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1 Introduction

This thesis is about a reduced-order model (ROM) for solving convection dominated
convection-diffusion-reaction equations. The method was proposed in [16]. The aim
is to apply the method to the Navier-Stokes equations. One of the most successful
techniques for generating ROMs is the proper orthogonal decomposition (POD). The
idea is to construct an ansatz space of few global basis functions instead of a large
number of local finite element (FE) basis functions.

If, in the convection-diffusion-reaction equations, the convection term dominates
over the diffusion term, stability problems arise with standard finite element (FE)
methods (small perturbations in the input sometimes cause large changes in the
output). As results, non-physical oscillations are encountered, unless the grid size h
is very small, or at least locally small enough with sufficient prior knowledge about
the solution. This means a very high computational effort. The problems are due
to the fact that the solution has different scales. The smallest, the boundary lay-
ers, cannot generally be resolved by the given grid. . Therefore a classical POD
Galerkin (POD-G) method performs poorly. There are methods to cope with this.
One of these approaches is the variational multiscale (VMS) method, which takes
the different scales into account. This leads to a VMS-POD model which is pre-
sented here. Another frequently used method is for example the streamline-upwind
Petrov–Galerkin (SUPG) stabilization [12]. For the VMS-POD model we use the
VMS method which is presented in [18]. It introduces an artificial viscosity which
acts only on the ’fine’ scales.

1.1 Convection-Diffusion-Reaction Equation

First, we define the Bochner space in order to then describe the convection-diffusion-
reaction equation.

Definition 1.1.1 (Bochner space). Let X be a Banach space, k·kX the corresponding
norm, [t1, t2] a time interval and 1  p  1. A Bochner space Lp (t1, t2;X) is the
space of all functions f : [t1, t2] �! X such that:

kfkLp(t1,t2;X) < 1 ,

with

kfkLp(t1,t2;X) =

8
><

>:

⇣R
t2

t1
kf (t) kp

X
dt
⌘ 1

p
, p < 1,

esssup
t1tt2

kf (t) kX , p = 1.
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The convection-diffusion-reaction equation is a partial differential equation. In
physics, it mainly describes the transport of any scalar quantity. Let ⌦ ⇢ Rn for
n 2 {1, 2, 3}, be an open set with Lipschitz boundary and [0, T ] ⇢ R be a time
interval. Then, one searches for u : [0, T ]⇥ ⌦ �! R such that

@tu� "�u+ b ·ru+ cu = f , in (0, T ]⇥ ⌦, (1.1)
u (0, x) = u0 (x) , in⌦,

u (t, x) = 0 , on (0, T ]⇥ @⌦.

We have the diffusion coefficient "⌧ 1, the convective field b 2 (L1 (0, T ;L1 (⌦)))n

with k b k(L1(0,T ;L1(⌦)))n � ", the reaction coefficient c 2 L1 (0, T ;L1 (⌦)) and a
forcing term f 2 L2 (0, T ;L2 (⌦)).

See [29] for a good explanation of why you need to be careful with the dominant
convection term. This is a so-called multiscale problem where scales of different
sizes are involved. What exactly this means can be seen in the following example
where we consider the time-independent problem in one dimension with ⌦ = (0, 1),
c ⌘ 0, f ⌘ 1 and b ⌘ 1 and :

�"u00 (x) + u0 (x) = 1 , 8x 2 (0, 1) , (1.2)
u (0) = u (1) = 0 .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

u
"
(x
)

" = 0.1
" = 0.05
" = 0.01
" = 0.005

Figure 1.1: solution of (1.2) for different "

For " = 0 there is generally no solution for the problem, but for " > 0 there is.
It becomes difficult to handle numerically when " ⌧ 1. Such problems with very
small parameters that cannot be approximated by 0 are called singularly perturbed.

The solution (Figure 1.1) depending on " is:

u" (x) = x� e
1
"x � 1

e
1
" � 1

.
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It is noticeable that u" (x) assumes a maximum. Let xE

"
2 (0, 1) be the x value for

the maximum. For " �! 0 both xE

"
and u"

�
xE

"

�
converge to 1. Thus, in an approxi-

mation of u", one must do justice to the behavior on the rather large interval
⇥
0, xE

"

�

and that on the increasingly small interval
�
xE

"
, 1
⇤

for xE

"
= "

h
ln "+ ln

⇣
e

1
" � 1

⌘i
.

Here one can clearly see the different scales.

1.2 Variational Formulation and Discretization

First, the variational problem for (1.1) is formulated. Let X = H1
0 (⌦) and (·, ·)

be the standard L2 (⌦) inner product. One searches for u : (0, T ] �! X with
u (0, x) = u0 (x) 2 X such that

(@tu, v) + a (u, v) = (f, v) 8 v 2 X, (1.3)

where a (u, v) = " (ru,rv)+(b ·ru, v)+(cu, v). (A solution of (1.1) solves (1.3) as
well. In general this does not hold for the other direction, without assuming further
conditions.)

One approach to solve the problem numerically consists in constructing a suitable
finite-dimensional subspace Xh = span

�
�1, ..., �M

 
⇢ X. For this purpose we use

FE method.
We need a grid on the domain ⌦. The grid cells Ti 2 ⌦, i = 1, ...,m, are usually

polyhedrons. As standard the functions �j|Ti are polynomials for all i = 1, ...,M
and j = 1, ...,m. Additionally so called nodes {x1, ..., xM} 2 ⌦ are defined on the
grid cells and it holds �j (xi) = �j,i. All this can be found in detail e.g. in [4].

Now we put Xh instead of X in (1.3). Thus, we find uh 2 Xh, with
�
@tu

h, vh
�
+ a

�
uh, vh

�
=
�
f, vh

�
, 8 vh 2 Xh. (1.4)

Since the functions �i, for i = 1, ...,M , form a basis of V h and all vh 2 Xh have a

representation of the form vh =
MP
i=1

v̂i�i with suitable scalars v̂i 2 R, it suffices to

solve (1.4) for vh = �i with i = 1, ...M .
There are no major difficulties with the discretization in time. In terms of t,

it is only a first-order differential equation. Divide the time interval [0, T ] into N
equidistant sections (ti�1, ti) for i = 1, ..., N such that t0 = 0 and tN = T , the step
size is �t = ti � ti�1.

Now one can choose between different methods. In [16] the backward Euler
method was selected, but here the decision was made in favor of the Crank–Nicolson
method because it leads to better solutions in the numerical tests.

This is an implicit procedure in which the initial value problem is

y0 (t) = f (t, y (t)) , y (t0) = y0 .

For ti = t0 + i�t the iteration is as follows:

y0 = y0

yi = yi�1 +
�t

2
(f (ti�1, yi�1) + f (ti, yi)) , i = 1, ..., N .
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An initial value u0 is given in (1.1). Now one applies this to (1.4) and looks for�
uh

k

 N
k=1

⇢ Xh:

1

�t

�
uh

k
� uh

k�1, v
h
�
+

1

2
a
�
uh

k�1 + uh

k
, vh
�
=

1

2

�
fk�1 + fk, v

h
�
, 8 vh 2 Xh . (1.5)

In the following chapters, the VMS-POD method from [16] is derived. Reduced
order modeling, in particular the POD and the VMS method, will be explained. This
will be followed by a section where these two methods gets connected. Chapter six
deals with the error estimation of [16], as it turns out, it has some gaps. Afterwards
one can find a summary of the method with the intention to give a step by step
explanation of it. Then follows a chapter about the implementation, which included
numerical tests for an example problem. The VMS-POD and the POD-G methods
are compared. The results are interpreted in conjunction with the results of [16].
They verify each other.

8



2 Proper Orthogonal Decomposition

The idea of reduced order modeling (ROM), as the name suggests, is to reduce
the order (dimension) of a problem. In the case of a linear system, this is done
by constructing matrices of lower dimensions that approximate the original system.
This approach is also applicable to many nonlinear problems. A solution is not longer
searched in the ansatz space Xh, but in a lower dimensional subspace X l ⇢ Xh.

For example, if we consider the FE discretization, we quickly get a very large
number of basis functions. Depending on the structure of the solutions, we often need
much fewer functions to represent the essential properties of the solution sufficiently
well. (An approach for this would be for example adaptive grids.)

However, it should be noted that the set of required basis functions depends on
the choice of the basis itself. An ideal basis should represent the entire expected
solution space with as few functions as possible. To construct such a basis, one needs
information about the expected solutions in advance. Depending on the system to
be solved, there are different possibilities to get such information (e.g. derivative
properties).

For reducing the order with proper orthogonal decomposition (POD), a solution is
first determined as accurately as possible. This solution is then used to obtain further
solutions with lower complexity, where we hope that the characteristic properties
are transferable.

In practice, it is very rare to find such a basis (with few functions) that perfectly
covers the solution space. However, it is possible to reduce the number of basis
functions significantly and still keep the most important characteristics. This is
a very strong reduction of the basis functions, where a basis has rather a one to
two digit number of basis elements instead of many thousands. This simplification
is inevitably at the expense of the expected accuracy. In general the ROM basis
consists of global functions, in contrast to the FE basis functions.

One aim is to solve similar problems with the reduced basis. This is already been
used in some applications, for example in the parametric global mode reduction.

In a sense, the POD method provides an ’optimal’ basis {�1, ...,�r} that is both
orthonormal and best describes a given function u : [0, T ] �! X ⇢ L2 (⌦) by the

approximation u ⇡ ur :=
rP

i=1
(u,�i)X �i.

The procedure is equivalent to the singular value decomposition in the discrete
case, it was also described in this way in [5]. Here the derivation from [13] or [7] was
chosen, because this has the optimality claim as starting point. The connections
are obvious, but can be read again very clearly in [23]. In other contexts POD
is also known under the names principal component analysis or Karhunen-Loève
transformation.
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2.1 Mathematical Motivation

We choose X ⇢ L2 (⌦) as a Hilbert space, with the inner product (·, ·)
X

and let
u : [0, T ] �! X be a solution of (1.3). Search inductively for a basis {�1, ...,�r},
starting with r = 1.
Assuming the existence of such a minimum, we seek the solution of:

min
�2X

⌦
ku� (u,�)

X
�k2

X

↵
, such that k�k2

X
= 1, (2.1)

where h·i describes the time average. (We will use the average of a discrete number
of time points, but in theory it is also possible to use the continuous mean value of
the function.) Since

0  ku� (u,�)
X
�k2

X
= (u� (u,�)

X
�, u� (u,�)

X
�)

X

= kuk2
X
� 2| (u,�)

X
|2 + | (u,�)

X
|2k�k2

X| {z }
=1

= kuk2
X
� | (u,�)

X
|2,

(2.1) is equivalent to:

max
�2X

⌦
|(u,�)

X
|2
↵

, such that k�k2
X
= 1 . (2.2)

By incorporating the constraints via the Lagrange multiplier �, we obtain the cor-
responding functional:

J [�,�] =
⌦
|(u,�)

X
|2
↵
� �

�
k�k2

X
� 1
�
.

