
Analysis of Algebraic Flux Correction Schemes for
Transient Convection-Diffusion Equations

Master’s thesis

submitted by

Paul Korsmeier

supervised by

Prof. Dr. Volker John
Dr. Petr Knobloch

Institute of Mathematics
Department of Mathematics and Computer Science

Freie Universität Berlin

Berlin, July 2018





Contents

Latin Letters v

Greek Letters viii

Other Symbols ix

Remarks on Notation x

1 Introduction 1

2 Existence, Uniqueness, Maximum Principle and Standard Galerkin Approxima-
tion 9

2.1 Weak Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Weak Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Semi-Discretisation in Space by Finite Elements . . . . . . . . . . . . . . . . . . . . 19

2.3.1 First Order Semi-Discrete Convergence . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Higher Order Semi-Discrete Convergence . . . . . . . . . . . . . . . . . . . . 21

2.4 Time-Discretisation by θ-Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The Reduced Problem 27

3.1 Convergence to the Reduced Problem as ε→ 0 . . . . . . . . . . . . . . . . . . . . . 29

4 First Order Upwinding of the Convective Part and the LED Principle 37

4.1 Upwinding in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Total Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Equivalence of FD, FE and FV . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Upwinding in 1D implies TVD . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Upwinding in Multiple Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Manipulation of the Stiffness Matrix Resulting in Upwinding . . . . . . . . . 42

4.2.2 The Upwind Finite Element Method of Baba and Tabata . . . . . . . . . . . 47

4.3 LED conditions for semi-discrete problems . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



5 Flux Corrected Transport 61
5.1 Zalesak’s Original FCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Intermezzo: M-Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Proposition of a Two-Step FCT Method for the Finite Element Dirichlet Problem . 66
5.4 The FCT Approach of Kuzmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Formal Semi-Discrete Limited Scheme . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Fully Discrete Limited Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.3 An Attempt to Establish Unique Solvability . . . . . . . . . . . . . . . . . . . 71
5.4.4 Semi-smooth Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusion 101

A Tools from the Theory of Finite Elements 103

B Tools from the Theory of Ordinary Differential Equations 104

Bibliography 106

Statement of Authorship (Selbstständigkeitserklärung) 111
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Notation and Nomenclature

The notation in this work is certainly standard, but we introduce at this point some frequently
used notation and nomenclature to preclude ambiguity and for later reference.

Definition 0.1 (General nomenclature and notation). Let d ∈ N.

(i) By a domain Ω ⊂ Rd we mean an open connected set.

(ii) Whenever we say smooth, we mean infinitely many times differentiable.

(iii) For an open set S ⊂ Rn with n ∈ N, we denote by C∞0 (S) the set of smooth real-valued
functions with compact support in S.

(iv) (·, ·) denotes the L2 scalar product on Ω.

(v) |·| is defined depending on the context:

• For x ∈ C, |x| denotes the absolute value of x.

• For a vector v ∈ Rd, if not stated otherwise, |v| denotes the Euclidean 2-norm.

• If S ⊂ Rd is of Hausdorff dimension d′, then by |S| we mean the d′-dimensional Hausdorff
measure of S.

(vi) For x ∈ Rd and r > 0, Br(x) denotes the open Euclidean norm ball of radius r around x.

(vii) Due to the symbol ε being reserved as the diffusion coefficient (see (1.1)), we will use δ, ε to
be able to carry out calculus in the usual notation. No confusion should arise from this.

(viii) C > 0 is a generic positive constant whose value is allowed to change even between two usages
in the same line.

4

Definition 0.2 (Triangulations). Let Ω ⊂ Rd be a domain.

(i) A triangulation or simplicial partition or simplicial mesh T on Ω is a collection of closed
d-simplices T such that T ◦ ∩ T ′o = ∅ for all distinct T, T ′ ∈ T and⋃

T∈T
= Ω. (0.1)

x



Even when not explicitly stated, we shall always assume that the triangulation is regular, i.e.

T ∩ T ′ = ∅ or T ∩ T ′ is a subsimplex of both T and T ′. (0.2)

(ii) Equation (0.1) implies that a triangulated domain Ω is polyhedral. Actually, we take the
existence of a triangulation as the defining property of a polyhedral domain.

(iii) Let T be a regular triangulation of Ω. We do not differentiate between vertices and nodes
and define

(a) N := {p : p is a vertex of a simplex T ∈ T } (the node set)

(b) N := #(N ).

(c) N ◦ := N ∩ Ω (the interior node set)

(d) I := {i ∈ {1, . . . , N} : pi ∈ N ◦} (the indices of interior nodes)

(e) M := #(I).

(iv) For a closed d-simplex T , we define

(a) hT := max{|x− y| : x, y ∈ T} (its diameter)

(b) ρT := max{ρ > 0 : ∃ x ∈ T : Br(x) ⊂ T} (the insphere radius)

(c) σT := hT /ρT (the shape factor)

(d) a side or facet of T to be a (d− 1)-subsimplex.

(v) For a triangulation T define

(a) h := max
T∈T

hT (its mesh width)

(b) σT := max
T∈T

σT (its shape factor)

A family of triangulations (Th)h∈I (usually formally indexed by its mesh width) is called
shape-regular if σ := suph∈I σTh < ∞. It is called quasi-uniform if there exists a constant
τ > 0 such that minT∈Th ≥ τh for all h.

(vi) For an enumerated node set N = {pi : i = 1, . . . , N} and a node pi ∈ N we say that a node
pj , j 6= i is a neighbour of pi if there exists T ∈ T with pi, pj ∈ T . We define the set of
neighbour indices of node pi as

K(i) := {j ∈ {1, . . . , N} : pj is a neighbour of pi}. (0.3)

4

Definition 0.3 (Finite Element Spaces). Let k ∈ N and Ω ⊂ Rd a domain partitioned by a
regular triangulation T .

(i) For any set S ⊂ Rd of sufficient cardinality we define

Pk(S) :=

f : S → R : f(x) =
∑

α∈Nd0:|α|≤k

cαx
α

 (0.4)

with the usual multi-index notation.
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(ii) The space V k := V k(T ) denotes the continuous piecewise k-polynomial elements

V k(T ) := {f ∈ C0(Ω) : f |T ∈ Pk(T ) for all T ∈ T } ⊂ H1(Ω) (0.5)

and V k
0 := V k

0 (T ):= V k(T ) ∩H1
0 (Ω) is its counterpart with vanishing boundary values.

(iii) If T = Th, the shorthands V k
h and V k

h,0 can be convenient.

(iv) For an enumerated node set N = {p1, . . . , pN} and i ∈ {1, . . . , N} define the i-th nodal basis
function or i-th hat function ϕi ∈ V 1(T ) by ϕi(pj) = δij .

4

Definition 0.4 (Matrices of the standard Galerkin method). Let T be a triangulation of Ω with
nodes pi, i = 1, . . . , N . Then we define the associated full consistent mass matrix MC , the full
diffusion matrix D and the full convection matrix C by

MC ∈ RN×N mij := (ϕj , ϕi), (0.6)

D ∈ RN×N dij := (∇ϕj ,∇ϕi) (0.7)

C ∈ RN×N cij := (b · ∇ϕj , ϕi), (0.8)

respectively, the stiffness matrix or negative transport operator K as

K := −(C + εD) (0.9)

and the full lumped mass matrix ML ∈ RM×M by

ML := diag(m1, . . . ,mM ) mi :=
N∑
j=1

mij . (0.10)

For A ∈ {MC ,ML, D,C,K} define the restricted counterpart A◦ := AII := (aij)i,j∈I . 4
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1. Introduction

In this thesis we will be interested in the numerical solution of time-dependent (also called unsteady
or transient) convection-diffusion equations and a method called “Finite Element Flux Corrected
Transport” (FEM-FCT) that is expected to alleviate or resolve a severe problem inherited in the
standard V 1

0 finite element treatment thereof: the emergence of spurious (i.e. unphysical) oscilla-
tions in the vicinity of steep gradients in the approximate solutions. These occur when the diffusion
part of the differential operator is dominated by its convective part.

Specifically, let Ω ⊂ Rd be a domain, T > 0 some positive time, ΩT := Ω × (0, T ] the cylinder,
b : ΩT → Rd a given vector field satisfying div(b) = 0 and 0 < ε� ‖b‖L∞(ΩT ).

Then for some initial datum u0 : Ω → R and some f : ΩT → R the differential formulation of the
problem of interest is to find u : ΩT → R satisfying

ut − ε∆u+ b · ∇u = f in ΩT

u = 0 on ∂Ω× [0, T ]

u = u0 on Ω× {t = 0}.
(1.1)

We will generally restrict ourselves to homogeneous Dirichlet boundary conditions on ∂Ω× [0, T ].

In order to witness in a simple case the spurious effects of applying a standard finite element
method to such a problem, let us contrast our expectations of the true solution and the reality of
the discrete solution for the one-dimensional example problem

ut − εuxx + ux = 0 in (0, 4)× (0, T ]

u = 0 on {0, 4} × [0, T ]

u = χ[1,2] on (0, 4)× {t = 0},
(1.2)

where χ[1,2] is the characteristic function of the interval [1, 2].

We expect the solution u to display only the two effects of convection and diffusion; for instance
if we interpret u0 = χ[1,2] as an initial spatial distribution of a substance’s concentration in the
one-dimensional container Ω = (0, 4) in which the fluid is transported with constant velocity b = 1
(the container’s walls are no obstacle to the fluid flow), we expect u(t) for 0 < t < 2 to be a (slightly,
since ε � b) smoothed version of the shifted initial profile χ[1+t,2+t]. For t > 2 the homogeneous
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Dirichlet condition at x = 4 will steer the profile down rapidly to the value 0 at that point.

Neglecting for a moment the boundary conditions and pretending the domain were Ω = R, (1.2)
describes pure diffusion in a shifting coordinate system. Since it is the nature of the diffusion (=
heat) equation on R that features of the initial profile flatten out, become blurred (convolved with
a Gaussian kernel of increasing width, in fact) and less extreme over time, we can expect the values
of u(·, t) to always remain within the interval [0, 1] and u(·, t) to be of decreasing total variation
as t increases. These two principles will be reflected in the parabolic weak maximum principle (see
Theorem 2.16) and Proposition 4.2, respectively. A good numerical approximation should have
these properties in a discrete sense, too.

If, however, we consider the discretisation using the finite element space V 1
h,0 over the triangulation

Th given by the equidistant grid 0 = x0 < x1 < · · · < xN = 4 dividing Ω = (0, 4) into N intervals
of length h = 4/N and θ-stepping with a constant time-step τ > 0 for the time-discretisation, then
the results violate these two requirements. For our example, we fix ε := 10−3 � 1 = b.

Let uni denote the discrete solution at grid-point (ih, nτ). Then this discretisation gives the implicit
scheme

2

3
δtu

n+1
i +

1

3
(δtu

n+1
i+1 − δtu

n+1
i−1 ) = θ

(
εL1u

n+1
i + Lc0u

n+1
i

)
+ (1− θ) (εL1u

n
i + Lc0u

n
i ) , (1.3)

where

δtu
n+1
i :=

un+1
i − uni

τ
, L1u

n
i :=

uni+1 − 2uni + uni−1

h2
, Lc0u

n
i := −

uni+1 − uni−1

2h
(1.4)

and θ ∈ [0, 1]. Setting un0 = unN = 0 for all n ∈ N realises the homogeneous Dirichlet boundary
condition. For θ = 0, 0.5, 1 this is the forward Euler, Crank-Nicolson and backward Euler method,
respectively.

For instance, let us choose N = 100 and plot the solutions with θ = 0, 0.5, 1 at four different times
t. We set τ = h2 to make sure that the forward Euler method is stable (for values significantly
larger than that, this method produces wild oscillations resulting in numerical overflow). The re-
sults are shown in Figure 1.1. Oscillations lead to values outside the initial function range [0, 1]
and cause an increase in total variation. The sharp drop near the boundary point x = 4 causes
particularly severe ones. Since this effect occurs not only for θ = 0 but also for the unconditionally
stable Crank-Nicolson and backward Euler method, we see that it cannot be attributed to a pos-
sible instability of the time-discretisation, but rather that it is an inherent deficiency in the finite
element space-discretisation.

Hence let us now focus on the forward Euler method. In order to make this method truly explicit,
a technique called mass lumping is commonly used. In the considered 1D case, this diagonalisation
of the mass-matrix M = (ϕj , ϕi)i,j=0,...N in conjunction with setting θ = 0 yields the scheme

δtu
n+1
i = εL1u

n
i + Lc0u

n
i . (1.5)

The explicitness of this method makes it computationally cheaper, but more importantly there
are now conditions on h, τ that, when complied with, ensure that the resulting method no longer

2



produces the above negative effects. In Section 4.1.3 we will learn that the crucial numbers here
are

Pe :=
bh

ε
and γ := τ

2ε

h2
, (1.6)

where Pe is the so-called cell Péclet number that characterises how much b dominates ε in a cell of
size h.

The following table summarises an experiment in which N and τ are varied independently of each
other so that Pe and γ are in a range around certain threshold values. A green field symbolises that,
at time t = 0.01 (actually, t = nτ for n = d0.01/τe), the numerical solution’s range is contained in
[0, 1], whereas a red field represents the case that this range is exceeded.

γ
Pe

3.0 2.5 2.2 2.1 2.0 1.9 1.8 1.5 1.0

1.30

1.20

1.10

1.05

1.05

1.00

0.95

0.90

0.80

0.70

This indicates that the mass-lumped explicit Euler scheme does not show oscillations if and only if
Pe ≤ 2 and γ ≤ 1. That this condition is indeed sufficient will be shown in Section 4.1.3.

If we change the definitions of Ω and u0 slightly in order to march the profile to the right boundary
more quickly, we can compare for Pe = 1 and τ = h2/10ε = 10−4 the lumped and non-lumped
scheme at t = 10−3 and t = 0.2. It is seen that, as predicted by the above table, the lumped version
is free of oscillations for these values h, τ . The non-lumped version no longer shows the terrible
boundary oscillation of before, but still some oscillations at the first time-steps, see Figure 1.2 and
Figure 1.3.

