)

(Vv qn)

Yan e Ti laly <[ sup 0
1

thXh

Proof The proof is based upon an inf-sup condition,
which is the global equivalent of the local inf-sup condi-
tions of LPS methods (Assumption 3), that is stated without
proof

- Vh7gh)
Ve e Vi@, lalo<C  sup

. 84
vEVH(Q)NHL(Q) vallo (84)

As m,(Vaqy) € [V,ﬁ‘l]d, the inf-sup condition (84) yields

(74 (Vn), va)

%2 (Van)llg < C sup
Ivallo

vh€X)

(85)

As k, =1 — m, it follows that
|7 (Van), vi)l < [(Van, vi) | + 186 (Van)lloVallo-
With the inverse estimate (14), one finds

(nh(VCIh)vvh)
all <C(

(vq}ﬂvh)

h sup
valy

vi€Xp

sup
v;,EX;,

+h|nh<v%>|o).
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Substituting this inequality in (85) yields

Vv,
h (Vg o < C ( sup LY Y1)

vi€Xp | hll

+h||nh<wh>|o).
(86)

By [139], there exist two positive constants C; and C,
independent of & such that

V. Vi,
Vqn € Y, Cillgnllo < sup MﬂL Coh [ Vanllp-
vieX) lvh|1
(87)
ince [ Vanllo < 1%4(Van) o + Iu(Van)llp,combining

(86) and (87) completes the proof. [

The inf-sup condition (83) is the basis for the stability of
the method as stated in the following theorem.

Theorem 2 Assume that the grids are uniformly regular,
fell2(Q)% beL(Q)]" for some r>d and the stabi-
lized coefficients tx and pg are of order hf( Then the
discrete problem (77) has a unique solution. Moreover,
there exists a constant C > 0, independent of h and v, such
that

viunl, + v Su((n, pi), (s pi) > < W11, (88)
1 Bl 11810,
||ph||osc(1+ﬁ+ T ’+c>|vno. (89)

Proof Problem (77) is equivalent to a square linear sys-
tem of dim X, + dim Y equations. Hence uniqueness of
the solution is equivalent to its existence. So one can
proceed assuming that there exists a solution and prove that
it is unique. And to prove this, it is enough to prove esti-
mates (88) and (89). It is assumed for brevity that
¢ = constant > 0.
1) Setting v, = u;, and g, = pj, in (77) gives

v [wnls 4 ¢ |Junlly + Su((@n, pa), n, pr)) = (f, un).
Then, it follows that

1 1
s, < S Iy [luenllo < B Ifllos Su((n, pn),

() < - 7P,

2) To obtain the pressure estimate, the inf-sup condition
(83) is used

(90)

V -vi,pn
Clioally < sup Y- 2mPn)

vi€Xp | h|1

+ h||wn(Vpn)llg =1+ 11

As pyx ~ h?, the second term is bounded by

C
] < S ((n, i), (uny pa)) > < Al
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To bound the first term, take g, = 0 in (77), leading to
(Vvu,pn) =(b - Vup,vi) +v(Vup, Vvy) +c (up,vi)
+ > (b - Vuy), k4 (b Vvh)) g — (f V).

KeT),
(91)

Due to the third estimate in (90), the stabilizing term has
the bound

Z tx (1 (b - V), k(b - Vi) g
KeTy

C
< W‘V”—l”nh(b 4]

(92)

1/2
where for r € L*(Q), ||, = (Z ‘EK||V|(2),K> . The
KGT},

support of the P; basis functions associated to the grid 7,

R
is denoted by ©;, i = 1,...,R. Then, Q = U O;, and any
i=1
mesh cell K € 7, belongs to at most m macroelements O;,
for some m independent of A. This property follows from
the regularity of the family of grids. Then, one gets

R
Jentl - Vw2 < CI 3 wnth - V) o, (93)
i=1

As m, is locally stable and b € [L'(Q)]%, r > d, it follows
that

R
lea(® - Vw2 < CR D> 1B Vvallg e
i=1 KCO;

R
2 2
SChz Z Z ”bH().,r‘w(K)||vvhH0,r*,w(K)7

i=1 KCO;

with 1/r+ 1/r* = 1/2. Due to the uniform regularity of
the grids, the inverse estimate

VKEeT,VpeP(K),|plox< Chlr—a2 P10k

holds. Then,

2 A yp2d/r—d 2
|V"h||o,rm(1<) <Cwir Z vahHO,T
TCw(K)
and therefore one obtains the following estimate

R
i (b Fvi)lIz SCHDN N 1816, V¥l 15 )

i=1 KCO;
<CR b5 Vv,

where it was used that a mesh cell belongs to at most
m macroelements. Combining the last inequality with (92)
gives

Z i (K (b - Vuy), 16,(b - Vi)

KET]Z

c —d/r
< \Whl PN 1Bl

[Vvallo-

To bound the remaining terms in (91), one uses (90)
|(b - Vup,vi) +v(Vup, Vvy) + ¢ (un,vi) — (f,vn)]
< (v Bl lanly + € 1l + IF11 -, ) il

1810,
<c(1+=2 e ol
Finally, by substituting the two last inequalities into (91)

one obtains

[1B1lo,-
"

n<cl1+ ||b”°”+
- VY

+c) . (94)

Combining the estimates for / and II with the inf-sup
condition (84) one deduces (89). [

The error estimates are based upon this stability result,
and the approximation properties of operator ;. The proof
will be omitted for brevity.

Theorem 3 Assume that the hypotheses of Theorem 2
hold, that the operator my, satisfies (82), that b € [H*(2)]*
with s > [ — 1 and that the solution of the Oseen problem
(60) verifies (u,p) € [HY(Q)]* x H/(Q). Then the fol-
lowing error estimates hold:

ju =]y <C([1B If g, v) A, (95)

lp = pallo < CUIBI, Ifllo, v) ', (96)

where C(||bl|, Iflly, V) is a constant depending on ||b||,,
[fllo and v that grows as 1/+/v.

These stability and error estimates also hold for general
regular grids (not uniformly regular), although the proof is
much more involved (see [34]). Moreover, in [1], a finite
element error analysis of the LPS method by interpolation
for the time-dependent Navier—Stokes equations is
presented.

6.4 Application to the Simulation of Turbulent
Flows

A finite element three-scales projection-based VMS-LPS
steady turbulence model that includes general non-linear
wall laws is presented in [36, 125]. Good accuracy is
obtained with benchmark turbulent flow problems on
coarse grids. This is a model with the structure (34) that
includes a multi-scale Smagorinsky modeling of the eddy
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viscosity, which contains the restriction to the sub-filter
scales through a projection/interpolation operator (intro-
duced in Sect. 3.2), and a LPS by interpolation stabilization
of convection and pressure gradient, in order to use the
same interpolation for velocity and pressure. In addition, it
includes wall-laws modeling of the turbulent boundary
layer. This provides a discretization with a reduced com-
putational cost, but that keeps the same high-order accu-
racy with respect to standard projection-stabilized methods.
This model is presented here without wall-laws for brevity.
The numerical experiences with this model are presented in
Sect. 10.5.

Consider the steady version of the Navier-Stokes equa-

tions (2): Find (u,p) €X xY such that for all

(v,g) e XxY

a(u,v) + b(u,u,v) - (v ' va) = <f7v>7 (97)
(V-u,q) =0.

These equations are discretized by approximating the
spaces X and Y by the spaces X; and Y, defined by (80),
and the variational formulation by: Find (uy,,p,) € X, X ¥,
such that:

a(up,vi) + bs(up,up,v) — (pn, V- vy)
+C(uh;uhavh) +sconv(uh;uh7vh) = <f7 Vh>, (98)
(V - un, qn) + Spres(Pn, qn) = 0,

for any (vi,qpn) € Xp X Y.

The trilinear form by is the skew-symmetric one of the
convection form b given in (7). The use of by instead of b is
needed to keep a correct energy balance at the discrete
level, that follows as bg(uy, vy, v,) = 0.

The form c¢ is associated to the VMS-Smagorinsky
modeling of the eddy viscosity (35)

c(up;up,vy) = 2(vr(un)D(uy), D)), (99)
where the eddy viscosity vt is defined by (36)

vr(v)(x) = (Csh)*| D) ®)]lp forx €K,

and

pr=1—py,

~ N ~ N
Up = ppkp, Vi = PpVa,

Here, p, is a uniformly stable (in H'!(Q)-norm) interpola-

tion operator (the “restriction” operator) on X, where

X, =V @), (100)
or
X, =[vyQ), (101)

and V},(Q) in (101) is a sub-space of V}(Q) with larger grid
size H > h (typically, H = 2h or H = 3h). The restriction
operator p, must be uniformly bounded with respect to A,
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satisfy optimal error estimates (79), and preserve the slip
boundary conditions. In the framework of Sect. 3.2, the
large scales space is given by

Xy = (I — py)Xn,

However neither the space X, nor X » appears in the dis-
cretization, only the restriction operator p, is needed.

In this way, this VMS method appears as a LES method
where the cutoff length ¢ is of the same order as the grid
size h. This size of the cutoff length is reasonable as setting
0 > h then the numerical solution would solve scales
much smaller than the modeled ones, while setting 0 < &
would generate a large error in the computation of the
modeled scales.

The forms scony and Spres in (98) correspond to a LPS
method, given by

Seons (ni Vi) = D Tk (0} (wn - Vauy), 7wy - Vvy)),
KET;,

Spres(phaqh) = Z TC,K(GZ(vph)vaZ(VQh))K'

KeTy

Here, 6} = I — o), where 6, is some locally stable (in the
L? norm) projection or interpolation operator on the pro-
jection space Dj, = [V,i‘l(Q)]d, satisfying optimal error
estimates, similarly to operator m;, given by (81). Also, 7, x
and 7. are stabilization coefficients for convection and
pressure gradient, respectively, given by

V4 V7 ‘ K

—1
Uk
Tek = TmK = { (hK/l)2 + {sz} } , (102)

by adapting the expressions (72), where Vr|, is the local
mean value for the eddy viscosity on the mesh cell K, and
Uk is the mean speed on K.

Model (98) includes the main features and assumptions
of a three-scale VMS method. The method is based on a
variational formulation and the decomposition of the scales

€1

is defined by projection in the large-scales space X,. The
turbulence model is applied only to the small resolved
scales.

Here, the steady version will be considered while the
unsteady one will be studied in Sect. 10. This model has a
relatively simple structure as a turbulence model. It may be
programmed with ease from an existing finite element
solver for Navier—Stokes equations. The main difficulty is
the computation of the interpolation operators that appear
in the stabilizing and eddy diffusion terms, but it may
simply be computed from point wise values of the func-
tions to interpolate, as was mentioned in Sect. 6.3.

The existence of solutions of model (98) is based upon a
linearization of the model equations: Given w;, € X}, find
(zn,71) € Xj x Yy, such that
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a(zn,vi) + bs(Whn,zp,vi) — (rp, V- w)
+ (W32, Vi) + Scon (Wh3 20, Vi) = (fvn),
(V-zn,qn) + SpreS(”ha qn) =0,

(103)

for any (vi,qn) € Xj X Y;. The mapping wy, € Xz, €
X, admits a fixed point by Brouwer’s Fixed Point Theo-
rem which is the solution of model (98). This follows from
the stability estimates (that are stated here just for the
solution of (98)):

v 1D (n)llo + c(un; un, up)

+ Sconv(uh; up, uh) + Spres(ph)ph) <C anflv
1 |unly | [unl;

<C(1+—+2 4 20 :
il <€ (14 o+ )
where the second estimate is obtained from the first one
and the inf-sup condition (84), similarly to (94). A con-
vergence result of solutions of (98) to a solution of the
steady-state Navier—Stokes equations (97) can be proved.

(104)

Theorem 4 The sequence {(un,pn)};,~ o of solutions of
the VMS-LPS model (98) contains a sub-sequence which is

weakly convergent in [H'(Q)] x L2(Q) to a solution of the
steady Navier—Stokes equations (97).

Proof (Sketch) The eddy viscosity and convection-stabi-
lization terms vanish in the limit due to the estimates

|c(up; wn, )|

(105)
|Sconv (uh; up, vh)|

The pressure stabilizing term also vanishes in the limit. To
prove this, one uses a representation formula. By [33],
there exists a family of vectorial bubble finite element
spaces Z;, (formed by functions that vanish on the edges of
all elements), a family of bilinear uniformly continuous
and uniformly coercive forms on [Hé(Q)]d, Sn(+,+) such
that

Spres(rha qh) = Sh(Rh(O_Z(Vr/1))7 Rh(UZ(VCIh)))
v Tny, qn € Y.