Hereby we obtain a necessary criterion for a solution of (2.2):

d

d�
J [�+ � ,�] |�=0 = 0,

for all  , so that �+ � 2 L2 (⌦) with arbitrary � 2 R.
It follows that:

0 =
d

d�
J [�+ � ,�] |�=0

=
d

d�

h
h(u,�+ � )

X
(u,�+ � )

X
i � � (�+ � ,�+ � )

X

i���
�=0

=
d

d�

h ⌦
(u,�)2

X
+ 2� (u,�)

X
(u, )

X
+ �2 (u, )

X

↵
�

�[(�,�)
X
+ 2� (�, )

X
+ �2 ( , )

X
]
i���

�=0

=2
⇥
h(u,�)

X
(u, )

X
i � � (�, )

X

⇤
.

Since only u : [0, T ] �! L2 (⌦) is a time-dependent function and both (·, ·)
X

and h·i
are commutative, we have:

0 = h(u,�)
X
(u, )

X
i � � (�, )

X

=
⌦
((u,�)

X
u, )

X

↵
� � (�, )

X

= (h(u,�)
X
ui � ��, )

X
.
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The function  can be chosen arbitrarily, this results in:

h(u,�)
X
u (x)i = �� (x) .

If we now write the left-hand side as an operator R so that

R� (x) = h(u,�)
X
u (x)i ,

we get the eigenvalue problem:

R� (x) = �� (x) . (2.3)

A detour into spectral theory follows, to be read for example in [30] or in the
appendix of [13].

Theorem 2.1.1 (A Spectral Theorem for Operators on Hilbert Spaces). For a
compact and selfadjoint (in R) or normal (in C) operator T : H �! H, exists an
orthonormal system {e1, e2, ...} and a null sequence (�k)k2N 2 R\ {0}, such that

H = ker (T )� span {e1, e2, ...}

and 8x 2 H

Tx =
X

k

�k hx, ekiH ek ,

where �k are the eigenvalues 6= 0 and ek the corresponding eigenvectors. Moreover
we have:

kTk = sup
kxk=1

hTx, xi = sup
k

|�k|.

(For a compact and self-adjoint operator T , either kTk or �kTk are eigenvalues of
T , this implies sup

k

|�k| is a maximum.)

For proof, see [30, p.294 f].

A generalization of this theorem for non-selfadjoint operators is the theorem on
singular value decomposition. If an operator is also positive, then it has no negative
eigenvalues.

So we now consider the operator R to apply Theorem 2.1.1:

(R�,�)
X
= (h(u,�)

X
ui ,�)

X

= h(u,�)
X
(u,�)

X
i =

⌦
| (u,�)

X
|2
↵
� 0 (positive), (2.4)

(R�, )
X
= (h(u,�)

X
ui , )

X
= h(u,�)

X
(u, )

X
i

= h(u, )
X
(�, u)

X
i = (�, h(u, )

X
ui)

X
= (�,R )

X
(selfadjoint). (2.5)

The compactness of R : X �! L2 (⌦) depends in general on X, (·, ·)
X

and h·i.
However, we only consider finite-dimensional X (finite-dimensional after FE dis-
cretization). It is easy to see that R is linear and continuous. In [30, p.72] it can be
read that compactness follows with these conditions.
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In connection with (2.4), (2.5) and Theorem 2.1.1 it follows that the maximum
in (2.2) exists and is equal to the largest eigenvalue �max of R. Therefore, the
corresponding eigenfunction emax is a solution of (2.2). W. l. o. g. let (�n)n2N be
such that �1 � �2 � �3 � ..., it follows �max = �1 and emax = e1 =: �1. To detect
the basis {�1, ...,�r}, one continues wit r = 2.

After finding a solution of (2.2), �2 is searched in span {�1}?.

max
�2L2(⌦)

⌦
|(u,�)

X
|2
↵

, such that k�k2
X
= 1 and (�,�1)X = 0 . (2.6)

Condition (2.3) is still necessary. Moreover (R�,�)
X

= h| (u,�)
X
|2i holds be-

cause of (2.4). So we can see that e2 =: �2 solves (2.6). Thus we continue in
span {�1,�2}? and further in span {�1,�2, ...,�r}?. Note that for all r  dim (X)
the basis {�1,�2, ...,�r} is an optimal basis with r elements, in the sense of the
criteria set out at the beginning.

Remark: Since it holds for all ej that
⌦
| (u, ej)X |2

↵
= �j, the eigenvalues are a

measure of the contribution of �j = ej to the characterization of u.

2.2 Calculation of the POD Basis (Modes) and the

Method of Snapshots

The first step is to calculate a solution u : [0, T ] �! X ⇢ H1
0 (⌦) of (1.3) as

accurately as possible, where we do not determine u on the whole time interval, but
only for N + 1 time points {t0, ..., tN} ⇢ [0, T ].

For i = 0, ..., N , the functions wi (x) := u (ti, x) are called snapshots. (For the
sake of clarifying the presentation , these functions are called wi instead of ui.) The

time average is: hw (x)i := 1
N+1

NP
i=0

wi (x). Now we are looking for r  N+1 functions

{�j}j=1,...,r ⇢ span {w0, ..., wN} such that �1 solves problem (2.2), �2 solves problem
(2.6), etc.

Let us have a look at:

R� (x) = h(w,�)
X
w (x)i = 1

N + 1

NX

i=0

(wi,�)X wi (x) .

The solution � is in span {w0, ..., wN}. So we are looking for a function �̃ =
NP
i=0

ajwj,

with aj 2 R, j = 0, ..., N . This leads to:

R�̃ (x) = 1

N + 1

NX

i=0

NX

j=0

aj (wi, wj)X wi (x) ,

which implies:
NX

i=0

"
1

N + 1

NX

j=0

(wi, wj)X aj
#
wi (x) = R�̃ (x) = ��̃ (x) =

NX

i=0

�aiwi (x) ,

12



respectively

1

N + 1

NX

j=0

(wi, wj)X aj = �ai , 8i = 0, ..., N.

With a =
�
a0, ..., aN

�T 2 RN+1 and W 2 R(N+1)⇥(N+1) where Wij =
1

N+1 (wi, wj)X ,
it turns to the form:

Wa = �a . (2.7)

The matrix W is symmetric and positive semi definite, therefore it has only
real eigenvalues � 0, and all the eigenvectors corresponding to different positive
eigenvalues are orthogonal.

Let �1 � �2 � ... � �d > 0, d  N + 1, be the nonzero eigenvalues of (2.7),
ak 2 RN+1 with 1  k  d the corresponding normalized eigenvectors, where these
are orthonormal in RN+1. However, we cannot conclude from (ak)

T al = �k,l that the

functions �̃k :=
NP
i=0

ai
k
wi and �̃l :=

NP
j=0

aj
l
wj are orthonormal in X for all k, l = 1, ..., d.

So let us consider:

⇣
�̃k, �̃l

⌘

X

=

 
NX

i=0

ai
k
wi,

NX

j=0

aj
l
wj

!

X

=
NX

i=0

NX

j=0

ai
k
aj
l
(wi, wj)X

=
NX

i=0

NX

j=0

ai
k
aj
l
((N + 1) Wij) = (N + 1) (ak)

T Wal

= (N + 1) (ak)
T �l al = (N + 1) �l �kl.

Therefore, we chose the following POD basis functions (POD modes):

�k =
1p

(N + 1) �k

NX

i=0

ai
k
wi. (2.8)

We do not need to take all �k, k = 1, ..., d, into the basis, but only r  d. Let
Xr = span {�1, ...,�r} be our new ansatz space.

If we select Wi,j = (wi, wj)X and �k =
1p
�k

NP
i=0

ai
k
wi we get the same solution. This

might be a better choice for the calculation, and is used for the implementation in
Chapter 7.

Note that in [16] and [24] they use Wi,j =
1

N+1 (wi, wj)X and �k = 1p
�k

NP
i=0

ai
k
wi.

This is correct, because the chosen eigenvectors are not specified. For the implemen-
tation it is useful to normalize them.

We link this with (1.3) ore (1.4) and get the POD-Galerkin method. Find ur :
[0, T ] �! Xr:

(@tu
r, vr) + a (ur, vr) = (f, vr) , 8 vr 2 Xr. (2.9)

13



With the choice of Xr ⇢ H1
0 (⌦) one considers the boundary condition u (t, x) = 0

on (0, T ]⇥ @⌦. After the time discretization (1.5) we search for {ur

l
}N
l=1 ⇢ Xr, such

that for all vr 2 Xr, l = 1, ..., N holds:

1

�t

�
ur

l
� ur

l�1, v
r
�
+

1

2
a
�
ur

l�1 + ur

l
, vr
�
=

1

2
(fl�1 + fl, v

r) .

As initial function for t = 0 one could use ur

0 :=
rP

i=1
(u0,�i)X �i.

In practice there are several opportunities to choose the snapshots. A common
way, which allows to cope with nonhomogeneous boundary conditions, is to calculate
the mean value hw (x)i and subtract it from each snapshot. Then calculate the modes
with {ŵ0, ..., ŵN}, where ŵi = wi � hw (x)i and solve the adapted problem to find a
solution ûr := ur � hw (x)i such that:

(@tû
r, v̂r) + a (ûr, v̂r) = (f, v̂r)� (@t hw (x)i , v̂r)| {z }

=0

� a (hw (x)i , v̂r) , (2.10)

for all v̂r 2 X̂r. This also makes sense from a geometric perspective as described
in [5, Section 3.5].

Another much discussed method is to include the difference quotients (DQs)
@wj =

wj�wj�1

�t
, 8 j = 1, ..., N into the set of snapshots. This is also done in [16],

where they follow the argumentation of [24], which expects better error estimates.
In particular very good pointwise error bounds in time are proven in this case as one
can read in [22] or [8,26]. On the other hand, it is not certain that this method will
lead to better results in practice. In [19] the results were worse when the DQs are
included. In [17] they try to prove better results with the DQs, but in the numerical
tests they use much more POD basis functions in the DQ case as in the non-DQ
case.

A very recent article [11] may provide an explanation for this. A similar er-
ror bound as in [22] is proven for the non-DQ case, where the solution has to be
sufficiently smooth, as the examples in [19] and [17] are.

Additionally, one has to take care of the physical dimensions, since a function
and its derivative describe different physical quantities. This can be taken into
account by adding a time scalar as a factor in front of the DQ. This is done in [8]
and described for example in [10].