Now, the conditions Pe = bh/ε ≤ 1 and τ ≤ h2/2ε are extremely restrictive for a large ratio |b|/ε
and likely to make also the mass-lumped method (1.5) unusable due to excessive computational
effort. In order to make the explicit Euler scheme non-oscillatory with a reasonable time-step
constraint, we need to replace the central difference approximation Lc0 by the one-sided difference

Lu0u
n
i := −

uni − uni−1

h
, (1.7)

where the superscript u stands for upwind. Since the “wind” b > 0 is directed towards the right,
this uses only information located upwind from (i.e. to the left of) node i to compute the advection
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contribution to un+1
i . With this modification, the time-step threshold for stability will turn out to

be

τu :=

(
b

h
+

2ε

h2

)−1

. (1.8)

A quick experiment with N = 400 and a range of for values τ near τu verifies this, see Figure 1.4.
For τ ≤ τu, the scheme shows no spurious oscillations or out-of-range values, regardless of the size
of the Péclet number Pe, but as can be seen from a comparison with the exact and central scheme
solutions in Figure 1.5, it adds a large amount of artificial diffusion.

In short, the subject-matter of this thesis is to understand this behaviour in the one-dimensional
case, find a generalisation of upwinding to the case of domains Ω ⊂ Rd for d ≥ 2 and then analyse
the method of flux-corrected transport (FCT), which is an attempt to blend the upwinded and the
standard Galerkin method in such a way that their respective strengths are maximised and their
weaknesses minimised, i.e. such that both spurious oscillations and excessive numerical diffusion
are kept at a minimum.

Chapter 2 covers some standard results on the existence and uniqueness of weak solutions of solu-
tions to the linear second order parabolic problem on domains Ω ⊂ Rd with homogeneous Dirichlet
boundary conditions, as well as on the stability and convergence of the discretisation by the method
of lines (first in space, then in time) using V 1

h,0 finite elements and θ-stepping. With the weak max-
imum principle, an important property of classical solutions will be introduced that will later give
rise to the concept of local extremum diminishing (LED) semi-discrete schemes.

Chapter 3 is of little relevance to the following chapters but it is an interesting application of the
(strong) maximum principle. It studies the uniform convergence of the convection-diffusion solu-
tions to the reduced problem’s solution, i.e. the problem without a diffusion term, under certain –
partly natural and partly technical – conditions on the considered domain on which this conver-
gence takes place.

In Chapter 4 we introduce the notion of total variation and total variation diminishing (TVD)
schemes in one dimension and show that the latter is a natural property that the upwinded explicit
mass-lumped scheme has. We then generalise the upwinding procedure of the convective part of
the stiffness matrix to the case d = 2 and show that the resulting scheme can be seen as a member
of the class of upwind finite element methods of Baba and Tabata. Finally, the LED principle is
introduced and conditions are given such that the scheme thus upwinded is LED.

Chapter 5, finally, presents the original FCT method for conservation laws in multiple space di-
mensions devised by Zalesak in 1979 and Kuzmin’s approach from [Kuz10] to apply this framework
in a non-linear blend of the upwinded and standard finite element method. Conditions for well-
posedness of the arising non-smooth non-linear problem and for local convergence of a semi-smooth
Newton method are investigated.

4
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Figure 1.1: Results for N = 100 and θ = 0, 0.5 and 1 at four different times t in comparison with
the exact solution obtained by a very fine discretisation
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Figure 1.2: Comparison of the non-lumped scheme (1.3) and the lumped scheme (1.5) for Ω =
(0, 0.6), u0 = χ[0.2,0.5], Pe = 1 and τ = h2/10ε = 10−4
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Figure 1.3: Blow-up of the interesting regions Figure 1.2
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Figure 1.4: The upwinded scheme with N = 400 for values τ near the critical value τu
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2. Existence, Uniqueness, Maximum Prin-
ciple and Standard Galerkin Approxi-
mation

Let T > 0 be a time and ΩT := Ω× (0, T ] the cylinder. We want to prove existence and uniqueness
of a weak solution u : ΩT → R to

ut + Lu = f in ΩT

u = 0 on ∂Ω× [0, T ]

u = u0 on Ω× {t = 0},
(2.1)

where Lu := −ε∆u+b ·∇u+cu is the elliptic (spatial) differential operator and Ω ⊂ Rd is a domain
with Lipschitz boundary.

Assumption 2.1. We fix the following assumptions about the functions constituting the data:

b ∈W 1,∞(ΩT ,Rd) with div b = 0 (2.2a)

c ∈ L∞(ΩT ,R) with c ≥ 0 (2.2b)

f ∈ L2(ΩT ) (2.2c)

u0 ∈ L2(Ω). (2.2d)

Furthermore, for the sake of simplicity, we assume the operator L and therefore the functions b and
c to be independent of t! 4

Remark 2.2. Equation (2.2a) is actually equivalent to b being Lipschitz continuous with Lipschitz
constant ‖b‖W 1,∞(ΩT ,Rd) (see [Alt16, Theorem 10.5]) 4

Definition 2.3. Define the bilinear form a : H1
0 (Ω) × H1

0 (Ω) → R associated to the elliptic
operator L by

a(u, v) := ε(∇u,∇v) + (b · ∇u, v) + (cu, v). (2.3)

4

The following two results are well-known from the theory of elliptic partial differential equations:

9



Lemma 2.4 (Poincaré-Friedrichs inequality). There exists a constant CPF (Ω) > 0 such that for
all v ∈ H1

0 (Ω)
‖v‖L2(Ω) ≤ CPF ‖∇v‖L2(Ω) . (2.4)

4

Lemma 2.5 (Boundedness and coercivity of a). The bilinear form a is bounded by

Ca := ε+ ‖b‖L∞(Ω) + ‖c‖L∞(Ω) . (2.5)

If we assume in addition that that c− 1
2 div(b) ≥ 0, then a is coercive with constant

ca := (C2
PF + 1)−1ε. (2.6)

4

Proof. The first part of the statement is trivial. For the coercivity, note that

(b · ∇u+ cu, u) =

(
1

2
b,∇(u2)

)
+ (cu, u) = −

(
1

2
div(b), u2

)
+ (c, u2) ≥ c0 ‖u‖2L2(Ω) ≥ 0, (2.7)

so that
a(u, u) ≥ ε ‖∇u‖2L2(Ω) ≥ (C2

PF + 1)−1ε ‖u‖2H1(Ω) . (2.8)

�

2.1 Weak Solution

Definition 2.6 (Abstract function spaces). Let (X, ‖·‖) be a real Banach space and T > 0.

(i) For p ∈ [1,∞] we denote by Lp(0, T ;X) the Banach space of Bochner measurable functions
f : [0, T ]→ X such that

‖f‖pLp(0,T ;X) :=

∫ T

0
‖f(t)‖p dt <∞ (2.9)

for p ∈ [1,∞) and
‖f‖L∞(0,T ;X) := ess sup

[0,T ]
‖f‖ <∞. (2.10)

(ii) The space C([0, T ];X) is the space of continuous functions f : [0, T ]→ X with the norm

‖f‖C[0,T ];X) := max
[0,T ]
‖f‖ <∞. (2.11)

4

Definition 2.7 (Weak derivatives of abstract functions). LetX,T be as before. For u ∈ L1(0, T ;X)
we say that v ∈ L1(0, T ;X) is a weak time derivative of u if∫ T

0
ϕ′(t)u(t) dt = −

∫ T

0
ϕ(t)v(t) dt (2.12)

for all ϕ ∈ C∞0 ((0, T ),R). We write u′ := v, since by a fundamental lemma of calculus of variations
type argument there exists at most one such weak time derivative. 4
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Note that – as usual – Lp(0, T ;X) ⊂ L1(0, T ;X) for p ∈ [1,∞] by Hölder’s inequality, since [0, T ]
has finite Lebesgue measure in R.

Definition 2.8. For X,T as before, the Sobolev space W 1,p(0, T ;X) is defined as

W 1,p(0, T ;X) := {v ∈ Lp(0, T ;X) : v′ exists and v′ ∈ Lp(0, T ;X)} (2.13)

with norm

‖v‖W 1,p(0,T ;X) :=


(∫ T

0 ‖v(t)‖p + ‖v′(t)‖p dt
)1/p

for p ∈ [1,∞)

ess sup[0,T ](‖v‖+ ‖v′‖) for p =∞.
(2.14)

H1(0, T ;X) is used as an abbreviation for W 1,2(0, T ;X) and hints at the fact that this is a Hilbert
space. 4

Remark 2.9. We will encounter the case u ∈ L2(0, T ;H1
0 (Ω)) and u′ ∈ L2(0, T ;H−1(Ω)). Defi-

nition 2.7 does not immediately give sense to this combination of expressions, since H1
0 (Ω) and its

dual H−1(Ω) are different spaces. To make sense of this, we need to regard H1
0 (Ω) as a subspace

of H−1(Ω) by means of the embedding ι2 ◦ ι1, where

H1
0 (Ω) ↪→

ι1
L2(Ω) ↪→

ι2
H−1(Ω). (2.15)

Here, ι1 is the inclusion and ι2 maps f ∈ L2(Ω) to the functional v 7→
∫

Ω fv dx in H−1(Ω).

Note that ι2 is indeed injective, because H1
0 (Ω) is dense in L2(Ω). 4

Theorem 2.10 ([Eva10, Theorem 5.9.2.3]). Let u ∈ L2(0, T ;H1
0 (Ω)) and u′ ∈ L2(0, T ;H−1(Ω)).

Then

(i) u ∈ C([0, T ];L2(Ω)) and

(ii) t 7→ ‖u(t)‖2L2(Ω) is absolutely continuous and differentiable a.e. on [0, T ] with

d

dt
‖u(t)‖2L2(Ω) = 2〈u′(t), u(t)〉. (2.16)

Here, 〈·, ·〉 := 〈·, ·〉X∗×X denotes the duality pairing of a Banach space X, in this case X = H1
0 (Ω)

and X∗ = H−1(Ω). 4

Lemma 2.11 (Characterisation of weak time derivatives). Let X be a Banach space and T > 0.
For two functions u, v ∈ L1(0, T ;X) the following assertions are equivalent:

(i) v = u′.

(ii) t 7→ 〈f, v(t)〉 is the weak time derivative of t 7→ 〈f, u(t)〉 for all f ∈ X∗. 4

Proof. Let ϕ ∈ C∞0 ((0, T ),R). Then∫ T

0
ϕ′(t)u(t) dt = −

∫ T

0
ϕ(t)v(t) dt (2.17)
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is equivalent to

〈f,
∫ T

0
ϕ′(t)u(t) dt〉 = 〈f,−

∫ T

0
ϕ(t)v(t) dt〉 ∀ f ∈ X∗ (2.18)

by Hahn-Banach’s theorem. But bounded linear functionals can be shifted under the Bochner
integral, so we obtain equivalence of (2.17) to∫ T

0
ϕ′(t)〈f, u(t)〉 dt = −

∫ T

0
ϕ(t)〈f, v(t)〉 dt for all f ∈ X∗. (2.19)

�

We now follow [Eva10, page 373] with some added details in devising a weak formulation for
(2.1). Let us proceed formally by supposing that this problem has a smooth solution. Then we
can multiply the differential equation by a test function v ∈ H1

0 (Ω), integrate over Ω and apply
integration by parts to obtain

(ut, v) + a(u, v) = (f, v) (2.20)

with the bilinear form a from Definition 2.3.

Regarding u and f as abstract functions u : [0, T ] → H1
0 (Ω) and f : [0, T ] → L2(Ω) and abusing

notation slightly, let us argue that we can equate (u′(t))(x) = (ut(t))(x) := ut(t, x) for almost every
x ∈ Ω. Because of the assumed smoothness of the solution, we have

u, ut ∈ L1(0, T ;L2(Ω))

and therefore also ∫ T

0
ut(t)ϕ(t) dt−

∫ T

0
u(t)ϕ′(t) dt ∈ L2(Ω) (2.21)

with arbitrary ϕ ∈ C∞0 ((0, T ),R). For x ∈ Ω, let B := Bε(x) be a ball around x entirely contained
in Ω. Then χB ∈ L2(Ω) defines a linear functional on L2(Ω) via

v 7→ (χB, v) =

∫
B
v dx (2.22)

and we obtain(∫ T

0
ut(t)ϕ(t) dt

)
(x) = lim

ε→0

(
χBε(x)

|χBε(x)|
,

∫ T

0
ut(t)ϕ(t) dt

)
= lim

ε→0

∫ T

0

(
χBε(x)

|χBε(x)|
, ut(t)

)
ϕ(t) dt

=

∫ T

0
lim
ε→0

(
χBε(x)

|χBε(x)|
, ut(t)

)
ϕ(t) dt =

∫ T

0
ut(x, t)ϕ(t) dt

= −
∫ T

0
u(x, t)ϕ′(t) dt = − lim

ε→0

∫ T

0

(
χBε(x)

|χBε(x)|
, u(x, t)

)
ϕ′(t) dt

=

(
−
∫ T

0
u(t)ϕ′(t) dt

)
(x)

(2.23)

for almost every x ∈ Ω. Hence we can replace ut by u′ in (2.20).
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As is made plausible in [Eva10], a weak solution should be sought such that u′(t) ∈ H−1(Ω) for
almost all t ∈ [0, T ], which is why we we replace (u′, v) by 〈u′, v〉. Our weak formulation of (2.1) is
therefore to find u ∈ L2(0, T ;H1

0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)) satisfying{
〈u′(t), v〉+ a(u(t), v) = (f(t), v) for all v ∈ H1

0 (Ω), for a.e. t ∈ [0, T ]

u(0) = u0.
(2.24)

SinceH1
0 (Ω) is reflexive, this is equivalent to finding u ∈ L2(0, T ;H1

0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω))
satisfying {

〈u(t), v〉′ + a(u(t), v) = (f(t), v) for all v ∈ H1
0 (Ω), for a.e. t ∈ [0, T ]

u(0) = u0

(2.25)

(due to Lemma 2.11), where ·′ denotes the weak time derivative of the real-valued function t 7→
〈u(t), v〉; but then Theorem 2.10 allows us to replace the duality pairing by the L2 inner product:

Find u ∈ L2(0, T ;H1
0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)) such that{

(u(t), v)′ + a(u(t), v) = (f(t), v) for all v ∈ H1
0 (Ω), for a.e. t ∈ [0, T ]

u(0) = u0.
(2.26)

Remark 2.12. The condition u(0) = u0 makes sense if u ∈ L2(0, T ;H1
0 (Ω)), u′ ∈ L2(0, T ;H−1(Ω)),

since then we have by Theorem 2.10 that u is uniformly continuous on [0, T ] when understood as
an L2(Ω)-valued function. 4

Now we are in a position to prove existence and uniqueness for problem (2.26). This is the content
of [QV94, Theorem 11.1.1], whose proof we follow while also adding details.