Here, Ry :[H '(Q)]Y — Z, is the static condensation
operator associated to Sj, defined as: Given

¢ € [H 1 (Q)], Ru(e) is the only element of Z,, that sat-
isfies: Sy(Ri(@),z1) = (@,21), VY zn € Zy. Then

Spres (Phs ) =Sn(Rn(0;,(Vpn)), Ru(03,(Vpn))),

and by estimate (104), one deduces that the sequence
HY( @),
Then, this sequence is weakly convergent to zero in [H,) (Q)]d,

see [32, Lemma 4.1]. Assume that ¢ € D(Q) N L3(Q). Then,
7 (Vqy) strongly converges to zero in L*(Q). As

{Ri(c}(Vpr))},~o is uniformly bounded in

Spres (P> @) = Sn(R(0;,(Vpn)), Ri(a,(Van)))
= (,(Van), Ru(a,(Vpn))),

one concludes that
lim Spres (phv qh) =0.
h—0

The remaining terms in (98) pass to the limit in a standard
way. One then concludes that the limit (u,p) satisfies
formulation (97) for all v € X and g € D(Q) N L3(Q). By
density it also holds for g € Y = L§(Q). O

For smooth velocity and pressure (u,p) and small data,
method (98) satisfies error estimates of optimal order. It
also satisfies an asymptotic energy balance: Indeed, define
the deformation energy Ep, the subgrid eddy dissipation
energy Es, and the energy Esc and Egp, respectively, cor-
responding to the convection and the pressure stabilizing
terms by:

Ep(u) = a(u,u) = 2v | D(w)|3,

Es(un) = el ) =2 Y (Gl [ D@
KeT, K

Esc(un) = Sconv (Un; wn, upn) = Z T |0y (e - V”h)”;ka
KGT/I

Esp(pn) = spres(Prspn) = Y e 193 (Vp) 3 -
KeTy

(106)
Then, if the sequence {(u;,ps)}, - ¢ is strongly convergent
in [H(Q)]Y x L*(Q) to a solution (u,p) of the Navier-
Stokes equations (2) with regularity [H?(Q)] x H'(Q), it
holds
}li_I}(l)ED(uh) = Ep(u), }liiI(l)Es(uh) = %%Esc(uh)
=limE =0
lim se(pn) =0,
and then
%EI})[ED(uh) + Es(up) + Esc(un) + Esp(pn)] = Ep(u),

Thus, the total energy balance is asymptotically maintained
in such a way that the deformation energy passes to the
limit. In addition, the dissipated eddy energy and the sub-
grid energy due to stabilizing terms asymptotically vanish.

If the the sequence {(w;,ps)},~ o is only weakly con-
vergent in [H'(Q)]? x L2(Q) to (u,p), one cannot ensure
that }llirg) Esp(pr) = 0. Thus, it is only possible to prove an

asymptotic energy inequality of the form

Ep () < Tim inf[Ep (u;) + Es(us) + Esc () + Ese(pn)].
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7 Three-Scale Bubble VMS Method

This section presents the bubble VMS methodology with a
three-scale decomposition of the flow field using bubble
functions for the small resolved velocity scales. Bubble
VMS methods can be considered as a direct realization of a
three-scale VMS method for finite elements by discretizing
both equations (32) and (33) with a finite element method.
Earlier direct realizations used Fourier spectral methods, at
least in the direction of homogeneous isotropic turbulence,
and a separation into large and small resolved scales was
performed via the norm of the wave number vector, e.g.,
see [86, 87].

7.1 Derivation

There are several realizations of bubble VMS methods
which differ in some details, e.g., see [31, 62, 68, 69, 98,
112, 113]. Here, exemplary the derivation of one of these
realizations is presented.

Consider the decomposition of the resolved scales
(up,pr) into large scales (@,p) and small resolved scales
(u,p). Equation (32) for the large scale test function, after
having neglected the coupling terms of the large and the
unresolved scales, takes the form

(@, v) + 2vD(uy), D)) + b(up, up, v) —
+ (V-unq) = (f,9).

Applying the splitting of the resolved scales yields

(@, v) + (2vD (@), D)) + b(u,u,v) — (V -¥,p)
= (fav) - {(atﬁvv) +
+ b(uha ﬁvv) + b(ﬁ7 ﬁv l_)) -

(v v ph)

(2vD(u),D(¥))
(V-5,p)+(V-u,9)}
(107)

~—

Similarly, one derives an equation for the small resolved
scale test function
0u,v)+ 2(v+vr)D(u
—(V-5,P)+(V @
= (fa ) {(atu ;;)
+ b(”hv u, V) (

), D)) + b(u

n U, V)
2

20(@).0(5) (108)
B+ (V-.9)).

Here, the eddy viscosity term is already included, which
models the effect of the unresolved scales onto the small
resolved scales with vy being the subgrid turbulent
viscosity.

In bubble finite element VMS methods, standard finite
element spaces are used for the large scales,
XxY=X,xY, As pointed out in Sect. 3.2, the main
goal of the bubble finite element VMS method is to use a
higher resolution spaces for the approximation of the
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resolved scales compared with the spaces used for the large
scale. This goal can be achieved either by using higher
order finite elements, or by refining the mesh, or by the
combination of both approaches. However, a practical
problem that arises with all these approaches is the com-
putational cost of the solution process for the small
resolved scale problem (108) which is much higher than for
solving the large scale problem (107). In order to obtain an
efficient method, a bubble VMS method can be used, in the
sense that the small resolved scale problem (108) is con-
sidered in a space of bubble functions for the velocity.
Recall that a function v € H'(Q) is called a bubble func-
tion with respect to a mesh triangulation 7, if v, € H} (K)
for all mesh cells K € T,

With respect to the model for the small resolved scale
pressure, it was proposed in [62, 68, 69] to model the small
resolved scale pressure in the form

p=— r(V @),

&, (109)

which is the same model as proposed in [10] for the two-
scale residual-based VMS, see Sect.4.1. In (109),
{te}ker, is a family of stabilization parameters which are
usually defined to be piecewise constant. Using this pro-
posal, the small resolved pressure does not appear any
longer in the large scale equation but its influence on the
large scales is modeled. The contribution of the small
resolved pressure (109) into the large scale equation leads
to a so-called grad-div stabilization term. Since the small
resolved pressure p disappeared, a divergence constraint
for the small resolved velocity u is no longer required.
And, since there is no longer a divergence constraint for u,
it does not make sense to have a term with this contribution
in the divergence constraint for the large scale equation
(107). Hence, all terms in the model (107) and (108)
coming from the divergence constraint which includes
small resolved scales will be neglected by setting

(Vﬁ@):(Vﬁﬁ):(VﬁZI\)ZO

Inserting these modifications in the small resolved scale
problem (108), one obtains a simplified vector-valued
equation for u. Motivated by the desire to construct an
efficient method, the small resolved velocity is searched in
a bubble space. Note that the space of these bubble func-

tions )A(bub is infinite-dimensional. However, from the
practical point of view, this space has to be a finite-di-
mensional space.

Usually, some further simplifying assumptions are made
for the terms with the small resolved velocity scales. The
equation for the small resolved velocity scales is only
solved once for each time step, i.e., at the beginning, which
yields the solution #("). Consequently, this equation is
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linearized and all terms with @ are treated explicitly.
Therefore, the temporal derivatives in (107) and (108) have
to be modified. Denoting quantities at time level n with a
subscript n, one can use for the large scale equation (107)

~n+1 -~ ~(1 ~
un+ — " u( ) n

—u
110
Atn+1 ’ ( )

61” - Atﬂ+1
where At,.1 = t,41 —t, is the current time step. In the
small resolved scale equation, one assumes that the tem-
poral change in the large scales can be neglected, i.e.,
0, = 0. Moreover, for reasons of efficiency, the gradient
form of the viscous term is used in the small resolved scale
equation and some right-hand side terms in the large scale
equation. With the gradient form, the small resolved scale
equation decouples into three scalar equations since the
system matrix becomes a block diagonal matrix.

Inserting the models and the simplifying assumptions
for the small resolved scales into (107) and (108) leads to
the following system of equations: Find # : [0,7] — X, p :
(0,T] — Y satisfying

(01, %) + (2vD (@), D(¥)) + b(w, &, v) — (V - 9,p)

(111)

for all (v,q) € X x Y. The equation for computing the
small resolved scales #(!) : [0, T] — X reads as

~(1) _ ~n
(T3 ) (v w5) (a5
Atn+l

_(.9) - {(vvan,vv) T

+ > rc(v-ﬁ",v.ﬁ),(}

KGT/,
(112)

for all ¥ € Xpup.

Note that both models for the small resolved scale (109)
and (112) can be interpreted in the way that the small
resolved scales are driven from the residual of the large
scales. The small resolved pressure is driven from the
residual of the continuity equation and the small resolved
velocity from the residual of the momentum equation.

In all bubble VMS methods, a principal question arises
concerning an unphysical property introduced by using
bubble functions for modeling the small resolved scales.

These scales are represented by the bubble functions and
are allowed to move within a mesh cell but, due to the
homogeneous Dirichlet boundary conditions on the faces of
the mesh cells, they cannot move directly from one mesh
cell to their neighbors. Hence, the small resolved scales are
bound to the mesh cells and there will be no direct inter-
action between these scales across the mesh cell bound-
aries. However, by the coupling of the small resolved
scales to the large scales in (111), the information con-
tained in the small resolved scales is distributed indirectly
to the other mesh cells.

7.2 Relations to Other Methods

The use of bubble functions for stabilizing dominant con-
vection was already proposed independently of VMS
methods. These bubble functions solve equations with the
residual obtained with a standard finite element method.
For this reason, this approach is called residual-free bubble
(RFB) method. This idea was first proposed for scalar
convection-diffusion equations in [27] and applications to
laminar incompressible flows can be found, e.g., in [57].
Thus, the bubble VMS method can be considered as a
generalization of the RFB method in the sense that a tur-
bulence model is introduced in the equation for the small
resolved velocity scales.

7.3 Numerical Analysis

A numerical analysis for the bubble VMS method as pre-
sented in Sect. 7.1 does not seem to be available. However,
error estimates for the closely related RFB method were
derived for convection-diffusion equations and the Oseen
equations.

Concerning scalar convection-diffusion equations, a
priori error estimates for finite elements on simplicial
meshes were proved in [7, 25, 26]. The case of bilinear
elements was studied in [122].

In [55], an approximate RFB method for the Oseen
equations is analyzed for the non-conforming Crouzeix—
Raviart pair of finite element spaces. It was shown that the
exact RFB method is identical to some SUPG-type stabi-
lization in the case of constant coefficients. This SUPG-
type stabilization was used as approximation for the RFB
method. An optimal estimate for the error in a norm
including the stabilization could be proved with a constant
independent of inverse powers of v.

7.4 Experience in Numerical Simulations

The use of a bubble VMS method requires to approximate
the solution in the infinite-dimensional bubble space. In
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[62, 68, 69, 98] each mesh cell was triangulated with a
local grid and an approximation of the small resolved
velocity with Q; finite elements was computed. In contrast,
bubbles with a fixed polynomial degree were used in [31,
112, 113]. The methods from [31, 112, 113] do not use an
eddy viscosity model in the bubble equations but a stabi-
lization is obtained by applying an upwind-type method to
the convective term. Another option that was studied in
[31, 98, 113] was to use quasi-static small resolved scales,
i.e., to neglect the temporal derivative for the bubble
functions. This approach saves to store the values for the
small resolved scales from the previous discrete time.

A comparison of a bubble VMS method with the unu-
sual stabilized finite element method (USFEM) from [56]
and the Smagorinsky LES model (with dynamic Cg or fixed
Cs = 0.1) was presented in [69]. To stabilize the used
equal-order pairs of finite element spaces, the Pressure
Stabilization Petrov—Galerkin (PSPG) method was applied.
As already mentioned, the local systems in the bubble
VMS method were solved on local grids in each hexahedral
mesh with Q; elements. For the use of the dynamic
Smagorinsky model in the bubble VMS, a second local grid
was applied that was somewhat finer than the first local
grid. The numerical studies included turbulent circulating
flow in a lid-driven cavity at various Reynolds numbers
and a plane mixing layer example in two dimensions. For
lid-driven cavity flow, the bubble VMS method led, in
comparison with the USFEM and the other methods, to a
remarkable good results.