Including the DQs might be a good choice for the general case, but this work
does not include them.
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2.3 Error Representation

The following error representation is valid:
*�����w �

rX

i=1

(w,�i)X �i

�����

2

X

+
=

*�����

dX

i=1

(w,�i)X �i �
rX

i=1

(w,�i)X �i

�����

2

X

+

=

*�����

dX

i=r+1

(w,�i)X �i

�����

2

X

+

=

* 
dX

i=r+1

(w,�i)X �i,
dX

l=r+1

(w,�l)X �l

!

X

+

=

*
dX

i=r+1

dX

l=r+1

(w,�i)X (w,�l)X (�i,�l)X| {z }
�il

+

=
dX

i=r+1

⌦
|(w,�i)X |

2↵

(2.4)
=

dX

i=r+1

(R�i,�i)X =
dX

i=r+1

�i. (2.11)

One can choose r in dependence of this representation.
In the case of including the difference quotients wN+j := @wj =

wj�wj�1

�t
for all

j = 1, ..., N in the set of snapshots, it leads to:
*�����w �

rX

i=1

(w,�i)X �i

�����

2

X

+
=

1

2N + 1

2NX

j=0

��wj �
rX

i=1

(wj,�i)X �i

��2
X

=
1

2N + 1

NX

j=0

��wj �
rX

i=1

(wj,�i)X �i

��2
X

+
1

2N + 1

NX

j=1

��@wj �
rX

i=1

�
@wj,�i

�
X
�i

��2
X

=
dX

j=r+1

�j . (2.12)

Thereby, with 2N + 1  3N , it follows:

2N + 1

N (2N + 1)

NX

j=1

��@wj �
rX

i=1

�
@wj,�i

�
X
�i

��2
X
 2N + 1

N

dX

j=r+1

�j ,

1

N

NX

j=1

��@wj �
rX

i=1

�
@wj,�i

�
X
�i

��2
X
 3

dX

j=r+1

�j . (2.13)

Without the additional snapshots or other conditions there would be a factor C

(�t)2

on the RHS of (2.13), which is a significantly worse estimate.
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3 Variational Multiscale (VMS) Method

So-called multiscale problems are problems in which scales of different sizes are
present. Grids which are manageable can often not represent the smallest scales.
But to get a physically consistent solution the small scales are important. In order
to cope with these, suitable multiscale methods are used. A detailed explanation
can be found in [14,15] and also in [2].

In the references [6, 21] and [18, 25], VMS methods for the convection-diffusion-
reaction equation are differently motivated and derived. These are so-called two-scale
methods.

3.1 Introduction to VMS

The derivation in [6,21] is very ’classical’ for VMS and is done by decomposing the
solution space V such that V = V h � Ṽ , where V h mostly represents the resolved
scales and Ṽ the unresolved ones. The solution is written in the form u = uh + ũ
with uh : [0, T ] �! Xh and ũ : [0, T ] �! X̃. Now this is inserted into the variational
formulation (1.3):

�
@tu

h, vh
�
+
�
@tũ, v

h
�
+ a

�
uh, vh

�
+ a

�
ũ, vh

�
=
�
f, vh

�
, 8 vh 2 Xh, (3.1)

�
@tu

h, ṽ
�
+ (@tũ, ṽ) + a

�
uh, ṽ

�
+ a (ũ, ṽ) = (f, ṽ) , 8 ṽ 2 X̃. (3.2)

The hope is that it is sufficient to solve (3.1). Equation (3.2) can be used here to
characterize

�
@tũ, vh

�
+ a

�
ũ, vh

�
, as well as properties of X̃ such as orthogonality.

So it comes to a method where we search
�
uh, ũ

�
2 Xh ⇥ X̃ with:

�
@tu

h, vh
�
+ a

�
uh, vh

�
+ A

�
ũ, vh

�
=
�
f, vh

�
, 8 vh 2 Xh, (3.3)

K (ũ) = Q.

Here A
�
ũ, vh

�
is a characterization of

�
@tũ, vh

�
+a
�
ũ, vh

�
and K (ũ) = Q describes

conditions on ũ, usually in the form of a suitable projection operator.

3.2 VMS for our Application

In [18, 25] the second scale is introduced rather indirectly. Since this is the same
method as used in [16], a detailed explanation follows.

We begin with the term that causes the instability, in this case "�u or in the
variational formulation " (ru,rv). After adding and subtracting "+

�
ruh,rvh

�
in

the equation (1.4), for all vh 2 Xh, we have:
�
@tu

h, vh
�
+ a

�
uh, vh

�
+ "+

�
ruh,rvh

�
� "+

�
ruh,rvh

�
=
�
f, vh

�
.
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Now let ruH = gH : (0, T ] �! LH ✓ L2 (⌦) (LH specified later), where uH

stands for the large scales of the FE solution uh. Now replace �"+
�
ruh,rvh

�

to subtracts only the resolved part "+
�
gH ,rvh

�
. Therefore the artificial viscos-

ity "+
�
ruh,rvh

�
� "+

�
gH ,rvh

�
only applies to the fine scales. It comes to the

formulation:
�
@tu

h, vh
�
+ a

�
uh, vh

�
+ "+

�
ruh � gH ,rvh

�
=
�
f, vh

�
, 8 vh 2 Xh, (3.4)

�
ruh � gH , wH

�
= 0 , 8wH 2 LH . (3.5)

Then we have a method of the form (3.3).
We now choose "+ as a nonnegative constant, which will be considered in more

detail later. Let gH = PHruh and PH be the L2-orthogonal projection into the
space LH . Putting this into (3.4), we get:

�
@tu

h, vh
�
+ a

�
uh, vh

�
+ "+

�
(I� PH)ruh,rvh

�
=
�
f, vh

�
, 8 vh 2 Xh.

Due to (3.5) and PHrvh 2 LH it holds
�
(I� PH)ruh, PHrvh

�
= 0. Thus, it

follows:
�
@tu

h, vh
�
+ a

�
uh, vh

�
+ "+

�
(I� PH)ruh, (I� PH)rvh

�

=
�
f, vh

�
, 8 vh 2 Xh.

With P 0
H
:= I� PH , we get:

�
@tu

h, vh
�
+ a

�
uh, vh

�
+ "+

�
P 0
H
ruh, P 0

H
rvh

�
=
�
f, vh

�
, 8 vh 2 Xh. (3.6)

The choice of the space LH is crucial. To choose a useful LH we take a look at (3.4),
more precisely:

"+
�
ruh,rvh

�
� "+

�
gH ,rvh

�
. (3.7)

We have ruh 2 rXh := span
�
r�1, ...,r�M

 
. If one chooses gH from rXh, then

(3.7) is equal to 0.
In [18] they use a coarser grid, with width H > h to construct XH . More

precisely, the triangulation they use for Xh is a refinement of the triangulation of
XH . It is also possible to choose independent grids, as in [25]. Then take gH from
LH = rXH . In this case (3.7) acts only on the unresolved scales, because we
subtract the resolved part. This is exactly what we need for stabilization.
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4 VMS-POD Model

Now we want to use the described method to stabilize (2.9), (2.10). Thus be {wi}Ni=0

the set of all snapshots and Xr = span {�1, ...,�r} the corresponding POD ansatz
space. E (vr) describes the RHS of (2.9, 2.10) depending on the chosen snapshots,
where E : Xr �! R is a linear functional. Applying (3.6) one searches for ur :
[0, T ] �! Xr such that:

(@tu
r, vr) + a (ur, vr) + "+ (P 0

R
rur, P 0

R
rvr) = E (vr) , 8 vr 2 Xr. (4.1)

Here P 0
R

is defined equivalently to P 0
H

with P 0
R
= I�PR and PR is the L2- orthogonal

projection onto a space LR ✓ L2 (⌦), which is similar to LH . (For simplification
the h and H is used for the FE ansatz space and all corresponding subspace and
functions, where r and R replace them after the proper orthogonal decomposition.)
As in (3.7) one can see that a reasonable choice for LR is a subspace of rXr. Let
R < r and XR := span {�1, ...,�R}, we choose LR = rXR ⇢ rXr.

With the Crank–Nicolson time discretization (1.5) one now obtains the following
procedure. For k = 1, ..., N and with ur

0 =
P

r

i=1

�
wh

0 ,�i

�
�i 2 Xr, find ur

k
2 Xr

satisfying:

1

�t

�
ur

k
� ur

k�1, v
r
�
+

1

2
a
�
ur

k�1 + ur

k
, vr
�
+ "+

1

2

�
P 0
R
r
�
ur

k�1 + ur

k

�
, P 0

R
rvr

�

=
1

2
Ek�1 (v

r) +
1

2
Ek (v

r) , 8 vr 2 Xr . (4.2)

We take a closer look at the artificial viscosity term "+ (P 0
R
rur

k
, P 0

R
rvr). How

this term looks in detail depends on the inner product (·, ·)
X

one chose. As we are
acting in H1

0 (⌦) it can be chosen from the following three (there might be more
possibilities but the following are the most common ones):

(u, v)
X
= (u, v)

L2(⌦) ,

(u, v)
X
= (u, v)

H1(⌦) = (u, v)
L2(⌦) + (ru,rv)

L2(⌦) ,

(u, v)
X
= (u, v)

H
1
0 (⌦) = (ru,rv)

L2(⌦) . (4.3)

In most literature, as well as in [16], one finds (u, v)
X

= (u, v)
H1(⌦). It may be a

good choice, because it best covers all characteristics, as it includes both the snapshot
functions and their gradients. This can be an advantage in error estimation. A bene-
fit of (u, v)

X
= (u, v)

H
1
0 (⌦) is the calculation of PRrvr =

P
R

i=1 (rvr,r�i)L2(⌦) r�i,
since {r�1, . . . ,r�R} then forms an L2-orthonormal basis of rXR. In the other
cases, an orthonormal basis must first be determined, for example with Gram–Schmidt
process. I could not find any advantages of the L2 (⌦) inner product for this appli-
cation.

Still to be determined are the coefficients r, R and "+. These should be chosen
in dependence of the desired accuracy.
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5 Critical Review of an Error Analysis

This section contains a critical review of the error estimation of [16]. Unfortunately,
there are some gaps and lacks of clarity that are pointed out. Chapter 3 of [16] is
reproduced below, and corrected where necessary, up to the point where the claims
are no longer conclusive, which is Lemma 3.4 in [16].

5.1 Preliminaries

Our aim is to prove estimates for the average error

1

N + 1

NX

n=0

kun � ur

n
k.

