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Chapter 1

Introduction

1.1 Motivation

Solving partial differential equations (PDEs) in high-dimensional domains using classical
approaches, such as finite elements and finite difference methods, is not always the best
solution, due to complexity issues [KKL+20]. In recent years, solving these complex PDEs
using advanced computational intelligence models has been among the most interesting top-
ics for many researchers. Many studies focused on applying the artificial neural network
(ANN) as an alternative approach to solve these complex problems. However, the effective-
ness of ANN requires a large amount of data, in order to guarantee an optimal solution
during the training. Collecting large size of data is expensive and prohibitive. On the other
hand, having a limited size of data becomes challenging. It causes lack of robustness and
the model becomes sensitive to any small changes made to the data [RPK17].

To address this challenge, a new method has been developed that combines the neural
networks (NN) with physics-informed methodologies. The most popular paper in this field
was published by Maziar Raissi, Paris Perdikaris and George Em Karniadakis [RPK17]. The
approach is based on training NN model by adding all the additional information that comes
from the physics side by general nonlinear PDE and it is called physics-informed neural net-
work (PINN). PINNs represent a significant advancement, as they are capable of integrating
data with inherent noise into the NN, discovering underlying physical principles and effec-
tively tackling problems with a high number of dimensions [KKL+20].

This master thesis explores the training of PINN using different widely-used optimiz-
ers. Selecting the right optimizer for training a PINN model is a crucial decision, as
it directly impacts the model’s speed, performance and accuracy. Additionally, the se-
lected optimizer’s sensitivity with respect to the hyperparameters must not be overlooked.
[CSN+20]. The optimizers, that are chosen for this study, are the stochastic gradient de-
scent method (SGD), Adaptive Moment Estimation (Adam), Nadam and Broyden-Fletcher-
Goldfarb-Shanno (BFGS).

Many recent research, that focus on the comparisons of optimization algorithms, overlook
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the relevance of the inclusion relationships between the optimizers or the choice of the hyper-
parameters in ways that break their inclusions [CSN+20]. Currently, there is no theoretical
guidance that practitioners follow to choose the right optimizer for them. Instead, they rely
on empirical studies and benchmarking. The comparison is actually conducted across variety
of tasks and then concentrated on the optimizer’s effectiveness. However, finding the opti-
mal hyperparameters for the optimizers to match their performance together, is extremely
difficult and sometimes even impossible [CSN+20].

SGD was initially chosen for its simplicity and straightforward implementation in train-
ing PINN [KB17]. However, leveraging the inclusion relationship among optimizers, further
Adam is employed. This inclusion relationship indicates that one optimizer can approximate
or encompass the behavior of another. For instance, Adam can simulate the performance
of SGD by tuning its hyperparameters. This characteristic of inclusion ensures that as hy-
perparameter tuning approaches an optimal configuration, the more expressive optimizer,
Adam, will not underperform relative to any of its simpler specializations [CSN+20]. Nadam
is a recent alternative variation of the Adam optimizer. It is a combination between Adam
algorithm and Noestrov acceleration gradient. Additionally, BFGS algorithm is selected as
last optimizer, due to its strength in handling second-order information. BFGS, being a
quasi-Newton method, efficiently approximates the Hessian matrix, thus accelerating con-
vergence in complex, high-dimensional landscapes often encountered in PINN [NW06]. This
combination of optimizers aims to balance simplicity, expressiveness, and rapid convergence
for optimal performance in training the PINN model. Those optimizers will be discussed
more in details in the third chapter of this master thesis.

This study focuses on the convection-diffusion-reaction problem, a complex mathematical
representation critical for modeling various natural and engineered systems, making it an
ideal choice for evaluating the effectiveness of PINN. The training process of the PINN
looks to find an optimal solution to the loss function to determine the best parameters. In
chapter four, a special PINN architecture will be explored, Hard-Constrained, highlighting
how their differences in loss function setup and structural design influence the quality and
efficiency of solutions. This analysis will clarify the role of these variations in improving
PINN performance for complex PDE such as the convection-diffusion-reaction problem.

1.2 Outline

The main focus of this master’s thesis is comparing optimizers for training PINN, particularly
in solving convection-diffusion-reaction problems. The second chapter gives an introduction
to machine learning and detailed explanation of the ANN, exploring its architecture, hyper-
parameters, loss functional. At the end of this chapter, the backpropagation equations are
proved and gathered in an algorithm.

The third chapter explores four different optimizers in depth, which are SGD, Adam,
Nadam and the BFGS algorithm. This part focuses on the optimizers mechanisms, strengths,
and challenges in NN training.
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The fourth chapter provides the PINN framework tailored for the convection-diffusion-
reaction problem. Hard-constrained PINNs are described to showcase special approaches
in embedding physics directly into the network, in order to incorporate the inlet boundary
conditions into the training process rather than being learned.

Th final chapter investigates a comparative analysis of the optimizers mentioned in the
previous chapter. The analysis is conducted using hard-constrained PINN, assessing each
optimizer’s effectiveness based on convergence speed, accuracy, computational efficiency and
the approximation of the solutions.
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Chapter 2

The Artificial neural network

A brief overview of machine learning is presented, highlighting its key principles and signif-
icance. The second and third section delves into the components and workflow of the NN
model, providing a detailed explanation of its structure and functioning.

2.1 Machine learning

A machine learning is a subfield of artificial intelligence that develops algorithms, capable of
learning patterns from data. It improves a computer’s performance at some task by learning
via experience based on data-driven insights. Machine learning tasks are usually described
in terms how the machine learning system should process a sample. A sample is a collection
of features that have been quantitatively measured from some object or event, represented
as a vector x ∈ Rn, with xi as a distinct feature [GBC16].

The most common machine learning tasks are:

• Classification: it splits the input data into k categories. Then, the algorithm produces
a function f : Rn → {1, 2, ...., k} that maps a vector x to a category.

• Regression: it predicts a continuous numerical value based on a given input. The
algorithm produces a function f : Rn → R that estimates a target value associated
with the vector x.

Using the experience, we can categorize the machine learning into supervised and unsu-
pervised learning algorithms.

• Unsupervised learning algorithm: experience a dataset containing hidden features. So,
the algorithm extracts the properties and learns the entire probability distribution that
generated this dataset. In other words, the algorithm is observing several samples of
a random vector x and attempts to implicitly and explicitly to learn the probability
distribution P (x).
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• Supervised learning algorithm: experience a dataset incorporating features. At the
same time, each sample is associated with an existing output. The algorithm observes
several examples of a vector x and an associated value y, which is the existing output
then learning to predict ŷ from x by estimating P (y/x).

Machine learning algorithm requires always a training dataset, which provides labeled
samples. The goal of this dataset is to build a relationship between the target output and
the input features, such as in the classification case. Another separate set, called the test
dataset, is essential in evaluating the performance of the learning algorithm with a new,
unseen data [GBC16].

To evaluate the capabilities of a machine learning algorithm, performance quantitative
metrics are designed. A common metric is accuracy, which is the proportion of samples for
which the model produces a correct output. An equivalent metric is the error rate, which
is the proportion of samples for which the model produces an incorrect output. This is
referred as 0-1 loss, where 0 if it correctly classified and 1 if it is not [GBC16]. In some other
tasks, it does not make sense to measure the accuracy. For example in regression, a different
performance metric is used. It gives the model a continuous valued score for each sample
[GBC16].

In some cases, a learning algorithm performs perfectly well on the training dataset, but
struggles on the test dataset. This situation is known as Overfitting. Overfitting occurs
when the model memorizes the training data, including its noises, rather than identifying
the underlying patterns. As a result, the model loses accuracy when applied to new, unseen
data [Bab].

Figure 2.1: Overfitting in Machine Learning: Insights from Classification and Regression
[Bab].

While choosing the appropriate performance metric is crucial for the evaluation of any
machine learning algorithm, it is also important focusing on the model’s underlying archi-
tecture. Artificial NN have become a powerful and flexible approach for handling complex
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datasets and achieving high accuracy in both classification and regression tasks. By lever-
aging interconnected layers of neurons, NN enable advanced learning capabilities, making
them a fitting choice for tackling diverse and intricate problems.

2.2 Artificial neural network

In this section, the key terminologies related to the NN model are clarified, including the loss
functional, the activation function. Each term is explained and presented by their respective
roles. Furthermore, the inner workings of the layers and neurons are examinated to provide
a deeper understanding of how the network operates. Finally, the backpropagation process
is explained in detail, including its role and its mathematical formulation.

The foundational model of NN was introduced by Warren McCulloch and Walter Pitts
in 1943. Their model was based on building binary switches, which are components that can
turn on or off ,analogous to bilogical neurons. They demonstrated that even simple networks
made from these switches are capable of solving a range of almost any logical or arithmetic
functions [Kri07]. Another model was introduced in 1960 by Bernard Widrow and Marcian
E.Hoff, called Adaline-Adaptive Linear Neuron. This model was very simple, consisting of
a one single layer model, and it focuses on minimizing the loss function to update its pa-
rameter. However, this model is considered as very simple NN that cannot solve complex,
nonlinear problems [NW06].

NN experienced a surge of interest from their inception until 1969, a period often known
as Golden age and following this period the field saw a slower silence of development [Kri07].

2.2.1 Neural network architecture

This subsection outlines the computation process inside the units of NN, the computation
inside the artificial neuron and the propagation from the input layer to the last output layer.
The NN’s architecture plays an important role, since it directly impacts the model’s per-
formance. The discussed NN model is a feedforward neural network (FNN). In this model,
the input flows strictly forward from the input layer through each hidden layer, without any
cycles or feedback loops, ensuring a clear path from inputs to outputs [HH18].

The fundamental building block of the FNN is the artificial neuron, which performs crit-
ical computations that drive the model’s functionality. The computation process inside the
artificial neurons is modeled after the idea of biological neurons inside the human brain. In
biological neurons, signals are received through dendrites, which pass an electrical impulse to
the cell body. If this impulse reaches a certain threshold, it triggers an action potential that
goes down the axon and releases neurotransmitters at the synapses, signaling other neurons.
The same artificial process is explained based on the Figure 2.2 step by step.
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Figure 2.2: Representation of an artificial neuron’s components, including the weights, the
net input, the activation function and the activation output [CdCV18].

As shown in Figure 2.2, each neuron receives an input x ∈ Rn with n ∈ N, where
x = (x1, x2, ...., xn). The input may be either from a previous neuron or an external source.
The input is first multiplied by a corresponding weight w ∈ R and next the multiplied
weighted inputs get summed all together. Then, a bias b ∈ R is added to the result, forming
what is called the net input. Afterward, the net input is further processed by the activation
function σ [Kri07], which is a nonlinear function, that determines the neuron’s output, known
as the activation and denoted by a.

The computation of the output of an arbitrary k neuron is represented as:

ak = σ(W kak−1 + bk), (2.1)

where W is the matrix of the weights, with the columns are the indices of the neurons in the
previous layer k − 1, and the rows are the indices of the neuron in the layer k. The entries
will be denoted by wk

jl, it is the weight from the l-th node in the k − 1 layer connected to
the node of index j-th in the layer k. The weights control the strength of the connections
between neurons, while the bias is an additional input to the neuron that helps to adjust
the output of the activation function [Sal23].
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Figure 2.3: Representation of simple neural network architecture with two hidden layers
with 4 neurons per layer, an input layer with 3 nodes and output layer with single node.

The neurons are arranged into blocks, known as layers. Each layer can contain at least
one neuron. The layers in the FNN model are typically three types. The first type is the
input layer, where no computation is performed, but it simply receives the raw inputs and
passes them to the next layer. The second type is the output layer, which produces the
output of the neural network. In between there are the hidden layers. Those intermediate
layers perform the core computations. The model can have one or more hidden layers. The
number of neurons and layers in the model determines its capacity and ability to capture
complex relationships in the data.

In summary, forward propagation is the process by which input data is passed through a
FNN to generate an output. It involves computing the output of each neuron in each layer of
the network by applying the weights and biases to the inputs and passing the results through
an activation function [Sal23].

2.2.2 Activation function

As shown in the Figure 2.2, the net input passes through a threshold nonlinear function
called activation function. Similar to the biological neurons, the output of the activation
function determines whether the neuron will get activated or not. The activation depends
actually on the previous activation state of the neuron and the current input [Kri07]. If the
input is large enough then the neuron is activated, otherwise it will remain inactive [HH18].
Each neuron has a unique threshold value, which marks the position where the gradient of
the activation function reaches its maximum [Kri07].

The choice of the activation function should not be arbitrary. The following are the most
common used activation functions:

1. The Swish function

σ(x) =
1

+eβx
. (2.2)
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2. The Sigmoid function

σ(x) =
1

1 + e−x
. (2.3)

3. The Tanh function

σ(x) = tanh(x) =
ex − e−x

ex + e−x
. (2.4)

4. The GeLU function

σ(x) = 0, 5x

(
1 + tanh

(√
2

π
(x+ 0, 044175x3)

))
(2.5)

Figure 2.4: Sigmoid (2.3) and Tanh (2.4) activation functions [Ajm23].

Figure 2.5: GeLU (2.5) and Swish (2.2) activation functions [Ajm23].
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The plots of these activation functions are presented in Figures 2.4 and 2.5. Over the
years, mathematicians found out that simpler the activation function tend to yield better
performance [Cas20]. While a variety of activation functions exist, such as the Sigmoid and
Tanh functions, they share a common limitation: they are prone to the vanishing gradient
problem. This issue arises during backpropagation, the process where gradients are prop-
agated backward through the network to update the weights and biases. If the gradients
are less than one, their repeated multiplication leads to progressively smaller values. Con-
sequently, these gradients can diminish to the point where they effectively approach zero,
resulting in minimal or no updates to the weights and biases during training [NIGM18].

The outputs of the tanh and Sigmoid functions are confined to a limited range, which
results in smaller gradient values. These gradients, when used in backpropagation, can
contribute to the vanishing gradient problem. In addition, the activation function should
possess more properties, which are non-linearity, because it helps detecting the complex
relationships between the inputs and the outputs, and the differentiability, which will be
used in the backpropagation [Cas20].

2.2.3 Tuning hyperparameters

Besides model parameters, hyperparameters play a crucial role in FNN by controlling the
convergence, accuracy, and robustness of the model. The hyperparameters include the num-
ber of layers or neurons, batch size, number of epochs, learning rate, etc. Despite extensive
research, there is still no agreement on a single FNN architecture that guarantees optimal
convergence and accuracy.