Theorem 2.13 (Existence, uniqueness and energy estimate). Let Assumption 2.1 hold. Then
there exists a unique solution u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)) to
the weak problem (2.26) and the energy estimate

‖u(t)‖2L2(Ω) + ca

∫ t

0
‖u(s)‖2H1(Ω) dt ≤ ‖u0‖2L2(Ω) +

1

ca

∫ t

0
‖f(s)‖2L2(Ω) ds (2.27)

holds for all t ∈ [0, T ]. 4

Proof. The proof’s core is a semi-discretisation in space by the so called Faedo-Galerkin method.
Let (φj)j∈N be a sequence in H1

0 (Ω) forming an orthonormal basis with respect to the H1(Ω) scalar
product 〈·, ·〉H1(Ω) = (·, ·) + (∇·,∇·) and set V N := span{φ1, . . . , φN}. Then we consider the finite-
dimensional evolution problem:

Find uN : [0, T ]→ V N such that{
(uN (t), φj)

′ + a(uN (t), φj) = (f(t), φj) for j ∈ {1, . . . , N}, for a.e. t ∈ (0, T )

uN (0) = uN0 := ΠN (u0),
(2.28)
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where ΠN : H1
0 (Ω) → V N is the orthogonal projection onto V N with respect to the L2 inner

product (·, ·). We introduce the mass matrix M , stiffness matrix A, right-hand side F (t), initial
value cN0 and unknown vector cN :

mij := (φj , φi) for i, j ∈ {1, . . . , N}
aij := a(φj , φi) for i, j ∈ {1, . . . , N}

Fi(t) := (f(t), φi) for i ∈ {1, . . . , N}
c̃N0,i := (ΠN (u0), φi) = (u0, φi) for i ∈ {1, . . . , N}

cNi (t) := 〈uN (t), φi〉H1(Ω) for i ∈ {1, . . . , N}.

(2.29)

Given that M is symmetric and positive definite, (2.28) can be equivalently written as{
(cN )′(t) = M−1

(
F (t)−AcN (t)

)
for a.e. t ∈ (0, T )

cN (0) = cN0 := M−1c̃N0 .
(2.30)

We see that this is a finite-dimensional ordinary differential equation with a right hand side affine
in cN but not necessarily continuous in t.

Let us assert the conditions for the application of Carathéodory’s local existence and uniqueness
theorem (Theorem B.3). Set F̂ (t) := M−1F (t), Â := M−1A.

(i) The function g(t, cN ) := F̂ (t)− ÂcN is defined on [0, T ]×RN , measurable in t for each fixed
cN ∈ RN and Lipschitz continuous in cN with the time-independent Lipschitz constant |Â|
for each fixed t ∈ [0, T ].

(ii) For R ∈ R>0 arbitrarily large, it holds that

|g(t, cN )| ≤ H(t) := |F̂ (t)|+ |Â|R for all cN ∈ BR(0)

and H ∈ L1([0, T ]):

(∫ T

0
|F̂ (t)| dt

)2

≤ T
∫ T

0
|F̂ (t)|2 dt ≤ T |M−1|2

∫ T

0
|F (t)|2 dt = T |M−1|2

∫ T

0

N∑
i=1

(f(t), φi)
2 dt

≤ T |M−1|2
N∑
i=1

‖φi‖2L2(Ω)

∫ T

0
‖f(t)‖2L2(Ω) dt︸ ︷︷ ︸
=‖f‖2

L2(ΩT )

<∞.

(2.31)

By Theorem B.3 there exists δ > 0 and a unique absolutely continuous function cN : [0, δ] → RN
satisfying

cN (t) = cN0 +

∫ t

0
g(s, cN (s)) ds. (2.32)

We need the solution to exists globally on [0, T ]. If the maximally extended solution were only
defined on [0, T ′) for T ′ < T , then cN (t) would have to approach the boundary of BR(0). Remember
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that we can choose R > 0 arbitrarily large; it suffices therefore to show that the maximally extended
solution remains bounded uniformly with respect to T ′ < T . We have

cN (t) = cN0 +

∫ t

0
F̂ (t)− ÂcN (t) dt = cN0 +

∫ t

0
F̂ (t) dt− Â

∫ t

0
cN (t) dt

and therefore

|cN (t)| ≤ |cN0 |+
∫ t

0
|F̂ (t)| dt︸ ︷︷ ︸

=:h(t)

+|Â|
∫ t

0
|cN (t)| dt.

The function h is monotonically increasing, so Gronwall’s lemma in integral form (Theorem B.1)
yields

|cN (t)| ≤ exp(t|Â|)
(
|cN0 |+

∫ t

0
|F̂ | ds

)
≤ exp(T |Â|)

(
|cN0 |+

∫ T

0
|F̂ | ds

)
<∞.

This is the uniform bound. Remebering that the solution (2.32), which has just been shown to exist
on [0, T ), is both weakly and almost everywhere strongly differentiable with (cN )′(t) = g(t, cN (t)),
we see that (2.30) is solved.
The boundedness of cN and the fact that F ∈ L2(0, T ;RN ) (see (2.31)) gives cN ∈ H1(0, T ;RN ) and,
by H1 orthogonality of the basis (φ1, . . . , φN ), that uN ∈ H1(0, T ;H1

0 (Ω)) with
∥∥uN∥∥

H1(0,T ;H1
0 (Ω))

=∥∥cN∥∥
H1(0,T ;RN )

<∞. For any fixed t ∈ (0, T ) we can now test with v := uN (t):(
(uN )′(t), uN (t)

)
+ a(uN (t), uN (t)) = (f(t), uN (t)) (2.33)

and apply Theorem 2.10, coercivity of a, Hölder’s and Young’s inequalities to obtain for almost
every t ∈ [0, T ]:

1

2

d

dt

∥∥uN (t)
∥∥2

L2(Ω)
+ca

∥∥uN (t)
∥∥2

H1(Ω)
≤ ‖f(t)‖L2(Ω)

∥∥uN (t)
∥∥
L2(Ω)

≤ 1

2ca
‖f(t)‖2L2(Ω)+

ca
2

∥∥uN (t)
∥∥2

L2(Ω)
.

(2.34)
Remember that ‖·‖H1(Ω) ≥ ‖·‖L2(Ω) and multiply by 2:

d

dt

∥∥uN (t)
∥∥2

L2(Ω)
+ ca

∥∥uN∥∥2

H1(Ω)
≤ 1

ca
‖f(t)‖2L2(Ω) . (2.35)

Recall further that, by Theorem 2.10, the function t 7→
∥∥uN (t)

∥∥2

L2(Ω)
is absolutely continuous.

Therefore we may integrate over (0, τ), τ ∈ (0, T ] and apply the second fundamental theorem of
calculus for absolutely continuous functions in order to obtain the energy estimate (2.27) for the
Galerkin solution:∥∥uN (τ)

∥∥2

L2(Ω)
+ ca

∫ τ

0

∥∥uN (t)
∥∥2

H1(Ω)
dt ≤

∥∥uN0 ∥∥2

L2(Ω)︸ ︷︷ ︸
≤‖u0‖2L2(Ω)

+
1

ca

∫ τ

0
‖f(t)‖2L2(Ω) dt, (2.36)

which tells us that (uN )N∈N is a bounded sequence in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

Now we make use of the fact that L2(0, T ;H1
0 (Ω)) and L2(0, T ;H−1(Ω)) are Hilbert spaces and

therefore reflexive and that L∞(0, T ;L2(Ω)) is (via the usual isomorphism) isomorphic to the dual

15



space of L1(0, T ;L2(Ω)), which is a separable Banach space. It follows that there exists a subse-
quence of (uN )N∈N (we do not denote the fact that it is a subsequence) and

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) (2.37)

with

uN
∗
⇀ u in L∞(0, T ;L2(Ω)) and uN ⇀ u in L2(0, T ;H1

0 (Ω)), (2.38)

where
∗
⇀ and ⇀ denote weak* and weak convergence, respectively.

Fix j ∈ N and multiply for any N ≥ j the first line of (2.28) by some Ψ ∈ C1([0, T ]) with Ψ(T ) = 0,
integrate over [0, T ] and perform integration by parts to see

−
∫ T

0
(uN (t), φj)Ψ

′(t) dt− (uN0 , φj)Ψ(0) +

∫ T

0
a(uN (t), φj)Ψ(t) dt =

∫ T

0
(f(t), φj)Ψ(t) dt. (2.39)

Note that φjΨ
′ ∈ L1(0, T ;L2(Ω)) and a(·, φjΨ) ∈ L2(0, T ;H−1(Ω)) by the boundedness of a and

remeber that uN0 was defined to be the L2 projection onto V N . We thus obtain by letting N →∞:

−
∫ T

0
(u(t), φj)Ψ

′(t) dt− (u0, φj)Ψ(0) +

∫ T

0
a(u(t), φj)Ψ(t) dt =

∫ T

0
(f(t), φj)Ψ(t) dt. (2.40)

Since j ∈ N can be chosen arbitrarily large and span{φj : j ∈ N} is dense in H1
0 (Ω), we can extend

the result to arbitrary v ∈ H1
0 (Ω):

−
∫ T

0
(u(t), v)Ψ′(t) dt− (u0, v)Ψ(0) +

∫ T

0
a(u(t), v)Ψ(t) dt =

∫ T

0
(f(t), v)Ψ(t) dt, (2.41)

which gives us the first line of (2.26) by testing with all Ψ ∈ C∞0 ((0, T )). In addition, notice that
u′(t) = f(t) − a(u(t), ·) ∈ L2(0, T ;H−1(Ω)), so that the regularity requirement of a weak solution
is met, too.

It remains to prove that the initial value u0 is assumed in the L2 sense to finish the existence proof.
To this end, repeat the integration by parts argument with u instead of uN and require in addition
that Ψ(0) = 1:

−
∫ T

0
(u(t), v)Ψ′(t) dt− (u(0), v) +

∫ T

0
a(u(t), v)Ψ(t) dt =

∫ T

0
(f(t), v)Ψ(t) dt (2.42)

for all v ∈ H1
0 (Ω). Comparing with (2.41) gives

(u(0), v) = (u0, v) for all v ∈ H1
0 (Ω) (2.43)

and therefore u(0) = u0 owing to the density of H1
0 (Ω) in L2(Ω).

The energy estimate follows by testing with v = u(t) and applying Theorem 2.10:

〈u′(t), u(t)〉︸ ︷︷ ︸
= 1

2
d
dt
‖u(t)‖2

L2(Ω)

+a(u(t), u(t)) = (f(t), u(t)) for a.e. t ∈ [0, T ] (2.44)
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and then proceeding analogously as from (2.33) to (2.36).

Finally, we show uniqueness. Set f = 0 and u0 = 0; then we only need to show that u = 0 is the
unique solution in this case. But from the energy estimate

d

dt
‖u(t)‖2L2(Ω) ≤ 0 (2.45)

and Gronwall’s lemma for absolutely continuous functions in differential form (Theorem B.2) it
follows that ‖u(t)‖2L2(Ω) = ‖u(t)‖2L2(ΩT ) = 0 for all t > 0; hence u = 0 almost everywhere on
ΩT . �

By merely introducing the additional condition u0 ∈ H1
0 (Ω) to ensure some compatibility of the

data on ∂Ω× [0, T ], a higher regularity of the weak solution can be shown.

Assumption 2.14. Let Assumption 2.1 and u0 ∈ H1
0 (Ω) hold. 4

Proposition 2.15 ([QV94, Proposition 11.1.1]). Let Assumption 2.14 hold. Then the weak solu-
tion to problem (2.26) belongs to L∞(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)) with the energy estimate

ess sup
t∈[0,T ]

‖u(t)‖2H1(Ω) +

∫ T

0

∥∥u′(t)∥∥2

L2(Ω)
dt ≤ C

(
‖u0‖2H1(Ω) +

∫ T

0
‖f(t)‖2L2(Ω) dt

)
, (2.46)

C = C(ca) being a constant independent of T . 4

2.2 The Weak Maximum Principle

The weak maximum principle for classical solutions of the convection-diffusion equation bounds
the solution on ΩT by its initial-boundary values on ΓT := ΩT \ ΩT = Ω × {0} ∪ ∂Ω × [0, T ] and
will play an important role in the following chapters.

Theorem 2.16 (Parabolic weak maximum principle, [Eva10, Theorem 7.1.4.8]). Let Ω ⊂ Rd be
a domain and

Lu := −
d∑

i,j=1

aijuxixj +
d∑
i=1

biuxi (2.47)

with the coefficients continuous on ΩT and A := (aij)i,j=1,...,d satisfying an ellipticity (i.e. sym-
metric positive definiteness) property uniformly in (x, t). Let u ∈ C2

1 (ΩT ) ∩ C(ΩT ) (twice (once)
continuously differentiable in space (time)).

(i) If ut + Lu ≤ 0 on ΩT , then maxΩT
u = maxΓT u.