The function un = u (tn, ·) 2 X = H1
0 (⌦), where u is the solution of (1.3):

(ut, v) + " (ru,rv) + (b ·ru, v) + (cu, v) = (f, v) , 8v 2 X. (5.1)

And ur

n
2 Xr ⇢ Xd = span

�
uh

0 , ..., u
h

N
, uh

N+1, ..., u
h

2N

 
⇢ X is the solution of the

VMS-POD model at time tn:

1

�t

�
ur

n
� ur

n�1, v
r
�
+ " (rur

n
,rvr) + (b ·rur

n
, vr)+

(cur

n
, vr) + "+ (P 0

R
rur

n
, P 0

R
rvr) = (fn, v

r) , 8vr 2 Xr. (5.2)

For n = 0, 1, ...N the snapshots uh

n
are the full order FE solutions1 at time tn and

for j = 1, ..., N the difference quotients uh

N+j
= @uh

j
=

u
h
j �u

h
j�1

�t
.

In [16] the backward Euler method is used for the time discretization and the
difference quotients are included in the set of snapshots. Denote C as a generic
constant, independent of d,N, r, R, h, ", "+, where d is the dimension of Xd and h
is the mesh size in the FE discretization. The following representations are bilinear
forms:

b (u, v) := (b ·ru, v) + (cu, v) ,

a (u, v) := " (ru,rv) + b (u, v) ,

A (u, v) := a (u, v) + "+ (P 0
R
ru, P 0

R
rv) .

Therefore (5.2) becomes:

1

�t

�
ur

n
� ur

n�1, v
r
�
+ A (ur

n
, vr) = (fn, v

r) , 8 vr 2 Xr . (5.3)
1In [16] no details about the full order model are stated. It is not clear which time discretization

is used and how it is stabilized.
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5.2 Definitions and Conditions

We consider the weighted norm:

kukd,e,↵ :=
q

dkuk2 + ekruk2 + ↵kP 0
R
ruk2. (5.4)

Assumption 1. (Coercivity and Continuity) For �, � > 0, the following holds:

c� 1

2
r · b � �, (5.5)

max {kckc, kbkb} = �. (5.6)

(Here k · kc = k · k(L1(0,T ;L1(⌦))), k · kb = k · k(L1(0,T ;L1(⌦)))n.)2

Now A (·, ·) is coercive and continuous in H1
0 (⌦) with respect to the norm

k · k�,","+ . From (5.5) follows kuk2
�,","+

 A (u, u), which means coercivity. The
continuity follows with (5.6) and the Cauchy-Schwarz inequality:

A (u, v) = " (ru,rv) + (b ·ru, v) + (cu, v) + "+ (P 0
R
ru, P 0

R
rv)

 "krukkrvk+ kbkbkrukkvk+ kckckukkvk+ "+kP 0
R
rukkP 0

R
rvk

 "krukkrvk+ �krukkvk+ �kukkvk+ "+kP 0
R
rukkP 0

R
rvk

 C1

⇣p
"kruk+

p
�kuk+p

"+kP 0
R
ruk

⌘

⇣p
"krvk+

p
�kvk+p

"+kP 0
R
rvk

⌘

 3C1kuk�,","+kvk�,","+ . (5.7)

We need �krukkvk  C1
p
�
p
"krukkvk and �kukkvk  C1�kukkvk, therefore

C1 := max
n
1,

p
�p
"
, �

�

o
.

Assumption 2. (Approximability) Let 1  m  k and k be the order of accuracy of
the FE ansatz space Xh ⇢ H1

0 (⌦). For all v 2 Hm+1\H1
0 (⌦) the following applies:

inf
vh2Xh

�
kv � vhk+ hkrv �rvhk

 
 Chm+1kvkm+1. (5.8)

Assumption 3. (FE Inverse Estimate) There exists a constant C so that it holds:

krvhk  Ch�1kvhk , 8vh 2 Xh. (5.9)

Lemma 5.2.1. (POD Inverse Estimate) Let Mr, Hr, Sr 2 Rr⇥r where
Mi,j := (�i,�j) is the POD mass matrix, Hi,j := (r�i,r�j) is the POD stiffness
matrix and Si,j := (�i,�j)H1(⌦) is the H1 POD mass matrix. With the matrix 2-norm
k · k2 holds for all vr 2 Xr:

kvrkL2(⌦) 
p
kMrk2kS�1

r
k2kvrkH1(⌦), (5.10)

kvrkH1(⌦) 
p
kSrk2kM�1

r
k2kvrkL2(⌦), (5.11)

krvrkL2(⌦) 
p
kHrk2kM�1

r
k2kvrkL2(⌦). (5.12)

2In [16] there is no characterization of k · kc and k · kb.
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The proof of (5.10) and (5.11) is given in [24], (5.12) follows in the same way.

Remark: Since X = H1
0 (⌦), either Hr or Sr is the identity matrix3. In both

cases follows

krvrkL2(⌦) 
p
kM�1

r
k2kvrkL2(⌦). (5.13)

5.3 Error Analysis

Theorem 5.3.1. For n = 1, ..., N the solution ur

n
of (5.3) satisfies the following

bound4:

kur

n
k  kur

0k+�t
nX

i=1

kfik. (5.14)

Proof: For n = 1, ..., N choose vr = ur

n
in (5.3) and get:

1

�t

�
ur

n
� ur

n�1, u
r

n

�
+ A (ur

n
, ur

n
) = (fn, u

r

n
) .

From coercivity follows A (ur

n
, ur

n
) � 0, this leads to:

�
ur

n
� ur

n�1, u
r

n

�
 �t (fn, u

r

n
) .

By the Cauchy-Schwarz inequality it follows:

kur

n
k  kur

n�1k+�tkfnk.

If one starts with n = 1, (5.14) follows by induction. ⇤

One now considers the Ritz projection !r 2 Xr of u 2 X = H1
0 (⌦):

A (u� !r, vr) = 0 , 8vr 2 Xr.

The Lax-Milgram lemma (to find, e.g. in [3]) implies the existence and uniqueness
of the !r.

The following proposition is Lemma 3.4 from [16]: "The Ritz projection !r

n
of

the solution un satisfies the following error estimate:

1

N

NX

n=1

kun � !r

n
k C

"⇣
1 +

p
kM�1

r
k2 + "�1

+

⌘ 1
2

0

@hm+1 1

N

NX

n=1

kunkm+1 +

vuut
dX

j=r+1

�j

1

A

+
p
"+ "+

0

@hm
1

N

NX

n=1

kunkm+1 +

vuut
dX

j=r+1

�j

1

A

3

5 ." (5.15)

3This depends on the chosen inner product (the candidates are stated in (4.3)). In Remark 3.2
of [16] one can see that they use the H

1 (⌦) inner product such that Sr is the identity matrix.
Obviously the same results follows also in the case of the H

1
0 (⌦) inner product.

4In [16] is proved kur
nk  kur

0k+�t
PN�1

n=0 kfn+1k. But the stated version is slightly stronger.
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Next, we critically review the reasoning presented in [16] for deriving this state-
ment.

First, apply the Ritz projection on un and get:

A (un � !r

n
, vr) = 0 , 8vr 2 Xr.

Now we decompose the error un � !r

n
into:

un � !r

n
= (un � Ih,r (un))� (!r

n
� Ih,r (un)) =: ⌘n �  r

n
,

where Ih,r (un) is an interpolant of un in Xr, to be defined below. By the triangle
inequality, we have:

1

N

NX

n=1

kun � !r

n
k  1

N

NX

n=1

k⌘nk+
1

N

NX

n=1

k r

n
k. (5.16)

Let us start by estimating k⌘nk. Consider uh

n
, the solution of (1.4) at time tn, which

yields the ensemble of snapshots:

1

N

NX

n=1

k⌘nk =
1

N

NX

n=1

kun � Ih,r (un) k

 1

N

NX

n=1

kun � uh

n
k+ 1

N

NX

n=1

kuh

n
� Ih,r (un) k. (5.17)

Subsequently the  r

n
is estimated as follows5:

1

N

NX

n=1

k r

n
k21,","+  C

�
1 + kM�1

r
k2 + "�1

+

� 1

N

NX

n=1

k⌘nk2 + ("+ "+)
1

N

NX

n=1

kr⌘nk2.

(5.18)

In order to find upper bounds for (5.17), the following claims are made in [16]. In
the opinion of the author, these are not sufficiently substantiated.

"With Assumption 2 and [27] one can easily show that:

1

N

NX

n=1

kun � uh

n
k  Chm+1 1

N

NX

n=1

kunkm+1. (5.19)

For Ih,r (un) :=
P

r

j=1

�
uh

n
,�j

�
X
�j, we can use the error representation of (2.12) to

get:6

1

N

NX

n=1

kuh

n
� Ih,r (un) k 

vuut
dX

j=r+1

�j. (5.20)

5This is derived from [16, (3.38)], which appears to be correct.
6In order to apply (2.12) to get these results, we need X = L

2(⌦).
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If (5.19) were true, we would have:

1

N

NX

n=1

k⌘nk  Chm+1 1

N

NX

n=1

kunkm+1 +

vuut
dX

j=r+1

�j. (5.21)

Similarly, using the inverse estimate, Assumption 3, in (5.19) and X = H1
0 (⌦) in

(2.12), we get:7

1

N

NX

n=1

kr⌘nk  Chm
1

N

NX

n=1

kunkm+1 +

vuut
dX

j=r+1

�j." (5.22)

The main problem here is that (5.19) does not hold in general. We look at the
FE error of a time-dependent unstable problem. It is very unlikely to find an error
estimate that is independent of the coefficients of the problem, any stabilization
measures used and the temporal discretization error. Since the full order method is
not characterized, the only thing we can do is to define an error bound Esnap as a
placeholder, which estimates the error of the snapshots, such that:

1

N

NX

n=1

kun � uh

n
k  Esnap. (5.23)

One could use the error estimation of [9, Theorem 3.3] which is from [20]:

Esnap = Mu

⇣
hm+ 1

2 + (�t)p
⌘
.