The learning rate is the size of the steps the model takes toward the convergence. If the
learning rate value is high, the model can overshoot the optimal solution. Conversely, if the
learning rate value is too low, the convergence may take too long and make the training
process inefficient. Batch size is another important factor. A large batch size processes more
data at once before updating the parameters, which can be memory intensive. However, a
small batch size may result in higher variance in parameter updates. Similarly to the number
of epochs, if the number is too high, it can lead to overfitting, where the model performs
well on training data but poorly on unseen data [Sod22].

To avoid these problems, hyperparameter tuning is used. Many techniques exist to
identify the optimal combination of hyperparameters for a given model. A commonly used
approach is manual search, where different hyperparameter combinations are tested to find
the best-performing one [Sod22].

2.2.4 Loss functional

Training a FNN is a process adjusting the model’s parameters, weights and biases, to improve
the model’s performance on a given task. During the training phase, the FNN uses a loss
functional. The model updates iteratively its parameters to minimize this loss functional, in
order to improve its ability to make accurate predictions. A key goal is to achieve a smaller
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value of the loss functional. There are various types of loss functionals, each is related to a
different task.

1. Cross entropy

L(p) = −
∑

ŷ(x) log(σ(x; p)). (2.6)

with x is the input feature, the y(x) is the target output, the ŷ(x) is the predicted
output, the L is the loss functional and the p is the parameter vector gathering the
weights and the biases together.

2. Mean squared error (MSE)
At the last step of the forward propagation phase, MSE computes the difference be-
tween the predicted outputs of the model and the actual target values in the training
data

L(p) = 1

N

∑
i

∥y(x)− ŷ(x)∥2 . (2.7)

with x is the input feature, the y(x) is the target output, the ŷ(x) is the predicted
output, the L is the loss functional and the p is the parameter vector gathering the
weights and the biases together.

In addition, the loss functional is typically defined as the average of the loss functionals for
individual loss functionals for each training samples:

L(p) =
N∑
i=1

Lossi(p). (2.8)

where N is the number of samples, Lossi is the loss functional of the i-th sample and p
is the vector of the parameters. This property is needed in the backpropagation process,
since it facilitates the computation of the gradient of the loss functional with respect to the
parameters, weights and biases.

2.3 Backpropagation process

The primary objective when training the FNN model is to minimize the loss functional, in
order to obtain optimal parameter values and better performance. This training process can
be modeled as minimization problem as following

p∗ = min
p
L(p). (2.9)

where p is the parameter of the model, weights and biases and p∗ represents the optimal
parameter. Finding a solution of this minimization problem requires a computation of the
loss functional’s the gradient with respect to the parameters, weights and biases [HH18].
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In 1974, Paul Werbos developed a learning procedure called Backpropagation, but it was
not until one decade later grabbed attention of other researchers [Kri07]. In 1986, David
Rumelhart, Geoffrey Hinton and Ronald Williams published a study [DRW86] that describes
several NNs where backpropagation works faster than earlier approaches to training, to lever-
age NNs to tackle problems that were previously unsolvable. Today, the backpropagation
algorithm is the workhorse of training in FNNs [Nie19].

In order to find a solution for (2.9), the backpropagation concept determines the loss
functional’s sensitivity to each parameter iteratively starting from the last layer backward
until the input layer. Firstly, the intermediate quantity known as error is needed, denoted
by σl

j:

γl
j =

∂L
∂zlj

. (2.10)

where zlj is the net input of the neuron, the linear combination of the input, weights and
bias, the j is the index of the neuron, the l represents the index of the layer and L is the
loss functional.

The process is based on four mathematical equations, which they represent the way of
computing the error, the gradients and the connection between them [Nie19]. For the next
part, the Hadamard product is used in the equations, also known as the element-wise prod-
uct. It is a binary operation that takes two matrices of the same dimensions and produces
a new matrix, where each element is the product of the corresponding elements in the orig-
inal matrices. Mathematically, for matrices A and B of size m× n, the Hadamard product
C = A ◦B is defined as Cij = Aij ⊙Bij.

The error of the output layer

The backpropagation starts by computing the error of the last layer, its index is L [HH18].

γL
j =

∂L
∂zLj

(2.11)

=
∂L
∂aLj
⊙

∂aLj
∂zLj

(2.12)

=
∂L
∂aLj
⊙ σ′(zLj ). (2.13)

where L is the loss functional, the j is the index of the neuron, zLj is the net input of the
last layer of the j-th neuron and aLj is the activation of the last layer of the j − th neuron.
This equation linked the gradient of the loss functional with respect to the net input to the
activation function, which helps in the adjustment of the parameters [Nie19]. The equation
is written in matrix form:

γL = ∇aL ⊙ σ′(zL). (2.14)

The calculation of error in terms of the next layer
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The next step is computing the error in the hidden layers using the connection between
them.

γl
j =

∂L
∂zlj

(2.15)

=
∑
k

∂L
∂zl+1

k

∂zl+1
k

∂zlj
(2.16)

=
∑
k

∂zl+1
k

∂zlj
γl+1
k . (2.17)

where l is the index of the layer, with l ∈ {1, 2, ..., L− 1}, L is the loss functional and zlj is
the net input of j − th neuron and l− th layer. To simplify (2.15), the formula of net input
incorporating the terms of the output of l − th layer zl+1

k =
∑

j σ(w
l+1
kj σ(zlj) + bl+1

k ) is used
[Nie19].

γl
j =

∑
k

wl+1
kj σ′(zlj)γ

l+1
k . (2.18)

where the wl+1
kj is the weight, σ′(zlj) is the derivative of the activation function with respect

to the net input. The equation can be written in matrix form:

γl = σ′(zl)W l+1 ⊙ γl+1. (2.19)

where the W l+1 is the weight matrix of the l+1 layer.

The gradient of the loss functional with respect to the parameter

Using the previous equations (2.18) and (2.11), now it becomes easy to compute the
gradient of the loss functional. Firstly, the gradient of the loss functional with respect to
any bias is computed:

∂L
∂blj

=
∂L
∂zlj

∂zlj
∂blj

=
∂L
∂zlj

= γl
j.

where
∂zlj
∂blj

= 1, blj and zlj is the bias and the net input of the j − th neuron and l − th layer.

In general, the gradient of the loss functional with respect to the bias is written as follows:

∇bL = γ. (2.20)

The gradient of the loss functional with respect to any weight in the network proceeds as
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follows:

∂L
∂wl

jk

=
∂L
∂zlj

∂zlj
∂wl

jk

=
∂L
∂zlj

al−1
k

= γl
ja

l−1
k .

where
∂zlj
∂wl

jk
= al−1

k if k = j, L is the loss functional, al−1
k is the activation output, zlj is

the net input and wl
jk represents the weight. Rewriting this equation in general, then the

gradient of loss functional with respect to weight is written as follows:

∇WL = γa. (2.21)

The four equations are completed and gathered in one algorithm

Algorithm 1 Backpropagation Algorithm

Require: Input x feature data, σ activation function, L loss functional and p parameters
Start the feedforward step
for each layer l = 1 to N (number of layers in the network) do

zl = W lal−1 + bl

al = σ(zl)
end for
Compute the error of the output layer
γL
j = ∂L

∂aLj
⊙ σ′(zLj )

Backward pass:
for each layer l = L− 1 to 1 do

γl
j = σ′(zlj)W

l+1 ⊙ γl+1

end for
The gradient of loss functional with respect to the parameters
∂L

∂wjkl
= γl

ja
l−1
k

∂L
∂blj

= γl
j

In summary, backpropagation is a key step in the training process, as it computes the
gradients of the loss function with respect to the network’s parameters. These gradients are
used further in the optimizer’s algorithm for determining the direction of updates to reduce
the loss and improve the model’s performance.
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Chapter 3

Optimizers in training the neural
network

Training a FNN model is an iterative process in which it runs until it reaches the minimum
value of the loss functional. In other words, it adjusts the parameters of the model until the
loss functional no longer decreases. To reach this goal, the FNN model requires an optimizer.
At each iteration, the forward pass calculates the predictions and computes the loss func-
tional. After, the process starts to run in the backward direction computing the gradient
of the loss functional using the backpropagation algorithm 2.3. Then, the optimizer uses
the gradients of the loss functional to determine the direction and magnitude of parameter
updates. The gradients indicate how much each parameter contributes to the loss and the
optimizer adjusts the weights and biases accordingly to reduce the loss. Consequently, the
FNN can be formed as an optimization problem [TWBB22]. Thus, the choice of the opti-
mizers is a crucial step, as it has a huge influence on the FNN model performance.

The paper [CSN+20], published in 2020, found out that the adaptive optimizers per-
form better than simpler optimizer. Also, the inclusion relationships between optimizers
influence the model performance. Another empirical work [ZLN+19] shows that increas-
ing the batch size can do gaps between training times for different optimizers. However,
sometimes the optimizers used in the training do not guarantee the convergence to a global
minimum of the loss functional. For those reasons, this Chapter focuses on explaining the op-
timizers Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam), Nadam
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) in detail, incorporating their algorithm and
strengths.

3.1 Stochastic gradient descent

SGD is one of the widely-used optimizers in the machine learning and one of the variants of
the traditional gradient descent algorithm [Rud17]. It is well known due to its efficiency and
adaptability, particularly in handling large datasets. In this section, the gradient descent
algorithm is first introduced, which lays the groundwork for understanding the fundamental
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principles of gradient-based optimization. Next, the mechanics of SGD is introduced, ex-
ploring how it builds upon and differs from the standard approach.

3.1.1 Gradient descent method

The gradient descent is an iterative optimization algorithm for finding a local minimum of
a real valued, differentiable loss functional L : Rn → R. The gradient of the loss functional
acts in the direction of the maximum rate of increase of the loss functional. The purpose
of this part is to determine that, for a given small displacement in the parameter, the loss
functional decreases more steeply in the opposite direction of the gradient than in any other
direction [CZ04].

Figure 3.1: Representation of steepest descent direction for a function of two variables
[NW06].

The level set of the loss functional consists of points satisfying L(p) = c for some constant
c. If the gradient of L, denoted by ∇L, is not a zero vector, it is orthogonal to the tangent
vector to any smooth curve passing through a point on the level set. According to the Figure
3.1, the gradient direction is perpendicular to the contours of L [CZ04].

Consider the Taylor’s approximation theorem applied to the loss functional L :

L(p+ α∆p) ≈ L(p) + α(∆p)T∇L(p) + α2

2
(∆p)T∇2L(p)∆p. (3.1)

where the L is the loss functional, p is the parameter vector, α is the step size and the ∆p
is a small adjustment that helps in updating the parameters in the next iteration. The rate
of change of the loss functional L at p along the direction ∆p is given by (∆p)T∇L(p). The
aim here is to determine the direction in which the loss functional decreases most rapidly.
The change rate can be expressed as follows:

(∆p)T∇L = ∥(∆p)T∥∥∇L∥ cos(θ). (3.2)
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where the θ is the angle between the ∆p and ∇L. Minimizing this expression with respect
to the ∆p leads to a minimization problem [NW06]:

min(∆p)T∇L. (3.3)

Applying the Cauchy-Schwarz inequality, which states that for any vectors f, g, |fTg| ≤
∥fT∥∥g∥, the minimum value that fTg can reach is −∥fT∥∥g∥ occurs when f = −g [HH18].
In this case, this minimum is reached only when cosθ = −1. Therefore, the solution of the
minimization problem 3.3 is

∆p = − ∇L(p)
∥∇L(p)∥

. (3.4)

Given p(0) be the initial parameter and consider the next parameter is defined by (p(0) −
α∇L(p(0))). The value of the loss functional at this updated parameter is approximated as:

L(p(0) − α∇L(p(0))) = L(p(0))− α∥∇L(p)∥2 + o(α). (3.5)

where o(α) denotes higher-order terms that becomes negligible as α → 0. If ∇L(p(0)) ̸= 0
and α is sufficiently small:

L(p(0) − α∇L(p(0))) < L(p(0)). (3.6)

indicating the parameter p(0) − α∇L(p(0)) is an improvement over the parameter p(0). In
general, the iteration leads to

p(k+1) → p(k) − α∇L(p(k)). (3.7)

where α is small step size, known as Learning rate [HH18].

Algorithm 2 Gradient descent optimization algorithm

Require: L loss functional; α > 0 learning rate
1: Choose an initial point p(0)

2: Set iteration counter k = 0
3: while no convergence do
4: Update the parameter vector: p(k+1) = p(k) − α∇L(p(k))
5: Increment iteration counter: k = k + 1
6: repeat until the convergence
7: end while
8: return p

However, a notable limitation of gradient descent, particularly for large datasets, is the
requirement to compute gradients over the entire dataset for each update, which can be
computationally expensive and slow [HH18]. For dataset that does not fit in memory, this
approach becomes impractical. Here comes the SGD, a better version of the gradient descent,
in play.
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3.1.2 SGD algorithm

The gradient descent algorithm faces challenges with dealing with large dataset, as it requires
time for repeatedly calculating the gradient for similar examples before updating the model
[HH18]. To address this inefficiency, SGD is the best alternative. The idea of this optimizer
is based on avoiding this redundant computations by performing one update of one example
at a time, which means for each example sequentially, making it faster and allowing it to
learn in real-time [Rud17].