(ii) If ut + Lu ≥ 0 on ΩT , then minΩT
u = minΓT u. 4

The proof relies strongly on the proof of the weak maximum principle for the elliptic case. Because
we need a result from the proof of this latter assertion, we state it here including its proof from
[Eva10, Theorem 6.4.1.1].

Theorem 2.17 (Elliptic weak maximum principle). Let L be unchanged and u ∈ C2(Ω) ∩ C(Ω).
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(i) If Lu ≤ 0 in Ω, then maxΩ u = max∂Ω u.

(ii) If Lu ≥ 0 in Ω, then minΩ u = min∂Ω u. 4

Proof. 1.) The important point is that, wherever u attains a local maximum in some point x0 ∈ Ω,
there holds Lu(x0) ≥ 0. Indeed, the smoothness assumptions on u imply that the first derivative
vanishes and the Hessian form is negative semi-definite:

Du(x0) = 0 (2.48)

D2u(x0) � 0. (2.49)

The matrix A := (aij(x0))i,j=1,...,d is symmetric and positive definite, hence we find an orthogonal
matrix O such that

OAOT = diag(d1, . . . , dd) (2.50)

with d1, . . . , dd > 0 and we can use the affine transformation of variables y = x0 + O(x − x0), or
x− x0 = OT (y − x0). With this transformation, it holds that

uxi =
d∑

k=1

uyk
dxi
dyk

=
d∑

k=1

uykoki and uxixj =
d∑

k,l=1

uykylokiolj (2.51)

and therefore
d∑

i,j=1

aijuxixj =
d∑

k,l=1

d∑
i,j=1

aijuykylokiolj =
d∑

k=1

dkuykyk ≤ 0. (2.52)

The vanishing first derivative at x0 then yields Lu(x0) ≥ 0.

2.) The argument just made shows that, if the strict inequality Lu < 0 holds on Ω, then local
maxima inside Ω are impossible and therefore part (i) of the theorem holds in this case.

3.) If only Lu ≤ 0, define for λ, ε > 0

uε(x) := u(x) + εeλx1 for x ∈ Ω. (2.53)

Then, with a uniform ellipticity constant θ > 0,

Luε = Lu+ εL(eλx1) ≤ εeλx1(−λ2a11 + λb1) ≤ εeλx1(−λ2θ + λ ‖b‖L∞(Ω)) < 0 (2.54)

for large λ > 0, since then the term in brackets is negative independently of ε. Letting ε→ 0 and
using step 2.), we find that

max
Ω

u = lim
ε→0

max
Ω

uε = lim
ε→0

max
∂Ω

uε = max
∂Ω

u (2.55)

and part (i) is proven. Part (ii) follows by considering −u. �

Proposition 2.18 (Interior local extrema diminish). Let the operator L be as in Theorem 2.16,
u ∈ C2

1 (ΩT ) ∩ C(ΩT ), f = ut + Lu and (x0, t0) ∈ Ω× (0, T ).

(i) If u has a local maximum with respect to x at (x0, t0) and if f(x0, t0) ≤ 0, then ut(x0, t0) ≤ 0.
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(ii) If u has a local minimum with respect to x at (x0, t0) and if f(x0, t0) ≥ 0, then ut(x0, t0) ≥ 0.

The inequalities are strict if so are the local extrema or if f(x0, t0) < 0 (> 0). 4

Proof. This simply follows from ut = f − Lu, the assumption on f(x0, t0) and Lu(x0, t0) ≥ 0 at
interior local maxima, which was shown in step 1.) of the proof of Theorem 2.17. The strictness
assertion holds because the inequalities (2.49) and thus (2.52) are strict for strict local maxima. �

2.3 Semi-Discretisation in Space by Finite Elements

This section is based on Chapter 11.2 of [QV94]. For the entire section, let Assumption 2.14 hold.
We revisit the Faedo-Galerkin idea used in the proof of Theorem 2.13 with a practical choice for
the finite subspace, and instead of just passing to infinite dimension, we are interested in error
estimates for finite dimension.

Let Vh ⊂ H1
0 (Ω) be an N -dimensional subspace with basis (ϕ1, . . . , ϕN ) and set V := H1

0 (Ω) for
brevity. Then the semi-discrete Galerkin problem is{

(u′h(t), vh) + a(uh(t), vh) = (f(t), vh) for all vh ∈ Vh, for a.e. t ∈ (0, T )

uh(0) = u0,h,
(2.56)

where u0,h ∈ Vh is some approximation to u0 ∈ L2(Ω). Define the N -dimensional component
vectors c and c0 by

uh(t) =

N∑
j=1

cj(t)ϕj , u0,h =

N∑
j=1

c0,jϕj (2.57)

and define M,A ∈ RN×N and F : [0, T ]→ RN by

mij := (ϕj , ϕi), aij := a(ϕj , ϕi), Fi(t) := (f(t), ϕi). (2.58)

Then (2.56) can once again be cast in the shape of an ordinary differential equation:{
c′(t) = M−1 (F (t)−Ac(t)) for a.e. t ∈ (0, T )

c(0) = c0

(2.59)

and a unique global absolutely continuous solution in the sense of Carathéodory’s theorem exists;
similarly as in the proof of Theorem 2.13 (without the orthogonality of basis) we obtain uh ∈
H1(0, T ;V ) and the energy estimate

‖uh(τ)‖2L2(Ω) + ca

∫ τ

0
‖uh(t)‖2H1(Ω) dt ≤ ‖uh,0‖

2
L2(Ω) +

1

ca

∫ τ

0
‖f(t)‖2L2(Ω) dt, (2.60)

which shows stability of the semi-discrete solution in the norms of C([0, T ];L2(Ω)) and L2(0, T ;V ).

Let us turn to the question of convergence of the semi-discrete method for the choice Vh = V k
h,0 with

k ∈ N. The first proposition deals with the case k = 1, whereas the second proposition allows for
arbitrary k ∈ N and gives a higher order of convergence even for k = 1 as long as higher regularity
assumptions than Assumption 2.14 hold.
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2.3.1 First Order Semi-Discrete Convergence

Lemma 2.19 ([QV94, Corollary 11.1.1]). Assume that the solution u to (2.26) satisfies u(t) ∈
H2(Ω) and

‖u(t)‖2H2(Ω) ≤ C(‖Lu(t)‖2L2(Ω) + ‖u(t)‖2H1(Ω)) (2.61)

for a.e. t ∈ [0, T ]. Then u ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) ∩ C0([0, T ];V ) and

max
t∈[0,T ]

‖u(t)‖2H1(Ω) +

∫ T

0

(∥∥u′(t)∥∥2

L2(Ω)
+ ‖u(t)‖2H2(Ω)

)
dt

≤ C(ca)

(
‖u0‖2H1(Ω) +

∫ T

0
‖f(t)‖2L2(Ω) dt

)
.

(2.62)

4

Remark 2.20. (2.61) is guaranteed for any d ∈ N if Ω is a domain with C2 boundary and for
plane convex polygonal domains Ω ⊂ R2. 4

Proposition 2.21. Let u be the solution to (2.26), (Th)h a shape-regular family of triangulations
of Ω ⊂ Rd for d ≤ 3 and uh the solution to (2.56) for the space Vh := V 1

h,0. Assume (2.61). Then

‖u(t)− uh(t)‖2L2(Ω) + ca

∫ t

0
‖u(τ)− uh(τ)‖2H1(Ω) dτ

≤ ‖u0 − u0,h‖2L2(Ω) + C(ca, Ca)h
2

(
‖u0,h‖2H1(Ω) + ‖u0‖2H1(Ω) +

∫ t

0
‖f(τ)‖2L2(Ω) dτ

) (2.63)

for each t ∈ [0, T ]. 4

Proof. We take the proof of [QV94, Proposition 11.2.1] with some added details. Recall that we
assume u0 ∈ V by requiring Assumption 2.14 to hold. Set e(t) := u(t)− uh(t). Then

(e′(t), v) + a(e(t), v) = 0 for all v ∈ Vh (2.64)

holds for almost every t ∈ [0, T ]. For any such t, we choose v(t) := uh(t)−w(t) for w(t) ∈ Vh to be
defined momentarily. Then for each ε > 0 we find using Young’s inequality in the last step that

1

2

d

dt
(e(t), e(t)) + a(e(t), e(t)) =

(
e′(t), u(t)− w(t)

)
+ a(e(t), u(t)− w(t))

≤
∥∥e′(t)∥∥

L2(Ω)
‖u(t)− w(t)‖L2(Ω) + Ca ‖e(t)‖H1(Ω) ‖u(t)− w(t)‖H1(Ω)

≤
∥∥e′(t)∥∥

L2(Ω)
‖u(t)− w(t)‖L2(Ω) +

C2
a

4ε
‖u(t)− w(t)‖2H1(Ω) + ε ‖e(t)‖2H1(Ω)

(2.65)

for a.e. t ∈ [0, T ]. Assuming (2.61) and using Sobolev’s embedding we see that u(t) ∈ H2(Ω) ⊂
C(Ω) for almost every t ∈ [0, T ] and that we may choose w(t) ∈ Vh to be the piecewise linear nodal
interpolator of u(t). Employing Lemma A.3 leaves us with the estimate

‖u(t)− w(t)‖2L2(Ω) + h2 ‖u(t)− w(t)‖2H1(Ω) ≤ Ch
4 ‖u(t)‖2H2(Ω) . (2.66)
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Let us choose ε = ca/2, multiply (2.65) by 2, subtract ca ‖e(t)‖2H1(Ω) and use Young’s inequality:

d

dt
‖e(t)‖2L2(Ω) + ca ‖e(t)‖2H1(Ω) ≤

d

dt
‖e(t)‖2L2(Ω) + a(e(t), e(t))

≤ C
∥∥e′(t)∥∥

L2(Ω)
h2 ‖u(t)‖H2(Ω) + C

C2
a

ca
h2 ‖u(t)‖2H2(Ω)

≤ C(ca, Ca)
(∥∥e′(t)∥∥2

L2(Ω)
+ ‖u(t)‖2H2(Ω)

)
h2

(2.67)

for almost every t ∈ [0, T ]. Integrating this on (0, t) gives

‖e(t)‖2L2(Ω) + ca

∫ t

0
‖e(τ)‖2H1(Ω) dτ ≤ ‖u0 − u0,h‖2L2(Ω)

+ C(ca, Ca)h
2

∫ t

0

(∥∥u′(τ)
∥∥2

L2(Ω)
+
∥∥u′h(τ)

∥∥2

L2(Ω)
+ ‖u(τ)‖2H2(Ω)

)
dτ.

(2.68)

Similarly to Proposition 2.15, one can show∫ t

0

∥∥u′h(τ)
∥∥2

L2(Ω)
dτ ≤ C(ca)

(
‖u0,h‖2H1(Ω) +

∫ t

0
‖f(τ)‖2L2(Ω) dτ

)
, (2.69)

which leads straight to (2.63) when combined with (2.62). �

2.3.2 Higher Order Semi-Discrete Convergence

A better order of convergence can be obtained when assuming higher regularity of the true solution.
The proof of this claim builds on approximation properties of the “elliptic projection operator”
which necessitate the property of adjoint regularity. Let us recall some results from the theory of
Galerkin methods for elliptic equations.

Definition 2.22 (Adjoint regularity). Let Ω ⊂ Rd be a domain, V := H1
0 (Ω), a : V × V → R a

bounded coercive bilinear form with constants Ca and ca, respectively, and f ∈ V ∗. Then we call
the problem

u ∈ V : a(u, v) = 〈f, v〉 for all v ∈ V (2.70)

adjoint regular if the solution ϕ(r) of the adjoint problem

ϕ ∈ V : a(v, ϕ) = (r, v) for all v ∈ V (2.71)

lies in H2(Ω) for all r ∈ L2(Ω). 4

Remark 2.23. Adjoint regularity is guaranteed for any d ∈ N if Ω is a domain with C2 boundary
and for plane convex polygonal domains Ω ⊂ R2. 4

Theorem 2.24 (Céa’s Lemma). Let Ω ⊂ Rd be a domain, m ∈ N, V := H1
0 (Ω), a : V ×V → R a

bounded coervice bilinear form with constants Ca and ca, respectively. Let furthermore f ∈ V ∗ and
Vh be a finite-dimensional subspace of V and u, uh the solutions defined by

u ∈ V : a(u, v) = 〈f, v〉 for all v ∈ V (2.72)

uh ∈ Vh : a(uh, v) = 〈f, v〉 for all v ∈ Vh. (2.73)
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Then it holds that

‖u− uh‖V ≤
Ca
ca

inf
v∈Vh
‖u− v‖V . (2.74)

4

Theorem 2.25 (Aubin-Nitsche trick, [QV94, Proposition 6.2.2]). Let Ω ⊂ Rd for d ≤ 3 be
triangulated by a shape-regular family of triangulations (Th)h and let problem (2.70) be adjoint
regular and u ∈ V ∩Hs(Ω), s ∈ N, its solution. Set Vh := V k

0,h and let uh ∈ Vh be the solution of
the discrete problem

a(uh, v) = 〈f, v〉 for all v ∈ Vh (2.75)

satisfying

‖u− uh‖H1(Ω) ≤ C∗h
l ‖u‖Hl+1(Ω) , (2.76)

for l := min(k, s− 1). If u ∈ Hs(Ω) for s ≥ 2, then

‖u− uh‖L2(Ω) ≤ Ch
l+1 ‖u‖Hl+1(Ω) . (2.77)

4

Proof. We add some details to Quarteroni and Valli’s proof. A duality argument is applied in order
to rewrite the L2 norm:

‖u− uh‖L2(Ω) = sup
r∈L2(Ω)\{0}

(r, u− uh)

‖r‖L2(Ω)

= sup
r∈L2(Ω)\{0}

a(u− uh, ϕ(r))

‖r‖L2(Ω)

≤ sup
r∈L2(Ω)\{0}

Ca ‖u− uh‖H1(Ω)

‖ϕ(r)− ψ(r)‖H1(Ω)

‖r‖L2(Ω)