Here p is the convergence order of the timestep method and Mu is a positive constant
that depends on kukL1(Hm+1), k@tu (0) kL1(Hm+1), k@ttukL2(Hm+1), ku0km+1 and the
coefficients of the problem but not on "�1. This result holds only for "  hkbkb, in
the other case one should get the factor hm. Applying the error analysis from [9,20]
and taking into account that there the term "1/2kr(un � uh

n
)k appears on the left-

hand side, which comes from " (ru,rv) in (5.1), then one gets:

1

N

NX

n=1

kr
�
un � uh

n

�
k  "�

1
2Mu

⇣
hm+ 1

2 + (�t)p
⌘
. (5.24)

The second inaccuracy concerns (5.20). As shown in (2.13), it should read:

1

N

NX

n=1

kuh

n
� Ih,r (un) k 

vuut3
dX

j=r+1

�j, (5.25)

as well as:

1

N

NX

n=1

kr
�
uh

n
� Ih,r

�
(un) k 

vuut3
dX

j=r+1

�j. (5.26)

7This conflicts with the condition for (5.20) in footnote 6.
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This does not play a role for the estimation. One can compensate
p
3 with the

factor C. Now we could either calculate a new estimate with (5.23), (5.24) and
(5.18), ore use the continuity and coercivity of A for an alternative estimate. With
the assumption "  hkbkb we can write the following lemma:

Lemma 5.3.2. The Ritz projection !r

n
of the solution un satisfies the following error

estimates:

1

N

NX

n=1

kun � !r

n
k  C

 
�
1 + kM�1

r
k2 + "�1

+ + "+"
�1
� 1

2 Mu

⇣
hm+ 1

2 + (�t)p
⌘

+
�
1 + kM�1

r
k2 + "�1

+ + "+ + "
� 1

2

vuut
dX

j=r+1

�j

1

A ,

(5.27)

1

N

NX

n=1

kun � !r

n
k  C̃

0

@
⇣
1 + "�

1
2

⌘
Mu

⇣
hm+ 1

2 + (�t)p
⌘
+

vuut
dX

j=r+1

�j

1

A .

(5.28)

Here, Mu is a positive constant which depends on several norms of u and its time
derivatives and the coefficients of (5.1), but not on "�1. The coefficient C is defined
as before 8 and C̃ is a product of max

n
1,

p
�p
"
, �

�

o
and an additional scalar9.

Proof: For the first inequality, from (5.16) and (5.18), follows:

1

N

NX

n=1

kun � !r

n
k  1

N

NX

n=1

k⌘nk+
1

N

NX

n=1

k r

n
k 

1

N

NX

n=1

k⌘nk+ C
�
1 + kM�1

r
k2 + "�1

+

� 1
2
1

N

NX

n=1

k⌘nk+ C ("+ "+)
1
2
1

N

NX

n=1

kr⌘nk.

With (5.17), (5.23), (5.24), (5.25) and (5.26), we get:

1

N

NX

n=1

kun � !r

n
k 

C
⇣
1 +

�
1 + kM�1

r
k2 + "�1

+

� 1
2 +

�
1 + "+"

�1
� 1

2

⌘
Mu

⇣
hm+ 1

2 + (�t)p
⌘
+

C
⇣
1 +

�
1 + kM�1

r
k2 + "�1

+

� 1
2 + ("+ + ")

1
2

⌘
vuut

dX

j=r+1

�j,

which implies (5.27).
8Note that C depends on �

�1. A very small � in Assumption 1 is theoretically possible.
9The scalar either does not depend on the coefficients of the problem, ore it depends on

p
"+"+p

�

iff
p
� <

p
"+ "+.
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The second estimate results from Assumption 1, especially with (5.7):

kun � !r

n
k2
�,","+

A (un � !r

n
, un � !r

n
)

=A
�
un � !r

n
, un � uh

n

�
+ A

�
un � !r

n
, uh

n
� Ih,r (un)

�

+ A (un � !r

n
, Ih,r (un)� !r

n
)| {z }

=0

3C1kun � !r

n
k�,","+

�
kun � uh

n
k�,","+ + kuh

n
� Ih,r (un) k�,","+

�
.

This implies:

kun � !r

n
k�,","+  3C1

�
kun � uh

n
k�,","+ + kuh

n
� Ih,r (un) k�,","+

�
.

Since PR is an orthogonal projection, kPRkop = 1 = kI� PRkop = kP 0
R
kop, with the

operator norm kPRkop = sup
u2rX

kPRuk
kuk . We also have kPRuk  kPRkopkuk = kuk.

With
p
�kun � !r

n
k  kun � !r

n
k�,","+ follows:

kun � wr

n
k  C̃

�
kun � uh

n
kH1(⌦) + kuh

n
� Ih,r (un) kH1(⌦)

�
.

Therefore (5.28) follows with (5.23), (5.24) (5.25) and (5.26). ⇤
In the further course of [16, Chapter 3], it can be observed that the work is

still not done properly, for example in Corollary 3.1 which states an estimate for
k (un � !r

n
)
t
k. The proof should be done in the same way as the proof of (5.15),

but the Ritz projection !r

n
2 Xr is not time dependent. One has to guess how (!r

n
)
t

is defined. Another example can be found in [16, (3.61)], where it is assumed that
the Assumption 2 also applies in XR. Since this assumption can be made because
Xh �! X for h �! 0, this can generally not be transferred to XR which spans
only functions with the characteristics of the snapshots.

As one can see there are gaps in the proof of the error estimate from [16].
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6 Summary of the VMS-POD-Model to Gen-

erate the Algorithm Step by Step

This chapter contains a summary of the VMS-POD-Method which we use for the
numerical studies. We chose the Crank-Nicolson method for time discretization,
and the difference quotients are not included in the snapshot, but the mean value is
subtracted.

1 Given Problem: Let ⌦ ⇢ Rn for n 2 {1, 2, 3} be a bounded domain with Lipschitz
boundary and [0, T ] ⇢ R be a time interval.

One searches u : [0, T ]⇥ ⌦ �! R such that

@tu� "�u+ b ·ru+ cu = f , in (0, T ]⇥ ⌦,

u (0, x) = u0 (x) , in ⌦,

u (t, x) = 0 .on (0, T ]⇥ @⌦,

where we have " ⌧ 1, b 2 (L1 (0, T ;L1 (⌦)))n with kbk(L1(0,T ;L1(⌦)))n � ",
c 2 L1 (0, T ;L1 (⌦)) and f 2 L2 (0, T ;L2 (⌦)).

For the variational form find u : (0, T ] �! X = H1
0 (⌦), such that

(@tu, v) + a (u, v) = (f, v) , 8 v 2 X,

a (u, v) = " (ru,rv) + (b ·ru, v) + (cu, v), with (·, ·) as the standard L2 (⌦) inner
product.

2 Determining the snapshots by solving a full order model (FOM) in
Xh ⇢ H1

0 (⌦). Thus one has to find uh : (0, T ] �! Xh with
�
@tu

h, vh
�
+ a

�
uh, vh

�
=
�
f, vh

�
, 8 vh 2 Xh.

Therefore N time points {t1, ...tN} 2 (0, T ] are chosen, such that tN = T , t0 = 0
and tn � tn�1 = �t 8i 2 {1, ..., N}. Solve the time discretised problem to get the
solutions wn (x) := uh (tn, x) for x 2 ⌦. Here w0 is the orthogonal projection of u0

onto Xh.

{w0, ..., wN} 2 H1
0 (⌦)

3 Calculate the mean value of the snapshots:

hwi := 1

N + 1

NX

i=0

wi.

Subtract them from each wi to get the new set of snapshots {ŵ0, ..., ŵN} with
ŵi = wi � hwi for all i = 0, ..., N . Adapt the problem accordingly.
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4 Generate the matrix W 2 RN+1⇥N+1, with Wi,j := (ŵi, ŵj)H1(⌦) and calculate its
nonzero eigenvalues �i, for i = 1, ...d and the corresponding normalized eigenvectors
ai =

�
a1
i
, ..., aN+1

i

�T . Choose the r largest eigenvalues:

�1 � �2 � ... � �r > 0.

5 Create the POD-Basis {�1, ...,�r}, with

�i (x) =
1p
�i

2NX

j=0

aj
i
ŵj (x) , x 2 ⌦,

((�i,�j)H1(⌦) = �i,j).

6 PR is the L2-orthogonal projection onto LR := rXR = span {r�1, ..,r�R} with
R < r and P 0

R
= I� PR.

Calculate an L2-orthonormal basis of rXR (which is equivalent to an H1
0 -

orthonormal basis of XR). One can do this with Gram–Schmidt process. Letn
r�̃1, ...,r�̃R

o
be this basis. Then follows for all v 2 X:

P 0
R
rv = v �

RX

j=1

⇣
r�̃j, v

⌘
r�̃j.

7 Solve the VMS-POD scheme with the Crank–Nicolson method. One searches
ur

k
2 Xr := span {�1, ...,�r}:

1

�t

�
ur

k
� ur

k�1,�j

�
+

1

2
a
�
ur

k�1 + ur

k
,�j

�
+

1

2
"+
�
P 0
R
rur

k�1 + P 0
R
rur

k
, P 0

R
r�j

�

=
1

2
(Ek�1 (�j) + Ek (�j)) , 8j = 1, ..., r, (6.1)

where ur

0 =
P

r

i=1 (w0,�i)�i and Ek (�j) = (fk,�j)� a (hwi ,�j).
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7 Implementation

In [16, Chapter 4] numerical studies are presented. They used an example for ⌦ 2 R2

and demonstrate that the POD-G model shows non-physical oscillations that can
be reduced considerably with the VMS-POD model [16, Figure 1]. For the POD-G
method it holds that the error reduces minimal where r increases [16, Table 1]. The
average error 1

N+1

P
N

n=0 kwn � ur

n
k between the snapshot wn and the reduced order

solution ur

n
for the VMS-POD method is 10�1 up to 10�2 times the average error of

the POD-G method [16, Table 4]. The results show that r = 40 and R = 20 are a
good choice [16, Table 3]. For the factor "+ they used 0.01↵⇤, ↵⇤ and 100↵⇤, with
↵⇤ = max

�
↵̃, h2

 
and

↵̃ =
hm+1 +

qP
d

j=r+1 �j

2hm +
qP

d

j=r+1 �j +
qP

d

j=R+1 �j
,

which comes from the error estimation of [16]. In [16, Table 4 and Table 5] one can
observe a low sensitivity of the VMS-POD method with respect to changes in ".

The following part describes the implementation for the one dimensional case.
First, the architecture used to code is outlined. Then results of numerical test are
presented. In contrast to [16], we use different scalings of h as "+. The second
difference lies in the time discretization.

7.1 Finite Element Approximation and Equations

We use piecewise quadratic functions as in [16]. With the Crank-Nicolson method
we have the same order of convergence for the spacial and temporal discretization.
The difference between VMS-POD and POD-G method is bigger with linear FEs,
therefore these are also included for the visualization.

This leads to the following procedure (which is actually a finite difference method).
The interval (a, b) is divided in 2M equidistant parts of length h

2 , x0 = a, x2M = b
and 8 k 2 {1, 2, ..., 2M � 1}. One constructs the ansatz space V h = span {�1, ..., �2M}.