Numerical studies in [98] compared the bubble VMS
method with the projection-based VMS method presented
in Sect. 8. Benchmark problems of turbulent channel flows
were considered with the inf-sup stable finite element pair
Q> /P%° on hexahedral grids. For the bubble VMS method
inf-sup stable pairs of finite elements on anisotropic grids
were used. The static Smagorinsky models (38) with Cs =
1 and (37) with Cs € {0.5,1} were used for the bubble
VMS method. For quantities of interest, numerical studies
for the flow at Re; = 195 showed slightly better results for
the quasi-static bubble VMS method compared with the
projection-based VMS method. On the other hand, the
projection-based VMS method gave superior results at
Re; = 395. It is mentioned that the implementation of the
bubble VMS was rather complicated. In addition, it turned
out that the dominating term of the model is the grad-div
term which evolves from modeling the small resolved
pressure. Incorporating only this term, without modeling
the small resolved velocity, led to stable simulations.
However, applying in addition to the grad-div stabilization
also the bubble model for the small resolved velocity
improved the accuracy of the results. It is also mentioned
that the large values of Cg were needed for the solution of
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the problem (112) on the coarse grids (5 X 5 x 5 sub cells)
for the local problems. Altogether, the use of the bubble
VMS method is not recommended in [98].

In summary, bubble VMS methods which approximate
the solution for the small resolved velocity on local grids
were implemented and studied from two groups. None of
these groups seems to use this type of VMS method any
longer.

The bubble VMS method from [112, 113] was studied in
[113] at an isotropic turbulence problem, a turbulent
channel flow, and a turbulent flow around a cylinder. It was
shown that similar results can be obtained as, e.g., with the
two-scale residual-based VMS method presented in Sect. 4
and the AVM? method described in Sect. 9. It was
observed that with quasi-static small resolved scales the
method loses stability for small time steps. The method
from [112, 113] was improved in [31]. The improved
method can be applied also on tetrahedral grids and in the
case of quasi-static small resolved scales there is no
instability for small time steps. For a turbulent channel
flow problem, simulated with the P;/P; finite element
method, similar results were obtained as with the residual-
based VMS method from Sect. 4 with Q;/Q; finite ele-
ments. Results computed with P, /P, finite elements were
considerably more accurate than results with Py /P; for the
same number of degrees of freedom.

8 Three-Scale Velocity Deformation Tensor
Projection-Based VMS Method

This section presents a method where the scale separation
into large and small resolved scales is defined with the
velocity deformation tensor. Having defined in this way
small resolved velocity scales, an additional viscous term is
introduced where the turbulence model is acting directly
only on the small resolved scales. To shorten notation, this
method is called in this section just “three-scale projection-
based VMS method”.

8.1 Definition of the Method

First, the projection-based VMS method will be defined. It
will be shown in Sect. 8.2 that a special case fits perfectly
into the general concept of a three-scale VMS method
described in Sect. 3.2.

Let X, x Y}, be finite element spaces for the velocity and
pressure which satisfy the discrete inf-sup stability condi-
tion (9), let Ly be a finite-dimensional space of symmetric
d x d tensor-valued functions defined on Q and let vt be a
non-negative function that might depend on the finite ele-
ment velocity and pressure and on the mesh width. Then,
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the semidiscrete projection-based VMS method (continu-
ous-in-time) is defined as follows: Find u, : [0,7] — X,
pn ¢ (0,T] = Y, and Gy : [0,T] — Ly satisfying

(O, vi) + (2vD(uy), D(vy)) + b(up, up, vy)
= (Vvn,pn) + Qvr(un, h) (D () — Gu), D(va))
= {f,vn)(V -un,qn) =0
(D(up) — Gy, Ly) =0,
(113)

for all (v,,q;) € X, x Y}, and Ly € Ly.

The main features and assumptions of a three-scale
VMS method can be observed quite well already in (113).
The method is based on a variational formulation and the
decomposition of the scales is defined by projection in the
last equation of (113). The large scales are represented by
Gy and the small resolved scales by D(u;) — Gy. Thus
D(u;) represents all resolved scales. In the last term on the
left-hand side of the first equation in (113) it can be seen
that the turbulence model is applied directly only to the
small resolved scales.

The method (113) was proposed in [93] based on ideas
from [105]. To apply this method, one has to choose two
parameters: the additional viscosity vr(u;,h) and the
space Ly.

Concerning vr(up, k), numerical studies with method

(113) presented in [93, 98, 99, 104, 123] used a

Smagorinsky models of the form

vy = Cs0%|| D () . (114)

vr = Cs0°[|D(un) — Gullg, (115)
5

v = Csm—l/z”ﬂj)(uh) — GH”LZ(K)' (116)

The other parameter in (113) is the space of symmetric
tensors Ly. The last equation in (113) states that the tensor
Gy is just the L*(Q) projection of D(w,) into Ly:
PLH L — LH, D(V) — PLHD(V) = GH
(PLHD(V) — D(V%l]{) =0 VllygeLy. (117)

With this notation and using the short form (21), one can

reformulate (113) as follows: Findu;, : [0,7] — X3, pi :
(0,T] — Y, satisfying
Au s \Un, y Vi,

( h ( h Ph) ( h Clh)) (118)

+ (2vr(un, B)(I = Pr,)D(uy), D(vi)) = f(va)

for all (v, qn) € Xj, X Y.

The space Ly plays the role of a large scale space such
that (I — Pr,)D(u;) represents small resolved scales of
D(uy). Of course, only scales should be subtracted from
D (uy,) that are contained in this tensor. Hence, it is required
that Ly C {D(Vh) Ly, € Xh}.

Since Ly represents large scales, it has to be in some
sense a coarse finite element space. Similarly to LPS
methods, there are essentially two possibilities:

e If X}, is a higher order finite element space, Ly can be
defined as low order finite element space on the same
grid as X),. This approach is studied in [93] and it will
be discussed below.

e The second possibility, in particular if X}, is a low order
discretization, consists in defining Ly on a coarser grid,
see [96] for a study of this approach in the case of
convection-dominated convection-diffusion equations.

Since D(u;) is a discontinuous piecewise polynomial
tensor, choosing its L*(Q) projection in the same way
seems to be natural. Thus, Ly should consist of discon-
tinuous piecewise polynomial tensors as well. It was
elaborated in [93] that for the sake of an efficient imple-
mentation of the one-grid method, the use of discontinuous
tensors for Ly is mandatory.

A projection-based VMS method which computes the
projection in a post-processing step was proposed and
studied in [106]. That means, in the first step of this
approach, one can use the Galerkin finite element dis-
cretization of the Navier—Stokes equations. Using the
solution obtained in this step, one computes in a second
step the final solution by applying a projection. In [106] the
projection is constructed in such a way that it has the form
of the eddy viscosity term in (113). This approach can be
considered as an operator splitting. Its advantage is that it is
not intrusive, i.e., one can use for the first step an existing
code and needs to implement the projection only as an add-
on.

8.2 Imbedding of the Method into the Basic Concept
of a Three-Scale VMS Method

In the case vt being a positive constant, method (113) can
be transformed to the abstract form (32)—(33) of a three-
scale VMS method. To this end, the three-scale partitioning
given in Sect. 3.2 has to be described by appropriately
chosen function spaces and projections.

Clearly, the continuous pair of spaces (X, Y) contains all
scales. The finite element spaces (X}, Y),) contain the large
and the small resolved scales.

Let Xy C[H 1(Q)]d be a discrete space such that
Ly = D(Xp). The space X should be coarser than X),. But
in the definition of Xy, no essential boundary conditions,
like no-slip conditions, are incorporated. Thus, in general
Xy ¢ X, The pair of spaces for the large scales is given by
(Xy, Yy) where Yy is chosen such that a discrete inf-sup
condition of type (9) is fulfilled for (Xg,Yy). Then, the
large scales Pyu of the velocity are defined by an elliptic
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projection into Xy and the large scales Pyp of the pressure
by the L*(Q) projection into Yy; Py : (X,Y) — (Xu, Yn)
(D(u — Pyu),D(vy)) =0 V vy € Xy,
(u — Pyu,1) =0,
(p—Pup,qu) =0 V qu € Y.

(119)

Lemma 3 Commutation of the definition of the large
scales and differentiation. Let v € X, Ly = D(Xy) and
denote by Pr,D(v) the L*(Q) projection of D(v) into Ly
defined in the last equation of (113). Then

P, D(v) =D(Ppv) VveX. (120)

Proof From Ly = D(Vy) and P, D(v) € Ly it follows
that there is a wy € Xy such that P, D(v) = D(wg).
Using the last equation of (113) gives

(D(V — WH), EH) =0 Viyge€lLy. (121)

On the other hand, since Ly = D(Xg), (119) is equivalent
to

(D(V—PHV),[LH> =0 V [LH GLH. (]22)

The statement of the lemma follows now directly from
(121) and (122) since the elliptic projection is unique. []

Let vr be a positive constant. A straightforward calcu-
lation, using that Py, is a L?(£2) projection and (I — Py,,) is
in the orthogonal complement, shows that
(ve(I = Pr, ) D(uy), D(vi)) = (vl = Pr, ) D(wy),

(I = Pr,)D(va)).

Thus, (118) can be reformulated as follows: Find u;, :
[0,7] — Xy, pr : (0,T] — Y, satisfying
Alun; (wn, pn), (i, qn))

+ (ZVT(I - PLH)D(uh)a (I - PLH)D(vh)) :f(vh)

(123)

for all (vn,qn) € Xi X Y. Decomposing X, = Xy + X
and Y, = Yy + ?h with Xh = (I—PH)Xh, /)}h = (I—PH)
Y;,, one obtains with (120)

(I—PLH)D(V;,) = D(Vh _Pth) = D(([—PH)V},,) = D(/l;h)

The  decompositions  w,=uy+uy, prL=Py~+"Pu>
v, =Vy+V;, and q,=qy+qy are inserted into (123).
Using the linearity of A(+;-,-) with respect to the second
and third component and writing the arising equation for-
mally as a coupled system gives

A(ﬁH + il\h, (ﬁH7l_7H)7 (VquH))

A+ B s By), () = fF) Y
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for all test functions (Vy,qy) € Xy X Yy and
Ay + up; @, py), Vi, 45))

+A(EH + iih; (iihaﬁh)a (i)\luz]\h))

+ (2vrD(@5), D(v)) =f (V1)

(125)

for all test functions from X » X Y. The coupled system
(124)—(125) possesses exactly the form (32)-(33). The
unresolved scales are modeled only in the equation for the
small resolved scales (125) with the model

c(uy; (@, py); (Wn; Pr), (Vi G1)) = (2veD (@), D(va))

and this model influences the large scales solely indirectly
by the coupling of (124) and (125).

8.3 Relations to Other Methods

Let Ly C {D(vy) : v, € X, }. The limit cases of Ly lead
to two well known discrete models. In the case that
Ly = {D(v;) : vs € X;,}, the second term on the left-
hand side of (118) vanishes and the Galerkin finite element
discretization of the Navier—Stokes equations is recovered.
If Ly = {O}, one obtains an artificial viscosity stabiliza-
tion of the Navier—Stokes equations with a possible non-
linear artificial viscosity. If, e.g., vr is the Smagorinsky
eddy viscosity model, the Smagorinsky LES model is
recovered. In this sense one can say that the three-scale
projection-based VMS method is in between the Galerkin
discretization and an LES model of eddy viscosity type.

Comparing representation (113) with (144) shows that,
apart from the PSPG-type stabilization, the coarse space
projection-based VMS method and AVM? have principally
the same form.

8.4 Numerical Analysis

A numerical analysis for projection-based VMS methods
was presented in several papers. In all cases, the principal
way of performing the analysis was the same as for the
Galerkin discretization of the Navier—Stokes equations.
The main goal was to show that the inclusion of the VMS
model leads to error bounds where certain constants
depend on a reduced Reynolds number (and not on the
Reynolds number as for the Galerkin discretization). These
results show in some sense that the projection-based VMS
method possesses a smaller complexity than the Galerkin
finite element method.

The first analysis was presented in [94] for method (113)
and the case of a constant turbulent viscosity vr. Two error
estimates with constants depending on a reduced Reynolds
number were derived. In [95], the case of vy being a
Smagorinsky-type eddy viscosity including the small
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resolved scales was studied. In this paper, the additional
viscous term is defined differently than in (113), namely as
deformation tensor of small resolved scales #,, and not as
the small resolved scales of the deformation tensor
D(u,) — Gy, i.e., differentiation and projection are inter-
changed in these definitions. The analysis for vy being a
Smagorinsky-type viscosity required the use of different
function spaces than for a constant viscosity. Finally, the
results of [94] were generalized in [123] to the case of vt
being a piecewise constant viscosity. The analysis from
[123] was extended in [109] to the case of thermally cou-
pled incompressible flows.

For the sake of keeping the presentation as simple as
possible and of concentrating on the main issue, namely the
reduced Reynolds number in the error bound, an error
estimate for the case of vy being a constant will be pre-
sented here.

For the finite element error analysis it will be assumed
that Q is a bounded domain with polyhedral Lipschitz
boundary, no-slip boundary conditions are prescribed,
(X, Yy) are assumed to satisfy the discrete inf-sup condi-
tion (9), and the continuous-in-time case is considered.
Concerning the parameters of the VMS method it is
assumed that vr is a positive constant and that
Ly C D(Xp).