,

(2.78)

using that Galerkin “orthogonality” gives a(u−uh, ϕ(r)) = a(u−uh, ϕ(r)−ψ(r)) for any ψ(r) ∈ Vh.
Since d ≤ 3, H2(Ω) ↪→ C(Ω) by Sobolev’s embedding theorem; we may therefore take ψ(r) to be
the nodal interpolator of ϕ(r) satisfying ‖ϕ(r)− ψ(r)‖H1(Ω) ≤ Ch ‖ϕ(r)‖H2(Ω). Now we only need

that ‖ϕ(r)‖H2(Ω) ≤ C ‖r‖L2(Ω) (i.e. ϕ : L2(Ω)→ H2(Ω) is bounded), for then we can infer

‖u− uh‖L2(Ω) ≤ CCa ‖u− uh‖H1(Ω) h ≤ CCaC∗h
l+1 ‖u‖Hl+1(Ω) . (2.79)

Let (rn, ϕ(rn)) → (r, φ) in L2(Ω) × H2(Ω) as n → ∞. Since ϕ(rn) ∈ V ∩ H2(Ω), we obtain in
particular ‖ϕ(rn)− φ‖H1(Ω) → 0, implying for each v ∈ V :

a(v, φ) = lim
n→∞

a(v, ϕ(rn)) = lim
n→∞

(rn, v) = (r, v), (2.80)

which just states that φ = ϕ(r). The graph of ϕ in L2(Ω)×H2(Ω) is thus closed and ϕ is bounded
by the closed graph theorem. �

Remark 2.26. The constant C∗ appearing in Theorem 2.25 is typically derived from Céa’s lemma
in conjunction with general interpolation space results. Therefore, by (2.74), it will behave un-
favourably (like ε−1) for small diffusion ε > 0. 4
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Proposition 2.27 ([QV94, Proposition 11.2.2], modified). Consider Ω ⊂ Rd for d ≤ 3, trian-
gulated by the shape-regular family of triangulations (Th)h. Assume that problem (2.26) is adjoint
regular and let u be its solution. Moreover, assume u0 ∈ Hk+1(Ω) and u′ ∈ L1(0, T ;Hk+1(Ω)) for
k ∈ N≥1. Let uh be the solution to (2.56) for the space Vh = V k

h,0. Then

‖u(t)− uh(t)‖L2(Ω) ≤‖u0 − u0,h‖L2(Ω)

+ Chk+1

(
‖u0‖Hk+1(Ω) +

(∫ t

0

∥∥u′(τ)
∥∥2

Hk+1(Ω)
dτ

)1/2
)

(2.81)

holds for all t ∈ [0, T ], where C is dependent in particular on ε and T and independent of h. 4

Proof. We modify slightly Quarteroni and Valli’s proof. For v ∈ V = H1
0 (Ω) define by π(v) the

“elliptic projection operator” defined as the unique solution to

π ∈ Vh : a(π, vh) = a(v, vh) for all vh ∈ Vh. (2.82)

Then Céa’s lemma for the functional a(v, ·) and the Aubin-Nitsche trick yield

‖v − π(v)‖L2(Ω) + h ‖v − π(v)‖H1(Ω) ≤ Ch
k+1‖v‖Hk+1(Ω) for all v ∈ Hk+1(Ω) (2.83)

with a constant C independent of v (but scaling like ε−1). For all fixed t ∈ [0, T ] we decompose

uh(t)− u(t) = w1(t) + w2(t) (2.84)

with w1(t) := uh(t) − π(u(t)) and w2(t) := π(u(t)) − u(t). The error term w2(t) is then easily
estimated using the results of Céa and Aubin-Nitsche:

‖w2(t)‖L2(Ω) ≤ Ch
k+1 ‖u(t)‖Hk+1(Ω)

≤ Chk+1

(
‖u0‖Hk+1(Ω) +

(∫ t

0

∥∥u′(τ)
∥∥2

Hk+1(Ω)
dτ

)1/2
)
.

(2.85)

For w1(t), we have for each vh ∈ Vh that(
w′1(t), vh

)
+ a(w1(t), vh) = (u′h(t), vh) + a(uh(t), vh)− ((π ◦ u)′(t), vh)− a(π(u(t)), vh)

= (f(t), vh)− a(u(t), vh)− ((π ◦ u)′(t), vh)

= (u′(t), vh)− ((π ◦ u)′(t), vh) = (−w′2(t), vh).

(2.86)

Setting vh := w1(t) and employing coercivity of a gives

1

2

d

dt
‖w1(t)‖2L2(Ω) + ca ‖w1(t)‖2H1(Ω) ≤ −(w′2(t), w1(t)). (2.87)

Multiplying by 2, integration and Young’s inequality give

‖w1(t)‖2L2(Ω) +2ca

∫ t

0
‖w1(s)‖2H1(Ω) ds ≤ ‖w1(0)‖2L2(Ω) +

∫ t

0

1

8ca

∥∥w′2(s)
∥∥2

L2(Ω)
+2ca ‖w1(s)‖2L2(Ω) ds

(2.88)
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and thus

‖w1(t)‖2L2(Ω) ≤ ‖w1(0)‖2L2(Ω) +
1

8ca

∫ t

0

∥∥w′2(s)
∥∥2

L2(Ω)
ds (2.89)

or

‖w1(t)‖L2(Ω) ≤ ‖w1(0)‖L2(Ω) + C

(∫ t

0

∥∥w′2(s)
∥∥2

L2(Ω)
ds

)1/2

. (2.90)

The time derivative commutes with π, hence∥∥w′2(s)
∥∥
L2(Ω)

=
∥∥π(u′(s))− u′(s)

∥∥
L2(Ω)

≤ Chk+1
∥∥u′(s)∥∥

Hk+1(Ω)
. (2.91)

Furthermore,
‖w1(0)‖L2(Ω) ≤ ‖uh,0 − u0‖L2(Ω) + ‖u0 − π(u(0))‖L2(Ω)︸ ︷︷ ︸

≤Chk+1‖u0‖Hk+1(Ω)

. (2.92)

Adding (2.85) and (2.90) and employing the last two relations yields the assertion. �

Remark 2.28. The previous two a priori convergence result and the fully discrete result from the
next section are of limited practical use in our case of small ε > 0 because (2.65) and the comment
after (2.83) reveal that the term ε−1 is hidden in the constants. This can be interpreted in two
ways: the a priori estimate could be far from being sharp or, if it is rather sharp, the errors due to
oscillations arising in the standard Galerkin method manifest themselves in this estimate. 4

2.4 Time-Discretisation by θ-Stepping

This section is based on Chapter 11.3 of [QV94]. Let θ ∈ [0, 1]. Then to obtain a computable prob-
lem, we need a method to discretise and numerically solve the ordinary differential equation posed
by the semi-discrete problem (2.59). The simplest class of methods to accomplish this is the class
of θ-stepping methods, in which the time-derivative is approximated by a simple forward-difference
and the right-hand side is evaluated at the last known and the current time-step. These evaluations
are weighted by 1 − θ and θ, respectively. Hence, the parameter θ is aptly called the implicitness
parameter of the method. For θ = 0, θ = 0.5 and θ = 1 the methods are called forward (or ex-
plicit) Euler method, Crank-Nicolson method and backward (or implicit) Euler method, respectively.

Let 0 = t0 < t1 < · · · < tNT ≤ T be points in time and τn := tn+1 − tn, n = 1, . . . , NT − 1. For
simplicity we only consider constant time-step lengths, i.e. τn = τ = const. and tn = nτ . The fully
discretised problem is thus to find unh ∈ Vh, n = 1, . . . , NT , satisfying

(
un+1
h − unh

τ
, vh

)
+ a(θun+1

h + θunh, vh) = (θf(tn+1) + θf(tn), vh) for all vh ∈ Vh

u0
h = u0,h

(2.93)

for n = 0, . . . , NT − 1, where θ := 1− θ. Writing again

unh =

N∑
j=1

cnj ϕj , u0,h =

N∑
j=1

c0,jϕj (2.94)
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and defining MC , A ∈ RN×N and Fn ∈ RN by

mij := (ϕj , ϕi), aij := a(ϕj , ϕi), Fni := (f(tn), ϕi) (2.95)

for i, j = 1, . . . , N and n = 0, . . . , NT − 1, we have to solve

(MC + θτA)cn+1 = (MC − (1− θ)τA)cn + θFn+1 + (1− θ)Fn (2.96)

in order to obtain cn+1 ∈ RN for n = 0, . . . , NT − 1. The system matrix is positive definite because
so are MC and A.

Lemma 2.29 (Inverse inequality for piecewise polynomials, [QV94, Proposition 6.3.2]). Let (Th)h
be a shape-regular, quasi-uniform family of triangulations of the domain Ω ⊂ Rd and Vh := V k

h ⊂ V .
Then there exists a constant Cinv ∈ R>0 such that

‖∇vh‖2L2(Ω) ≤ Cinvh
−2 ‖vh‖2L2(Ω) (2.97)

for all vh ∈ Vh. 4

Proposition 2.30 (Stability, [QV94, Theorem 11.3.1]). Assume that the map t 7→ ‖f‖L2(Ω) is
bounded on [0, T ] and that (Th)h is a shape-regular family of triangulations of Ω. For θ ∈ [0, 1/2)
assume, in addition, that (Th)h is quasi-uniform and that the time-step restriction

1 + Cinv
h2

τ <
2ca

(1− 2θ)C2
a

, (2.98)

holds, where Cinv is the constant from the inverse inequality in Lemma 2.29. Then unh from (2.93)
satisfies the stability relation

‖unh‖L2(Ω) ≤ Cθ

(
‖u0,h‖L2(Ω) + sup

t∈[0,T ]
‖f(t)‖L2(Ω)

)
for n = 0, 1, . . . , NT , (2.99)

where the constant Cθ > 0 is a non-decreasing function of c−1
a , Ca and T and is independent of

NT , τ and h. 4

Theorem 2.31 (Convergence, [QV94, Theorem 11.3.2]). Assume that u′h(0) ∈ L2(Ω), ft ∈
L2(ΩT ) and that (Th)h is shape-regular. For θ ∈ [0, 1/2), assume that (Th)h is quasi-uniform
and that the time-step restriction (2.99) holds. Then the following error estimate holds for the
semi-discrete solution uh : [0, T ]→ Vh and the fully discrete solution unh ∈ Vh, n = 0, . . . , NT :

‖unh − uh(tn)‖L2(Ω) ≤ Cθτ
(∥∥u′h(0)

∥∥2

L2(Ω)
+

∫ T

0
‖ft(s)‖2L2(Ω) ds

)1/2

(2.100)

for n = 0, . . . , NT . If θ = 1/2 and ftt ∈ L2(ΩT ), u′′h(0) ∈ L2(Ω), then

‖unh − uh(tn)‖L2(Ω) ≤ C(τ)2

(∥∥u′′h(0)
∥∥2

L2(Ω)
+

∫ T

0
‖ftt(s)‖2L2(Ω) ds

)1/2

(2.101)

for n = 0, . . . , NT . The contants Cθ and C are non-decreasing functions of c−1
a , Ca, T and are

independent of NT , τ and h. 4
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3. The Reduced Problem

Since we are dealing with the class of convection-diffusion-reaction equations where the diffusive
part of the operator is dominated by its counterparts, it is interesting to study the relationship
between our problem of interest

(uε)t − ε∆uε + b · ∇uε + cuε = f in ΩT

uε = 0 on ∂Ω× [0, T ]

uε = u0 on Ω× {t = 0}
(3.1)

and the so-called reduced problem
ut + b · ∇u+ cu = f in ΩT

u = 0 on G− ⊂ ∂Ω× [0, T ]

u = u0 on Ω× {t = 0}
(3.2)

that is obtained by dropping the diffusive part of the operator, i.e. by formally setting ε = 0, and
restricting the Dirichlet portion of the boundary to G−, cf. the following definition. Cancelling
all second-order derivatives changes the nature of the problem from parabolic to hyperbolic and
necessitates the above restriction of the Dirichlet boundary, as will become apparent now.

In this chapter we will make generous regularity assumptions (to assure the existence of smooth
enough classical solutions and auxiliary functions) and prove the convergence result Theorem 3.15
on special subdomains of ΩT using a parabolic maximum principle.

Definition 3.1 (Characteristics, exit times, exit locus). Set b̃ := (b, 1) ∈ W 1,∞(ΩT ,Rd+1). For
x = (x, t) ∈ ΩT define the associated characteristic γx as the solution to the ordinary differential
equation {

γx(t) = x

γ′x(s) = b̃(γx(s)) for s ∈ [τ−(x), τ+(x)],
(3.3)

where the forward and backward exit times τ±(x) are defined by

τ+(x) := sup{τ ≥ t : γx(s) ∈ Ω× (0, T ) for s ∈ (t, τ)} (3.4)

τ−(x) := inf{τ ≤ t : γx(s) ∈ Ω× (0, T ) for s ∈ (τ, t)}. (3.5)
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(By “the characteristic of x” we will also mean the image γx([τ−(x), τ+(x)].)

Then the forward and backward exit points x± of γx are defined as

x− := γx(τ−(x)) ∈ ∂ΩT (3.6)

x+ := γx(τ+(x)) ∈ ∂ΩT . (3.7)

G−, the backward exit locus in ∂Ω×[0, T ), is the subset of ∂Ω×[0, T ) that consists of all characteristic
backward exit points:

G− := {y ∈ ∂Ω× [0, T ) : y = x− for some x ∈ ΩT } (3.8)

and the backward exit locus G is

G := {y ∈ ΓT : y = x− for some x ∈ ΩT } = G− ∪ Ω× {0}. (3.9)

Then the definition of the functions x 7→ τ+(x) and x 7→ x+, which are constant along characteris-
tics, can be naturally extended to G. 4

Remark 3.2. Note that in our notation “exit” refers to the interior Ω◦T of the cylinder, not its
closure. 4

Proposition 3.3. Suppose that, on top of Assumption 2.1, b, c, f and u0 are regular enough to
admit a classical solution to (3.2) and give sense to the following terms. Then for any x := (x, t) ∈
ΩT , u(x) can be obtained through the following steps:

(i) Compute the associated characteristic γx and backwards exit time τ−(x).