For k, l 2 {1, 2, ..., 2M � 1} with k is odd and l is even we have the following
basis functions:

�k (x) =

(
4(x�xk�1)(xk+1�x)

h2 , x 2 (xk�1, xk+1) ,

0 , else,

�l (x) =

8
><

>:

2(x�xl�2)(x�xl�1)
h2 , x 2 (xl�2, xl) ,

2(x�xl+2)(x�xl+1)
h2 , x 2 [xl, xl+2) ,

0 , else.
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x0 x1 x2 x3 x4
. . . x2M

0

1

�
i
(x
)

i = k = 1
i = l = 2
i = k = 3
i = l = 4

Figure 7.1: piecewise quadratic finite element functions

It applies almost everywhere:

�0
k
(x) =

(
4(�2x+xk+1+xk�1)

h2 , x 2 (xk�1, xk+1) ,

0 , else,

�0
l
(x) =

8
><

>:

2(2x�xl�1�xl�2)
h2 , x 2 (xl�2, xl) ,

2(2x�xl+1�xl+2)
h2 , x 2 (xl, xl+2) ,

0 , else.

We define:

�l,1 := �l|(xl�2,xl),

�l,2 := �l|(xl,xl+2).

In the reference cell (Figure 7.2) we have the following basis functions:

�1 0 1
0

1

�̂
i
(x
)

i = 0
i = 1
i = 2

Figure 7.2: reference cell

�̂0 =
x2 � x

2
, �̂0

0 =
2x� 1

2
,

�̂1 = �x2 + 1, �̂0
1 = �2x,

�̂2 =
x2 � x

2
, �̂0

2 =
2x+ 1

2
.
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For the most i, j 2 {1, ..., 2M � 1} holds
R

x2M

x0
�i�jdx = 0. Only the following

integrals are 6= 0 (equivalently for
R
x2M

x0
�0
i
�0
j
dx):

Z
x2M

x0

�2
k
dx =

Z
xk+1

xk�1

�2
k
,

Z
x2M

x0

�2
l
dx =

Z
xM

x0

�2
l,1dx+

Z
xM

x0

�2
l,2dx =

Z
xl

xl�2

�2
l,1dx+

Z
xl+2

xl

�2
l,2dx,

Z
x2M

x0

�k�k+1dx =

Z
xM

x0

�k�k+1,1dx =

Z
xk+1

xk�1

�k�k+1,1dx,

Z
x2M

x0

�k�k�1dx =

Z
xM

x0

�k�k�1,2dx =

Z
xk+1

xk�1

�k�k�1,2dx,

Z
x2M

x0

�l�l+2dx =

Z
xM

x0

�l,2�l+2,1dx =

Z
xl+2

xl

�l,2�l+2,1dx.

With 'j (y) = h

2y + xj, for j = {1, ..., 2M � 1}, we have �k ('k (y)) = �̂1 (y),
�l,1 ('l (y)) = �̂2 (y) and �l,2 ('l (y)) = �̂0 (y) for the derivatives �0

k
('k (y)) = 2

h
�̂0
1 (y),

�0
l,1 ('l (y)) = 2

h
�̂0
2 (y) and �0

l,2 ('l (y)) =
2
h
�̂0
0 (y). By the substitution formula

Z
b

a

f (x) dx =

Z
'
�1(b)

'�1(a)

f (' (y))'0 (y) dy

follows, for all k, l 2 {1, 2, ..., 2M � 1} with k is odd and l is even:

Z
xk+1

xk�1

�2
k
=

h

2

Z 1

�1

�̂2
1 =

16h

30
,

Z
xl

xl�2

�2
l,1dx+

Z
xl+2

xl

�2
l,2dx =

h

2

Z 1

�1

�̂2
0 +

h

2

Z 1

�1

�̂2
2 =

8h

30
,

Z
xk+1

xk�1

�k�k+1,1dx =
h

2

Z 1

�1

�̂1�̂2 =
2h

30
,

Z
xk+1

xk�1

�k�k�1,2dx =
h

2

Z 1

�1

�̂1�̂0 =
2h

30
,

Z
xl+2

xl

�l,2�l+2,1dx =
h

2

Z 1

�1

�̂0�̂2 = � h

30
,
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as well as:
Z

xk+1

xk�1

(�0
k
)2 =

2

h

Z 1

�1

⇣
�̂0
1

⌘2
=

16

3h
,

Z
xl

xl�2

�
�0
l,1

�2
dx+

Z
xl+2

xl

�
�0
l,2

�2
dx =

2

h

Z 1

�1

⇣
�̂0
0

⌘2
+

2

h

Z 1

�1

⇣
�̂0
2

⌘2
=

14

3h
,

Z
xk+1

xk�1

�0
k
�0
k+1,1dx =

2

h

Z 1

�1

�̂0
1�̂

0
2 = � 8

3h
,

Z
xk+1

xk�1

�0
k
�0
k�1,2dx =

2

h

Z 1

�1

�̂0
1�̂

0
0 = � 8

3h
,

Z
xl+2

xl

�0
l,2�

0
l+2,1dx =

2

h

Z 1

�1

�̂0
0�̂

0
2 =

1

3h
.

The subspace V h ⇢ H1
0 ((a, b)) is isomorphic to R2M�1 and each function

vh =
M�1X

i=1

�
vh
�i
�i ⇠=

⇣�
vh
�1

, . . . ,
�
vh
�2M�1

⌘T
=: v 2 R2M�1.

We generate the matrices B0, B1, B2 2 R2M�1⇥2M�1, where (B0)i,j = (�i, �j)H1
0 ((a,b))

,
(B1)i,j = (�i, �j)H1((a,b)), (B2)i,j = (�i, �j)L2((a,b)). For all u, v 2 V h and the corre-
sponding u, v 2 R2M�1 it holds:

(u, v)
H

1
0 ((a,b))

= uTB0v,

(u, v)
H1((a,b)) = uTB1v,

(u, v)
L2((a,b)) = uTB2v.

The matrices are invertible and symmetric, therefore (u, v)
Bl

:= uTBlv, for l = 0, 1, 2
define scalar products in R2M�1.

B0 =
1

3h

0

BBBBBBB@

16 �8 0 0 0 0 · · · 0
�8 14 �8 1 0 0 · · · 0
0 �8 16 �8 0 0 · · · 0
0 1 �8 14 �8 1 · · · 0
...

...
...

...
...

... · · · ...
0 0 0 0 · · · 0 �8 16

1

CCCCCCCA

,

B2 =
h

30

0

BBBBBBB@

16 2 0 0 0 0 · · · 0
2 8 2 �1 0 0 · · · 0
0 2 16 2 0 0 · · · 0
0 �1 2 8 2 �1 · · · 0
...

...
...

...
...

... · · · ...
0 0 0 0 · · · 0 2 16

1

CCCCCCCA

,

B1 = B2 +B0.
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For linear FEs we get the RM�1⇥M�1 matrices1:

Blin

0 =
1

h

0

BBBBB@

2 �1 0 0 0 0 · · · 0
�1 2 �1 0 0 0 · · · 0
0 �1 2 �1 0 0 · · · 0
...

...
...

...
...

... · · · ...
0 0 0 0 · · · 0 �1 2

1

CCCCCA
,

Blin

2 =
h

6

0

BBBBB@

4 1 0 0 0 0 · · · 0
1 4 1 0 0 0 · · · 0
0 1 4 1 0 0 · · · 0
...

...
...

...
...

... · · · ...
0 0 0 0 · · · 0 1 4

1

CCCCCA
,

Blin

1 = Blin

2 +Blin

0 .

Let (w0, ..., wn) be the snapshots, hwi = 1
N+1

P
N

i=0 wi their mean value and
ŵi = wi � hwi, for i = 0, ...N . With the calculations above, one can treat hwi
and the new snapshots {ŵ0, . . . , ŵN} as vectors hwi , wi 2 R2M�1 for i = 0, ..., N .
We define the matrix U 2 R(2M�1)⇥(N+1) with wi as column i. This leads to the
following relation for the matrix W , Wi,j = (ŵi, ŵj)X :

W = UTBlU.

Also the POD-Basis functions {�1, . . . ,�r} have representations in R2M�1 of the
form:

�i =
1p
�i
Uai,

with the r largest eigenvalues of W , �1 � �2 � · · · � �r � 0 and the corresponding
eigenvectors ai.

Let � 2 R(2M�1)⇥r be the matrix with the POD-Basis vectors �i as columns,
Nk, Ck, P 0

R
2 R(2M�1)⇥(2M�1) such that (Nk)i,j = (bk ·r�i, �j)L2 , (Ck)i,j = (ck�i, �j)L2

and P 0
R

the corresponding Matrix for the projection P 0
R
(·), f

k
2 R2M�1 with�

f
k

�
i
= f (tk, xi), and Ek = �TB2fk

� "�TB0 hwi � �TCk hwi � 1
2�

TNT

k
hwi.

One can transfer the equation (6.1) into a linear system to find bk 2 Rr such
that:


1

�t
�TB2�+

"

2
�TB0�+

1

2
�TNT

k
�+

1

2
�TCk�+

"+
2

(P 0
R
)T B0P

0
R

�
bk =


1

�t
�TB2�� "

2
�TB0�� 1

2
�TNT

k�1�� 1

2
�TCk�1�� "+

2
(P 0

R
)T B0P

0
R

�
bk�1

+
1

2
(Ek�1 + Ek) , (7.1)

where b0 = �TB1w0.
1In the linear case one divides the interval (a, b) into M equidistant parts of length h and has

also just M � 1 basis functions.
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Let �k 2 Rr be the right-hand side and �k 2 Rr⇥r the matrix on the left-hand
side of (7.1) at step k. Since �kbk = �k, one can see the following:

�k+1 =
1

2
(Ek + Ek+1) +

2

�t
�TB2�bk � �k.

For the L2-orthogonal projection onto rXR one needs a basis of span
�
�i

 R
i=1

which
is orthonormal with respect to (·, ·)

B0
, lets call P ⇤

R
2 R(2M�1)⇥R the matrix of these

ON-basis vectors. If (·, ·)
X
= (·, ·)

H
1
0

nothing is to do for it and one can use the first
R columns of �, but if (·, ·)

X
= (·, ·)

H1 one has to calculate P ⇤
R

for example with
Gram–Schmidt process. Then P 0

R
can be calculated as follows:

P 0
R
= �� P ⇤

R
(P ⇤

R
)T B0�. (7.2)

In the case of (·, ·)
X
= (·, ·)

H
1
0

one obviously does not have to calculate �TB0� and
(P 0

R
)T B0P 0

R
in (7.1) in this way. They are either the identity matrix or the identity

matrix with the first R diagonal entries replaced by zero.
To interpret the results one can retransform the solutions bk into R2M�1 by

calculating �bk 2 R2M�1.

7.2 Example and Numerical Studies

In this part numerical studies are presented. The following example is examined:

ut � "uxx + ux + u = f, (7.3)

where ⌦ = (0, 1), u (t, 0) = u (t, 1) = 0, 8t 2 (0, 1] and f is chosen to satisfy the
solution

u (t, x) = exp
�
1� t� 100 (x� t)2

�✓
x� e

x
z � 1

e
1
z � 1

◆
, (7.4)

with z = 0.01.