The loss functional is often of stochastic type. It is a sum of individual loss functionals
evaluated over subsets of the data. In this example, updating the model incrementally with
SGD by considering only a single loss functional or a small batch at each step can be more
efficient than using the full dataset. This stochastic approach aligns with the nature of the
loss functional and can lead to more effective optimization [KB17]. The SGD algorithm
follows the procedure outlined below:

Algorithm 3 Stochastic gradient descent optimization algorithm

Require: L the loss functional; α the learning rate
1: Initialize an initial point p(0)

2: for i = 1 to N do
3: Sample an observation i uniformly at random
4: Update the parameter vector p(i+1) = p(i) − α∇L(p(i)
5: end for
6: return the optimal parameter p

In the algorithm, the number N represents the cardinality of the available samples. Each
update of the parameters requires O(d) computations, where d is the dimensionality of the
data. This computational efficiency makes SGD feasible for large-scale datasets. For strongly
convex functions, the results are presented in the following Table 3.1, where ϵ is the tolerance
of convergence [RZS20]:

Table 3.1: Computational complexity of SGD optimizer [RZS20].
Method Number of iterations Cost per iteration Total cost

SGD O(log(1
ϵ
)) O(d) O(d

ϵ
)

However, SGD performs frequent updates with a high variance that leads the loss func-
tional to fluctuate heavily. these fluctuations enable the optimizer to jump around a lot.
Thus jumping can help it to explore new and possibly better solutions, but also makes it
harder to settle on the exact minimum, as it tends to overshoot [Rud17]. In addition, the
learning rate is a critical factor in managing this trade-off, as it influences the magnitude of
the updates and consequently the extent of the fluctuations.
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3.2 Adaptive momentum estimation

In FNN training, the learning rate α is an important hyperparameters that influences the
update of the parameters, weights and biases. It is responsible for the speed of SGD op-
timizer, until the loss functional reaches its minimizer, as it dictates the step size at each
iteration. A large value of learning rate may cause problems in reaching the convergence and
let the loss functional fluctuate around the minimum. if it has a low value, this may lead to
a very slow convergence and the model gets to stuck in the local minima [NW06].

Many algorithms have been proposed as solution for this challenge, for example, the
adaptive approaches. These algorithms learn the overall scale of the problem, avoid slow
progress and converge to the minimizer of the loss functional [HH18]. This section focuses
on explaining Adam and Nadam in detail.

3.2.1 Adam Algorithm

The Adam optimizer is the most popular adaptive approacher optimizer. It was developed
in 2015 by Diederik Kingma and Jimmmy Lei Ba and published as Adam: a method for
stochastic optimization [KB17]. This part is based on the Kingma and Ba paper.

Adam uses the first and the second order moments of the loss functional gradients, the
mean and the variance. It is designed to adapt to the characteristic of the data and update
the learning rate for each parameter based on these characteristic. The algorithm stores the
previous gradients and the new gradients, which are computed use the previous ones. This
helps the optimizer to apply adjustments to the parameters. In areas where the slope of the
loss functional changes rapidly, Adam takes a small learning rate value. This helps to avoid
the overshooting of the minimum. If the slop changes slowly, then it permits a large learning
rate value, enabling faster traversal of the error surface. This adaptability is the key of the
Adam efficiency [KB17]. The following are the steps of the Adam algorithm. The index t
in the exponential decay rates for the moment estimates represents the power of β1 and β2,
raised to the number of time steps.
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Algorithm 4 Adam algorithm [KB17]

Require: α the learning rate, L the loss functional and β1, β2 the exponential decay rates
for the moment estimates

Ensure: m0 ← 0
v0 ← 0
t← 0
p(0) initial parameter vector
while pt does not converge do

t← t+ 1
mt ← β1mt−1 + (1− β1)∇L(pt−1)
vt ← β2vt−1 + (1− β2)(∇L(pt−1))

2

m̂t ← mt

(1−βt
1)

v̂t ← vt
(1−βt

2)

pt ← pt−1 − α m̂t√
v̂t+ϵ

end while
return the optimal parameter p

Adam algorithm 4 seamlessly combines two optimization methods. The first the alter-
native version of SGD, known as momentum, which accelerates the optimization process by
incorporating the direction and velocity of previous gradients.The second is another adaptive
moment method, called RMSprop, which adjusts the learning rate for each parameter in a
manner that reflects the recent magnitudes of their gradients.

Using these optimization techniques, Adam looks for better convergence speed and sta-
bility for the FNN model. Adam uses two distinct exponential moving averages during the
algorithm, one for tracking the gradient, denoted by mt, and one for the squared gradient,
denoted by vt. These two vectors provide different information about the gradient’s behavior,
the mean direction of the gradient and the uncentered variance of the gradient. Hyperpa-
rameters β1 and β2, each ranging between 0 and 1, control the exponential decay rates of
these moving averages, thus influencing the memory and responsiveness of the algorithm to
new gradient information [KB17].

A moving average is a method to smooth fluctuations in data, thereby facilitating the
analysis of patterns by reducing noise. The concept is about a calculation to analyze data
points by creating a series of averages of different selection of the full dataset. The primary
type of moving average is exponential moving average. This is a weighted average by ap-
plying exponentially decreasing weights to older data. In adaptive optimization methods
like Adam, the exponential moving average is preferred over other type of moving average,
because it reduces lag in simple moving average by applying more weight to recent data
points, providing a more accurate reflection of recent gradient behavior. This characteristic
is crucial in non-stationary environments, such as training FNN.

Adam uses two statistical concepts the first-order moment (the mean) and the second-
order moment (the variance). The first-order moment is represented as the exponentially
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weighted moving average of the gradient, capturing the overall direction of parameter up-
dates. The second-order moment, on the other hand, is the exponentially weighted moving
average of the squared gradient, which provides information about the variance of the gra-
dient’s magnitude. Together, these two moments allow Adam to modulate the learning rate
dynamically based on both the average gradient direction and its variability [KB17].

The hyperparameters β1 and β2 control the importance given to previous values of the
gradient and squared gradient in forming the moving averages. Higher values of β1 and β2

imply slower decay rates. In other words, the algorithm stores the past values for many
iteration, yielding a smoother but potentially slower average. Conversely, lower values result
in quicker decay, allowing Adam to adapt rapidly to changes by prioritizing more recent
gradients.

The definition of decay can be understood as a progressive reduction in the weight of past
data points over iterations. The exponential decay introduces an adjustment term at each
time step in Adam. During an iteration t, the effective first-order momentmt is computed as:

mt ← β1mt−1 + (1− β1)∇L(pt−1). (3.8)

This formulation weights recent gradients more heavily, with the influence of older data
decaying exponentially at each step. When β1 is close to 1, decay is low, and historical
gradients have a prolonged influence. When β1 is smaller, the decay is faster, leading to an
update process dominated by more recent gradients.

Since in the beginning m and v are zeros, they are biased toward zero, which leads to a
bias toward zero. Adam corrects this bias using the decay rate, which m̂t for the first-moment
decay rate m, and v̂t for the second-moment decay rate v. This correction is important as
it ensures that the moving averages are more representative, particularly in the early stages
of training. The final step is the update of the model parameters [KB17].

Adam’s update rule

The final step of Adam’s algorithm 4 is the update rule. It takes advantage of both the
average direction (first moment) and the variability (second moment) of the gradient, dy-
namically adjusting the learning rate for each parameter. This characteristic makes Adam
robust to noisy gradients and effective in high-dimensional parameter spaces, which are typ-
ical in deep learning models.

Assume that ϵ = 0, then the effective step size is written as:

∆t = α
m̂t√
v̂t
. (3.9)

After replacing the terms m̂t, v̂t by their formula from the algorithm (5) and (6), the effective
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step size becomes

∆t = α
mt√
vt

√
1− βt

2

1− βt
1

. (3.10)

In case of sparsity, which means that the gradient of the loss functional has been zero at all
time step except the current one t, the equation (3.10) is written as follows

∆t = α
(1− β1)∇L√
1− β2∇L

√
1− βt

2

1− βt
1

(3.11)

= α
(1− β1)√
1− β2

√
1− βt

2

1− βt
1

. (3.12)

(3.13)

The effective step has two upper bounds:

∆t =

{
α 1−β1√

1−β2
if (1− β1) >

√
1− β2

α otherwise
(3.14)

The first upper bound occurs only in cases of highly sparse or less sparse. In these cases, the
effective time steps take smaller values that leads to βt

1 ≈ 0 and βt
2 ≈ 0. If (1−β1) =

√
1− β2,

then | 1−β1√
1−β2
| < 1 and therefore |∆t| < α.

In case | E[g]√
E[g2]
| ⩽ 1, then m̂t√

v̂t
≈ ±1 and the effective step is bounded by α, |∆t| ⪅ α. It is

easy to choose a suitable learning rate value, since it controls the maximum size of the steps
taken when adjusting the parameters. A good range of alpha can be figured out, so the al-
gorithm can reach the best solution from the starting point within a certain number of steps.

Let m̂t√
v̂t

be called SNR, Signal to noise ratio. If the SNR value is small, it gives the
information if the direction of m̂t corresponds the direction of the true gradient, then the
effective step size is closer to zero. In the case of getting closer to the optimal parameter,
SNR becomes closer to zero and this behavior is similar to annealing.

Another property of the effective step is that the effective step does not change if the
gradients are scaled, which means when the gradient is multiplied by a constant, ∆t remains
the same [KKL+20].

Adam convergence

The Adam’s paper [KB17] proposed evaluating the optimizer using its regret. In other
words, it deals with a series of unknown loss functionals over time and aims to predict the
best parameter values. Regret, in this case, is the total difference between the loss when
using the predicted values and the optimal possible fixed parameter. Adam achieves a low
regret bound of O(

√
S), with S is the total number of steps, meaning that it performs com-

parably to the best available methods for this type of learning problem. For sparse types of
data, Adam performs even better than non-adaptive methods. A key result, the study shows
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that Adam’s effectiveness is partly due to how its settings change over time: specifically, the
learning rate gradually decreases, and the first-moment averaging factor decreases towards
zero. This latter adjustment has been found to help the model converge better, especially
at the end of training. Finally, it shows that as the total number of steps increases, Adam’s
average regret approaches zero, meaning its predictions get closer and closer to optimal one.

3.2.2 Nadam optimizer

Nadam, an abbreviation of Nesterov-accelerated Adaptive Moment estimation, is a new op-
timization technique with limited literature exploring its potential applications and advan-
tages. It was mentioned first in academic literature appeared in a 2016 by Dozat [Doz16],
which provided a detailed explanation and its application in image recognition.

This optimizer is a combination of the Adam optimizer, discussed in the previous section
3.2 and Nesterov acceleration gradient (NAG). Adam is an optimization method that com-
putes adaptive learning rates for each parameter, by combining the adaptive learning rate
scaling of RMSProp with classical momentum. With maintaining moving averages of the
gradients and their squared values, it achieves efficient convergence, especially in non-convex
optimization problems. However, traditional Adam uses classical momentum, which NAG
has been shown to surpass in many scenarios. The process of Nadam optimizer is presented
in the following algorithm 5

Algorithm 5 Nadam algorithm [Doz16]

Require: α the learning rate, L the loss functional
Require: β1, β2 the exponential decay rates for the moment estimates
Ensure: m0 ← 0
v0 ← 0
t← 0
p(0) Initial parameter vector
while pt does not converge do

t← t+ 1
gt = ∇pt−1L(pt−1)
ĝt =

gt
1−β1

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)(gt)

2

m̂t ← mt

(1−βt
1)

v̂t ← vt
(1−βt

2)

m̄t ← (1− β1)ĝt + β1m̂t

pt ← pt−1 − α m̄t√
v̂t+ϵ

end while
return the optimal parameter p

On the other hand, NAG is a method which helps in increasing the step size in the in-
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crease direction of the loss functional, which leads to a faster convergence. NAG has been
shown to achieve better convergence rates for convex, non stochastic objectives compared
to classical gradient descent [Doz16]. It improves the traditional calculation of the gradi-
ent within momentum methods after applying the momentum step. This allows for a more
informed update direction, often resulting in faster convergence and higher-quality solutions.

The algorithm begins in the same way as Adam by computing the gradient of the loss
functional. After the moving average is updated and before applying the update rule, the
Noestrov trick is applied. The momentum term (9) is pushed to the current gradient, which
called Noestrov trick. Instead of relying solely on classical momentum, Nadam predicts
the next updating parameters based on both the current gradient and the anticipated mo-
mentum. As with Adam, Nadam includes initialization bias corrections for both momentum
and gradient estimates to ensure robust performance during the early stages of optimization.

By integrating Nesterov’s acceleration into the Adam algorithm, Nadam optimizer has got
the adaptive learning rate benefits of Adam and at the same time the superior convergence
properties of NAG.

3.3 Broyden–Fletcher–Goldfarb–Shanno

The second-order optimization techniques have gained popularity due to their ability to
converge rapidly. Unlike first-order methods, second-order optimization techniques use the
second derivative, which can provide significant advantages, such as the elimination of the
learning rate. Also, this method uses the information about the curvature of the loss func-
tional.

The second-order optimization uses the Hessian matrix, a square matrix of second-order
partial derivatives that describes the local curvature of a function. The Hessian matrix allows
second-order methods to navigate the optimization landscape more effectively. The Newton
method is a well-known example of a second-order optimization approach, which directly
uses the Hessian to update the parameter estimates. However, computing the exact Hessian
can be computationally expensive, especially in high-dimensional problems.

In order to solve the limitations of computing the full Hessian matrix, Quasi-Newton
methods have been developed to approximate the Hessian matrix instead of calculating it
explicitly. This method reduces the computational cost while retaining the advantages of
second-order optimization. The BFGS, named for its discoverers Broyden, Fletcher, Gold-
farb, and Shanno, method is one of the most popular Quasi-Newton algorithms. This it-
erative method approximates the Hessian matrix, denoted as Bk, and uses it to find the
optimal solution to an optimization problem. The key distinction between BFGS and the
Newton method lies in this approximation. BFGS updates an estimate of the Hessian itera-
tively rather than recalculating it from scratch. The following Section focus on exploring the
BFGS optimizer in detail based on the book [NW06] written by Jorge Nocedal and Stephan
H.Wright.
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3.3.1 Approximation of the Hessian matrix

In each iteration, the BFGS optimizer approximates the loss functional L using a quadratic
model mk:

mk(h) = L+∇Lh+
1

2
hTBkh. (3.15)

where Bk is n× n symmetric positive definite matrix, h is the direction. To find the search
direction, the quadratic model has to be minimized, by setting its gradient with respect to
h to zero:

∇mk(h) = ∇L+Bkh = 0. (3.16)

This equation reaches its minimizer at pk:

hk = −B−1
k ∇L. (3.17)

Then, the new iterate is
pk+1 = pk + αkhk. (3.18)

where the p is the parameter and the step αk should satisfy the Wolfe conditions.