(ii) Solve the ordinary differential equation

ũ′(s) = f̃(s)− c̃(s)ũ(s) (3.10)

on [τ−(x), t] with initial value ũ0 := u(x−), where f̃(s) := f(γx(s)) and c̃(s) := c(γx(s)).

(iii) Set u(γx(s)) = ũ(s) for s ∈ [τ−(x), t]. 4

Proof. It holds by construction that

ut(x, t) + b(x, t) · ∇u(x, t) = ut(γx(t)) + b(γx(t)) · ∇u(γx(t)) =
d

ds

∣∣∣∣
s=t

u(γx(s))

=
d

ds

∣∣∣∣
s=t

ũ(s) = f(x, t)− c(x, t)u(x, t).

(3.11)

�

From the way solutions are constructed in Proposition 3.3 as solutions of ordinary differential equa-
tions along characteristics it follows that the reduced problem in the case of classical solutions is
well-posed if values are only prescribed on G and are left unprescribed on the remaining part of
ΓT . It makes no physical sense to prescribe data on forward exit points.

Obviously, the method of characteristics also yields solutions for discontinuous initial boundary
data and discontinuous f , as long as b ∈ W 1,∞(Ω,Rd) or – equivalently – b Lipschitz continuous
on Ω is assumed. We shall ignore the seemingly delicate subject of
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Definition 3.4 (Boundary decomposition). The boundary ∂Ω of a C1 domain Ω ⊂ Rd can be
decomposed into the three subsets

Γ− := {x ∈ ∂Ω : b(x) · n < 0} (the inflow boundary of Ω) (3.12)

Γ0 := {x ∈ ∂Ω : b(x) · n = 0} (the parabolic boundary of Ω) (3.13)

Γ+ := {x ∈ ∂Ω : b(x) · n > 0} (the outflow boundary of Ω), (3.14)

where n is the outside unit normal of ∂Ω. 4

Remark 3.5. Obviously, Γ− × [0, T ) ⊂ G. 4

Remark 3.6 (Layers). For small ε > 0, it is expected that the solution to (2.1) is in some
sense close to the solution of the reduced problem, at least at some distance to (Γ0 ∪ Γ+)× [0, T ].
Near (Γ0 ∪Γ+)× [0, T ], however, steep gradients in the solution of the parabolic problem are to be
expected due to the discrepancy between the values of the reduced problem obtained by integrating
(3.10) along characteristics and the homogeneous Dirichlet boundary conditions. These regions of
rapid change in the solution are called boundary layers. One distinguishes between exponential and
parabolic boundary layers, which occur along Γ+ × [0, T ] and Γ0 × [0, T ], respectively.

The fact that the sequence of solutions of convection-diffusion-reaction equations as ε ↓ 0 does not
converge in the L∞ norm to the solution of the limiting operator (ε = 0, no diffusion) makes (2.1)
a so-called singulary-perturbed problem.

Interior layers are common to both the parabolic and the reduced problem and stem from discon-
tinuities in the initial-boundary data. In the reduced case, these are propagated into the interior of
ΩT along the characteristics, while in the case of small non-vanishing diffusion these interior layers
remain steep, but not discontinuous, being also subject to the smoothing effect of diffusion. 4

3.1 Convergence to the Reduced Problem as ε→ 0

This section is concerned with the adaptation of the proof of [GFLRT83, Theorem 4.3] from the
stationary case to our time-dependent problem.

Let us for this section consider the situation that the data is smooth and compatible enough such
that the solutions to the parabolic problem (3.1) and to the reduced problem (3.2) are classical
solutions in C2(SΣ), where SΣ is a subdomain of the cylinder to be defined shortly. In particular, no
internal boundary layers occur. The previous remark tells us that the parabolic problem exhibits,
however, boundary layers in the vicinity of (Γ0 ∪ Γ−)× [0, T ]; as a consequence, a convergence

uε → u in L∞(SΣ) as ε→ 0 (3.15)

cannot be expected if SΣ has accumulation points in (Γ0 ∪ Γ+)× [0, T ]. Such a result can only be
proved by further restricting to a suitable subset of SΣ.

Definition 3.7. For a subset Σ ⊂ G define its induced characteristic tube SΣ by

SΣ := {γx(t) : x = (x, t) ∈ Σ and t < τ < τ+(x)} ⊂ Ω× (0, T ) (3.16)
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and decompose its boundary into four disjoint parts:

∂SΣ = Σ ] (∂SΣ ∩ Ω× (0, T )︸ ︷︷ ︸
=:B1(Σ)

](∂SΣ ∩ (∂Ω× (0, T ]) \ G︸ ︷︷ ︸
=:B2(Σ)

](∂SΣ ∩ Ω× {t = T}︸ ︷︷ ︸
=:B3(Σ)

. (3.17)

4

The following two lemmata ensure that SΣ is a domain under reasonable conditions on Σ ⊂ G.

Lemma 3.8. (i) The function x 7→ τ−(x) is in C(Ω× (0, T ),R).

(ii) x 7→ τ+(x) is in C(Ω× (0, T ) ∪ G,R).

(iii) x 7→ x± are in C(Ω× (0, T ),Rd+1). 4

Proof. It suffices to show the assertions for the subscript “+”. To see that τ+ is continuous on
Ω×(0, T )∪G, let x = (x, t), y = (y, r) ∈ Ω×(0, T )∪G, ε > 0 and τ > t such that 0 < τ+(x)−τ < ε.
For fixed small enough α > 0 the trajectory Θ := γx([t+α, τ ]) is compact and contained in Ω×(0, T ),
hence a neighbourhood Br(Θ) of this trajectory is also contained in Ω × (0, T ) for small r > 0.
From the theory of ordinary differential equations we know that for |(x, t)− (y, r)| < δ it holds

γy(τ̃)→ γx(τ̃) (3.18)

uniformly in τ̃ ∈ [t+α, τ ] as δ → 0. In particular, for small enough δ we see that γy(τ̃) ∈ Ω× (0, T )
for τ̃ ∈ [t+ α, τ ] and thus τ+(y) ≥ τ > τ+(x)− ε. Interchanging the roles of x and y, we obtain

τ+(y) > τ+(x)− ε and τ+(x) > τ+(y)− ε (3.19)

or, equivalently, |τ+(y)− τ+(x)| < ε for |(x, t)− (y, r)| < δ with δ > 0 small enough.
Now that we have proven that τ+ is continuous, it follows again from the theory of ordinary
differential equations (specifically, from the continuity of an ODE solution in the initial data and
in its argument) that x 7→ x+ = γx(τ+(x)) is continuous. �

Lemma 3.9. Let Σ ⊂ G.

(i) It Σ is open in ∂Ω× [0, T ) ∪ Ω× {0}, then SΣ ⊂ Ω× (0, T ) is open in Rd+1.

(ii) If Σ is path-connected, so is SΣ.

In particular, if the premises of (i) and (ii) hold, then SΣ is a domain. 4

Proof. We use Lemma 3.8. To show (i), let x ∈ SΣ. Then the continuity of x 7→ x− on Ω× (0, T )
implies that small enough open r-balls around x have their image in a small neighbourhood V ⊂ Σ
containing x−. The continuity of τ+ on G then yields that Br(x) ⊂ SΣ for small enough r > 0.
For the proof of (ii), let x, y ∈ SΣ. If these points lie on the same characteristic, the latter gives
a path in SΣ between x and y. Otherwise, x and y can be connected to x− ∈ Σ and y− ∈ Σ,
respectively, by the trajectories of their respective characteristics. Let ζ : [0, 1]→ Σ be continuous
with ζ(0) = x− and ζ(1) = y−. Then ζ([0, 1]) ⊂ G is compact and thus there exists µ > 0 such that
γz(τ) ∈ SΣ for each z = (z, t) ∈ ζ([0, 1]) and τ ∈ (t, t + µ). Then the path γ̃ : [0, 1] → SΣ defined
by

γ̃(τ) = γζ(τ)

(
t(ζ(τ)) +

µ

3
+ τ

µ

3

)
(3.20)
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is continuous and connects the characteristic trajectories of x and y within SΣ. By concatenating
the three paths collected so far, we find a continuous path in SΣ from x to y. �

Corollary 3.10. If SΣ ⊂ Ω× (0, T ) is a domain, then so is πx(SΣ) = {x ∈ Ω : (x, t) ∈ SΣ}. 4

Proof. This follows from the fact that πx : Rd+1 → Rd, πx(x, t) = x, is an open continuous map. �

Let us fix the following assumptions:

Assumption 3.11. (i) The reaction term is strictly positive: There exists a constant c0 > 0
such that c ≥ c0 on ΩT .

(ii) Ω ⊂ Rd is a domain with C2 boundary.

(iii) b, c, u0 and f are sufficiently smooth and compatible to allow for classical C2(SΣ) solutions
uε and u.

(iv) Σ ⊂ G is compact and such that an open neighbourhood V of Σ in ∂Ω × [0, T ) ∪ Ω × {0} is
contained in Γ−× [0, T )∪Ω×{0} and such the boundary portion B2(V ) of ∂SV is a compact
subset of Γ+ × [0, T ).

(v) For V as in (iv), there are constants γ0, c > 0 and a function Ψ ∈ C2(πx(SV )) such that for
d := dist(·, ∂Ω){

Ψ(x) = −d(x) on Uγ := {x ∈ πx(SV ) : dist(x, πx(B2(V ))) < γ}
Ψ(x) ≤ −cγ on πx(SV ) \ Uγ

(3.21)

holds for all 0 < γ ≤ γ0. Then we define F+ := Ψ ◦ πx ∈ C2(SV ).
4

Remark 3.12. Part (i) of the assumption does not pose a loss of generality, since by a simple
transformation, problems (3.1) and (3.2) can be altered such that the reaction term is strictly
bounded away from zero. Indeed, for some λ > 0 define

uλε (x, t) := e−λtuε(x, t), uλ(x, t) := e−λtu(x, t) and fλ(x, t) := e−λtf(x, t) (3.22)

for (x, t) ∈ ΩT . Then uε and u are solutions of the problems (3.1) and (3.2), respectively, if and
only if uλε and uλ are solutions to the same problems with c replaced by c+λ ≥ λ > 0. Thus, if for
a subset S ⊂ ΩT we have shown that ∥∥∥uλε − uλ∥∥∥

L∞(S)
≤ Kε (3.23)

for a constant K independent of ε, we obtain qualitatively the same result for the original problem:

‖uε − u‖L∞(S) ≤ e
λTKε. (3.24)

In certain cases, the cylinder ΩT may be approximated well by SΣ satisfying assumption (iv),
namely if the bundle of characteristics touching the parabolic boundary does not occupy a significant
fraction of the volume of ΩT . 4
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For proving our desired convergence result, we need a maximum principle on non-cylindrical do-
mains (i.e. not of the form Ω × I for a real interval I). To this end, we cite a strong maximum
principle from Friedman:

Proposition 3.13 (Strong maximum principle on general domains, [Fri64, Chapter 2, Theorem
1]). Let D ⊂ Rd+1 be a domain, aij , bi and c ≥ 0 for i, j = 1, . . . , d continuous functions on D.
Let L be a parabolic operator defined by

Lu :=
∂u

∂t
−

d∑
i,j=1

aij
∂2u

∂xi∂xj
+

d∑
i=1

bi
∂u

∂xi
+ cu, (3.25)

for u ∈ C2
1 (D) (continuous x-derivatives of degree 2, once continuously differentiable in t) where

parabolicity means that
d∑

i,j=1

aij(x, t)ξiξj > 0 (3.26)

for any (x, t) ∈ D and ξ ∈ Rd \ {0}. Then if Lu ≥ 0 and u has a negative minimum in D attained
at a point x = (x, t) ∈ D, it follows that u(y) = u(x) for all y ∈ D that can be connected to x by a
simple connected curve in D along which the t-coordinate is non-increasing going from y to x. 4

Corollary 3.14 (Weak maximum principle for characteristic tubes of balls). Let x ∈ G and r > 0
such that B := Br(x) ∩ (∂Ω× [0, T ) ∪ Ω× {0}) is contained in G. Let L be as in Proposition 3.13
with c > 0 bounded away from zero and let u, v ∈ C2(SB) with

|u| ≤ v on B ∪ B1(B) ∪ B2(B) (3.27)

|Lu| ≤ Lv on SB. (3.28)

Then |u| ≤ v on SB. 4

Proof. We first show that w ≥ 0 on B ∪ B1(B) ∪ B2(B) and Lw ≥ 0 on SB imply w ≥ 0 on SB.
The set SB is compact. If µ := minx∈SB w < 0 were true, then this minimum could not be attained

on B∪B1∪B2 by the premise and not on the interior SB owing to Proposition 3.13, since every point
of SB can, by definition of SB, be connected to a point arbitrarily close to B along a characteristic.
By continuity, it follows that w(x) < 0 is impossible for x ∈ SB. Hence µ < 0 must be attained at
some x ∈ B3(B) ⊂ Ω × {t = T}. Therefore ∇w(x) = 0, wt(x) ≤ 0 and the second order term in
Lw(x) is non-negative, giving

Lw(x) =

∂w
∂t
−

d∑
i,j=1

aij
∂2w

∂xi∂xj
+ b · ∇w + cw︸︷︷︸

<0

 (x) < 0, (3.29)

a contradiction. Now the assertion follows from linearity of L and by considering w := v ± u. �

Theorem 3.15. Assume the statements and notation from Assumption 3.11. Define γ(ε) :=
−ε1/2 ln(ε) and Uε := Uγ(ε)× [0, T ]. Then γ(ε) ↓ 0 as ε ↓ 0 and there exists an ε0 > 0 and a constant
K such that

‖uε − u‖L∞(SΣ\Uε) ≤ Kε for ε ≤ ε0 (3.30)

and K does not depend on ε. 4
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Proof. All constants Ki, i = 1, 2, . . . in this proof will be independent of ε as long as ε ≤ ε0 for
some ε0 > 0. Set

Bs := Bs(x0) ∩ (∂Ω× [0, T ) ∪ Ω× {0}), (3.31)

where Bs(x0) is the open ball in Rd+1 of radius s > 0 around x0. We shall prove that, for any
x0 ∈ Σ and r > 0 such that Br ⊂ V , the desired result holds on SBr/2 . Then by compactness of
Σ, we can cover SΣ by the characteristic tubes of finitely many balls such that the corresponding
balls of halved radius cover Σ and the assertion follows.