If vr is a positive constant, the projection-based VMS
method can be rewritten in the form (123), i.e., it reads as:
Find u, : [0,T] — Xp, pr : (0,T] — Y, satisfying

(O, vi) + (2vD(uy), D(vy))
+ bs(up, up, vi) = (V- vi,pn) + (2vr(I — Pry,)
D(uh), (I — PLH)D(Vh)) = (f, Vh) Vv, €Xy
(V-uh,qh):O thGYh,
(126)
where the projection Py, was defined in (117).

The error analysis will be performed in the space X}, giy.

For simplicity let f = f;. Then the velocity from (126) can

be computed equivalently by solving the following prob-
lem: Find uy, : [0,T] — Xjqiv such that

(a,uh,vh) + (ZVD(uh), [D)(vh)) + bs(uh,uh,vh)
+ (2ve(I = P, )D(up), (I = Pr,)D(vh)) =(f,va)
(127)

for all v;, € X, div-

In the finite element error analysis, the error of the
solution of (126) to the solution of the Navier-Stokes
equations (2) will be studied. The goal consists in deriving
an error bound which depends in the most terms on a
reduced Reynolds number or equivalently on an increased

effective viscosity, in contrast to the error bound (20) for
the Galerkin finite element method. In the limit case
Ly = {0}, method (126) becomes the Smagorinsky LES
model. Finite element error estimates to the solution of the
continuous Smagorinsky LES model with constants inde-
pendent of v were derived in [91, 101].

Next, an additional viscosity will be defined. Since Py,
is an L*(Q) projection, it follows for v € X and
ID)lg > O that

vrl|(Z = P, ) D)l

e (ID)I = 1P, DO)IG)

|PLHD<v>||é> )
= VT 1-— Y 2 D C
( CIOTL I3

= Vadd(v)H D(V) HS
(128)

In addition, from 0 <||P.,D(»)||, <|/D(v)], one obtains

0 <vaaa(v) <vr. (129)

Note that if v depends on 7 then v,44(v), too. From (129) it
follows that vaaq (v(2,-)) € L>(0,T) if vr is bounded almost
everywhere in the time interval. If [|[D(v)||, =0 thenv = 0
since v € X. In this case, one sets v,qq(v) = 0.

The finite element error analysis requires some
assumptions on the regularity of the solution and the data
of the Navier—Stokes equations. It will be assumed that

fe(*0,T;X%)), upcX, (130)
and that (2) possesses a solution (u, p) with
Vu € (L40,T; %)™, om € (L*(0,T;X*))", 131)

p € L*(0,T;L?).

Note, these assumptions imply that Serrin’s condition is
fulfilled from what follows that the solution of (2) is
unique, see Sect. 2.1.

Before presenting the error analysis, an outline of the
proof, following the approach in [74, 75], will be given.

1. The stability of # and u,, is proved, i.e., it is shown that
certain norms of u# and u; are bounded a priori by the
data of the problem: f, ug, v, see Lemma 4.

2. An error equation is derived by subtracting (127) from

(2) for test functions from X}, g;,. The error is split into
an approximation term n and a (finite element)
remainder ¢,

e=u—u,=(u—uy) — (u, —uy) =n1—¢,,
(132)

where uj, € X, 4iv is a projection of u which satisfies
certain interpolation properties. An example for such a
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projection is the Stokes projection, see (15)—(17).
Then, ¢, is taken as test function in the error equation.

3. The right-hand side of the error equation is estimated
such that one obtains an inequality of the form

d
S Nullo + 8102, 8) < 8ot m, ) + g3 ()| By,

(133)

where all functions are non-negative for almost all
t€[0,T].

4. It has to be checked that Gronwall’s lemma can be
applied to (133), i.e., one has to show that all functions
in (133) belong to L'(0,T). The application of
Gronwall’s lemma yields an estimate for ¢;,.

5. The error estimate for e is proved by applying the
triangle inequality to (132).

Lemma 4 The solution uy, of the finite element problem
(127) satisfies

IIuh(t)IlﬁJr/0 (2v + 2vaga (a(2))) | D () (7) |5 d
(134)

t
C 2
<||u 2+/ - . dr.
ll0.41l 0 2V + 2vaaq(up(7)) Ifllx

Consequently, it is  up € (L*(0,T; Lz))d and
D(uy) € (L2(0, T; L)), The velocity solution of the
continuous problem (2) fulfills u € (L>(0,T; Lz))d
D(u) € (L2(0,T; L))",

Proof Setting vy = uy, in (127), using

and

(Otan, up) = 2dr || hHO?

and the skew symmetry of bg(-, -, ), the definition of v,4q,
(128), the standard estimate of the dual pairing, Korn’s
inequality (13), and integrating over (0, ¢) with ¢t <T gives

1IIuh(t)Ilﬁ +/0t(2v+2Vadd(uh(f)))”D(uh)(r)né dr

1
< s luoalf + [ 1@

t
C 2
! . d
2||“0h||o /2v+2vadd(uh(f))|lf(f)|x T

+ [2E 2D ) 0

Vuy(7)ly de

X+

—

Subtraction of the last term  gives (134).
D(uy) € (L2(0,T; L))", Taking then the supremum of
t € (0,T) gives the statement u;, € (L>(0,T;L?)).

The proof for the solution of the continuous problem
uses the same techniques, compare also (5) for the

@ Springer

regularity of an appropriately defined variational velocity
solution. [J

The stability estimate (134) shows that the bound for u,
does not depend on v~! as for the Galerkin discretization,
see (18), but on the inverse of a presumably larger viscosity
term.

Theorem 5 Let (u,p) € X X Y be the solution of (2) and
let uy, € Xy aiv be the solution of (127) where vr >0 is a
constant. Let the regularity assumptions (131) be fulfilled
and let uy, be a projection of w into X4y such that n =
u — uy € Xpdiv satisfies optimal interpolation estimates of
form (16) and (17). Let the reduced Reynolds number
Reeq(vy) defined by

Rered(vh) = (2V + inf 2Vadd("h(l>)>l SZV_]. (135)

1€(0,7]
Then, the error u — uy, satisfies for T >0

(e —un) (T) 5 +
<C inf {(u —u)(T)|5

(Revea(uy — 1))~ [| D (w —uy) ||i2(oﬁr;L2)

An€L?(0,T;Yy)
+ (Revea(n — 1))~ 1D — )72 712

+3XP(C(Rered(“h - ﬁh)>3 () ||24(0.T;L2))

oo, — 4 (O)IG + (v +vr) D (ot — ) 17200, 712)

+ (Reea(t = 4)) [ 101 (e = 8) 0, 1ox
a2 ~ 2 2
1P = 2l 0 702) + 1D @ = ) 00 | D) 0
2 3/2 2
+ ((Rered(uh )" lluto a5 + (Rerea (a4))*/ “fHLZ(O,t;X*))
~ 2 2
% 1D =) 0.2 | +vT||<1—PLH>D<u>||Lz<O.T;Lz>} }

(136)

for arbitrary u;, € X, giv.

Proof The splitting of the error (132) is performed with
the help of a projection u), € X, 4iv of u. Let t € [0, 7] be
arbitrary. It is required that the projection fulfills the
approximation properties (16) and (17) such that, e.g., the
Stokes projection can be chosen. Korn’s inequality (13),
(16) with k=1, and the regularity assumptions (131)
imply that

Vi € (L4(0,T; L))", (137)

Now, Step 2 of the proof is carried out by a straight-
forward calculation, yielding
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SR+ (27 + 2vaa (1)) 1D,

= (Om, ¢y) + (2vD(n), D(¢,)) + (2vr(I — Pr,)
x D(n), (I — Pr,)D(¢y))
+ bs(u,u, ¢;,) — bs(wn, un, ¢y,)
— (2vr(I — Pp,)D(u), (I — Pr,)D(¢y))
— (P = V- )
(138)

with arbitrary /7 € Y.

In Step 3 of the proof, one has to get an inequality of
form (133) by estimating the terms on the right-hand side
of (138). All bilinear terms are estimated essentially in the
same way: using the Cauchy-Schwarz inequality (or the
estimate for the dual pairing), Korn’s inequality (13) and
Young’s inequality (11). In addition, (128) is used. One
obtains

(O, 1) <110l x+ [V @pllo < CllOm x| D (s) Il

2v+2v,4a(),) 2
_4”@(%)“0 29y
(2vD(n),D

() =<24][D0n) oI D ()l
<& D@5 +8vID ()G,

(V- ¢pp =) <llp—=allol[V - dillo < Clip = Zallo 1D (1) o

< 2V+2Vadd(¢h)
- 8

2
X*

”atﬂ

C
D S EPR— (5 g PR
D@5y, gy Il

(vr(I = Pr,)D(n), (I — Pr,)D(¢),))
< (1 = P D () + 4wl — P D)
_Vadd(¢h)|

|D(3) 15+ 4vaaa(m) D () 5,

(vr(I = P, )D(w), (I = Pr,)D(¢))
<vell (I = Pr, ) D (@) [lo[|(7 = Pr, ) D () o

< ")y ) + dvel 1~ P ) D@

The trilinear term is first decomposed into three terms. A
direct calculation gives

bs(u7 u, ¢h> - bs(Uh, Uy, ¢h)
= bS(”v u, ¢h) - bS((ﬁha u, ¢h) + bS(uha n, ¢h)

The terms on the right-hand side are estimated separately
using the estimate (8) of the trilinear term. One obtains by

applying (8) and Young’s inequality (11) for the first
term

bs(”’u ¢h)
<Clnlly* 1D ) 161D @)l 1D ()l
2v + 2vadd(¢h) b C
S ] HD(¢I1)H0 +2V+2Vadd(¢h)

lloD (o) o1 D ae) 15,

for the second term

by(y 1, by)
< Cllgulle”* 1D @) o ID ()11
2v + 2Vadd(¢h) ) C
< L T TR D - =
< 3 ID(p)llo + v+ 2Vadd(¢h))3
131D () I3
and for the third term
b. (uh7 1, ¢h)
< Cllaas I 1D (wa) 16> 1D ()l | (1) Lo
2v + 2Vadd<¢h) 2 C
< — 5 1D ()6 +m

leen o 12 Caen) ol D (1) 5.

Collecting terms gives

2v + 2Vadd(¢h)

3 IR+ 2 ) iy g2

C ) ,
O omlB + (8 + 8vaa()|D
20+ 2vaaa () 0y + (8 vaaa (1)) 1| D (m)][5

_‘_L”
2v + 2vadd(¢h) P

¢ 2
ot ang (MDD

ﬁwwwMWMMDW%ﬂ

= Zallo + 8vrll(Z — Py, ) D (w)]l3

c
31D ()]l

(29 + 2vaaa(hy)) I#4la

Applying the definition of the reduced Reynolds number
(135) and using that v,qqa(n) < vt, see (129), finishes Step 3
of the proof:
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(Rereq <¢h))71

S D)o

d 2
E”‘Ph”o"_

< C| (Rewea(dy))lI0mllx + (v + vo) 1D ()]l

+ (Rewea(@y))lp — Zallo + vell (T = Pr,) D ()5
+ (Rerea(y)) (H'l”o” D () o] D (a0) 15

" |uh||0||D<uh>llolD<”>”3)]

+ C(Rerea(y)) D) ]l -

To perform Step 4 of the proof, the L' (0, T)-regularity of
the terms appearing in (139) has to be studied. Let 7 €
(0, T] be arbitrary. One obtains with Poincaré’s inequality
(12), Korn’s inequality (13), the Cauchy-Schwarz
inequality, (131), and (137)

(139)

[ @ laIB@ @i
<¢ [ IpmEEILEEIE ¢
0

2 2
< ClD(m)|74(0 122 1D (@) 730 122y < 00-

Similarly it follows with Holder’s inequality, Lemma 4,
and (137) that

/Ot e (2)1 |2 (2t (2) | D () (5) 15 e

t
Slluhllpc(o,t;u)/o 1D (@) (D)o |2 () (<) de

< ||"h||L»c(o,r;L2)HD(”h)Hm(o,r;LZ)HD('I)HiA(o,t:LZ)

12 2 2
< C(Rerea(up))" (||"o,h||o + Rered("h)“flh%o,:;x*))
[ D('I)Hé(o,ny) <00.

The L'(0, T)-regularity of the other terms is a direct con-
sequence of (131), (16), (17) and (137).

Applying Gronwall’s inequality and performing the last
step of the proof are straightforward. O

Even if the constants in the error bound (136) do not
depend on negative powers of v, there is an implicit
dependency on such powers via the norms of u.