The Wolfe condition is actually composed of two important inequalities. The first con-
dition states that αk should decrease the loss functional L such that

L(pk + αhk) ≤ L(pk) + c1α∇LT
k hk. (3.19)

for some constant c1 ∈ (0, 1). This inequality is known as Armijo condition or sufficient
decrease condition. In other words, the reduction of the loss functional should be propor-
tional to the step length and the directional derivative. The second inequality rules out the
unacceptable short steps, known as curvature condition. It states:

∇L(pk + αkhk)hk ≥ c2∇LThk. (3.20)

for some constant c2 ∈ (c1, 1). This inequality describes that the slope of left-hand side is
grater than c2 times its initial slope.

Davidon proposed a simple idea that avoids the computation of Bk from scratch at every
iteration [NW06]. In order to construct a new iterate pk+1, the new quadratic model needs
to satisfy that its gradient should match the gradient of the loss functional at the latest two
iterates pk and pk+1, this can be written as:

mk+1(h) = Lk+1 +∇LT
k+1h+

1

2
hTBk+1h (3.21)

Its gradient at h = −αkhk becomes :

∇mk+1(−αkhk) = ∇Lk+1 − αkBk+1hk. (3.22)
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Using the following Taylor’s approximation

∇Lk+1 = ∇Lk + αkBk+1hk. (3.23)

Therefore, simplifying the previous equation

∇Lk+1 − αk+1Bk+1hk = ∇Lk. (3.24)

By rearranging this equation, the secant equation is constructed

Bk+1sk = yk. (3.25)

where sk = pk+1 − pk = αkhk and yk = ∇Lk+1 − ∇Lk. In this equation, the update
matrix should be positive definite. This condition is important for the approximation of
the curvature of the loss functional. This is guaranteed if the vector sk and yk satisfy the
curvature condition

sTk yk > 0. (3.26)

This condition indicates that the functional has sufficient curvature along the direction sk to
ensure a positive definite Bk+1, which is essential for stability and convergence in optimiza-
tion.

In cases where the function is strongly convex, the curvature condition is satisfied for
any steps. However, with the case of non-convex functions, there’s no guarantee that the
condition is satisfied, then it leads to an indefinite or negative definite Hessian matrix, desta-
bilizing the optimization. To prevent this, the BFGS method imposes constraints on the step
length, often by enforcing the Wolfe condition. These conditions ensure that the step length
is chosen to satisfy both a sufficient decrease in the function and a controlled gradient slope,
thereby guaranteeing the curvature condition.

The curvature condition provides the information that there exists a solution that maps
sk to yk, which means that the secant equation has an infinite number of solutions. In n
dimensional space, a symmetric positive definite matrix Bk+1 has

n(n+2)
2

degrees of freedom.
On the other side, the secant equation imposes n conditions on the matrix Bk+1, but the
degrees of freedom exceed the n conditions imposed by the secant equation. To ensure that
the approximate Hessian matrix is positive definite, additional constraints are imposed all
determinants of the submatrices must be positive. In n dimensional space, there are n such
conditions, one for each principal minor. These conditions reduce the degrees of freedom
somewhat but still do not use up all of them [NW06].

3.3.2 BFGS

The next step now is to determine the updated matrix Bk+1 uniquely, which satisfies the
secant equation and the curvature condition. The process is to select the matrix that is
close to the current Bk. In this way, one ensures that the update is smooth and does not
deviate away from the previous ones. To find the Bk+1 , consider the following minimization
problem

min
B
∥B −Bk∥ with B = BTand Bk+1sk = yk. (3.27)

28



The norm used in this part is the weighted Frobenius norm which is written as following

∥A∥ =
∥∥∥W 1

2AW
∥∥∥
F
. (3.28)

where A is the matrix and W is the weighted matrix with the norm of Frobenius is written
as ∥C∥ =

∑
i

∑
j c

2
ij. The choice of the weight matrix should ensure that it is aligned with

the curvature information from the secant equation.

For example, the specific choice of the weight matrix can be W = Ĝ−1
k , where Ĝk is the

average Hessian defined by

Ĝk =

∫ 1

0

∇2L(pk + ταkhk)dτ. (3.29)

Using Taylor’s theorem, another property can be extracted from it, yk = Ĝkαkhk = Ĝksk.
This choice helps the Frobenius norm to be non-dimensional, since the solution of the mini-
mization problem should depend on the units of the problem.

Solving the minimization problem from scratch is complex. For practical purposes, it is
sufficient to know that the approximate Hessian can be updated at each iteration by adding
two symmetric, rank-one matrices U and V . These matrices are defined as U = auuT and
V = bvvT with Bk+1 = Bk + Uk + Vk, where u and v are linearly independent vectors,
ensuring the symmetry of the Hessian with each update. Then the secant equation (3.25)
can be written as

Bk+1sk = Bksk + auuT sk + bvvT sk = yk. (3.30)

replacing by u = yk and v = Bksk and rearranging gives

Bksk(1 + bsTkB
T
k sk) = yk(1− ayTk sk). (3.31)

To get the wanted result, the two constant in the equation can be replaced by b = − 1
1+bsTk BT

k sk

and a = 1
yTk sk

. At the end, the BFGS formula, the solution of the minimization problem, is

defined by the following:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
. (3.32)

It is easy to check that this formula satisfies the secant equation (3.25), where the fact that
Bk is symmetric has been exploited. To ensure that Bk+1 is a positive definite matrix, we
start by assuming that Bk is positive definite and that f is strictly convex. This strict
convexity guarantees the monotonic gradient property of convex functions, which implies
that yTk sk > 0. This condition is essential because, if it fails, the update rule could result
in an indefinite matrix. For twice differentiable functions with a strictly convex structure,
the Hessian remains invertible, and we can proceed with confidence that the updated matrix
Bk+1 will retain positive definiteness [NW06].

The construction of Bk+1 relies on adding terms that are positive semi-definite, as shown
by breaking down the expression into a positive semi-definite form based on Cauchy-Schwarz
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inequality. This assures that each update step builds upon a matrix that does not introduce
any negative eigenvalues. Moreover, by examining the nullspace of the update term, we can
see that only one eigenvalue could potentially be zero, but this is prevented by the condition
yTk sk > 0, confirming that Bk+1 is strictly positive definite.
In order to calculate the inverse of the approximate Hessian matrix, the Sherman Morri-
son–Woodbury formula is used :

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1. (3.33)

Now, rewrite the BFGS update in suitable form and plug it into the Woodbury formula, the
unique solution Hk+1 is given by

Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k . (3.34)

where ρk = 1
yTk sk

. There is not a single best way to choose the initial approximation H0 in

the BFGS algorithm. It’s often set to the identity matrix, a scaled version of it (to match
the scale of the variables), or, if possible, the inverse of an approximate Hessian calculated
at p0.

Algorithm 6 BFGS algorithm [NW06]

Require: p0 the initial parameter, ∇L(p0) the loss functional and the initial inverse Hessian
matrix H0

k ← 0
while not converged do

hk = −Hk∇L(pk)
select αk using a line search
pk+1 = pk + αkhk

sk = pk+1 − pk
yk = ∇L(pk+1)−∇L(pk)
Hk+1 = (I − ρksky

T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k

k ← k + 1
end while

Each iteration of the BFGS algorithm 6 requires only O(n2) arithmetic operations, aside
from function and gradient evaluations, and avoids more costly O(n3) operations like solving
linear systems or performing matrix-matrix operations. The algorithm is robust, with a
superlinear convergence rate that is generally fast enough for practical use [NW06].
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Chapter 4

PINNs for
convection-diffusion-reaction problem

Convection-diffusion-reaction problems have always been an essential part of computational
fluid dynamics, as they describe the distribution of a scalar quantity like temperature, energy
or concentration within a moving medium [DFMb]. Several studies have employed PINN
for solving the convection-diffusion-reaction problems, focusing on many aspects. For in-
stance, the papers [DFMb], [DFMa] and [VJ24] focus on the choice of the loss functional,
collocation points distribution and bound-preserving techniques. Based on these studies, the
equidistant collocation points, hard constrained PINN approach, vanilla PINN and standard
loss functional are implemented in this master thesis, to solve the convection-diffusion- re-
action problems. The four optimizers, SGD, Adam, Nadam and BFGS are used to train
hard-constrained PINN using standard loss functional on equidistant collocation points.

This chapter starts by providing a detailed introduction to convection-diffusion-reaction
problems, by mentioning the strong form of their equations. Then, it introduces PINNs by
explaining the standard loss function and the concept of collocation points. The chapter
ends with introducing a variation of hard-constrained PINNs, which avoids training of the
boundary conditions to save time.

4.1 Strong form of the convection-diffusion-reaction prob-

lem

The convection-diffusion-reaction equation refer to the advection-diffusion equation. It is a
cornerstone of mathematical modeling in the physical sciences and provides a framework for
describing processes, such as heat transfer, the behavior of fluids and gases, and pollutant
dispersion in natural systems [Buc23].

Since the mid-20th century, numerical methods for solving this equation have evolved
significantly, with finite difference techniques that ensure that the solutions are both stable
and accurate. Recent research now explore innovative approaches instead of classical ones,
including machine learning techniques, for example PINNs. PINNs provide a flexible and

31



efficient way to solve convection-diffusion-reaction problems by involving the deep learning
to approximate solutions while respecting the underlying physical laws. This thesis focuses
on applying PINNs to convection-diffusion-reaction problems with concentrating on their
potential to enhance the accuracy and efficiency of numerical computations.

In this context, the word convection refers to the transport of a quantity due to the fluid
motion of the medium itself. If the flow is absent, the diffusion phenomenon appears and
causes the spread of the quantities. Diffusion facilitates the movement of a substance from
regions of higher concentration to regions of lower concentration until a uniform concentra-
tion is achieved across the domain. The third word is reaction, which indicates the potential
of the scalar quantity to undergo chemical reactions, forming new compounds [Mat24]. This
subsection introduces the strong form of the convection-diffusion-reaction equation, begin-
ning with the governing PDE and relevant boundary conditions, as outlined in Professor
Volker John’s lecture at WIAS [Joh].

Consider a fixed domain Ω ∈ R3. The domain Ω is assumed to be a Lipschitz domain,
meaning that every point on the boundary has a neighborhood that can be represented as
the graph of a Lipschitz continuous function. The points within the domain are denoted by
x with x = (x1, x2, x3) and the time t ∈ R+ progress as the system evolves.

Our aim is to derive the energy conservation model over a subset V ⊆ Ω for a time interval
(t, t+∆t), where V is the volume occupied by the fluid. According to the principle of energy
conservation, the total quantity of energy in an isolated system remains constant, though it
may change form over time [emp]. This conservation is described by three main components:

Energy source or sink contributions:

The energy contribution from internal heat sources or sinks in the domain over an interval
time (t, t+∆t) is given by

Q1 =

∫ t+∆t

t

∫
V

F (t, x) dx dt. (4.1)

where F represents the intensity of the internal heat sources or sinks distributed throughout
the volume. In this case F is the rate of the generated or absorbed heat in the volume and
its unit is Joule, denoted by [J].

Energy transfer by molecular and convective motion:

Energy may also enter or leave the volume V through its boundary ∂V both due to
molecular motion and convective transport. The Fourier’s law states that the rate of heat
transfer is proportional to the area perpendicular to the direction of heat flow and to the
temperature gradient, with heat moving from warmer to cooler regions. Then using Fourier’s
law, to describe molecular heat transfer and accounting for the convective motion of fluid
with velocity v, the heat flux across the boundary can be written as:

32



Q2 =

∫ t+∆t

t

∫
∂V

(k
∂u

∂n⃗
− cρ(v · n⃗)u)(t, s) dS dt. (4.2)

where k is the thermal conductivity, c is the specific heat capacity, ρ is the fluid density, v is
the velocity, u is the temperature and n⃗ is the outward unit normal vector on the boundary.
The unit of this equation is also joule [J]. This equation can be further simplified using
the divergence theorem, also known as Gauss theorem, which is simplified in the following
equation: ∫

Ω

∇ · u dx =

∫
Γ

u · n⃗ ds. (4.3)

where Ω is Lipschitz domain, Γ is its boundary, u defined on Ω and n⃗ is the outward unit
normal vector to Ω. This theorem leads to a simpler formulation of the previous integral
(4.2):

Q2 =

∫ t+∆t

t

∫
V

∇ · (k∇u)− cρ(v · ∇)u)(t, x) dx dt. (4.4)

The unit of this equation is also joule [J].

Rate of change of energy in the volume:

The third component addresses the rate of temperature change within the volume V .
Assuming u the temperature, is sufficiently smooth, we apply a Taylor expansion in time
interval (t, t+∆t) with neglecting the higher-order terms to obtain:

u(t+∆t, x)− u(t, x) =
∂u

∂t
∆t. (4.5)

Thus, the corresponding energy variation in V due to the temperature change is written as:

Q3 =

∫ t+∆t

t

∫
V

cρ
∂u

∂t
(t, x) dx dt. (4.6)

where t is the time. The unit of this equation is also joule [J].
By the principle of energy conservation, the rate of change of energy within the volume V
is the sum of the energy that is either entering and leaving the volume V , with the energy
that comes from internal sources. In mathematical expression, the conservation law Q3 is
the sum of (4.1) and (4.4). Then the final form of the integral is represented by:∫ t+∆t

t

∫
V

(cρ
∂u

∂t
−∇ · (k∇u)− cρuv − F )(t, x) dx dt = 0. (4.7)

Since the volume V and time interval ∆t are arbitrary, the integral vanishes. Then the
internal of the integral is equal to zero, by dividing through cρ, we obtain the standard form
of the convection-diffusion equation:

∂u

∂t
− k

cρ
∆u− (v · ∇)u =

F

cρ
, (4.8)
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Considering the steady-state conditions in this case, the temperature does not vary with
time, then ∂u

∂t
= 0. The standard form becomes

−µ∆u+ v · ∇u = f ′ in Ω. (4.9)

where µ = k
cρ

is the thermal diffusivity and f ′ = F
cρ

represents the normalized heat source.

The next step is focusing on simplifying and generalizing the problem, to be perfectly used
for mathematical purposes. Then the non-dimensional variables are the perfect tool. Let L
represent the characteristic length scale of the domain and U the characteristic temperature
scale. Changing the x = x′

L
and u = u′

U
in the original equation and after some simplification,

the convection diffusion equation becomes

−ϵ∆u+ β · ∇u = f in Ω. (4.10)

where ϵ = µ
LV

is dimensionless diffusion coefficient, β = v′

V
is the dimensionless velocity field

and f = Lf ′

UV
represents the dimensionless heat source.