Define the differential operators

L0(v) := vt + b · ∇v + cv, L1(v) := ∆v, Lε := L0 − εL1 (3.32)

and the error function zε := uε − u. With the help of the parabolic maximum principle from
the last chapter, it can be seen that ‖uε‖L∞(ΩT ) remains bounded uniformly in ε. Thus, because
Lε(zε) = Lεuε−L0u+εL1u = ε∆u on ΩT and uε and u agree on G, we have the following estimates:

|zε| ≤ K1 on SBr (3.33)

zε = 0 on Σ (3.34)

|Lεzε| ≤ K2ε on SBr . (3.35)

In order to circumvent problems arising from the non-smoothness of the boundary ∂ΩT , we regard a
Lipschitz continuous extension of b̃ to a smooth domain D ⊃ ΩT with dist(∂ΩT , ∂D) small enough.
Due to our assumption that Br ⊂ Γ− × [0, T ) ∪ Ω × {0}, the extension backward in time of the
characteristics γz, z ∈ Br, exit ∂ΩT at z and cut the smooth surface M := ∂D. For x ∈ Br, let
xγ be the intersection of M and the extended characteristic through x. Then we find a smooth
function ψ on M such that

ψ(z)


= − r

2 for z = xγ , x ∈ Br/2
∈ [− r

2 , 0] for z = xγ , x ∈ B3r/4 \Br/2
= 0 else.

(3.36)

We extend this function constantly along characteristics to obtain a function F0 ∈ C2(SBr). This
is achieved by defining F0 to be the solution of the problem{

∂tF0 + b · ∇F0 = 0 on SBr
F0 = ψ on M.

(3.37)

Now we define the barrier function Sε ∈ C2(SBr) by

Sε(x) := K3ε+ µ(ε) +K4 exp

(
F0(x)

K5ε1/2

)
+K6 exp

(
F+(x)

K7ε

)
(3.38)

with K3, . . . ,K7, µ(ε) > 0 to be determined momentarily. At first we note that

Sε(x) ≥ K3ε ≥ 0 = |zε(x)| on Br (3.39)

Sε(x) ≥ min(K4,K6) ≥ K1 ≥ |zε(x)| on B1(Br) ∪ B2(Br) (3.40)

33



for K4,K6 ≥ K1 by construction of the functions F0 and F+ which vanish on B1(Br) and B2(Br),
respectively. In order to be able to apply Corollary 3.14, we compute for x ∈ SBr :

LεSε(x) = c(x)(K3ε+ µ(ε))

+K4 exp

(
F0(x)

K5ε1/2

){
∂tF0(x) + b · ∇F0(x)

K5ε1/2
− ε
(

∆F0(x)

K5ε1/2
+
|∇F0(x)|2

K2
5ε

)
+ c(x)

}
+K6 exp

(
F+(x)

K7ε

){
c(x)− ∆F+(x)

K7
+

1

K7ε

(
b · ∇F+(x)− 1

K7
|∇F+(x)|2

)}
.

(3.41)

The first braced term is non-negative for ε ≤ ε0 for large enough K5 > 0 due to our assumption
that c ≥ c0 > 0 and (3.37).

Asserting non-negativity of the second brace needs more careful attention. The term c−∆F+/K7

is non-negative for large enough K7. If x ∈ SBr ∩Uγ0 × [0, T ] for γ0 > 0 chosen small enough, then
Assumption 3.11 (iv) and (v) give for some constants µ1,M1,M2 > 0 that

M1 ≥ b · ∇F+ ≥ µ1 > 0 and M2 ≥ |∇F+|2 (3.42)

on Uγ0 × [0, T ], because −∇d is the outward unit normal on ∂Ω for d = dist(·, ∂Ω). From this we
infer that

E(x) := b · ∇F+(x)− 1

K7
|∇F+(x)|2 ≥ 0 (3.43)

for x ∈ Uγ × [0, T ] for all 0 < γ ≤ γ0 for sufficiently large K7.

If, on the other hand, x ∈ SBr \Uγ × [0, T ], Assumption 3.11 (v) gives that F+(x) ≤ −cγ and thus

K6 exp

(
F+(x)

K7ε

)(
E(x)

K7ε

)
≤ K6 exp

(
−cγ
K7ε

)(
E(x)/K7

ε

)
. (3.44)

This – possibly not everywhere non-negative – term can be counterbalanced by setting

µ(ε) :=
K6

c0
exp

(
−cγ
K7ε

)
K8

ε
(3.45)

with K8 ≥ maxx∈SBr
E(x)/K7. Overall, we have shown that for suitably chosen K3, . . . ,K8, we

have

LεSε ≥ c0K3ε ≥ K2ε ≥ |Lεzε| on SBr . (3.46)

Corollary 3.14 then gives us the desired estimate:

|zε(x)| ≤ K3ε+K4 exp

(
F0(x)

K5ε1/2

)
+K6 exp

(
F+(x)

K7ε

)
+
K6

c0
exp

(
−cγ
K7ε

)
K8

ε
for x ∈ SBr . (3.47)

If we set γ := γ(ε) := −ε1/2 ln(ε), then γ(ε) ↓ 0 as ε ↓ 0 and we can show that the right hand side
of (3.47) is O(ε) on SBr/2 \ Uγ(ε) × [0, T ]; indeed, on SBr/2 we have F0 = −r/2 by construction, so
that

exp

(
F0(x)

K5ε1/2

)
= exp

(
−r/2
K5ε1/2

)
= O(εn) as ε ↓ 0 (3.48)

34



for any n ∈ N. On SBr/2 \ Uγ(ε) × [0, T ], by construction, F+ ≤ −cγ(ε) = cε1/2 ln(ε), so that

exp

(
F+(x)

K7ε

)
≤ exp

(
c ln(ε)

K7ε1/2

)
= ε

c

K7ε
1/2 = O(εn) (3.49)

for any n ∈ N, which also shows that the last summand in (3.47) is O(εn) for any n ∈ N. This
shows that

|zε(x)| = O(ε) on SBr/2 \ Uγ(ε) × [0, T ] as ε ↓ 0, (3.50)

which – combined with the remark made in the beginning of this proof – concludes the proof. �
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4. First Order Upwinding of the Con-
vective Part and the LED Principle

4.1 Upwinding in One Dimension

We have seen in the introduction that employing an upwind-facing difference instead of a central
difference in the convective part of the transport operator in the mass-lumped finite element scheme
seems to resolve the oscillation issues in the considered one-dimensional homogeneous convection-
diffusion equation with forward Euler stepping.

In order to understand why this is the case, in subsection 4.1.1 we put forth an interesting property
of one-dimensional convection-diffusion equations that prohibits oscillations in classical solutions.
In the subsequent section, we show that in the considered 1D case, finite element (FE), finite volume
(FV) and finite difference (FD) schemes with explicit Euler time-stepping are essentially equivalent
and introduce the term upwinding and the rationale for its use.

4.1.1 Total Variation

Definition 4.1 (Continuous total variation). Let α < β ∈ R and t ∈ R>0. Define the total
variation of a function f : [α, β]→ R as

Var(f ; [α, β]) := sup

{
n−1∑
i=0

|f(xi+1)− f(xi)| : n ∈ N, α ≤ x0 < · · · < xn ≤ β

}
.

For a function Ψ defined on the U-shaped set Γt := [α, β]×{0}∪{α, β}× [0, t] ⊂ R2 define its total
variation Var(Ψ; Γt) on this set by

Var(Ψ; Γt) := Var(Ψ̃; [α− t, β + t] ⊂ R), (4.1)

where Ψ̃ is defined through Ψ in the obvious way by flapping down the “walls” of the U onto
R× {0}. 4

Proposition 4.2 (Evolution of total variation for 1D convection-diffusion, [Sat69, Theorem 2]).
Let α < β ∈ R, T > 0, Ω := (α, β), Ωt := (α, β)×(0, t) for t ∈ (0, T ] and ΓT = ∂ΩT \(α, β)×{t = T}
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as usual. Consider the problem {
ut − auxx + bux = 0 in ΩT

u = Ψ on ΓT ,
(4.2)

where a, b, ax and bx are Hölder continuous on ΩT and Ψ is continuous on ΓT with bounded varia-
tion, i.e. Var(Ψ; ΓT ) <∞. Then the (classical) solution to this problem satisfies

Var(u(·, t); [α, β]) ≤ Var(Ψ; Γt) for all t ∈ [0, T ]. (4.3)

4

Remark 4.3. In particular, the above theorem states that for continuous initial-boundary con-
ditions Ψ with homogeneous Dirichlet boundary data, the total variation of the homogeneous 1D
convection-diffusion (classical) solution at any time t > 0 can never exceed the total variation of
the initial value u0. This justifies calling the oscillations observed in the introductory example
spurious, as they clearly increase the total variation. A numerical scheme diminishing a discrete
total variation for this problem would thus be desirable. 4

Definition 4.4 (Discrete total variation, TVD). Let I ⊂ Z be an interval and v = (vi)i∈I a
discrete function. Then, analogously to the definition of the total variation of functions on the
continuum, its total variation is defined as

TV(v) :=
∑
i∈I
|vi+1 − vi|, (4.4)

where vj := 0 for j /∈ I. A scheme updating vj to vj+1 = (vj+1
i )i∈I is called total variation

diminishing (TVD) if
TV(vj+1) ≤ TV(vj). (4.5)

4

4.1.2 Equivalence of FD, FE and FV

Let Ω = (α, β) ⊂ R, b ∈ R>0 constant. We would like to solve
ut − εuxx + bux = 0 in ΩT

u = 0 on ∂Ω× [0, T ]

u = u0 on Ω× {t = 0}
(4.6)

on a triangulation T of Ω with nodes α = x1 < · · · < xN = β dividing Ω into intervals of equal
length h = (β−α)/(N−1) by employing forward Euler time-stepping with a fixed time-step length
τ . Assume u0 ∈ V 1

0 (Ω) and let uji be a shorthand for uh(ih, jτ), the sought numerical solution at
the grid points.

We show that the finite difference scheme

uj+1
i − uji
τ

− ε
uji+1 − 2uji + uji−1

h2
+ b

uji+1 − u
j
i−1

2h
= 0 for i ∈ {2, . . . , N − 1} (4.7)
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is rather universal in the sense that it can also be interpreted as a finite element or finite volume
scheme. Indeed, the standard Galerkin FE scheme with explicit Euler time-steps reads

(
un+1 − un

τ
, ϕi

)
+ ε(unx, (ϕi)x) + b(unx, ϕi) = 0 for all i ∈ {2, . . . , N − 1}

u0 = u0.

(4.8)

Writing this using the matrices M◦C , C
◦, D◦ ∈ RM×M from Definition 0.4 with M = N − 2, the

Galerkin method can be restated equivalently (now denoting by un ∈ RN−2 the coefficients of the
discrete solution at time nτ with respect to the hat function basis)M

◦
C

(
un+1 − un

τ

)
+ εD◦un + C◦un = 0

u0 = u0.

(4.9)

Simple calculations show that

mii =
2

3
h mij =

1

6
h for |i− j| = 1 mij = 0 else (4.10)

dii =
2

h
dij = −1

h
for |i− j| = 1 dij = 0 else (4.11)

cii = 0 ci,i±1 = ±1

2
cij = 0 else (4.12)

for i, j ∈ {1, . . . , N}. Replacing M◦C by the restricted lumped mass matrix M◦L and dividing the
whole equation by h, we immediately obtain the FD scheme (4.7). Note that, for the equivalence
to hold, we really need to sum over all j ∈ {1, . . . , N} in (0.10).

In order to interpret (4.7) as a FV method, we introduce the dual cells

Ci := [xi−1/2, xi+1/2],

where xi+1/2 := (xi + xi+1)/2 for i ∈ {1, . . . , N − 1}, x1/2 = x1, xN+1/2 = xN , and interpret uji
as an approximation to the mean value of the true solution u over Ci at time jτ (as opposed to
the interpretation as nodal values in FD). If we integrate the differential equation in (4.6) over an
interior cell Ci, i ∈ {2, . . . , N − 1}, we re-obtain the underlying conservation law

d

dt

1

h

∫
Ci

u(·, jτ) dx = F
j
i−1/2 − F

j
i+1/2, (4.13)

where

F
j
i+1/2 :=

b

h
u(xi+1/2, jτ)− ε

h
ux(xi+1/2, jτ) (4.14)

are the true fluxes at the cell boundaries. Now we set uj1 = ujN = 0 to implement the boundary
conditions, use the natural approximations

u(xi+1/2, jτ) ≈ u(xi+1, jτ) + u(xi, jτ)

2
(4.15)

ux(xi+1/2, jτ) ≈ u(xi+1, jτ)− u(xi, jτ)

h
(4.16)
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to define the numerical fluxes as

F ji+1/2 := b
uji+1 + uji

2h
− ε

uji+1 − u
j
i

h2
, (4.17)

approximate the time derivative by a forward difference and remember our interpretation of uji to
obtain the FV scheme

uj+1
i − uji
τ

= ε
uji+1 − 2uji + uji−1

h2
− b

uji+1 − u
j
i−1

2h
, (4.18)

which is, again, exactly (4.7).