Figure 7.3: exact solution (7.4)
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For all k = 0, ..., N holds: Ck = B2 and

Nk =
1

6

0

BBBBBBB@

0 �4 0 0 0 0 · · · 0
4 0 �4 1 0 0 · · · 0
0 4 0 �4 0 0 · · · 0
0 �1 4 0 �4 1 · · · 0
...

...
...

...
...

... · · · ...
0 0 0 0 · · · 0 4 0

1

CCCCCCCA

.

With linear FEs we have:

N lin

k
=

1

2

0

BBBBB@

0 �1 0 0 0 0 · · · 0
1 0 �1 0 0 0 · · · 0
0 1 0 �1 0 0 · · · 0
...

...
...

...
...

... · · · ...
0 0 0 0 · · · 0 1 0

1

CCCCCA
.

The code is implemented in C++. The library Eigen [1] is used, especially its
integrated solver for linear equations, the eigenvalue solver for selfadjoint matrices
and the matrix and vector representation. Some of the source code and a link to
the full implementation can be found in the Appendix. All computations are carried
out on a PC with 2.80 GHz Intel core i7-1165G7 processor.

For the chosen example it turns out that the results with (·, ·)
X

= (·, ·)
H1(⌦)

or (·, ·)
X

= (·, ·)
H

1
0 (⌦) are very similar. Therefore only the POD method with

(·, ·)
X
= (·, ·)

H1(⌦) is shown here.
In the following, h = 1

M
and �t = 1

N
. For linear FEs we use M = N = 500, for

the quadratic case we use M = 250 and N = 500 to get the same number of nodes.
Results for " = 10�10 and " = 10�4 are presented, in particular, the average error
and some graphs of the solutions. For the snapshots we do not solve a FOM. Instead,
we project the exact solution (7.4) at times ti, i = 0, ..., N onto the FE ansatz space.

linear FE (M = N = 500) quadratic FE (2M = N = 500)
" = 10�10 " = 10�4 " = 10�10 " = 10�4

r e⇤ e⇤ e⇤ e⇤

20 0.00059517 0.00059517 0.000596332 0.000596332
25 1.20173e� 05 1.20173e� 05 1.20462e� 05 1.20462e� 05
30 7.51773e� 08 7.51773e� 08 7.61374e� 08 7.61374e� 08
35 4.99111e� 08 4.99111e� 08 5.35439e� 08 5.35439e� 08
40 4.61657e� 08 4.61657e� 08 4.78322e� 08 4.78322e� 08
45 4.69651e� 08 4.69651e� 08 4.87872e� 08 4.87872e� 08

Table 7.1: error e
⇤ = 1

N+1

P
N

i=0 kwi �
P

r

j=1 (wi,�j)H1 �jkX of the POD basis
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linear FE (M = N = 500) quadratic FE (2M = N = 500)
r = 20 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
0 (POD �G) 0.00051805 0.000508049 0.000254201 0.000250956

5 h

2 0.00704167 0.0069049 0.0120214 0.0118269
5 h 0.0120371 0.0118418 0.0192404 0.0189977
5 2h 0.0192315 0.0189888 0.0287432 0.0284693
5 4h 0.0287161 0.0284427 0.0407502 0.0404592
5 8h 0.0407091 0.04041864 0.0559327 0.0556287
10 h

2 0.00204509 0.00198173 0.00310549 0.00301802
10 h 0.00317917 0.00309048 0.00456577 0.00445816
10 2h 0.00459659 0.00448839 0.0060935 0.00597603
10 4h 0.00609179 0.00597429 0.0075832 0.00745822
10 8h 0.00756255 0.00743767 0.00899383 0.00885755
15 h

2 0.000532824 0.000520476 0.00034653 0.000336712
15 h 0.000554989 0.000540928 0.000412372 0.000399509
15 2h 0.000582461 0.000566706 0.000484588 0.000469666
15 4h 0.000611104 0.000594471 0.000549381 0.000534172
15 8h 0.000647748 0.000631246 0.000605631 0.000590718

r = 25 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
0 (POD �G) 0.000533348 0.000511758 0.000163984 0.000159731
10 h

2 0.00209539 0.002023 0.00307866 0.00299195
10 h 0.00314503 0.00305573 0.00446032 0.00435958
10 2h 0.0044733 0.00437208 0.00598765 0.0058749
10 4h 0.00597869 0.005866 0.00756152 0.00743643
10 8h 0.00754113 0.00741608 0.00907035 0.00893199
15 h

2 0.000492047 0.000472475 0.000288704 0.000277824
15 h 0.000479655 0.000461918 0.000355841 0.000343721
15 2h 0.00047012 0.000455025 0.000427869 0.000414593
15 4h 0.000494123 0.000480014 0.00049791 0.000483624
15 8h 0.000561276 0.000546189 0.000554994 0.000540458
20 h

2 0.000431507 0.000415878 0.000135143 0.000132312
20 h 0.000362918 0.000351117 0.000121558 0.000119298
20 2h 0.000284273 0.00027669 0.000111106 0.000109207
20 4h 0.000234063 0.000229099 0.000107871 0.000106049

20 8h 0.000237994 0.000233106 0.000110159 0.000108279

Table 7.2: average error e = 1
N+1

P
N

i=0 kwi � u
r

i
kL2 of the ROM solution
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linear FE (M = N = 500) quadratic FE (2M = N = 500)
r = 30 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
0 (POD �G) 0.000612551 0.000581997 0.000195589 0.00018924
15 h

2 0.000504372 0.000481686 0.000291252 0.000280692
15 h 0.000464171 0.000445891 0.000354111 0.000342204
15 2h 0.00044657 0.000431992 0.000426424 0.000413247
15 4h 0.000483291 0.000469449 0.000496235 0.000482076
15 8h 0.000557955 0.00054299 0.000553434 0.000538953
20 h

2 0.00045707 0.000437057 0.000145091 0.000141546
20 h 0.000360395 0.000346749 0.000124016 0.000121548
20 2h 0.0002639 0.000256478 0.000110554 0.000108656
20 4h 0.000218089 0.000213595 0.00010724 0.000105436

20 8h 0.000229356 0.000224731 0.0001097 0.000107833
25 h

2 0.000506101 0.000482779 0.00015591 0.000151765
25 h 0.000430673 0.000412452 0.000135555 0.000132531
25 2h 0.000341493 0.000329366 0.000120434 0.000118202
25 4h 0.000283807 0.000275728 0.000118439 0.00011632
25 8h 0.000290571 0.000282455 0.000126959 0.000124467

r = 35 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
0 (POD �G) 0.000709584 0.000664541 0.00026741 0.000253678
15 h

2 0.000511666 0.000486017 0.000304615 0.000293085
15 h 0.000448433 0.000429729 0.000356582 0.000344748
15 2h 0.000427312 0.000413437 0.000426133 0.00041304
15 4h 0.000476101 0.000462521 0.000496164 0.000482003
15 8h 0.000556806 0.000541852 0.000553397 0.000538915
20 h

2 0.000463907 0.000440771 0.00015486 0.000150633
20 h 0.000338455 0.000324738 0.000125243 0.000122736
20 2h 0.000235054 0.000228825 0.000109513 0.000107661
20 4h 0.000204815 0.000200878 0.000106524 0.000104741

20 8h 0.000226081 0.000221561 0.000109446 0.000107584
25 h

2 0.000501157 0.000475167 0.000159381 0.000154845
25 h 0.000386622 0.0003694 0.000129143 0.00012646
25 2h 0.000282076 0.000272794 0.000114257 0.000112278
25 4h 0.000248358 0.000241948 0.00011571 0.000113659
25 8h 0.000278528 0.000270832 0.000125869 0.000123395

Table 7.3: average error e = 1
N+1

P
N

i=0 kwi � u
r

i
kL2 of the ROM solution
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linear FE (M = N = 500) quadratic FE (2M = N = 500)
r = 35 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
30 h

2 0.000564115 0.000533707 0.000169539 0.000164314
30 h 0.00048499 0.000460593 0.000140992 0.000137769
30 2h 0.00040446 0.000386 0.000134123 0.000131101
30 4h 0.000373458 0.000357623 0.000146586 0.000142734
30 8h 0.000415833 0.000397421 0.000163841 0.000159058

r = 40 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
0 (POD �G) 0.000866393 0.000781988 0.000334636 0.000310134
15 h

2 0.000472264 0.000441799 0.000298292 0.000286668
15 h 0.000393035 0.000376074 0.000352422 0.000340661
15 2h 0.000402984 0.000390335 0.000425225 0.000412134
15 4h 0.000472103 0.000458643 0.000496031 0.000481868
15 8h 0.00055631 0.00054136 0.000553374 0.000538891
20 h

2 0.00042411 0.000395613 0.000150104 0.000145433
20 h 0.000277623 0.000265833 0.000119522 0.000117179
20 2h 0.000205034 0.00020047 0.000107545 0.000105749
20 4h 0.000199108 0.000195407 0.000106175 0.000104397

20 8h 0.000225279 0.000220778 0.000109395 0.000107534
25 h

2 0.000457538 0.000425173 0.000154934 0.000149792
25 h 0.000309712 0.000294955 0.000122358 0.000119866
25 2h 0.000235854 0.000229336 0.000111742 0.000109847
25 4h 0.000238134 0.000232226 0.000115348 0.000113305
25 8h 0.000277238 0.000269579 0.000125872 0.000123396
30 h

2 0.000538717 0.000496573 0.000175837 0.000168619
30 h 0.000393775 0.000369912 0.000139306 0.00013553
30 2h 0.000310719 0.000297543 0.000131801 0.000128699
30 4h 0.000326864 0.000313874 0.000145299 0.000141462
30 8h 0.0003996 0.000382074 0.000163246 0.000158475

Table 7.4: average error e = 1
N+1

P
N

i=0 kwi � u
r

i
kL2 of the ROM solution
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linear FE (M = N = 500) quadratic FE (2M = N = 500)
r = 45 " = 10�10 " = 10�4 " = 10�10 " = 10�4

R "+ e e e e
0 (POD �G) 0.000864447 0.000779656 0.000337693 0.000312948
15 h

2 0.00047059 0.000440287 0.000298821 0.000287157
15 h 0.000392357 0.000375466 0.000352589 0.000340824
15 2h 0.000402807 0.000390168 0.000425286 0.000412195
15 4h 0.00047205 0.00045859 0.000496048 0.000481885
15 8h 0.000556298 0.000541348 0.000553378 0.000538896
20 h

2 0.000422292 0.000393967 0.000150736 0.000146014
20 h 0.000276819 0.000265112 0.000119762 0.000117411
20 2h 0.000204788 0.000200238 0.000107666 0.000105869
20 4h 0.000199035 0.000195336 0.000106214 0.000104436

20 8h 0.000225263 0.000220763 0.000109403 0.000107542
25 h

2 0.000455347 0.000423198 0.000155636 0.000150433
25 h 0.000308578 0.000293943 0.000122592 0.00012009
25 2h 0.000235503 0.000229009 0.000111835 0.000109939
25 4h 0.000238056 0.000232152 0.000115374 0.000113331
25 8h 0.000277226 0.000269567 0.000125877 0.000123402
30 h

2 0.000535269 0.000493452 0.000176952 0.000169626
30 h 0.000391117 0.000367535 0.000139696 0.000135889
30 2h 0.000309356 0.00029631 0.00013187 0.000128765
30 4h 0.00032644 0.000313483 0.000145292 0.000141456
30 8h 0.000399509 0.000381988 0.000163237 0.000158467

Table 7.5: average error e = 1
N+1

P
N

i=0 kwi � u
r

i
kL2 of the ROM solution
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Figure 7.4: reduced order solutions of (7.3) for " = 10�10
, with r = 40 (from top left

to bottom right: POD-G with linear FE, POD-G with quadratic FE, VMS-POD with

linear FE and R = 20, VMS-POD with quadratic FE and R = 20)

Between " = 10�10 and " = 10�4 only a small difference in the results is visible.
This supports the observations of [16] about the low sensitivity with respect to
changes of the diffusion coefficient.