The problem is not finished yet, there is still prior information that must be known, that
it evolves the well possessness of the problem. So, the governing equation must be supple-
mented with appropriate boundary conditions on the boundary ∂Ω of Ω. The boundary of
the domain is decomposed, depending on the problem, into parts, where the solution receives
a specific, exact value. Those parts typically are:

• Dirichlet boundary condition specifies the temperature’s value on the Dirichlet bound-
ary part: u = g1 on ∂ΩD where g1 is the temperature distribution.

• Neumann boundary condition describes the heat flux through the Neumann boundary
part: k ∂u

∂n
= g2 on ∂ΩN where g2 is the heat flux and n is the outward unit normal

vector on the boundary.

where both ∂ΩD ∪ ∂ΩN = Ω and ∂ΩD ∩ ∂ΩN = ∅

Only the the fluid flow and the spread of particles due to molecular motion are considered
in the convection diffusion equation. But in case the units of the fluid can react chemically,
then their equations become interconnected. The law of mass action models the reaction in
the equations by adding a coupling term to it. This term depends on the concentrations of
the substances, but not on their derivatives, and includes a coefficient, which depends on
the concentrations of the other substances. This coupling term, r , is called the reaction term.

Now, the convection-diffusion-reaction problem is ready. In case of steady-state concen-
tration field, the convection-diffusion-reaction problem is written as following:

−ϵ∆u+ β · ∇u+ ru = f in Ω, (4.11)

u = gD on ΩD, (4.12)

ϵ∇u · n⃗ = gN on ΩN (4.13)
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4.2 Physics-informed neural networks

Over decades, numerical methods have been developed for solving numerically PDEs, such
as the incompressible and compressible Navier Stokes equations, using finite elements or
meshless methods. Unfortunately, these methods have a significant drawback. They do not
involve seamlessly data into existing algorithms [CMW+21]. Also, since those methods are
mesh-based, they are time-consuming and introduce computational complexity [LMMK21].

On the other hand, the FNN could be a better alternative, since it is mesh-free and con-
sidered as universal function approximators, capable of solving nonlinear problems without
the need for previous assumptions [LMMK21]. But, unfortunately, it is time-consuming and
not less accurate than traditional methods. In other words, it is computationally expensive
and does not necessarily offer a better accuracy than the traditional networks.

The alternative to approximate the solution to the boundary value problem is an ad-
vanced version of FNN first introduced by Raissi et al. [RPK17], known as physics-informed
neural network (PINN). The concept of PINN is to seamlessly integrate data with physical
laws, enabling effective modeling even in cases of high-dimensional spaces. It makes it easier
to find the solution, and to reduce the amount of data required to train a model or solve the
problem [RPK17]. It combines the information from both the measurements and PDE by
embedding it into the loss function [KKL+20].

Consider first the following parametrized PDE system:

f(x, t, u,∇u,∆u, .., λ) = 0 x ∈ Ω and t ∈ (0, T ],

u(x, 0) = g0(x) x ∈ Ω,

u(x, t) = gΓ(x) x ∈ ∂Ω and t ∈ (0, T ]

x ∈ Rd is the spatial coordinate, t is the time, λ is the PDE parameter and f denotes the
residual of the PDE containing the differential operator by taking x and t as the inputs.
Also u(x, t) is considered as the solution of the PDE with the initial condition g0(x) and the
boundary condition gb(x). The boundary condition can be Dirichlet or Neumann. The goal
is to solve this boundary value problem using a PINN, which approximates the solution by
minimizing the residual across the spatial-temporal domain.
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Figure 4.1: Schematic of a physics-informed neural network (PINN) [CMW+21]

The PINN contains three main phases as has been depicted in the Figure 4.1, the FNN,
automatic differentiation (AD) and the calculation of the loss functional. The FNN accepts
(x, t) as inputs and computes the output in the same way described in the Chapter 2.2. The
model contains L ∈ N layers which have ni ∈ N nodes, with i = 1, ..., L, where n1= dim(Ω)
and nL=dim(Im(u)). The network can be transformed mathematically into the following
equations:

z0 = (x, t)

zk = σ(W kzk−1 + bk) for 1 ⩽ k ⩽ L

zL = WLzL−1 + bL.

where zk is the hidden variable of the k − th hidden layer, σ is the activation function and
W kand bk are the weight matrix and the bias vector of the k−th layer and the last term zL is
the last output of the model, which will be denoted for the rest of the thesis by uN [CMW+21].

For the choice of the activation functional in the case of PINNs, the RELU activation
function will not be a good option because it is not smooth and not consistent for PINNs,
which means it fails to converge to the exact solution even within the limit of an infinite
training dataset. But smooth functions as Tanh and Sigmoid have shown to be a good
choices to approximate the exact solution [Mar21].

The next phase of PINN is the AD. AD works on calculating the derivatives of the out-
puts with respect to the inputs directly in computational graph in order to construct the loss
[CMW+21]. This is similar to the backpropagation process, which is explained in details in
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Section 2.3. But the difference is that AD is considered as a collection of techniques that are
more general than backpropagation [BPRS 4]. The last step in PINNs is solving the PDE
system by converting it into an optimization problem by iteratively updating the parameters
p, with the goal is to minimize the loss functional.

The last step can be written as the following minimization problem

p ∈ argmin
p
L(uN). (4.14)

where uN is the network output and L is the loss functional of the PINN model. If the exact
solution u was known, then the standard loss functional is the difference between the real
output and the model output. But PINN is actually approximating this solution, which is
not known [FM23]. Raissi et al. presented the loss functional as the sum of the strong form
of the residual of the governing equations, the initial and the boundary conditions of the
problem [DFMa].

The standard loss functional Lst is defined as:

Lst = wILst
I + wBLst

B + wICLst
IC (4.15)

where the wI , wB and wIC are weights and Lst
I , Lst

B and Lst
IC are the residual loss functional,

the boundary condition loss functional and the initial condition loss functional . The weights’
role is to balance the interplay between the loss functionals. They can be chosen by an user
or tuned automatically. Some terms can appear and some other terms can disappear from
the equation. It depends on the problem [CMW+21].

The loss functionals mentioned above are written in the following form:

Lst
I =

1

NI

NI∑
i=1

|f(xi
I , t

i
I , uN(x

i
I , t

i
I),∇uN(x

i
I , t

i
I), ...., λ)|2, (4.16)

Lst
B =

1

NB

NB∑
i=1

|uN(x
i
B, t

i
B)− gΓ|2, (4.17)

Lst
IC =

1

NIC

NIC∑
i=1

|uN(x
i
IC , t

i
IC)− g0|2, (4.18)

(4.19)

where (xi
I , t

i
I), (x

i
B, t

i
B), (x

i
IC , t

i
IC) are the internal, boundary and initial collocation points

and NI , NB, NIC are the number of the collocation points.

4.2.1 Collocation points

Collocation points play a crucial role in influencing the quality of PINN approximations for
boundary value problems. The primary objective of PINNs is to minimize the loss functional,

37



which is evaluated at collocation points strategically distributed within the problem domain
and on the space time boundary [DFMa]. In reference [DFMb], three collocation point distri-
butions were compared in the context of convection-dominated convection-diffusion-reaction
problems, where solutions often exhibit layers localized regions with steep solution gradients.

The distribution of collocation points in these cases has a significant impact on the net-
work’s ability to capture such complex features. The three strategies assessed include layer
adapted collocation points inspired by Shishkin meshes, equispaced points, and uniformly
random point distributions, each evaluated for their effectiveness in representing convection-
dominated solutions. For the remainder of this work, equidistant collocation points will be
employed to ensure simplicity in implementation while maintaining a baseline accuracy level
appropriate for our purposes.

4.2.2 Standard loss functional

In the context of the convection-diffusion-reaction problem, the PINN model aims to ap-
proximate the solution while it minimizes the loss functional. The loss functional, used in
approximating the convection-diffusion-reaction problem (4.11), is the standard PINN loss
functional (4.15).

The strong residual of the convection-diffusion-reaction equation is written as follows:

Res(u) = −ϵ∆u+ β · ∇u+ ru− f. (4.20)

The standard loss functional is written as the sum of squared residuals over the whole domain
Ω and its boundary, defined by:

L =

∫
Ω

|Res(uN)|2dΩ +

∫
ΩD

|uN − gD|2dΩD +

∫
ΩN

|ϵ∇u · n− gN |2dΩN + Lp. (4.21)

where the Lp is the loss of the penalty [FM23], uN is the output of the PINN model, gD is
the Dirichlet boundary condition and gN is the Neumann boundary condition.

To compute the loss functional, integral involve high-order derivatives of the neural net-
work output need to be evaluated. The integrals in this case cause problem, since their
computation using traditional quadrature methods is very complicated, due to their high-
dimensional. A solution for this challenge is the Monte Carlo (MC) method. This method
plays a crucial role in the loss functional of PINNs for several reasons. Its primary advantage
lies in its simplicity and flexibility. It does not require knowledge of the functional form of
the integrand in high dimensions or adaptions for complex geometries. Instead, MC methods
leverage random sampling to estimate the integral, making it a better choice for a variety of
problems, including those faced in PINNs [FM23].

The strong residual form transformed in the following form:∫
Ω

Res(uN)dΩ ≈
1

NI

NI∑
i=1

|Res(uN)|2. (4.22)
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For the Dirichlet boundary condition, The Dirichlet residual is

ResD(uN) = uN − gD. (4.23)

The approximation of the Monte Carlo gives the following equation :∫
ΩD

|Res(uN)|2dΩD ≈
1

ND

ND∑
i=1

|Res(uN)|2. (4.24)

For the Neumann Dirichlet boundary condition, the Neumann residual is

ResN(uN) = ϵ∇uN · n⃗− gN . (4.25)

MC gives the following approximation :∫
ΩN

|Res(uN)|2dΩN ≈
1

NN

NN∑
i=1

|Res(uN)|2. (4.26)

After changing the terms of (4.21) with the equations (4.22), (4.24) and (4.26), the form of
the standard loss functional becomes as following

Lst =wst
I

1

NI

NI∑
i=1

|Res(uN)|2 (4.27)

+wst
D

1

ND

ND∑
i=1

|ResD(uN)|2 (4.28)

+wst
N

1

NN

NN∑
i=1

|ResN(uN)|2 (4.29)

+wp||Lp||2L2
. (4.30)

Numerical experiment with a smooth known solution

This numerical experiment is based on the example given in [FM23], p.96. It aims
in understanding the effectiveness of the PINN in solving the convection-diffusion-reaction
problems by comparing the approximated solution with the exact solution. The selected
problem is called Adapted Sine Laplace problem in two dimensions. This problem uses a
known exact solution that the PINN will try to approximate in computing L2 error.

The formulation of Adapted Sine Laplace PDE is of the form

−ϵ∆u(x, y) + β∇u+ ru(x, y) = f(x, y). (4.31)

where ϵ = 10−8, β = (1, 1)T and r = 1 and the source term is defined as

f(x, y) = 8π2 sin(2πx) sin(2πy). (4.32)
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(a) The exact solution (b) Domain and convection field

Figure 4.2: Domain, direction of convection field and exact solution of 4.2.2. Lines with
ticks indicate Dirichlet boundary ΩD and lines without ticks indicate Neumann boundary
ΩN [FM23].

Moreover, the boundary conditions are homogeneous Dirichlet conditions

u(0, y) =0 for 0 ≤ y ≤ 1

u(1, y) =0 for 0 ≤ y ≤ 1

u(x, 0) =0 for 0 ≤ x ≤ 1

u(x, 1) =0 for 0 ≤ x ≤ 1.

The exact solution for this problem is given by the following

u(x, y) = sin(2πx) sin(2πy). (4.33)

where the domain Ω = (0, 1)2. The exact solution is depicted in the Figure 4.2. The right
and the top edge of the unit square are set as Neumann boundary, while on the left and the
bottom edge Dirichlet boundary conditions are prescribed.

The implementation of the PINN model uses Python, along with the open-source libraries
TensorFlow and Numpy [Gé19]. For the optimization step and after trying 60 combinations,
the architecture and hyperparameters used here closely follow those in [FM23]. First, Adam
algorithm is the selected optimizer with TensorFlow’s default values, except for the learning
rate that is defined specific for this numerical example.

For this experiment, the FNN architecture consists of an input layer with two nodes,
followed by eight hidden layers, each containing 20 nodes, and a single node output layer.
The hidden layers use the GeLU activation function, while the output layer employs a lin-
ear activation function. The model weights are initialized using Glorot initialization with a
random seed of 41 and biases are initially set to zero.

The PINN model minimizes a standard loss function of the formula (4.27) with uniform
weights of 1. The training proceeds over 7500 epochs and 32 batch size with a learning rate
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of 10−2 · 3−3. This learning rate has been selected, because it provides the lowest value of
standard loss functional in the search of the best architecture. Integral approximations are
computed using 320 evenly spaced boundary points and 512 evenly spaced interior points,
half of the boundary points fall on the Dirichlet boundary and the remaining half on the
Neumann boundary, as illustrated in the Figure 4.4. After the training, the model returns
the smallest loss functional value during the optimization, the time taken for the training
process and the L2 error. Note that this could be not the last optimization step.

Figure 4.3: Representation of the FNN model’s layers, nodes, number of parameters and
output shape used in training PINN to approximate Example 4.2.2.

Training the model took approximately 534s updating 3,021 parameters used in the
model. print(pinn.model.summary()),in the code, provides a table that shows in details
the composition of the model: the name of the layers, the output shape and the number of
the parameter of each layer. It adds also the total parameters and the total of trainable and
non-trainable parameters. Those parameters are distributed over the layers in the following
way 60, 420 and 21.
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(a) Training points (b) training history

Figure 4.4: Training points [FM23] and history of loss functional values for PINN approxi-
mation to Example 4.2.2.

The approximated solution and the value of the standard loss functional and its compo-
nents are depicted in the Figures 4.2 and 4.4. It can be observed that the loss functional
decreases in oscillation over 7500 epochs. There a tendency that the values of the loss
functional decrease when the number epochs increases. On the other hand, the Neumann
boundary loss functional increases slightly at the beginning and after 1000 epochs, it starts
to decrease significantly without oscillation.