For the convergence of the error bound (136), the last
term is the crucial one since in contrast to all other terms it
does not possess a factor with the interpolation error
u — uy,. As the mesh width 2 — 0, the last term tends to
zero if vy — 0 or if Ly tends to D(X). In both cases, the
Galerkin finite element discretization (6) of the Navier—
Stokes equations is recovered asymptotically. Otherwise, in
particular if vr and Ly are fixed and & — 0, one cannot
expect that the solution of the projection-based VMS
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system converges to the solution of the continuous Navier—
Stokes equations. For fixed & and vy — 0, the error bound
(136) tends to the estimate (20) for the Galerkin finite
element discretization of the Navier—Stokes equations.
Let (u,p) € H'(Q) x H*(Q) for all times, k> 1, and
consider the pair of spaces Py/Pir_i or Qr/Ok_1, k>2.
Neglecting in the following discussion the squares at the
terms in (136), then the optimal order of convergence of
the left-hand side of (136) is A*. All interpolation errors on
the right-hand side of (136) converge at least with 1*. The
last term in the error bound contains the L? projection of
the deformation tensor into Ly. Hence, it is of order H¥,
where H is the mesh parameter connected with Ly. Hence,
for not spoiling the convergence of the error bound, the
additional viscosity has to be chosen such that
vr = c(h/H)*. In practice, e.g., if Ly is defined on the
same grid as x, an explicit value for H is not available. But
one can think of H being H = Ch with C > 1. In this case,
vr should be just a constant independent of the mesh width.
There is no improvement in the constant in the exponen-
tial, i.e., Repq = 2v~!, if there is a time ¢ at which
Vadd (¢, (¢)) = 0. Using the definition (128) of v,q44, one finds

that this situation is equivalent to ||Pr,D(¢,(1))]s =
ID(¢,,(2)) ||(2) orequivalently, since Py, is the L? projection, to

(I—Pr,)Duy) = — Pr,)D(uy). (140)

That means, the small resolved scales of u;, and u,, are the
same. However, this situation is unlikely for turbulent flows
since these scales of u;, are considerably influenced by the
model that is used for the unresolvable small scales whereas
the interpolation u;, does not possess any information about
this model, e.g., if uy, is defined by the Stokes projection. In
this case, (140) is only likely if there are only large scales in
the flow, which is not the case in turbulent flows.

From the mathematical point of view, the difficulty
consists in the fact that the equations for laminar flows and
turbulent flows are the same, namely the Navier—Stokes
equations (1). Since the analysis is carried out for (1), it is
not possible to distinguish between the two kinds of flows
and the results must also hold for the case of laminar flows.
For such flows, v,q4(¢,(¢)) may vanish and the error esti-
mate (20) of the Galerkin finite element method is recov-

ered, in which the constants depend on v L

8.5 Experience in Numerical Simulations

As already mentioned at the end of Sect. 8.1, the three-
scale projection-based VMS method can be implemented
as a one-grid method and as a two-grid method. For the
simulation of turbulent flows, so far only the one-grid
version was used.
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The implementation of this version is described in detail
in [93]. It turned out that choosing Ly to be a space of
discontinuous tensors and using a basis that is L? orthog-
onal are essential for an efficient implementation. Both
requirements can be easily fulfilled by choosing a basis of
piecewise Legendre polynomials. Using a discontinuous
space for Ly makes also sense from the point of view that
the functions of Ly are L? projections of deformation
tensors of finite element functions, which are usually dis-
continuous functions, too.

If Ly is the same space during the whole simulation, one
has to assemble four additional matrices at the initial time.
Three additional matrices have to be assembled every time
the computed velocity u;, changes since these matrices
contain the factor vr and vr is chosen usually to be a
Smagorinsky-type model of form (114)—(116). After hav-
ing assembled these matrices, one has to compute few
sparse matrix-matrix products. The resulting sparse matri-
ces have to be added to the matrices obtained in the
Galerkin finite element discretization of the Navier—Stokes
equations. Satisfying the two requirements on Ly stated
above, it was shown in [93] that the resulting additional
matrices possess the same sparsity pattern as the matrices
from the Galerkin method. Thus, there is no need to change
the sparsity structure of the matrices in an existing code for
simulating the incompressible Navier—Stokes equations.

The three-scale projection-based VMS method was
studied comprehensively at turbulent channel flow prob-
lems in [97, 98, 104]. Several options for choosing the
projection space (which was always static in time) and the
eddy viscosity model were compared. The simulations
were always performed on quite coarse hexahedral grids
with the Q,/P%*° pair of finite element spaces. Often, the
combination of choosing Ly to be the space of piecewise
constant symmetric tensors, the large-small Smagorinsky
model (114), ¢ as twice of the length of the shortest edge of
the mesh cell, and Cg = 0.01 gave results which were
among the best ones (and better than for the Smagorinsky
LES model). In [104] it was shown that the projection-
based VMS method is less sensitive to the choice of the
parameters in the Smagorinsky model than the Smagorin-
sky LES model. This property is due to the fact that the
eddy viscosity model influences much less scales directly
in the VMS approach compared with the LES method.

In [98] it was concluded that the choice of Ly has a
much larger impact on the results compared with the choice
of vr. Based on this observation, a method for choosing the
space Ly adaptively was proposed in [99]. The basic idea
of this method consists in applying a lot of eddy viscosity
in strongly turbulent regions and to switch off the eddy
viscosity in laminar regions. The local turbulence intensity
was estimated with the size of the local small resolved

scales ||D(un) — Gull;2(x)- Based on these local values,
four spaces were assigned to Ly (K):

o Ly(K)={0}: the eddy viscosity is applied locally to
all resolved scales,

e Ly(K) = Po(K),

o Ly(K)=Pi(K),

o Ly(K)=D(X,(K)): the eddy viscosity is switched off
locally.

The proof of concept for this method as well as a number of
parameter studies for choosing the adaptive projection
space can be found in [99]. It turned out that the projection
space was chosen in the studied examples (turbulent
channel flow, turbulent flow around a cylinder) as it was
expected. With appropriately chosen parameters in the
selection process for the local projection spaces, the results
for the channel flow problem were better than with static
spaces for Ly. For the turbulent flow around the cylinder,
the results were similar. Every change of the space Ly
requires a new assembling of all seven additional matrices.

The use of the three-scale projection-based VMS
method with adaptive choice of the projection space on
tetrahedral grids with the Bernardi—Raugel element [17] is
described and studied in [100].

In [123], the three-scale projection-based VMS method
was studied in combination with a grad-div stabilization
term. Numerical studies for an isotropic turbulence exam-
ple showed that the grad-div term dominates the VMS
term.

Usually, the computing times of the projection-based
VMS method with static projection space are a few percent
longer than for the Smagorinsky LES model (but the results
are more accurate). Applying the adaptive choice of the
projection space leads usually again to somewhat longer
computing times.

The three-scale projection-based VMS method with
adaptively chosen projection space was used in the simu-
lation of turbulent flows in population balance systems,
modeling droplets in clouds, in [19, 20, 128]. In all cases, a
good agreement of the simulated flow fields with experi-
mental wind tunnel data were obtained.

For the projection-based VMS method that computes the
projection as a post-processing step, it was observed in
[106] that one obtains similar results for computing iso-
tropic turbulence as for the method of form (113).

9 Three-Scale Algebraic VMS-Multigrid Methods

Algebraic VMS-multigrid methods aim at introducing an
additional viscous term in the discrete momentum equation
where the turbulent viscosity is directly applied to some
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small resolved scales. This goal is the same as for the three-
scale projection-based VMS method presented in Sect. 8.
However, the scale separation into large and small resolved
scales is performed in a completely different way in both
methods.

The algebraic variational multiscale-multigrid method
(AVM?) was proposed and applied to convection-domi-
nated convection-diffusion problems in [64]. It was further
developed and extended for application to turbulent flows
in [63, 65]. Finally, the use of a more sophisticated tur-
bulence model was proposed in [121].

9.1 Scale Separation by Plain Aggregation AMG

In AVM?, the construction of the small resolved scales uses
an idea from AMG (Algebraic Multi-Grid) methods. The
motivation for this approach comes from the desire to
define the scale separation of the resolved scales without
introducing another finite element space or another grid.

AMG methods are a proposal for transferring the ideas
of geometric multigrid methods to problems where coarser
geometric grids are not available, see [135]. To this end, a
multilevel structure is constructed that is solely based on
the matrix, which represents the problem on the given grid.
In AMG methods, coarser levels, discrete operators on
these levels, and transfer operators (restriction and pro-
longation) are constructed. For the scale separation in
AVM?, only the construction of one coarse level and the
corresponding transfer operators are needed. In AMG
methods, transfer operators play a crucial role for the
efficiency of solving the linear system of equations. There
are several possibilities for constructing coarser levels in
AMG methods, e.g., smoothed aggregation [127] or plain
aggregation [138]. It is suggested for AVM? in [64] to use
the plain aggregation AMG to extract the small resolved
scales. The scale separation based on the plain aggregation
AMG will be described next.

The degrees of freedom on the given grid correspond to
the rows of the given matrix A. In [63, 64], some root degree
of freedom i is chosen and an aggregate is formed from the
union of all degrees of freedom j for which the matrix entry
a;; does not vanish. Then, these degrees of freedom are
removed from the list, a next root degree of freedom is
chosen and this procedure is continued until all degrees of
freedom belong to an aggregate. The aggregates represent
the degrees of freedom on the next coarser level. Denoting
the fine and the coarse level in terms of the mesh width % of
the geometric grid corresponding to the fine level, then the
aggregates on the coarse level were denoted in [63, 64] by 3A.

Operators for the restriction of the residual Rih and the
prolongation of functions P%, have to be defined. To this

end, consider the matrix A which differs from A only in the
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way the Dirichlet boundary conditions are replaced with
outflow boundary conditions. Let Ay be a matrix whose
columns span the kernel of A, i.e., it holds

AAy = 0. (141)

The matrix on the coarse grid can be defined with the so-
called Galerkin projection

A" = RAP!

Denoting the matrix which spans the kernel of A by Agh
gives

~3h =30 3

3 ~ ~3h
0=A"A, =R'APLA,". (142)

From (141) it follows that this equation is satisfied if
PhAY = A,.

. . ~3h
Based on this relation, the operators Pé’h and A, can be
determined simultaneously, for details see [64]. Finally,
one sets

T
R = (P,)

Note that these operators are linear operators between
finite-dimensional spaces and thus they can be represented
with matrices. For more details on the construction of the
operators and further considerations on AMG methods, it is
referred to [64].

The operator for defining the large scales is given by

3h . __ ph p3h
Sh 1 Xy — Xy, uzp = P3th up,

that is, in the first step uy, is restricted to the aggregates and
in the second step, the representation of the aggregates in
the finite element space is obtained. The small resolved
scales are defined by

u, = usz, + U, <= Up=u,—uz, (143)

In AVM? presented in [63], the definition of the aggregates is
based on the matrix that contains the complete discretization
of the velocity-velocity coupling of the Navier—Stokes
equations, including terms coming from stabilizations.

9.2 Derivation

The derivation of Algebraic VMS-multigrid methods starts
by considering first the two-scale decomposition of the
velocity and pressure

u=u,+u, p=py+p

where (up,pn) € X, X Y. The same decomposition is
applied to the corresponding test functions. After having
neglected the equation with the unresolved scale test
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functions, the equation with the test function from the finite
element spaces remains

(Ot vi) + (2vD (wn), D (vi)) + b(un,un, vi) + (V- up, qn)
—(V-vi,pn)

=(f,vn) — | (0 ,vy) + (2vD (), D (vy)) + b(up,u’,v;)

+b(u/7uh7vh) +b(ulul)vh) - (v ! Vh,p,) - (v ' ulaqh)'
(144)

Consider now the terms in the brackets, and the splitting of the
test function vj, = v3;, + ;. Then, the assumptions for three-
scale VMS methods from Sect. 3.2 are taken into account:

e The direct impact of the unresolved scales and the large
scales is negligible, i.e., all the terms in the brackets
with test function v3, are neglected.

e The direct impact of the unresolved scales onto the
small resolved scales is modeled with a turbulence
model, i.e., all terms in the brackets with test function
v, are modeled. In AVM?3, a Smagorinsky eddy
viscosity model of the form

V- (CH D@ ID(@n) = V- (vi(@n)D(w),)
(145)
was used, see [63].

A realization of the AVM? can be found so far only for the
pair of finite element spaces Q;/Q; for velocity and pres-
sure on hexahedral grids. Thus, the introduction of an
additional consistent stabilization was suggested in [63]
which includes the PSPG stabilization term as a model of
the last term on the right-hand side of (144)

(V-u',q) ~ Z (Ouy, — vAuy, + (uy, - Vuy,
KeT,

+ Vo =tk Van)g

where {ty & } g7, denote the stabilization parameters. This
additional term in the AVM? formulation circumvents the
violation of the discrete inf-sup condition in the case of
equal-order pairs of velocity-pressure finite element spaces.