In Table 7.2-7.5 one can observe an advantage of the VMS-POD method com-
pared to the POD-G method. For all r > 20 tested, the average error for the
VMS-POD method, with R = 20 and "+ = 4h, is better than the average error
of the POD-G solution. With linear FEs the difference is significantly larger. One
can also see that the POD-G method for r = 25 with quadratic FEs leads to better
results than any other test for the linear case. Considering the effort, the POD-G
model with r = 25 delivers quite good results.

The results for the linear FE method show that the average error for the POD-G
increases if r increases. The error for the VMS-POD method with R = 20 and
"+ = 4h decreases until r = 40. The best results came from the VMS-POD method
with r = 40, R = 20 and "+ = 4h. The outcome is similar for quadratic FEs but
the POD-G method with r = 25 seems to be better than the method with r = 20.

For r = 45 we do not get better results. One can probably see the main reason in
Table 7.1. The error e⇤ = 1

N+1

P
N

i=0 kwi �
P

r

j=1 (wi,�j)X �jkH1 has increased from
r = 40 to r = 45. But from (2.11) follows e⇤ =

P
d

i=r+1 �i and since all �i should
be � 0 this indicates an error in the calculation of the smallest eigenvalues and it
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Figure 7.5: reduced order solutions of (7.3) for " = 10�4
, with r = 40 (from top left

to bottom right: POD-G with linear FE, POD-G with quadratic FE, VMS-POD with

linear FE and R = 20, VMS-POD with quadratic FE and R = 20)

makes no sense to use them. The outcome of r = 40 and R = 20 as best choice
matches the results in [16].

In Figure 7.4 and Figure 7.5 we see that the VMS-POD method does exactly
what we expect. It levels the non-physical oscillations that occur with the POD-G
method. The difference between the exact solution in Figure 7.3 and the VMS-POD
solutions is barely visible.

The chosen example may not be a strong challenge for the method, but an
advantage is visible. The effort of solving linear equations in R40 is much smaller
than in R499. We compare the CPU time of a VMS-POD method with r = 40 and
a full order method. The VMS-POD method runs around 45 seconds with different
solvers, while the full order method needs nearly 3 minutes with the faster solver2.

2The solvers of ’fullPivHouseholderQr’ and ’partialPivLu’ are used. The first one is a very
accurate but slow method and the second is faster but in general less accurate.
(see [1, https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html])
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7.3 Conclusion and Other Approaches

The VMS method successfully stabilized the POD model and reduced non-physical
oscillations. The numerical tests here and the tests in [16] correspond. It was
possible to reduce the dimension of the equations significantly. The method shows a
low sensitivity with respect to the diffusion coefficient. The error estimation in [16]
is not appropriate for an a priori error bound.

In [12], a ROM method for convection-dominant convection-diffusion-reaction
equation is also described. This is a SUPG-ROM method. In both [12] and [16] the
same example was used for numerical analysis. It is visible that the results are quite
comparable, but it would be necessary to collect the exact error data for the same r
again to make any conclusive statements on this. In [19] one finds an error estimate
for a SUPG-ROM method, which is much more coherent than the error estimate
in [16]. In [28], a ROM method with VMS approach is also described, but without
error estimates. The approach is more general and not related to the VMS method
in [18].
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Appendix

This is the C++ code for the VMS-POD model with quadratic FEs with N = 500,
M = 250, r = 40, R = 20, " = 10�10 and "+ = 4h = 8M . If necessary, one
can change them in the code. It outputs the average error and a csv file with
the result matrix. The hadder files contain functions for the main, which do not
directly concern the VMS-POD procedure. The full implementation can be found
on: https://github.com/ClaraDaisyEmma/VMS-POD-Master-thesis.

1 #include "save�csv.h" //includes save(MatrixXd matrix,const std::string& name)
2 #include "example�problem�P2.h" //includes Snapshots(int numbNotes, int timesteps) and

forcing_term(int dim_space, int dim_time, double epsylon)
3 #include "FE�P2�matrices.h" //includes B_0(int dim) and B_2(int dim)
4 #include "orthogonalisation.h" //includes resolved_ON(MatrixXd PODbasis,int R, MatrixXd

B)
5
6 using namespace Eigen;
7 //This function does the proper orthogonal decomposition.
8 MatrixXd POD(MatrixXd Snapshots, int r, MatrixXd X){
9 MatrixXd snapshotproduct=(Snapshots.transpose()∗X∗Snapshots), result_POD=

MatrixXd::Zero(Snapshots.rows(),r);
10 int dim_time= Snapshots.cols();
11 double lamda;
12 //Eigenvalue solver for selfadjoint matrices, provides eigenvalues in ascending order of size;
13 SelfAdjointEigenSolver<MatrixXd> es(snapshotproduct);
14 //creation of the modes:
15 for(int k=0; k<r ; k++){
16 lamda=(es.eigenvalues()(dim_time�1�k));
17 if (lamda < 1e�12) { // Avoid division by zero
18 std::cerr << "Warning: Small eigenvalue encountered for the POD modes!" << std::

endl;
19 continue;
20 }
21 result_POD(all,k)= 1/sqrt(lamda)∗Snapshots∗es.eigenvectors().col(dim_time�1�k);
22 }
23 return result_POD;
24 }
25
26 int main(){
27 //Implementation:
28 constexpr int M=250, N=500, r=40, R=20;
29 int nodes=2∗M�1;
30 constexpr double Eps=1e�10, DeltaT=1.0/N ,Eps_plus=4.0/M;
31 double error=0 ;
32 MatrixXd VMS_POD_solution=MatrixXd::Zero(r, N+1), snapshots=MatrixXd::Zero(

nodes,N+1),
33 B0, B2, LHS, F, Nk, POD_modes, Rev_transformation, unresolved_scales,

resolved_scales;
34 VectorXd RHS, AV=VectorXd::Zero(nodes), AVRHS;
35
36 if(R==0 || R>r){
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37 std::cout << "Chose $r>R>0$"<< std::endl;
38 return EXIT_FAILURE;
39 }
40 B0=B_0(nodes); //matrix with H^1_0 inner product of the FE basis funktions
41 B2=B_2(nodes); //matrix with L^2 inner product of the FE basis funktions
42 snapshots=Snapshots(nodes, N); //matrix with snapshots as columns
43 Nk=N_k(nodes); //matrix with (b_i’, b_j)_L^2, whith the FE basis funktions b_i, b_j
44 F=forcing_term(nodes,N, Eps); //matrix with the forcing term solutions f(t,x)
45 //Computing the mean value and subtract from the snapshots:
46 for(int k=0; k<N+1; k++){
47 AV=AV+snapshots(all,k);
48 }
49 AV=AV/((double)N +1); //averrage mean value of the full order solution
50 for(int k=0; k<N+1; k++){
51 snapshots(all, k)=snapshots(all,k)�AV;
52 }
53 POD_modes=POD(snapshots,r,(B0+B2)); //matrix with POD modes as columns
54 resolved_scales=resolved_ON(POD_modes,R,B0); //matrix of the ON basis of L^R
55 //Computing the artificial viscosity matrix:
56 unresolved_scales=POD_modes� (resolved_scales∗(resolved_scales.transpose()∗(B0)∗

POD_modes));
57 //Computing the startingpoint u^r_0
58 VMS_POD_solution(all,0)=POD_modes.transpose()∗(B0+B2)∗snapshots(all,0);
59
60 AVRHS=DeltaT∗POD_modes.transpose()∗(B2+Nk.transpose()+Eps∗B0)∗AV; //term on

the RHS that is influenced by the AV
61 LHS = ((DeltaT/2)+1)∗POD_modes.transpose()∗B2∗POD_modes + (DeltaT/2)∗

POD_modes.transpose()∗Nk.transpose()∗POD_modes+
62 (DeltaT/2)∗Eps∗POD_modes.transpose()∗B0∗POD_modes +(DeltaT/2)∗Eps_plus∗

unresolved_scales.transpose()∗B0∗unresolved_scales;
63 RHS=LHS∗VMS_POD_solution(all,0);
64 //Loop with linear systems to finde the solution:
65 for(int k=1; k<=N; k++){
66 RHS=POD_modes.transpose()∗B2∗((DeltaT/2)∗(F(all,k�1)+F(all,k))+2∗POD_modes

∗VMS_POD_solution(all,k�1))�AVRHS�RHS;
67 VMS_POD_solution(all,k)= LHS.fullPivHouseholderQr().solve(RHS);
68 }
69 //Transform back to finite element space:
70 Rev_transformation=POD_modes∗VMS_POD_solution;
71 //Averrage L^2 error:
72 for(int k=0; k<=N; k++){
73 error=error+sqrt((snapshots(all,k)�Rev_transformation(all,k)).transpose()∗B2∗(

snapshots(all,k)�Rev_transformation(all,k)));
74 }
75 error=error/((double)N+1);
76 std::cout<< "Average error: " << error << std::endl;
77 //Adding the meanvalue:
78 for(int k=0; k<N+1; k++){
79 Rev_transformation(all,k)=Rev_transformation(all,k)+AV;
80 }
81 const std::string dataName_results = "VMS�POD�P2�results.csv";
82 save(Rev_transformation, dataName_results); //save the results in a csv file
83
84 return EXIT_SUCCESS;
85 }
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