The model produces a reasonable approximation to the exact solution, even though the
maximum is not perfectly met and the Dirichlet boundary conditions are not precisely
satisfied. This is due to their inclusion in the loss function, which requires them to be
learned during training unlike continuous Galerkin finite element methods, where Dirichlet
conditions are enforced explicitly. The PINN approximation achieves a L2 error of about
||u − uN ||L2 ≈ 0, 0092504 and a minimum loss functional of about ≈ 0, 021239. However,
the approximation probably becomes more accurate if more training points are chosen, or
the model is trained for more epochs since after 7500 epochs, the loss is still decreasing.
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(a) The approximation uN (b) |u− uN |

Figure 4.5: PINN approximated solution uN and point-wise error for Example 4.2.2.

In summary, the implementation appears to be correct, demonstrating the ability of
PINNs to approximate solutions to convection-diffusion-reaction problems. However, it is
noted in the literature that PINNs may struggle significantly when it comes to solutions that
possess layers [DFMa].

4.3 Hard-constrained PINNs

Training the boundary conditions has been a challenge, since they are important for the
proper possession of the problem and the shape of the solution in the interior. Any incorrect
or missing information about the boundary conditions can cause a problem with the inaccu-
racy of the approximation of the solution [DFMa]. Learning the boundary condition in the
training phase is expensive in time, because it can be taken as a-prior known information
[DFMa].

A new variation of PINNs has been proposed and detailed in the paper [LPY+21], called
hard-constrained PINN. It ensures accurate representation of inlet boundary conditions. The
idea of this approach prescribes the Dirichlet boundary condition the same way as in the
standard finite element methods and it avoids the need to select user-chosen constants, since
wst

D = 0. The other constant just scales the functional, which does not change the problem
and let wst

I = 1 [DFMa].

Consider the following Dirichlet boundary condition of the convection-diffusion equation

u(x, t) = gD(x) x ∈ ΩD (4.34)

where ΩD is the Dirichlet boundary set. The main work is to construct a function g̃ : Ω→ R
as a continuous extension of gD from ΩD to Ω. Next, the solution is written as:

ũN = g̃N + luN (4.35)
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where uN is the network output and the l is an indicator function satisfying the following
two conditions:

l(x) = 0, if x ∈ ΩD

l(x) > 0, if x ∈ Ωc
D

(4.36)

where ΩD is the Dirichlet boundary domain. By construction, uN |ΩD
= gD, which means

that the Dirichlet conditions are satisfied exactly and the terms Lst
D are zero and neglected

during the training.

Numerical experiment with a smooth known solution

The same example 4.2.2, which is utilized in proving the effectiveness of the PINN in the
subsection 4.2.2, is also utilized in this part to assess the performance of the hard-constrained
PINN. The exact solution for this problem is defined as

u(x, y) = sin(2πx) sin(2πy), (4.37)

where the domain Ω = (0, 1)2. In order to enforce the boundary conditions, the indicator
function l, adapted from [VJ24], was applied with κ = 30 as

l(x, y) = (1− e−κx)(1− e−κy)(1− e−κ(1−x))(1− e−κ(1−y)), (4.38)

The same FNN architecture, that is used in the Example 4.2.2, is trained over 7500
epochs. The hard-constrained PINN demonstrated a good ability to approximate the exact
solution in the given example, achieving an error of approximately ||u − uN ||L2 ≈ 0.040316
and a loss functional value of ≈ 0, 021136 after 7500 epochs. These results were obtained
within 487 seconds. Using the Figure 4.6, the hard-constrained PINN manages to produce
an approximation that closely similar to the exact solution, with minimal deviations that
exceed the maximum value by 0.04 and the minimum by -0.01. This underscores the effi-
cacy of the hard-constrained approach in maintaining boundary precision while minimizing
computational overhead.
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(a) The approximation uN (b) |u− uN |

Figure 4.6: Hard-constrained PINN approximated solution uN and point-wise error for Ex-
ample 4.3.

Compared to the vanilla PINN, the hard-constrained PINN not only achieved a lower
loss functional value but also it took a shorter computational time. In vanilla PINN, the
Dirichlet boundary conditions were included as part of the standard loss functional but were
not strictly enforced. This reflected in higher computational costs and slightly less pre-
cise adherence to the boundary conditions. On the other side, the hard-constrained PINN
enforces these constraints directly, eliminating the Dirichlet loss functional and ensuring su-
perior boundary precision. In the Figure 4.7, the Dirichlet loss is reflected in a zero value.

Figure 4.7: History of loss functional values for hard-constrained PINN approximation to
Example 4.3.
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The findings show the significant advantages of hard-constrained PINNs over vanilla
PINNs, particularly in scenarios where precision and computational efficiency are impor-
tant. By enforcing boundary conditions directly rather than relying on their inclusion in the
loss functional, hard-constrained PINNs achieve better approximation accuracy and reduced
computational time. The hard-constrained PINN is used in the numerical studies in the next
Chapter 5 of this master thesis.
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Chapter 5

Numerical Studies

Adam, an adaptive learning rate optimizer, adjusts the learning rate for each parameter
based on the magnitude and history of gradients. This feature allows Adam to exploit the
local geometry of the loss function effectively. Compared to SGD, Adam often provides faster
convergence due to its ability to adaptively modify the learning rates during optimization.
Despite its advantages, there are scenarios, where Adam performed poorly in compared to
SGD. For instance, in certain image classification tasks, Adam’s generalization capabilities
can be significantly inferior to SGD [AGK21]. On the other hand, for applications such as
training transformers, Adam tends to outperform SGD, demonstrating its versatility across
various tasks. Recent research [PL23] investigates deeper into this performance gap between
the two optimizers, revealing that SGD exhibits worse directional sharpness in update steps
compared to Adam, contributing to its slower convergence.

Nadam combines the Adam algorithm with Nesterov momentum. This optimizer pre-
dicts the direction of future updates based on the current gradient. According to the study
[Doz16], Adam and Nadam were evaluated across various scenarios. Nadam showed supe-
rior performance in tasks such as word2vec and LSTM-LM, particularly when dropout was
applied. However, in simpler tasks like MNIST, Adam sometimes performed equally well
or better, depending on factors such as model size, task complexity and the potential for
overfitting.

BFGS, a quasi-Newton method, aims to combine the benefits of Newton’s method with-
out incurring the heavy computational cost associated with calculating the Hessian matrix.
Similar to the conjugate gradient method, BFGS utilizes second-order derivative to enhance
the optimization. However, it is less reliant on line search accuracy, enabling faster refine-
ment at each iteration [GBC16]. This makes BFGS a compelling choice for problems where
the computational overhead of Newton’s method is prohibitive. However, its implementation
within TensorFlow presents significant challenges, which are explained in details in the sub-
section (5.1.5). Due to those challenges, the analysis are continued using three optimizers,
SGD, Adam and Nadam.

This chapter focuses on comparing three optimizers on solving convection-diffusion-
reaction problems using PINN. The primary goal is to evaluate and compare the performance
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of three used optimizers: SGD, Adam, and Nadam based on the low value of loss functional,
the time of training the model and also the accuracy. The chosen examples are the circular
Interior Layer and Outflow Layer. The comparison will include a table of hyperparameters
based on [VJ24] with a bit of change, ensuring consistency in the experimental setup.

5.1 Benchmark Problem Overview

The Outflow Layer and the Circular Interior Layer have been selected as examples of steady-
state convection-diffusion-reaction problems for evaluating the hard-constrained PINN, be-
cause they possess analytical solutions. This allows a direct comparison with the exact
solution, which facilitates the assessment of the accuracy of the model.

This section introduces both examples, followed by a detailed discussion of the hyperpa-
rameters and evaluation metrics used during training. Finally, the challenges encountered
while implementing the BFGS optimizer are addressed.

5.1.1 Circular interior layer

The circular Interior Layer problem is introduced in the following example, as detailed in
[JVMJT97]. The exact solution is given by :

u(x, y) = 16x(1− x)y(1− y)(
1

2
+

arctan(200(r20 − (x− x0)
2 − (y − y0)))

π
), (5.1)

where r0 = 0, 25 and x0 = y0 = 0, 5. For the convection-diffusion-reaction equation, the
parameters have the following values β = (2, 3)T , r = 2 and ϵ = 10−8 within the domain
Ω = (0, 1)2. The boundary ΓD = ∂Ω is the subject to Dirichlet conditions. Dirichlet bound-
ary conditions are defined along ΓD to match the exact solution u(x, y) at the boundaries.
The exact solution of the Circular Interior Layer is visualized in Figure 5.1.
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Figure 5.1: Exact solution of Circular Interior Layer example 5.1

The solution consists of an interior layer in the circle. The radius of the circle is 0.25.
This example involves studying diffusion and convection effects in a bounded domain with a
particular focus on the behavior near the interior layer defined by a circular region around
(x0, y0). The derived source term f(x, y) and the boundary conditions are chosen such that
they are consistent with the exact solution, ensuring that the solution satisfies the specified
convection diffusion reaction equation within Ω.

5.1.2 Outflow layer

This subsection introduces the Outflow Layer problem, a key example derived for the steady
state convection-diffusion-reaction equation as detailed in example 3 provided by [JVMJT97].
This equation has the values of β = (2, 3)T , r = 1 and ϵ = 10−8. The exact solution is written
as:

u(x, y) = xy2 − y2 exp
(2(x− 1)

ϵ

)
−x exp

(3(y − 1)

ϵ

)
+exp

(2(x− 1) + 3(y − 1)

ϵ

)
(5.2)

which visualized in Figure 5.2. The domain Ω is (0, 1)2, the unit square and the boundary
condition is ΓD = ∂Ω.
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Figure 5.2: Exact solution of Outflow Layer example (5.2)

The Outflow Layer problem models the transport of a quantity, such as temperature,
through the domain where the flow is primarily in the direction of the convection field. The
small diffusion parameter and strong convection field create unique challenges in accurately
capturing the solution’s behavior, especially the layers near the boundaries.

5.1.3 Hyperparameters for the training process

In the Chapter (2.2.3), the crucial role of the hyperparameters in the FNN model is explained
in details and how it affects its performance. The optimal combination of the hyperparam-
eters can affect directly the accuracy of the model. In this case, the hyperparameters are
chosen in correspondence with the practical recommendations from [FM23] and [VJ24]. To
this end, in each experiment different configurations of PINN are optimized whose hyperpa-
rameters are given in Table 5.1.

Table 5.1: Values of hyperparameters used in training hard-constrained PINN.
Hyperperparameters Values
Number of epochs 1,000, 10,000
Learning rate 0.01.3k for k in {−6, .., 0}
Number of hidden layers 5, 8, 10, 15
Activation function GeLU, Tanh, Sigmoid, Swish
Batch size 32
Nodes per hidden layer 20
Initialization seed 41
Optimitzers SGD, Adam, Nadam
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The choice of the epochs number is very important, since for a very low value the model
may not train long enough to minimize the loss functional. Also, the high value of the
epochs number can cause memorizing the training data, where the model loses the ability to
be accurate when it comes to new data that never seen before [GBC16]. Based on [GBC16]
and [Ben12], the ideal number of training epochs is reached when the model’s performance
on the training dataset continues to improve, but its performance on the test dataset starts
to degrade. This marks the onset of overfitting, where the model begins to lose its ability
to generalize to a new, unseen data. To mitigate this, the goal is to adopt strategies that
prevent overfitting. In this thesis, overfitting is controlled using early stopping a technique
that stops training as soon as the model’s accuracy on the test dataset begins to decline,
indicating a shift away from optimal generalization. This early stoppage ensures that there
is no overfitting.

According to [Ben12], the good default value of batch size is 32. Batch size’s impact is
mostly computational. In other words, it effects the training time. Its larger value yields to
a faster computation but requires visiting more examples, in order to reach the same error,
since there are less updates per epoch.

The next crucial hyperparameter is the learning rate. A value that is too high prevents
convergence, while values that are too low cause the model to become stuck in local minima.
[Ben12] and [GBC16] recommend in choosing a high learning rate and then gradually reduce
it. Starting with a learning rate of 0.01 · 30 and scaling it down by a factor of three in each
adjustment phase, this strategy is applied until the learning rate reaches a minimal threshold
of 0.01 · 3−6.

The main architecture of the FNN model in hard-constrained PINN is described as the
following, the input layer consists of two nodes and the output layer of a single node with
linear activation function. The selected numbers of hidden layers are 5, 8, 10, 15. This
choice is based on [VJ24]. This paper is based on paper that aims on understanding the
impact of the depth of the network on the ability of the model to learn the complex patterns
and improve prediction accuracy in contexts informed by physics [PSN23]. Additionally,
each hidden layer within the neural network will uniformly contain 20 nodes, establishing a
consistent structure across the network to facilitate a controlled evaluation of the model’s
performance and the impact of other varied hyperparameters.

Finally, the selection of activation functions for the hidden layers will be evaluated, draw-
ing on insights from specialized studies in PINNs and their applications to complex problems.
The activation functions considered include GeLU, Tanh, Sigmoid and Swish. These choices
are inspired by their effectiveness invarious PINN contexts, aiming to optimize the model’s
ability to capture and represent the underlying physics of the problem being solved [PSN23].
As mentioned in the previous Chapter (4.1), Sigmoid and Tanh have shown to be a good
choice for PINN [Mar21] and GeLU was identified as the most effective with Adam for the
example of circular Interior Layer in [VJ24]. The values of the weights are initialized at the
beginning based on Glorot initialization [GB10] with the seeds given in Table 5.1, the initial
biases are set to zero.
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Figure 5.3: The indicator function for the Circular Interior Layer 5.1.1.

Since the focus is on hard-constrained PINN as discussed in the previous Section (4.3),
a smooth extension of g̃D for the boundary condition is established for any point (x, y) ∈ Ω̄
where g̃D(x, y) = 0. For the Circular Interior Layer, the indicator function l as shown in
figure, has the following form:

l(x, y) = (1− e−κx)(1− e−κy)(1− e−κ(1−x))(1− e−κ(1−y)), (5.3)

where κ = 30 is the chosen scaling factor.

In the Outflow Layer Example 5.1.2, the indicator function, as depicted in Figure 5.4,
follows the same structure as Equation (5.3), but employs a different approach to scaling.
When examining boundary conditions within a specific domain, the inclusion of a scaling
parameter, denoted κ, is crucial to effectively manage the impact of these conditions on the
solution’s behavior. This parameter is determined based on the convection field’s orientation
with respect to the boundary and the domain’s location.