Inserting the models described above in (144), the
AVM? reads as follows: Find uy : [0,T] — X, and pj, :
(0,T] — Y, satisfying

(O, vi) + (2vD (wn), D(vi)) + b(un, up, vi) + (V - tn, qn)
— (Vvn,pn) + (2vr(uy)D(uy), D(vy))
+ > (B — vAuy + (wy - V) + Vpn, tx Van) ¢

KeTy,
= (f7 Vh) + Z (f7 Tm.quh)[(-
KETh
(146)

The small resolved scales u;, are computed with the help of
the AMG approach sketched in Sect. 9.1.

In [121] it was proposed to use a more sophisticated
turbulence model than the Smagorinsky model (145), a so-
called multifractal model of u’. Multifractal modeling of
unresolved scales is based on physical considerations, see
[29, 30] for a detailed derivation. As final result, the
unresolved velocity scales can be represented in the form

u = ngs<1 _ a—4/3)—1/22721v/3 (241\//3 _ 1) ]/Zﬁh,
(147)

see [121]. In (147), Cgs is a constant, the parameter o

comes from the definition of the large scales u*"

in (143), and

h
N =log, (%) (148)

v

,le,o0=3

is the number of cascades, which depends on the local
mesh width g and the viscous scale length /,. Model
(147) is inserted in (144).

In [121], the value Cg = 0.25 was used. The viscous
scale length is about six times larger than the Kolmogorov
scale, [121]. The following approximations were proposed
in [121] [119, Section 4.2.5]

h

L=, (Ref)™

with C, =1/12.3 or C, = 1/11.2 and

Rt D@ e
v v

Thus, the value obtained on the right-hand side of (148) is
generally not a natural number. In practice, the non-natural
numbers which are computed with the right-hand side of
(148) are used for N, which can be seen, e.g., in [121,
Figure 11] or [119, Figure 4.7].

The multifractal modeling can be adapted to wall-
bounded turbulent flows and it allows backscatter, see [119,
121] for details. To enhance numerical stability, it is pro-
posed in [119, 121] to extend the multifractal model with
residual-based stabilization terms, namely the SUPG term,
the grad-div term, and the PSPG term. The arising method
is called algebraic variational multiscale-multigrid-multi-
fractal method, AVM?, in [119].

9.3 Relations to Other Methods

Since the algebraic VMS methods and the three-scale
projection-based VMS method presented in Sect. 8§ have
the same principal goal, to apply a turbulent viscosity term
directly only to some small resolved scales, their final
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equations look similar, compare (146) and (113). The
additional PSPG-type stabilization in (146) was only
introduced because an equal-order pair of finite element
spaces was used in [63].

9.4 Experience in Numerical Simulations

The algebraic VMS method AVM? was compared in [63]
with the two-scale residual-based VMS method from [10]
presented in Sect. 4. A turbulent channel flow problem and a
turbulent lid driven cavity problem were considered. The
simulations were performed for Q;/Q; finite elements. It
was observed that the results with AVM? were more accurate
in several aspects and the simulations were somewhat more
efficient. Only small differences in accuracy and efficiency
between both VMS methods were observed in [65] for the
simulation of a turbulent flow around a cylinder. Both VMS
methods turned out to be clearly more efficient than the
dynamic Smagorinsky model.

AVM* was compared in [119] also with the two-scale
residual-based VMS method from Sect. 4 and the dynamic
Smagorinsky model. Again, the simulations were per-
formed with the Q;/Q; pair of finite element spaces. It
turned out that the adaption of the method at the wall which
is described in [119] is of great importance for computing
accurate results. For turbulent channel flows substantial
better solutions were obtained with AVM* compared with
the other methods. Also for the turbulent flow around a
cylinder, AVM* provided the best results near the cylinder.
The computing times of AVM* and the residual-based
VMS method were similar.

The methods AVM? and AVM* were applied success-
fully also for the simulation of variable-density flows at
low Mach numbers, see [66, 120].

10 An Unsteady Three-Scale Projection-Based
VMS Method

This section studies the thee-scales projection-based VMS
turbulence model for unsteady flows (34) with the turbu-
lence modeling given by (38). It has a simplified structure
with respect to residual-based VMS models, and equally
applies to laminar and turbulent flows without further
adaptation. Globally, it provides a good compromise
between accuracy and computational complexity. Finally,
it allows a thorough numerical analysis, parallel to that of
Navier—Stokes equations, parallel to the analysis for the
velocity deformation projection-based VMS model pre-
sented in Sect. 8.

Stability in the L?(0,T;H'(Q)) and
L=(0,T;L*(Q)) norms will be proved, so as weak

natural
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convergence to a weak solution. The asymptotic energy
balance only is valid for solutions with some additional
regularity to the natural one, otherwise one only recovers
an asymptotic energy inequality. Also, the error estimates
for smooth solutions are of optimal order with respect to
the polynomial interpolation.

The analysis of more complex VMS methods, in par-
ticular of residual-based methods requires further adapta-
tions of the analysis that is presented here. The subgrid
terms have a very complex structure that includes con-
vective interactions between large and small scales, thus
setting serious technical problems just to prove stability.
This field of numerical analysis is nowadays in progress.

10.1 Model Statement

The model stated in Sect. 6.4 is considered in its unsteady
version. However, for simplicity of notation, a stable mixed
method will be studied (see [35] for the analysis of the
unsteady stabilized approximation with wall-laws), actu-
ally the Taylor-Hood pair of spaces: X, = [V/(Q)],
Y, = V,’l’l(Q), [>?2, are considered, where it is assumed
that the domain € is bounded and polygonal (when d = 2)
or polyhedral (when d = 3). The family of couples of
spaces (Xy, Yy,) satisfies the discrete inf-sup condition (9).
Two kinds of spaces of small resolved scales are consid-

ered: the space X, may be formed either by polynomials of
degree smaller than those of Xj:

X, = [VEQ)], with 1<k<l, (149)

or by polynomials of the same degree constructed on a
coarser grid:

X, = V@Y, (150)

where typically H = g h for some g > 2. A stable restric-
tion operator p;, : X—X), satisfying optimal error esti-
mates is associated to the method.

The following projection-based VMS model with
Smagorinsky projection-based eddy viscosity model is
considered: Find (uy,p)) € X, X ¥), such that

d
—(up,up) + bs(wp, wp, up) + a(up,uy) — (V- up, py)

dt
e(up; wp, up) = (f,up),
(V-un,qn) =0,
u,(0) = uop,

(151)

for all (uy;,qn) € X, x ¥, where ug, is the Stokes pro-
jection of u;,(0) on X;, and the form c is again given by (99)

c(uh; uh,vh) = (ZVT(uh) D(ﬁh), D(ﬁh)),
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with

ﬁh = (I - ph)uhv i)\h = (I - ph)vh7

where [ is the identity operator, and the eddy diffusion vy is
defined by the small-small (36) VMS-Smagorinsky modeling.

The role of the small scale (or high frequency) com-
ponents &, = (I — p,)u; that appear in the eddy diffusion
term c is to absorb the energy consumed in the formation of
small eddies in the inertial range (the unresolved scales).
So the basic grid to build the space X; should be fine
enough to ensure that this space covers the large scales and
an initial segment of the inertial range. Only the large
scales are expected to be solved accurately.

In practice, a full space-time discretized model should be
used. For the sake of simplicity, as a model problem the semi-

implicit Euler discretization of (151) will be considered:
e [nitialization. u2 =uUgp.
e [teration. Forn =0,1,...,N — 1: Assume that u} € X,
is known. Compute u}*' € X;, pi™' € ¥}, such that for

all u, € Xy, gy € Yy,

At
+ C(”ZH;”Zﬂvuh) - (PZH ’ V- uh) = <fn+1 5 u/’l>a

(V . uz+lth) = 07

un—H_ n
h h +1 +1
() byl ) + a(ul )

(152)
where At = T /N for some integer number N > 1, and
f" is the average value of f in (tny tns1)-

The main hints for the analysis of model (152), following
[38], are stated next. The main point is to prove the weak
convergence of the solution provided by this model to a
weak solution of the Navier—Stokes equations.

10.2 Stability and Convergence Analysis

To perform the numerical analysis of model (152) assume
that the family of triangulations {7}, . o is regular.

Important properties of the form ¢ defined by (99) are
summarized in the following lemma.

Lemma 5
(i)  The form c is non-negative, in the sense that
c(w;u,u) >0, for all w,ucH(Q).
(i)  For any uy, wy, € Xy,
e (aan wps wi)| < Co R D (@) 15 D (W) -
(153)

(i) Forall w, u € W3 (Q),
cw;w,w—u) — c(u;u,w —u)>Cy h*

L (154)
[D(w — ")”3%9

@{iv)  For all u,, wy, z;, € Xp,
|C(Wh;W1uZh) - C(uh§uhazh)|
<G (1D wi)llg + 11D (a) 1) 1D 4) g
D (wn — un)llos
(155)
where the constants Cy, C, and Cs only depend on

d, Q, and the aspect ratio of the family of
triangulations.

Let B be a Banach space. Consider the following semi-
discrete norms,

N 1/p
,,)<B>=<Zm||u2||',;> Moty = max [
=0

[|un

where up=(u),u),....u))€B"*!. Also, consider the
piecewise in time function p,: (0,T) — Y}, that takes the
value p} in the time interval (f,,#,41), and its primitive in
time Py,

Py(t) :== /Olﬁh(s) ds.

To pass to the limit in the discrete formulation to a solution
of the Navier—Stokes equations, it is sufficient to obtain an
estimate of P, instead of p,, which is much simpler from
the analytical point of view. Consider also the time incre-
ment of the velocity, tsu,(t) = uy(t 4 ) — up(t).

The stability of method (152) is given in the following
theorem.

Theorem 6 Assume that the family of grids {T}, - ¢ is
regular, f € [H™' ()], and uy € L*(Q). Then model (152)

admits a unique solution, which satisfies the following
estimates:

o\ 13)2
”uh”[OC(LZ(Q)) + \/; ||uhH12(H'(Q)) + || D(up) Hl3(L3(Q))

1
<q (||u<o>|o+ﬁ|vnm1(9))),

(156)
lswn(0)]|72 0 7520y < C20'7, for 0<S<T, (157
and

1Pl (12 () < C2s (158)
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for some constant C; > 0 independent of h, At and v, and
some constant C, > 0 independent of h and At, where
h = min hg.
- KeT, K
Proof The proof is performed in several steps.
Existence and uniqueness of solutions of discrete
problem. Problem (152) can be written as
Find /™' € X;,, pi™' € ¥, such that for all w;, € X},
qn € Y,

d(uZ“’ wn) + by(uj,, uZ“’Wh) + C(”ZHJ uZH,wh)
n+1

—(Vwipp) = {f
(v'”Z+Ith) :Oa

1 ~n
where a(u,w) :A—t(u,w) +a(u,w) and f - ="+

%. The form a is an inner product on the space H{(Q) that

,Wh>7

generates a norm equivalent to the H' norm. The existence
of a solution follows from Brouwer’s fixed point theorem
that uses the positiveness of form ¢ and the inf-sup con-
dition (9). The uniqueness of solutions is a consequence of
the well-posedness of the discrete problem (see [38,
Chapter9]).

Velocity estimates. Setting w;, = uZ“ and g, = p;
(152) yields

+1 in

1 n 2 1 n ny2 n 2
3 il + 5 ™t —ug |G + A v]| D)) + C5 b A
~n 1 n T n
HD(”hH)”(})Q,Q < EHuhHS + Ar<f" gt >
(159)
Using Young’s inequality one obtains
ey ™5 + ™ — I + Arvl|D (™15 + 2 C5 1> At
~n+1 3 n 2 — A 2
D@5 o5, < llaillo + 440~ "1
(160)
Then, if Kk <N — 1, it follows that
2 a 2 £ 2
e 6+ > e —wllg v Ar > D)+
n=0 n=0

k
2050 A0 (ID (k)5 5.0 < ufllG + 44ty
n=0

k
x> N
n=0
(161)

Estimate (156) follows, because |lug ||, < ||u(0)]],-
Velocity time increment estimates. Problem (152) is
restated in the form

@ Springer

(a,uh(t),wh) + bs(lih(l — Al‘),ﬁh(l), Wh) + a(dh(t), w;,)

+ c(din(1);din, wi) — (P(t), V - wa) = (F4(t), wn)
(v : lih(t)v Qh) =0,
(162)

a.e. in [0,T], where uy, : [0,T] — X, is the piecewise
linear-in-time function that takes the value uj at
t=t, = ndt; 4y : (—4t,T) — X,, is the piecewise con-

stant function that takes the value uﬁ“

un(t) =u) in (—4t,0); and S (0,T) — Y, respec-

tively are the piecewise constant-in-time functions that take
n+1

on (t,,,11), and

the value pj and f*" in the time interval (z,,%,4). Inte-
grating (162) in (¢,¢ + 0) for t € [0, T — 0] gives

t+0
(Tsun(t), wp) = / (Fn(s),wp)ds
' (163)

t+0
+/ (ﬁh(s)7v'wh)dta
t

where
(Fn(s),w) = — b(@n(s — Ar),un(s), w) — aun(s),w)
— c(dn(s); n(s), w) + (F,(s),w), for all
w e H)(Q).

Using (V - ts5uy (1), pu(s)) = 0 yields

T—5 T—06 pt+o
/0 leoun(r) 2 = / / (Fas). ton() ds dr,
(164)

From estimate (153), it follows that
[ Fn ()| g SC[HIIﬁh(s—At)llle+Ch2)IID(ﬁh(S))H§

D @) o + 1) |-

Thanks to the stability estimate (156), one deduces that
Frel'(H™), and [ Fpllpp1y<C for some constant
C >0 independent of 7 and A¢. By Fubini’s theorem, the
right-hand side of (164) is estimated by

/OT‘3 [ Tsun(t) g dt = ‘/OT /S;<]:h(S), Totty (1)) dt ds

<O 1 F sy IO ot
< C(51/2||uh||L2(H]) < C51/2»

where Vv denotes the extension by zero outside [0,7 — 9] of
a function v. Then (157) follows.

Estimate of the primitive of the pressure. Let w;, € X;,.
Equation (162) yields
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(Pu(0), 1) =(un (1) — %, wi) — / (Fas),wy) ds

< C (Nl ey + legllo + 17 1))
[wally < Clwall;-
Estimate (158) follows from the inf-sup condition (9). [

The convergence of model (152) to the Navier—Stokes
equations is based upon the stability estimates from The-
orem 6, combined with some compactness properties of
injections between parabolic spaces. To state them, let
consider the Nikolskii spaces

N""(0,T;B) = {f € L’(0,T;B) such that
[Fllgre < + 003,

for r € [0, 1], p € [0, 0] with

i

1
gr = sup = ||tsf s
we = 00 5 afllor

The space N"?(0,T; B) is a Banach space if it is endowed
with the norm

= “f”LP(O,T;B) + W

The following Simon’s compactness theorem holds (cf.
[132]).

<rp .
N

Fllwro.1:)

Lemma 6 Let X, B, Y be Banach spaces such that
X — B—Y where the injection X — B is compact. Then
the injection

L0, T;X)NN"?(0,T;Y)—L"(0,T;B)
with O<r<1, 1<p< 4+ 00

is compact.

Observe that by estimates (156) and (157) the functions
u;, are uniformly bounded in N'/42(L?). Now, the con-
vergence theorem can be stated.

Theorem 7 Assume that the family of triangulations
{T1}, - is regular, f € I*(H™ ") and uy € L*(Q). Then
the sequence {(wp,pn)},~ o provided by method (152)
contains a subsequence that is weakly convergent in
L*(H') x H'(L*) to a weak solution (u,p) of the
unsteady Navier—Stokes equations.

Proof The proof is performed in several steps.
Extraction of convergent subsequences. By estimates
(156) and (157), the functions u;, are uniformly bounded in
L*(0,T;H"),in L*(0, T;L?), and in N'/42(0, T; L?). As the
injection H'(Q)—L"(Q) is compact for 1 <r<2d/(d — 2),
by Lemma 6 with X = H'(Q), B =L",and Y = L*(Q), one
deduces that the sequence {u;},., is compact in

L*(0,T;L"). Then the sequence {u;}, - , contains a subse-
quence (that is denoted in the same way) which is strongly
convergent in L?(0,T;L"), weakly in L*(0,T;H"), and
weakly-*in L*>(0, T; L2) to some u. Also, by estimate (158),
the sequence {Py}, - , is uniformly bounded in L>(0, T; L?).
Then it contains a subsequence (that can be assumed to be a
subsequence of the preceding one) which is weakly-*
convergent in L>(0, T; L?) to some P. It will be proved in
the sequel that the pair (u, O,P) is a weak solution of Navier—
Stokes equations.

Limit of the momentum conservation equation. The
momentum conservation equation in (162) may be re-
written as

/ (n(1), wa)' (1) dt — (s, wn) 9(0)

T
0

wn (1), wn) (1) dt

+ | a(u @(t) dt

/OT (165)
+A c(u 1), wyn) (1) dt

/ ),V wa)e' (1)

/ (Fult),wn) @(t)dt, for all w e X,

for any function ¢ € D([0,T]) such that ¢(T) = 0, where
u, : (0,T) — X, is the piecewise constant in time func-
tion that takes the value u}} on (¢,, f,41).

By estimate (156) the sequences u;, and u, are also
uniformly bounded in L?(0,T;H") and in L>(0,T;L?).
Then, each one of them contains a subsequence weakly
convergent in L>(0,T;H') and weakly-* convergent in
L>(0,T;L*) to some limits. But both limits should be
equal to u since

__ 2
— ;| OT-LZ)}
At

<At |uolly 5,0 T Hf”Lz 0TH )

-2
max {|[|u; — uh||L2(07T;L2)7 [l

Time derivative term. Let w € H}(Q). Due to the
approximation properties of Lagrange finite element spaces,
there exists a sequence {wj},. , such that w, € X, that
converges to w in X, in H{(Q). Observe that if
7€ L*(0,T;L*) N L*(0,T;L*), then by Holder’s inequality

1/3 2/3
lzlloras) < el 20 raz) Il ot 7
Then, the sequences u, and u; strongly converge to u in
L3(0,T;L?) and

@ Springer



156

N. Ahmed et al.

T

tim [ (une), wa)o! (1) di = / (w(t), w)g/ (1) di.

(h,41)—0 Jo

Convection term. Integration by parts yield
by(u, (¢), (1), wn) = () (1) - Vatn(t), wn)
1 - - .
~3 (V-a, (t),w,-up(t)) ae. in (0,7).
As @, and @, strongly converge to u in L*(0, T;L*), and

weakly in L?(0, T; H'), both terms pass to the limit and
T

i [ 0.0 w00 d

T
:/0 b(u(t),u(t),w)ep(r) dr.

Diffusion terms. As u,(t) is weakly convergent to u in
L*(0,T;H"), it holds

T T
fim [ a(in(e), wn) o(t) di = / a(u(), w) o(f) d.
(h,d41)=0 Jo 0
T
Also, lim c(un(t);a,(t),wy) @(t) dt = 0. This state-
(h,46)—0 Jo

ment follows from (153), that yields

/ " el (1), wn) 9l0) di

T
<cpan / 1D ()2 1Dowa)lo (1)
<cw P [ D(”h)”i?(o,T;LZ) 1D 0wn)llo ||(P||Loc(0.T)'

Pressure term. As V - wy(x) ¢'(¢) is strongly convergent
in L2(0,T;L?) to V -w(x) ¢'(r) and (Py), - , is weakly-*
convergent in L (0, T; L?) to P, it follows that

T

I Py, V- /(1) dt
ghm PV wa(x)) @'(1)

:/0 P,V -w(x)) ¢/ (1) dr.

Limit of the continuity equation. Consider some function
g € L3(Q), and some interpolate g, € Y, strongly con-
vergent in L%(Q) to g. As uy, is weakly convergent to u in
H'(Q), it follows that

/0 (V- u(t). q) plr) di

= lim (V -up(t),qn) @(t)dt = 0.

(h,41)—0 Jo

Conclusion. As a consequence of the preceding analysis, u
belongs to L*(0,T;H}) NL>¥(0,T;L*), P belongs to
L>(0,T;L?), and the pair (u, P) satisfies
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- / (u(1), W) (£)di — (o, w) p(0)
+/ [bs(u(t),u(t),w)dt + a(u(t),w)] o(t) dt
0

+ /OT(P(t),V W) (1) dt = /OT(f(t),w><p(t) dr.
(166)

for all w € H)\(Q), ¢ € D([0, T]). Thus, the pair (u,d,P) is
a weak solution of the Navier-Stokes equations. As P,
weakly converges to P in L?(0,T;L?), then p;, = 0,P;,
weakly converges to p = 0,P in H~ (0, T;L?). O

The above proof shows that the eddy diffusion terms
vanish in the weak limit, and a standard weak solution of

Navier—Stokes equations is recovered. No eddy diffusion
concentration effects take place in the weak limit.

10.3 Error Estimates

Let B;, be a sub-space of a Banach space B. Given
u € C°([0,T],B), denote
1/p

3

N
dlp(B)(u,Bh) = [At ng(u(tn),Bh)p
n=0

dp<p)(u, By) = ni%adeB(u(tn), By).

Theorem 8 Assume that the family of grids {T,}, -, is
regular, that the data satisfy f € C°(0,T;L?),
of € LX(0,T;H "), uy € W'(Q) and that the unsteady
Navier-Stokes equations (166) admit a solution (u,p) €
€0, T; W'3) x C°(0, T; L?) such that 97u € L*(0,T;L?).
Then the sequence {(wp,pn)},- o given by the discrete
projection-based VMS model (152) satisfies the error
estimates
||u —uhH[ac(LZ) + ||u _Uhle(Hl) SM(”Z,AI) +Cdlx(L2)(u,Xh)7
(167)
1P — Ph||log(L2> <M(h, At) + Cdloc(p)(P, Yi), (168)
where

1
M(h, At) = c[m o+ do(u(0), X3) + - i) X0)
+ dIZ(Hl)(u7Xh) + dl2(L2)(p, Yh)
+ 122 (e (u, X )+ ey (0, X))
(169)

and C is a constant independent of h and At, increasing
with T.
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Proof As u(t,) is divergence-free, its Stokes projection,
defined by (15), satisfies the estimate ||D(u(t,) —¥})]|, <
Cdp (u(ty), Xp). Let p also denote the L?*(Q) orthogonal
projection of p(t,) on Y,. Define the errors in velocity and
pressure by e, = ujl — v}, A, = p} — pj. Due to the regu-
larity of data and solution, the unsteady Navier—Stokes
equations (166) yield

(Owu(t),w) + a(u(t),w) + bs(u(t),u(t),w) —
= {f(),w)(V -u(t),q) = 0,u(0) = uo,

(V-w,p(1))

(170)

for all w € H}(Q), g € L3(Q), for all t € [0, T]. Subtracting
term by term (152) from (170) at t = t,,,; one obtains the
error equation: for all w;, € Xy, g, € Y3,

en+1 _ eh |
()
— by w T wy) — (Vw4 h + et ult wy)

- C(uz+l uZ+l wh) <82+1a h>7 (v : eZJrlaqh) = 07

(171)

wa) + by (, u ™ wi)

where sZ“ € H' is the consistency error, defined by

ﬂ"+1 9y
(1 w) = (azuml) - —w)

+ by(u(tyr1), u(tnir), w) — b(vh>uZ“>W)
+a(u(tyn) —w ™ w) — @t apttw)
— (P(tasr) =3V - w) = f i), w).
(172)

Due to the monotonicity of the form ¢ (Lemma 5 iii)), it
holds

c(uzﬂ u2+1 Wh) _ (uZH u2+1’ h)ZChz
[ID (™! _n+1)||039>0

Then the stability estimate (156) holds when u}, is replaced

by the error e}, f Y 1s replaced by s”“ and ug y, is replaced
by €. Obtaining error estimates for the velocity is then

reduced to estimate the />(H ') norm of the consistency

error €', In particular, the penalty term n"*'(w)=
(uz+l u;l’“, ) that appears in the expression of sh+1 has

to be bounded. Denoting e} = (I —p,)e;™" and
Btn11) = (I~ pyulinrn) gives
~n+1 ~n+1 -~
D@ Dllo < D@l + 1D (11)) g
< CID@ o + 1D (1)) -

Combining this estimate with (153) one deduces

I+ )| < C2 D@ D),
< (ID@E I+ 1D (@ (1)) F)
IDG) o
It follows that

N—-1
ZAIH’/I,’HH%FI SChZ(Z—d/Z)
n=0

% (ID@ 16+ D@ ) 5)
< R (dp (1, X,)*
+ d]A(HI)(u7 )?h)4) .

This yields the last term in the error estimate (169). The

estimates of the remaining terms in the expression (172) of

32*1 are obtained by means of a discrete version of the

Gronwall Lemma used in the proof of Theorem 5, to
conclude the error estimates (167) and (168). O

The error estimates (167) and (168) would be of optimal
order in space if the term h2~4/2 (d,4(H1)(u,Xh)2 + dp gy

(u,X;)?) is at least of the same order as the term
dp(sy(u, X)) for sufficiently smooth u. If the spaces X,

and X, are given by (149), this happens if

k>1/2+d/4 — 1. If spaces X}, and )A(h are given by (150),
then this property directly holds.