At boundaries where the fluid exhibits a transition indicative of a boundary layer, the
scaling factor is defined as κ0 = 1

ϵ
, enhancing the model’s sensitivity to steep gradients

and rapid changes in properties. Conversely, at boundaries where the solution demonstrates
minimal changes in flow characteristics—effectively a ’no boundary layer’ scenario κi = 30
is set to a significantly different value to reflect the lesser impact of boundary conditions
on the flow behavior. The choice of κ in such cases is guided by the need to ensure that
the boundary conditions do not artificially constrain the natural development of the solution
within the domain.

5.1.4 Metrics for Model Implementation

For problems with analytical solutions, the accuracy of hard-constrained PINNs is measured
using the L2 error. This metric checks how close the model’s predictions are to the known

52



Figure 5.4: The indicator function of the Outflow Layer 5.1.2.

analytical solutions across the problem’s domain. The L2 error measures the difference
between two elements u and uN over a domain Ω using the formula:

||u− uN ||L2 =

(∫
Ω

|u− uN |2 dΩ
)1/2

(5.4)

where u is the exact solution and uN is the approximation of the PINN. This metric helps
to evaluate how well the model approximates the solution. The evaluation also involves
checking whether the predictions exceed the known minimum or maximum values of the
problem. Two methods are used: tracking oscillations during training and spotting non-
physical values in the final output. Together, these methods ensure that the final solution
is accurate and physically meaningful while also examining the model’s behavior during
training.

5.1.5 Challenges of implementing BFGS

if loss_functional == "standard" or loss_functional == "crosswind":

res_squared = tf.math.square(batch_elem[:,2] - val_pred)

loss = tf.math.reduce_sum(res_squared * batch_elem[:,3])

train_loss= tf.keras.metrics.Sum() #sum of interior and boundary losses

interior_loss = tf.keras.metrics.Sum() #sum of batch losses

boundary_D_loss = tf.keras.metrics.Sum() #sum of batch losses

boundary_N_loss = tf.keras.metrics.Sum() #sum of batch losses

The code, utilized in this master thesis, is the same used in [FM23]. It relies not only
on old versions of the Python’s library TensorFlow, but also it introduces difficulties when
trying to implement the BFGS optimizer from libraries such as scipy.optimize.minimize
or TensorFlow Probability’s bfgs minimize.

In the code, the loss measures the square difference between the predicted and actual
values, denoted by val pred and batch elem [:,2] and then multiplies them by a weight
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batch elem[:,3]. This weighted sum of squared differences gives the loss for a single batch
of data. Additionally, the code tracks all components of the loss functional separately.

Upgrading Python version and its library Tensorflow to implement TensorFlow Proba-
bility’s bfgs minimize unfortunately leads to crashes and incompatibility issues of the code
when is runned in Spyder.

scipy or TensorFlow Probability’s BFGS optimizer expect the loss functional to be a
simple function, explicitly defined, that takes numpy arrays as inputs and returns a number.
However, the loss functional is built using TensorFlow operations like tf.math.square and
tf.math.reduce sum, which rely on TensorFlow’s internal system for automatic differenti-
ation and computational graphs. These operations do not work directly with the libraries
mentioned.

Also, BFGS requires that the gradient of the loss function with respect to the model
parameters are explicitly provided. TensorFlow automatically calculates gradients for its
built-in optimizers like Adam or SGD during training, but this does not directly help with
BFGS. To make it work, we would need to manually compute these gradients using Tensor-
Flow tools like tf.GradientTape and then ensure that they are in the right format for BFGS.

The loss functional is based on batches. It is calculated separately for each batch of
data and then integrateted into the training process. However, scipy.optimize.minimize
expect a single, global loss function, not one that depends on batch processing. The
term batch elem[:,3] is a weight used in the loss computation. In order to use it with
scipy.optimize.minimize, the optimizer needs to interpret these batch weights during
the updating of the parameters. Unfortunately, this is not directly supported by scipy or
TensorFlow Probability. The challenges faced by implementing BFGS prevented a direct
comparison of the three optimizers.

5.2 Results

The evaluation of the various optimizers introduced in Chapter 3 is based on training Ex-
amples 5.1.1 and 5.1.2 using a hard-constrained PINN. The optimal optimizer is determined
by minimizing the L2 error and maximizing the effectiveness. The following subsection in-
troduces the analysis method, followed by the evaluation of the Circular Interior Layer and
the Outflow Layer.

5.2.1 Analysis method

This section focuses on the procedure followed to analyze the results after training hard-
constrained PINN approximating Examples 5.1.1 and 5.1.2. The performance of the three
optimizers, SGD, Adam and Nadam, is analyzed based on their effectiveness, accuracy and
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speed. First, each optimizer, SGD, Adam, and Nadam, is evaluated with different com-
binations of architectures, as outlined in Table 5.1. These combinations vary in terms of
activation functions, learning rates and the number of hidden layers.

Each combination is trained for 1,000 epochs to allow the initial convergence. The optimal
architecture of each optimizer was selected based on the lowest L2 error. These optimal ar-
chitectures, where each optimizer performed well, allow the optimizers to be fairly compared.
Then, these selected configurations were trained again for an additional 10,000 epochs. Com-
paring the performance of the optimizers after both short-term (1,000 epochs) and long-term
(10,000 epochs) training allows for a deeper analysis of the optimizers’ performance. The
efficiency is related to the values of the loss functional, while accuracy is related to the values
of the errors and speed to the time spent by each optimizer to achieve convergence.

Based on each architecture proposed in Table 5.1, the combinations of optimizers with
various hyperparameters are analyzed, to assess the influence of the activation function and
the number of layers on the optimizer’s behavior. After training the optimal models again for
short and long-term, the point-wise error is tracked, providing a direct measure of accuracy
at individual collocation points. In addition, the training history of the loss functional is
presented in graph to gain insight into the overall progress and the rate of change of the loss
functional with respect to the number of epochs. Additionally, a comparison between the
approximated solution, uN , and the exact solution presents whether the optimal architec-
ture successfully produced an approximation that is close to the exact solution. The results
are summarized in a table that presents the lowest values of L2 error, loss functional, and
training time for the three optimizers. This comparison table serves as a basis for evaluating
the efficiency, accuracy and speed of the optimizers.

It is important to note that the training time varied slightly each time the code was
executed. However, for the purpose of this analysis, only one training time per optimizer
was considered. Although the exact training time fluctuates, the speed of the optimizers
remained consistent, meaning that the differences in training time did not reflect any signif-
icant variation in the optimizers’ performance or efficiency.

5.2.2 Circular interior layer

The evaluation of the results achieved by solving the Example 5.1.1 using hard-constrained
PINN follows the analysis method mentioned in 5.2.1.

The first used optimizer for approximating (5.1) is SGD. After training the combinations
between SGD and the values in Table 5.1 over 1,000 epochs, the results indicated that SGD
with various configuration performed well by achieving low L2 error, but they struggled while
minimizing the loss functional. The Figure 5.8 depicted the values of the loss functional of
the optimal architectures, which shows that SGD had the highest loss functional values
among the other optimizers during training the model over 1,000 epochs. The best perform-
ing architecture of SGD composes of 10 hidden layers, a learning rate of value 10−2 · 3−2

and Tanh activation function. This architecture yields a L2 error of value ≈ 0.023498 and a
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corresponding loss functional of value ≈ 7.835987.

(a) Approximation uN (b) |u− uN |

Figure 5.5: Hard-constrained PINN approximated solution uN and the point-wise error using
SGD optimizer to Example 5.1.1 after training over 1,000 epochs.

Figure 5.5 illustrated the approximated solution uN and the point-wise error produced
by SGD optimal architecture. The findings indicated that SGD, after training for 1,000
epochs, successfully produced an approximation that closely similar to the exact solution.
However, the optimal architecture did not achieve the maximum value and the minimum
value of exact solution. The maximum value was underestimated by 0.02, while the mini-
mum value exceeded the exact solution by −0.06. The pointwise error, depicted in the same
Figure, revealed inaccuracies concentrated in the interior regions, particularly around the
circular domain. These regions exhibited notable deviations, underscoring areas where the
SGD optimizer struggled to achieve high accuracy within the 1,000 epochs training period.

The results, obtained from training hard-constrained PINN using Adam for 1,000 epochs,
show that the activation functions Tanh and GeLU outperformed Sigmoid and Swish, achiev-
ing lower values of L2 error and loss functional. In contrast, Sigmoid and Swish resulted
in higher values for both metrics. As shown in the Figure 5.8, the loss functional produced
by Adam exhibited a significant decrease with respect to the number of epochs, showing
superior performance compared to SGD. The optimal architecture of Adam optimizer is de-
composed of 8 hidden layers, a learning rate of value 10−2 · 3−4 and the GeLU activation
function. This architecture achieved an L2 error of value ≈ 0.004156 and a significantly
lower loss functional of ≈ 0.553932.
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(a) Approximation uN (b) |u− uN |

Figure 5.6: Hard-constrained PINN approximated solution uN and the point-wise error using
Adam optimizer to Example 5.1.1 after training over 1,000 epochs.

The Figure 5.6 illustrated the approximated solution uN and the point-wise error by
the optimal architecture of the optimizer Adam. The findings indicated that Adam, after
training for 1,000 epochs, successfully managed to produce an approximation that closely
mirrors the exact solution in compare to SGD5.1. The maximum value of the approximated
exceed the maximum value of the exact solution by 0.01. Analysis of the point-wise error
revealed where certain areas within the interior are not accurately approximated, similarly
to the observed scenario of the optimizer SGD.

After training the model using Nadam optimizer, Nadam’s best architecture had 5 hidden
layers, with the same optimal learning rate as SGD 10−2 ·3−2 and GeLU activation function,
resulting an L2 error of value≈ 0.004197 and a loss functional of value≈ 0.471659. Compared
to Adam, Nadam seemed to favor shallower architectures, likely due to its momentum-based
update mechanism, that stabilizes training in smaller networks. The activation functions
Tanh, GeLU and Swish outperformed Sigmoid, by achieving lower loss functional and L2

error values. As shown the Figure 5.8, the loss functional produced by Nadam exhibited
a significant decrease with respect to the number of epochs, showing superior performance
compared to SGD and Adam.
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(a) Approximation uN (b) |u− uN |

Figure 5.7: Hard-constrained PINN approximated solution uN and the point-wise error using
Nadam optimizer to Example 5.1.1 after training over 1,000 epochs.

The Figure 5.7 illustrated the approximated solution uN and the pointwise error after
1,000 epochs by the optimal architecture of the optimizer Nadam for the Example 5.1.1. The
findings indicated that Nadam managed to produce an approximation that closely similar to
the exact solution 5.1. The maximum value exceed the maximum value of the exact solution
by 0.02 and the minimum value by −0, 01. Analysis of the point-wise error in the Figure 5.7
reveals that Nadam failed to accurately represent the peak region of the problem and the
surrounding area of the cycle is also poorly approximated.
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Figure 5.8: History of loss functional values for hard-constrained PINN approximation with
SGD, Adam and Nadam optimizers over 1,000 epochs to Example 5.1.1.

In summary, the Sigmoid activation function consistently performed poorly in every op-
timizer. Its tendency to saturate at extreme values results in vanishing gradients, severely
hampering optimization. Similarly, architectures with 15 hidden layers led to high L2 errors
and loss functional values for all three optimizers. Additionally, Adam was the only opti-
mizer that successfully produced an approximated solution uN that is very close to the exact
solution in comparison to the other optimizers.

Table 5.2: Values of L2 error, loss functional, and training time over 1,000 epochs for training
hard-constrained PINN using SGD, Adam and Nadam to approximate the Circular Interior
Layer problem 5.1.1.

Optimizer Loss functional L2 error Training time (sec)
SGD 7,835987 0,023498 114
Adam 0,553932 0,004156 177
Nadam 0,471659 0,004197 229

The Table 5.2 presents the values of the loss functionals, L2 error and the training time
of the best architecture of the three used optimizers after training over 1,000 epochs solving
the example 5.1.1. It shows that Adam achieved the lowest L2error. Nadam followed closely
a slightly higher L2 error, while SGD lagged behind the highest L2error. This observation
was a bit similar to the values of the loss functional, where Nadam achieved the lowest
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loss functional, marginally outperforming Adam. In contrast, SGD produced a significantly
higher loss functional. In the Figure 5.8, It is evident that Nadam outperformed other op-
timizers with minimizing the loss functional values. However, in terms of training speed,
SGD required a less time compared to Adam and Nadam. This indicates that while SGD
is computationally faster, it struggles to achieve comparable efficiency and accuracy to the
other two optimizers within the same training duration.

Table 5.3: Values of L2 error, loss functional, and training time over 10,000 epochs for
training hard-constrained PINN using SGD, Adam and Nadam to approximate the Circular
Interior Layer problem 5.1.1.

Optimizer Loss functional L2 error Training time (sec)
SGD 0,21427 0,004441 1466
Adam 0,194481 0,001364 2669
Nadam 0,209872 0,002784 2191

Figure 5.9: History of loss functional values for hard-constrained PINN approximation with
SGD, Adam and Nadam optimizers over 10,000 epochs to Example5.1.1.

Extending the training epochs to 10,000 provides a significant reduction in both loss
functional and L2 error across all optimizers. Adam continued outperforming the other op-
timizers by achieving the lowest values of the error and loss functional. But, the values of
Adam and Nadam are still closed to each other as shown in the Figure 5.9. SGD, though
improved, remained the least accurate. It achieved approximately close L2 error, that was
achieved by Adam after 1,000 epochs. The training time analysis reveals that longer training
durations amplify the computational cost differences among the optimizers. Adam required
the longest time at 2669 seconds in compared to Nadam and SGD.
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(a) Approximation uN (b) |u− uN |

Figure 5.10: Hard-constrained PINN approximated solution uN and the point-wise error
using SGD optimizer to Example 5.1.1 after training over 10,000 epochs.

(a) Approximation uN (b) |u− uN |

Figure 5.11: Hard-constrained PINN approximated solution uN and the point-wise error
using Adam optimizer to Example 5.1.1 after training over 10,000 epochs.