10.4 Asymptotic Energy Balance

In the steady case, the subgrid eddy dissipation energy is
given by

CSth/HDuh ) dx,

KeTy

see (106). Then, Eg asymptotically vanishes as 4 — 0 and,
using the notation of Section 6.4, it holds

Nm(Ep (up) + Es (un)] = Ep(u).
In the unsteady case, the inverse estimates

ID@n(0))llosx < Chg' " 7 (1)l 5 for 1<r<3,
o~ —d/6 o~
1D @n(0)llo3.4 < Chg™ 1D (A1) o 2.4

yield

~ 1—d/r ~
W 1D (@n(0))llos x < Chic " a@n()llg, x 1D @n(0)G 2.4
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Consequently, it follows that

A/~ ~ 2
Es(up) <C ﬁl d/r”uhHLOC(OA,T;L') |uhHL2(O,T;H')'

Then, the subgrid energy Es(u;) asymptotically vanishes if
iy, is bounded in L*(L") for some r > d. However the
standard stability estimates yield uniformly bounds in
L>®(L?) and then one cannot ensure that the subgrid energy
asymptotically vanishes.

10.5 Experience in Numerical Simulations

Some experience in numerical simulations of models (98)
and (152) with LPS stabilization will be reported here,
respectively for steady and unsteady flows. In [36] the
results of simulations of the steady three-dimensional tur-
bulent channel flow at Re, = 180 with several VMS
methods on relatively coarse grids were compared:

e SMA model: The Smagorinsky LES model, given by
c(un; un,vn) = 2(vr(un)D(uy), D(vh));

e VMS-S model: The small-small VMS-LPS setting,
given by (360), i.e.,

c(up;up,vi) = 2(vr(un)D(un), D(v));

e VMS-B model: The Berselli-Iliescu-Layton setting
[18], in which:

c(usun, vi) = 2(vr(I,D () D (@), T,D0) )

where 1T Z =1 —1II,, and II, is an interpolation oper-
ator on a coarser Py finite element space;

e STAB: The purely stabilized method, i e., (98), with
c=0.

Two versions of the VMS-S and the STAB methods were
tested, one with wall laws and the other with no-slip
boundary conditions.

Equal-order interpolation P, for velocity and pressure
were used. Also, a Crank—Nicolson scheme for the tem-
poral discretization was used, combined with a lineariza-
tion of convective and subgrid eddy viscosity terms. This
approach provides a good compromise between accuracy
and computational complexity.

Table 1 displays a comparison of the L? errors in the
stream-wise direction, with respect to the DNS results from
[116] with a grid four times finer in each space direction.
One can observe that the errors range between 11% and
24%, the best ones correspond to the VMS-S method with
no-slip boundary conditions. The accuracy provided by the
methods with wall laws is acceptable for this stream-wise
direction, although reaching too high error levels for the
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Table 1 L? norm of the deviation from the DNS profiles for the
stream-wise velocity

Methods el (y* € [0,180))
VMS-S (NO-SLIP BC) 0.1141
VMS-S (WALL-LAW BC) 0.1734
VMS-B (NO-SLIP BC) 0.1786
SMA (NO-SLIP BC) 0.1260
STAB (NO-SLIP BC) 0.1791
STAB (WALL-LAW BC) 0.2373

Table 2 L? norm of the deviation from the DNS profiles for the
second-order statistics

Methods V) V) ) QL)
€ € € 0
VMS-S (NO-SLIP BC) 0.2252 0.1652 0.1108 0.1162
VMS-B (NO-SLIP BC) 0.2281 0.2018 0.1246 0.1706
SMA (NO-SLIP BC) 0.3002 0.2236 0.1597 0.1249
STAB (NO-SLIP BC) 0.3781 0.2536 0.1955 0.1708

homogeneous (cross-flow) directions. The use of wall laws
provides a reduction of the computing time of about 35%.

Also, Table 2 displays the normalized (by the computed
u;) root mean square (r.m.s.) values of velocity fluctuations

@2 = 112 = (u)*))'* (i = 1,2,3) in wall coordinates
yT at the upper half-width of the channel, as a measure of
the error in turbulence intensities. Only the no-slip
boundary conditions were considered, as the errors with
wall-laws were much larger. For those second-order
statistics the errors are larger than for the first order ones,
ranging around 30%. Again, the VMS-S method is in
general in good agreement with the DNS data.

Only limited numerical experience with the solution of
evolution turbulent flows with (152) is available. In [1]
method (152) with LPS stabilization of convection, diver-
gence and pressure gradient is applied to the simulation of
a high Reynolds number (Re = 10*) plane mixing layer
flow, with accurate results for relatively coarse grids.
Equal-order interpolation P, for velocity and pressure is
used. Space and time accurate simulation of the pairing of
primary and secondary vortex is achieved. Quite accurate
time evolution of the vorticity thickness is computed with
grids of 160 x 160 nodes. Also, model (152) with LPS
stabilization has been extended to buoyant flows. Some
recent yet unpublished results obtained by the authors show
that a similar accuracy for the natural convection of high
Rayleigh numbers (Ra) airflows in a differentially heated
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plane cavity (up to Ra = 107) is achieved with relatively
coarse grids.

11 Summary and Conclusions

The purpose of this article has been to present a state-of-
the-art review of VMS methods for the simulation of tur-
bulent incompressible flows. These methods are widely
used nowadays as one of the most promising and successful
approaches that seeks to simulate large scale structures in
turbulent flows, also in combination with advanced tech-
niques such as, e.g., isogeometric analysis [10, 11].

The common feature of these methods is the use of
multiple scales in modeling the turbulence, where the
scales are defined by variational projections into appro-
priate function spaces. Apart from this common feature, the
realization of VMS methods differs considerably, and a
“jungle” of several types of VMS methods is present in the
scientific literature. So, even if there exist much research
work published on VMS turbulence models, the different
VMS methods are mainly used in the groups that proposed
them, and there is no structured presentation of them. The
present review aimed at giving such a presentation with the
emphasis on derivation, numerical analysis in the frame-
work of the finite element method, and experience in
numerical studies. In this way, the common features of
VMS methods should become clear as well as their main
differences.

Starting point was the presentation of the basic concepts
of VMS methods: The basis of all VMS methods is the
separation of the flow field into resolved and unresolved
scales. VMS methods which use just resolved and unre-
solved scales belong to the class of two-scale VMS
methods.

Within two-scale VMS methods, the residual-based
VMS method, the OSS method, and LPS methods were
presented.

The first two methods are residual-based models, since
the basic procedure consists in keeping all terms in the
residual-driven structure of the resolved flow equations and
to perform an approximated analytical solution of the small
scale flow through a diagonalization procedure, where a
proper definition of stabilization coefficients is crucial.
This procedure does not make use of the statistical theory
of equilibrium turbulence (eddy viscosity models). The
main difference between the two approaches consists in the
fact that in the OSS only the orthogonal projection of the
residual on the large scale space is used. One of its relevant
features is that it introduces a numerical diffusion on the
large scales which is asymptotically equivalent, as the
Reynolds number increases, to the eddy viscosity

dissipated by the unresolved scales, for sufficiently fine
grids. These methods are consistent.

In contrast, LPS methods can be considered as simpli-
fied methods that provide specific stabilization of any
single term that could be a source of instability for the
numerical discretization. Their structure could be achieved
by retaining in the OSS method the specific diffusive
interactions that stabilize convection, divergence, and
pressure gradient, and by changing the global L? projection
by local L? projections. This approach leads to a family of
methods, associated to the choice of the actual local L?
projection. The main difference with residual-based models
is that they are not fully consistent, but of optimal order
with respect to the finite element interpolation. The fact
that the stabilization enjoys the right asymptotic behavior
without full consistency allows to decouple the stabiliza-
tion of the pressure and the velocity. This feature could be
considered an important advantage with respect to the more
complex residual-based methods in view of practical
implementations such as to perform the numerical analysis,
since it leads to a simpler and less expensive structure.

Nevertheless, the VMS framework allows various other
arrangements, going beyond a two-scale decomposition, so
that other classes of VMS methods can be distinguished.
The most common approach allows a further decomposi-
tion of the resolved scales into large resolved scales (or
large scales) and small resolved scales, leading finally to a
so-called three-scale VMS method. Within three-scale
VMS methods, a bubble VMS method, velocity deforma-
tion tensor projection-based VMS methods, and algebraic
VMS-multigrid methods were discussed. All these methods
include eddy viscosity modeling in the small resolved scale
equations to model the dissipative effects of the unresolved
scales. The eddy diffusion only affects the small resolved
scales, thus reducing or even avoiding over-diffusive
effects.

There are several realizations of bubble VMS methods
which differ in some details: The derivation presented in
this work corresponds to the three-level finite element
method based on residual-free bubbles (RFB). The com-
putation and storage of the RFB functions is computa-
tionally quite consuming and several simplifications to
solve the resolved small scale equation can be performed.
The resolved small scale pressure is not solved, but mod-
eled as in the residual-based VMS methods. On the one
hand, the diffusive grad-div stabilization appears in the
large scale equation. On the other hand, this step allows to
eliminate the incompressibility restriction for the resolved
small scale velocity. Thus, the resolved small scale equa-
tions are approximated by a system of convection-diffusion
equations, where a subgrid eddy viscosity term is added to
model the effect of the unresolved scales on the small
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resolved scales. However, these equations are strongly
convection-dominated, which results in the necessity to use
large values in the coefficient of the eddy viscosity term.
From the computational point of view, the use of RFB-
based VMS methods is quite involved.

A different way of realizing a three-scale VMS method
consists in adding to the standard Galerkin formulation an
eddy viscosity term that only affects directly the small
resolved scales. These scales might be defined as the L?
projection of the velocity deformation tensor into an
appropriate large scale space, which leads to the so-called
velocity deformation tensor projection-based VMS
method. The large scale space can be defined on the same
grid as the finite element space, enabling an efficient
implementation of the method. The structure of the method
allows a thorough numerical analysis, along the same lines
as that of the Navier—Stokes equations.

Algebraic VMS-multigrid methods apply a different
definition of the large scales. In these methods, the scale
separation is performed for the velocity (and not for the
deformation tensor). This separation uses components of an
AMG method thus avoiding to introduce another finite
element space or another grid, just matrix restriction/pro-
longation operators have to be defined, thus creating a
multilevel structure starting from a coarse level.

The numerical analysis has been developed to a different
degree for the individual VMS methods. Most results are
known for LPS methods and the velocity deformation
tensor projection-based VMS method. For some other
VMS methods, at least results are available for simpler
equations or for simplifications in the formulation of the
method. Analytical results concerning the well-posedness
of the discrete problems to guarantee the existence and
uniqueness of a solution, stability results to obtain a priori
bounds on the solution, or energy estimates are certainly of
importance for practical purposes. The situation is some-
what different for error estimates of the form (20) or (136)
because the constants in the error bounds become unreal-
istic huge even for small times. However, current mathe-
matical tools do not allow to prove error estimates of a
different kind. In summary, even if there are many results
concerning the numerical analysis of VMS methods, in
comparison with other approaches for turbulence model-
ing, there are still many open questions.

VMS methods were compared in numerical studies
usually with LES methods, like the Smagorinsky LES
method or the dynamic Smagorinsky LES method. Gen-
erally, the results obtained with the VMS methods were not
worse, often even better than those of the LES methods.
Excellent results using for instance residual-based VMS
models were first presented in [10], applying isogeometric
analysis for the space approximation [82]. In the recent
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years, residual-based VMS methods have demonstrated to
be able to simulate (the large scales of) transient and steady
turbulent flows with high accuracy. However, there are
relatively few comparisons of different VMS methods, see
[63, 98] for some examples. In our opinion, comparisons of
different numerical methods should be performed with the
same code. Besides using different codes for comparisons
of different VMS methods, other aspects like the choice of
the finite element spaces (inf-sup stable or equal-order,
degree of the polynomials), the concrete grid, the explicit
or semi-implicit treatment of certain terms, the time step-
ping scheme, the stopping criterion for solving the non-
linear problem, the choice of the local mesh width for
anisotropic mesh cells, the concrete choice of parameters in
the models, etc. might have an unknown influence on the
results. Since comprehensive studies of several VMS
methods within one code are not available, there will be no
recommendation of VMS methods to use. If one wishes to
apply a VMS method for the simulation of turbulent
incompressible flow problems, the decision which concrete
VMS method should be used will be guided from subjec-
tive preference and from the structure and the features of
the used code.
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