The Figures 5.10, 5.11 and 5.12 illustrate the approximated solution and point-wise error
after training over 10,000 epochs for the optimizers SGD, Adam and Nadam. Compared to
the Figures 5.5, 5.6 and 5.7, the optimizers achieved notable improvements related to the
approximated solution and the point-wise error. The findings indicate that the optimizers,
successfully managed to produce a better approximated solution than the ones obtained
after 1,000 epochs. Nadam is the only optimizer, which produced exactly the same exact
solution. Analysis of the point-wise error revealed significant correction to the inaccuracies
concentrated in the interior, the peak regions and the surrounding area of the cycle. The
most remarkable one belongs to the SGD optimizer.
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(a) Approximation uN (b) |u− uN |

Figure 5.12: Hard-constrained PINN approximated solution uN and the point-wise error
using Nadam optimizer to Example 5.1.1 after training over 10,000 epochs.

In summary, based on this analysis, during short-term training, Adam demonstrated
superior accuracy, while SGD emerged as the fastest optimizer. However, Nadam outper-
formed in efficiency, by achieving the lowest loss functional value. In long-term training,
Adam proved to be the best optimizer, achieving the highest accuracy and efficiency. Mean-
while, SGD maintained its position as the fastest optimizer, though it lagged behind in ac-
curacy and efficiency compared to Adam and Nadam. Nadam offers a good middle ground,
achieving results close to Adam but with slightly less training time.

5.2.3 Outflow layer

The same analysis method 5.2.1 is followed, while analyzing the results of the Outflow Layer
5.1.2. In order to have a fair comparison between different optimizers in training hard-
constrained PINN solving the example 5.1.2, the optimizers SGD, Adam, and Nadam are
trained for 1,000 epochs to find the optimal architecture. Firstly, the interplay between
optimizers and hyperparameters, including the learning rate, number of hidden layers, and
activation functions are analyzed. Then, these best architecture are trained again for 10,000
epochs, to examine how the optimizers performed over extended training durations. It al-
lowed for a detailed comparison of the optimizers’ accuracy, efficiency and speed, contrasting
the performance after short-term and long-term training.

According to [Mat24], the approximation of the Outflow Layer appears to be more chal-
lenging. One possible explanation for the challenges faced by hard-constrained PINNs in
modeling the Outflow Layer problem could be the complexity of the solution near the bound-
aries. This complexity makes it difficult for hard-constrained models to adjust adequately,
emphasizing the necessity for models that provide greater flexibility at the boundaries to
effectively capture steep gradients.

After training hard-constrained PINN using SGD for 1,000 epochs to approximate Ex-
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ample 5.1.2, the results show that the SGD optimizer generally does not perform well with
the Tanh activation function. In contrast, the GeLU activation function achieves lower L2

error values compared to Tanh. However, both Swish and Sigmoid show poor performance.
The optimal architecture for SGD consists of GeLU as the activation function, 15 hidden
layers and a learning rate of value 10−2. This architecture achieves L2 error of ≈ 0.032732
and loss functional of value ≈ 0, 230783.

(a) Approximation uN (b) |u− uN |

Figure 5.13: Hard-constrained PINN approximated solution uN and the point-wise error
using SGD optimizer to Example 5.1.2 after training over 1,000 epochs.

The Figure 5.13 illustrates the hard-constrained PINN approximation and the point-wise
L2 error of the optimizer SGD over 1,000 epochs. The findings indicate that SGD optimal
architecture successfully produces an approximation similar to the exact solution 5.2. How-
ever, the approximated solution shows overshoots in the maximum value by 0, 97 and also in
the minimum value by −0.01. Additionally, the approximation on the corner (1,1 ) appears
to be inaccurate, as indicated by the pointwise error.

After training the Adam optimizer combinations for 1,000 epochs, the activation func-
tions Sigmoid and Tanh perform very poorly by achieving consistently high L2 error values.
In contrast, GeLU and Swish perform poorly only with high learning rate value but deliver
good results otherwise. The optimal configuration of the Adam optimizer consists of 5 hid-
den layers, a learning rate of 10−2 · 3−5, and GeLU as the activation function, resulting in
an error of approximately 0.030243 and loss functional of value ≈ 0, 019591.
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(a) Approximation uN (b) |u− uN |

Figure 5.14: Hard-constrained PINN approximated solution uN and the point-wise error
using Adam optimizer to Example 5.1.2 after training over 1,000 epochs.

The Figure 5.14 illustrates the hard-constrained PINN approximation and the point-wise
L2 error of the optimizer Adam over 1,000 epochs. The findings show the model exceed the
maximum and the minimum values of the exact solution 5.2 by 0, 08 and −0, 12. Also, the
error in the corner (1,1) appears to be of the same magnitude as the error in the rest of the
solution.

For 1,000 epochs, Nadam optimizer displays a strong performance across various con-
figurations, only with the activation function Sigmoid and the highest learning rate value.
The Swish activation function achieves excellent results, providing the optimal architecture,
incorporating 5 hidden layers and a learning rate of 10−2 · 3−2. This architecture achieves L2

error of approximately ≈ 0.074862 and a loss functional value of ≈ 0.01236.
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(a) Approximation uN (b) |u− uN |

Figure 5.15: Hard-constrained PINN approximated solution uN and the point-wise error
using Nadam optimizer to Example 5.1.2 after training over 1,000 epochs.

The Figure 5.15 illustrates the hard-constrained PINN approximation and the point-wise
L2 error of the optimizer Nadam for 1,000 epochs. Similar to Adam’s case, the findings show
that the model exceeds the maximum and the minimum values of the exact solution 5.2 by
0, 03 and −0, 37. Also, the error in the corner (1,1) appears to be of the same magnitude as
the error in the rest of the solution.

In summary, the Sigmoid activation function is the only optimizer that performs poorly.
For all other activation functions, the three optimizers demonstrate good performance and
architectures with 5 hidden layers consistently outperform other configurations. Addition-
ally, the results show that only SGD optimizer produces approximated solution similar to
the exact solution 5.2, while Adam and Nadam fail, because of the high differences between
the maximum and minimum values of the models.

Table 5.4: Values of L2 error, loss functional, and training time over 1,000 epochs for training
hard-constrained PINN using SGD, Adam and Nadam to approximate the Outflow Layer
problem 5.1.2.

Optimizer Loss functional L2 error Training time (sec)
SGD 0,230783 0,032732 270
Adam 0,019591 0,030243 188
Nadam 0,01236 0,074862 181

After training for 1,000 epochs, the results for accuracy, loss functional values, and train-
ing time are presented in Table 5.4. Nadam achieves the lowest loss functional value of
0.01236 in the shortest time. However, SGD produces the highest L2 error and loss func-
tional values while requiring the longest training time. In contrast, Adam demonstrates the
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best accuracy, despite having a relatively high loss functional value and a longer training
time.

Figure 5.16: History of loss functional values for hard-constrained PINN approximation with
SGD, Adam and Nadam over 1,000 epochs to the Example (5.2).

The Figure 5.16 illustrates the history of the loss functional for the three optimizers
during the training of a hard-constrained PINN to approximate the solution of the Outflow
Layer problem 5.2 over 1,000 epochs. Nadam was the fastest convergence, minimizing the
loss functional since the initial epochs. In comparison, Adam required more time to achieve
similar values. Conversely, SGD demonstrated significantly slower convergence, with its loss
functional only approaching those of Adam and Nadam after approximately 700 epochs.
This confirms the results found in the Table 5.4.

Table 5.5: Values of L2 error, loss functional, and training time over 10,000 epochs for
training hard-constrained PINN using SGD, Adam and Nadam to approximate the Outflow
Layer problem 5.1.2.

Optimizer Loss functional L2 error Training time (sec)
SGD 0,15064 0,327266 3356
Adam 0,009638 0,077798 1110
Nadam 0,008739 1,682296 1145

Here’s the corrected and refined version of your paragraph:
The optimal architectures identified previously are trained again for 10,000 epochs. The

findings are summarized in Table 5.5. The values for the Adam and Nadam optimizers
change significantly. Adam achieves the lowest L2 error in the shortest time among the
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three optimizers. On the other hand, SGD produces the highest loss functional while requir-
ing the longest training time of 3356 seconds, and Nadam results in the highest L2 error.
Compared to the values at 1,000 epochs, the optimizers continue minimizing the loss func-
tional but struggle to maintain accuracy. In other words, the L2 error values are higher than
they were previously.

Figure 5.17: History of loss functional values for hard-constrained PINN approximation with
SGD, Adam and Nadam over 10,000 epochs to the Example (5.2).

The Figure 5.17 depicted the decrease of the loss functional through the 10,000 epochs
during the training of hard-constrained PINN using the three optimizers. The optimizers
Adam and Nadam have approximately the same convergence, minimizing the loss functional
starting from the initial epochs. In contrast, SGD showed significantly slower convergence.
When the number of the epochs extended, the three optimizers continued minimizing the
loss functional but they lost their accuracy significantly. This can be related to overfitting.
However, Adam and Nadam proved that it is the most efficient optimizer in compare to
SGD, which was the slowest optimizer.
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(a) Approximation uN (b) |u− uN |

Figure 5.18: Hard-constrained PINN approximated solution uN and the point-wise error
using SGD optimizer to Example 5.1.2 after training over 10.000 epochs.

(a) Approximation uN (b) |u− uN |

Figure 5.19: Hard-constrained PINN approximated solution uN and the point-wise error
using Adam optimizer to Example 5.1.2 after training over 10.000 epochs.
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(a) Approximation uN (b) |u− uN |

Figure 5.20: Hard-constrained PINN approximated solution uN and the point-wise error
using Nadam optimizer to Example 5.1.2 after training over 10.000 epochs.

The Figures5.18, 5.19 and 5.20 illustrate the approximation results and point-wise er-
ror using the three optimizers after training the hard-constrained PINN for 10.000 epochs.
The findings show that none of the optimizers produce a similar approximation to the ex-
act solution 5.2, based on the exceed values of the maximum and the minimum in the figures.

The comparison between short-term and long-term training for approximating the Out-
flow Layer example 5.1.2 reveals distinct strengths of the optimizers. Adam maintains its
accuracy across both timeframes, while Nadam retains its efficiency. For short-term training,
Nadam proves to be the fastest optimizer. However, over the longer term, Adam surpasses
Nadam in speed, becoming the fastest optimizer while still delivering the best accuracy.
These findings highlight the adaptability and reliability of Adam for extended training du-
rations.
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Chapter 6

Conclusion

This Chapter aims to summarize all the findings and the contribution of this thesis of compar-
ing the optimizers stochastic gradient descent, Adam, Nadam and Broyden–Fletcher–Goldfarb
–Shanno optimizer effectiveness and accuracy when solving convection-diffusion-reaction
problems using physics-informed neural network.

6.1 Summary

This thesis investigates the influence and critical role of optimizers in PINNs by compar-
ing their performance, accuracy, effectiveness and speed. The thesis is structured into four
main chapters to build a comprehensive understanding of the problem and methodology.
Chapter 2.2 offers a basic introduction of the fundamental concepts of machine learning, NN
and its components and backpropagation. Chapter 3 delves into the optimizers SGD, Adam,
Nadam and BFGS, providing detailed explanations of their algorithms and features. Chapter
4 presents the mathematical formulation of the convection-diffusion-reaction problems, along
with a detailed discussion about PINN, its components and its variation hard-constrained
PINNs.

The optimizers are tested against one type of convection-diffusion-reaction problem,
benchmark problems with analytical solution: the Circular Interior Layer and the Out-
flow Layer problems. However, due to challenges encountered during the implementation
of BFGS in the PINN framework, the analysis continues with only three optimizers, SGD,
Adam and Nadam. Throughout the experimental analysis, significant observations are made
about the behavior of the selected optimizers.

The results from approximating the Circular Interior Layer 5.2.2 demonstrate clear
strengths and weaknesses of the optimizers. SGD proves to be the fastest optimizer across
all epoch values. However, its accuracy and effectiveness lag with high L2 error and loss
functional values. On the other hand, Adam consistently achieves the best accuracy, regard-
less of the number of epochs. For short-term training, Nadam shows higher efficiency. In
contrast, Adam proves , over a longer training period, to be the most efficient.
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For the Outflow Layer example 5.1.2, extending the number of epochs leads to a loss of
accuracy for all optimizers. However, for a lower number of epochs, Nadam shows superior
efficiency and speed. When it comes to accuracy, Adam proves to be the best optimizer. As
the number of epochs increases, Adam continues to excel in both accuracy and speed, while
Nadam maintains its efficiency throughout the training process.

In conclusion, the Adam optimizer proved to be the best choice for the problems studied
in this thesis. Adam provided a good balance between speed and accuracy, outperforming
SGD in accuracy and closely matching Nadam’s results. When SGD was the fastest, it
struggled with accuracy and Nadam performed similarly to Adam, but didn’t consistently
do better. In general, Adam showed the most consistent and reliable performance among
different scenarios, making it the preferred optimizer for PINNs.

6.2 Implications for future work

This study demonstrates the importance of selecting the appropriate optimizer for training
PINNs, especially when the problem involves highly complex physical systems that require
precise solutions. The results suggest that Adam is the optimal choice for applications de-
manding high accuracy.

For future work, it could extend this analysis by incorporating other optimizers, to com-
pare their performance in hard-constrained PINN applications. As another area for explo-
ration, one could explore ways to improve the speed of Adam or investigate hybrid approaches
that combine the strengths of multiple optimizers for enhanced PINN training efficiency.

71



Bibliography

[AGK21] Jun Shi Aman Gupta, Rohan Ramanath and Sathiya Keerthi, Adam vs. sgd:
Closing the generalization gap on image classification, 2021, pp. 1–7.

[Ajm23] Girish Ajmera, Decoding activation functions: Navigating the landscape for im-
age segmentation, Dec 27,2023.

[Bab] Tushar Babbar, Are your machine learning models making these common mis-
takes? learn how to avoid overfitting and underfitting.

[Ben12] Yoshua Bengio, Practical recommendations for gradient-based training of deep
architectures, CoRR abs/1206.5533 (2012), 437–478.

[BPRS 4] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind, Automatic differentiation in machine learning: a survey,
2018, 1-4, pp. 1–20.

[Buc23] Noam M. Buckman, The linear convection-diffusion equation in two dimensions,
2023, pp. 1–6.
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