We call the first summand in the numerical flux (4.17) the central flux approximation to the convec-
tive flux; in this approximation, both adjoining cells of an interface xi+1/2 enter with the weighting
factor 1/2. It is well-known that a von Neumann stability analysis for the reduced hyperbolic
problem (ε = 0 and no boundary condition on {β} × [0, T ]) reveals that the central flux scheme
is unconditionally unstable, i.e. unstable no matter how small τ > 0 is chosen. This is commonly
explained by the reasoning that the stencil of the numerical convective flux resulting from the cen-
tral approximation includes a point downwind from the interface xi+1/2 (i.e. to the right (left) of
xi+1/2 for b > 0 (for b < 0), which is unnatural since information is advected along characteristics
from upwind from xi+1/2.

This gives rise to the following alteration in the numerical flux called upwinding of the convective
part :

F j,up
i+1/2 := b

uji
h
− ε

uji+1 − u
j
i

h2
, (4.19)

yielding the upwinded scheme

uj+1
i − uji
τ

− ε
uji+1 − 2uji + uji−1

h2
+ b

uji − u
j
i−1

h
= 0 for i ∈ {2, . . . , N − 1}. (4.20)

4.1.3 Upwinding in 1D implies TVD

Proposition 4.5 ([Har83, Lemma 2.2]). A difference scheme of the form

uj+1
i = uji + C+,i+1/2(uji+1 − u

j
i )− C−,i−1/2(uji − u

j
i−1) for j ∈ N0, i ∈ Z (4.21)

is TVD provided that

C−,i+1/2, C+,i+1/2 ≥ 0 and C−,i+1/2 + C+,i+1/2 ≤ 1 (4.22)

holds for all i ∈ Z. 4

Note that we can extend the scheme (4.20) to have the form needed to apply the previous theorem
by requiring uji = 0 for any j ∈ N0, i ∈ Z \ {2, . . . , N − 1}. This extension does not change the total
variation.
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Corollary 4.6. The upwinded scheme (4.20) is TVD under the CFL-like condition

τ

(
b

h
+

2ε

h2

)
≤ 1. (4.23)

4

Proof. Simple shifting of terms shows

uj+1
i = uji +

τε

h2
(uji+1 − u

j
i )−

(
τε

h2
+
τb

h

)
(uji − u

j
i−1) for i ∈ {2, . . . , N − 1} (4.24)

and of course

uj+1
i = uji = 0 for i ∈ Z \ {2, . . . , N − 1}. (4.25)

In view of Proposition 4.5 we define

C+,i+1/2 :=

{
τε
h2 for i ∈ {2, . . . , N − 1}
0 else

, C−,i−1/2 :=

{
τε
h2 + τb

h for i ∈ {2, . . . , N − 1}
0 else

(4.26)

and see that the only condition to be fulfilled is (4.23). �

Note that without upwinding, i.e. if central differences are applied in the convective part, the
scheme is

uj+1
i − uji
τ

− ε
uji+1 − 2uji + uji−1

h2
+ b

uji+1 − u
j
i−1

2h
= 0 for i ∈ {1, . . . , N − 1}, (4.27)

and the constants for Harten’s lemma are

C+,i+1/2 :=

{
τε
h2 − τb

2h for i ∈ {2, . . . , N − 1}
0 else

, C−,i−1/2 :=

{
τε
h2 + τb

2h for i ∈ {2, . . . , N − 1}
0 else,

(4.28)

so that the conditions

τ ≤ h2

2ε
and Pe :=

bh

ε
≤ 2 (4.29)

on the time-step and the cell Péclet number Pe have to imposed in order for Harten’s criterion to
guarantee the TVD property. The second condition can be formulated equivalently as

bh

2ε
≤ 1 ⇐⇒ h2b2 ≤ 4ε2 ⇐⇒ h2

2ε
≤ 2ε

b2
, (4.30)

because all terms involved are positive. This shows that the severe time-step restriction τ ≤ 2ε/b2

applies. We have seen in the introduction that conditions (4.23) and (4.29) seem to not only
sufficient but also necessary for the upwinded (the non-upwinded) mass-lumped scheme to be
TVD.
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4.2 Upwinding in Multiple Dimensions

The combination of mass lumping and upwinding the convective part of the differential operator
carried out in the previous section can also be applied in multidimensional problems. For this
purpose, we want to show an equivalence of the FE convective part to a central numerical FV flux
and then propose a manipulation of the stiffness matrix that represents upwinding. This is the
content of the following subsection.

4.2.1 Manipulation of the Stiffness Matrix Resulting in Upwinding

We restrict ourselves to the case d = 2, but a generalization to conforming simplicial meshes in any
dimension should be possible.

Definition 4.7 (Barycentric dual mesh). Let T be a triangulation of Ω ⊂ R2. Then its associated
barycentric dual mesh is constructed in the following way:

• Connect the barycenter of each T ∈ T with the midpoint of its sides. This partitions each
triangle into three quadrangles.

• Out of these quadrangles, define for each node pi ∈ N the cell Ci around this node as the
union of quadrangles Q with pi ∈ Q (see Figure 4.1). 4

Figure 4.1: A triangulation (black) and its barycentric dual mesh (blue)

Lemma 4.8 (Connection between barycentric dual cells and mass lumping). For all dual cells
Ci, i = 1, . . . , N , it holds mi = |Ci|, where the mi are the diagonal entries of the lumped mass
matrix ML. 4

Proof. The quadrangles of the first step of Definition 4.7 each have one third of the area of the
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triangle they lie in, so that

|Ci| =
∑

T∈T :pi∈T

1

3
|T | =

∫
Ω
ϕi dx =

N∑
j=1

(ϕj , ϕi) = mi, (4.31)

because the hat functions form a partition of unity on Ω. �

Motivated by the work in [Sel93], we show that the approximation of convection in the standard
finite element approximation method with V 1

h,0 elements can be interpreted as a central flux finite
volume approximation. Deviating from Selmin’s paper, we consider only linear convection, but
with a flux non-constant in space. However, for our argument to work, we need an additional
assumption on the space-dependence of the vector field b, namely that b is elementwise constant
and b ∈ H(div; Ω).

Assumption 4.9. b : Ω× [0, T ]→ R2 is time-independent and piecewise constant on each T ∈ T
and for each shared edge e = ∂T ∩ ∂T ′, its normal component b · ne is continuous on e. 4

Remark 4.10. This is equivalent to requiring that b(·, t) ∈ RT0(Ω), the lowest-order Raviart-
Thomas space, with div b = 0. If the considered field b is not constant in space, a vector field
as required by the assumption can be, for instance, obtained by projecting a time-independent,
divergence-free field b ∈ W 1,∞(ΩT ) into the lowest order Raviart-Thomas space RT0(Ω) via the
standard projection operator π that sets the normal components of π(b(·, t)) to the value

∫
e b(·, t) ·

n ds on each inter-element edge e. 4

Lemma 4.11. Let T ⊂ R2 be a triangle. Then, with the notation from Figure 4.2, it holds that

l1n1 + l2n2 = |T |∇ϕi (4.32)

l1n1 = l2n2 + l3n3, (4.33)

where nr, r = 1, 2, 3, are supposed to be unit vectors. 4

Figure 4.2: Notation for Lemma 4.11
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Proof. Simple geometrical vector calculus shows that
−−→
AB =

−−→pkpj
2 . Denoting the triangle side

opposite pi by Si, the outer normal over Si by ni, the perpendicular height over Si by hi and
recalling that

|T |∇ϕi =
1

2
|Si|hi∇ϕi = −1

2
|Si|ni,

the first equation follows from the divergence theorem applied to the triangle ATB. Another quick
vector calculation shows that the lines labelled by their lengths l1, l2, l3 form a triangle with outer
unit normals −n1, n2, n3, and thus the second equation follows. �

Theorem 4.12. Let Assumption 4.9 hold and let pi be a node of T such that

∫
∂Ω
ϕiϕjb · n ds = 0 (4.34)

holds for j = 1, . . . , N . Then for u ∈ RN

∑
j∈K(i)

(b · ∇ϕj , ϕi)uj =
∑
j∈K(i)

ηij
ui + uj

2
, (4.35)

where

ηij := lij,1 b|T1 · nij,1 + lij,2 b|T2 · nij,2 =

∫
Γij

b · n ds for pi or pj interior (4.36)

ηij := lij,1 b|T1 · nij,1 =

∫
Γij

b · n ds for pi and pj boundary nodes (4.37)

and nij,k is the outward unit normal of Ci on Γij,k := ∂Ci ∩ ∂Cj ∩ Tk and lij,k the length of Γij,k
(see Figure 4.3). 4

Proof. Since, by Assumption 4.9, b ∈ RT0(Ω) with b|T constant for all T ∈ T , we see that

(b · ∇ϕi, ϕj) =
∑
T∈T

∫
T
b · ∇ϕiϕj dx =

∑
T∈T

∫
T

div(bϕi)ϕj dx

= −
∑
T∈T

∫
T
ϕib · ∇ϕj dx+

∑
T∈T

∫
∂T
ϕiϕjb · n ds

= −
∫

Ω
ϕib · ∇ϕj dx = −(b · ∇ϕj , ϕi)

(4.38)

holds for j = 1, . . . , N . Therefore we get
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Figure 4.3: Notation for Theorem 4.12

2(b · ∇ϕi, ϕj) = (b · ∇ϕi, ϕj)− (b · ∇ϕj , ϕi)

=
2∑

k=1

(
b|Tk · ∇ϕi|Tk

|Tk|
3
− b|Tk · ∇ϕj |Tk

|Tk|
3

)
(4.32)

=
b|T1

3
· (−lij,1nij,1 + l4n4 − (lij,1nij,1 + l3n3))

+
b|T2

3
· (−lij,2nij,2 + l6n6 − (lij,2nij,2 + l5n5))

(4.33)
=

b|T1

3
· (−2lij,1nij,1 + l4n4 − l3n3)

+
b|T2

3
· (−2lij,2nij,2 + l6n6 − l5n5)

(4.33)
= −ηij ,

(4.39)

where the terms involving T2 are simply dropped if pi and pj are adjacent boundary nodes. Fur-
thermore, the ηij sum up to zero:∑

j∈K(i)

ηij =
∑

T :pi∈T

∫
∂(T∩Ci)

b · n ds =
∑

T :pi∈T

∫
T∩Ci

div b dx = 0, (4.40)

which holds true for boundary nodes pi only because of the assumption made in (4.34). We thus
conclude that ∑

j∈K(i)

(b · ∇ϕj , ϕi)uj =
∑
j∈K(i)

ηij
ui + uj

2
. (4.41)
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Remark 4.13. The technical assumption made in equation (4.34) is not restrictive when treating
the homogeneous Dirichlet problem, because then only values ui for interior nodes pi are non-
trivial and therefore the boundary integral vanishes for all nodes of interest. However, for different
boundary conditions like no-flux or homogeneous Neumann boundary conditions, this condition
amounts to assuming that b ·n = 0 on ∂Ω and that therefore the convective part is skew-symmetric.
We shall see that we need to make this assumption if we want to upwind our finite element scheme
by algebraic manipulations using only the information given by the convective part of the stiffness
matrix. 4

If – similar to the one-dimensional case – we reinterpret the vector u ∈ RN as the values of a
function piecewise constant over the dual cells, we see from Theorem 4.12 that the convective
part C of the stiffness matrix can be interpreted as being discretised by a central flux. Then we
can mimick the strategy that seemed to work in 1D and use an upwind flux instead, hoping that
the resulting modified Galerkin scheme will be a non-oscillatory one. Hence we replace the terms
ηij(ui + uj)/2 in (4.35) by {

ηijui for ηij ≥ 0

ηijuj for ηij ≤ 0.
(4.42)

Proposition 4.14. Let Assumption 4.9 hold and C ∈ RN×N be the full convective matrix, cij =
(b · ∇ϕj , ϕi). Let I ⊂ {1, . . . , N} be the set of indices of non-Dirichlet nodes, i.e. uj = 0 holds a
priori for all j /∈ I. Assume that (4.34) holds for all i ∈ I. Let Y ∈ RN×N be given by

yij =

−2
∑

j∈K(i)
cij≤0

cij for i = j

−|cij | for i 6= j.
(4.43)

Then the upwinded version of the convective part C◦ = CII ∈ RM×M of the Galerkin stiffness
matrix should be defined as (C + Y )◦ = (C + Y )II . 4

Proof. Due to homogeneous boundary conditions, we have some u ∈ RN with uj = 0 for j /∈ I and
seek a matrix C̃ ∈ RM×M such that

(C̃uI)i =
∑
j∈K(i)
ηij≥0

ηijui +
∑
j∈K(i)
ηij≤0

ηijuj .

With the choice C̃ = (C + Y )I×I , we obtain exactly that:

(C̃uI)i =
∑

j∈I\{i}

(cij − |cij |)uj − 2
∑
j∈K(i)
cij≤0

cijui =
∑
j∈K(i)

(cij − |cij |)uj − 2
∑
j∈K(i)
cij≤0

cijui

=
∑
j∈K(i)
cij≤0

2cij(uj − ui)
(4.39)

=
∑
j∈K(i)
ηij≤0

ηij(uj − ui)
(4.40)

=
∑
j∈K(i)
ηij≤0

ηijuj +
∑
j∈K(i)
ηij≥0

ηijui.
(4.44)

�
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Remark 4.15. The matrix Y from (4.43) satisfies yij = yji for all i, j with (4.34) and has
vanishing row sums:

N∑
j=1

yij = −2
N∑
j=1
cij≤0

cij −
N∑
j=1
j 6=i

|cij | =
N∑
j=1
cij≤0

|cij | −
N∑
j=1
cij≥0

|cij | = −
N∑
j=1

cij = 0. (4.45)

Such matrices are called “discrete diffusion operators” in [Kuz10] and we have just argued that
they may be called upwinding matrices. 4

4.2.2 The Upwind Finite Element Method of Baba and Tabata

In [BT81], Baba and Tabata have developed and analysed an upwinded finite element scheme for
the transient convection-diffusion equation with zero-flux boundary conditions:

ut − ε∆u+ div(ub) = f in ΩT

(ε∇u− ub) · n = 0 on ∂Ω× (0, T )

u = u0 on ∂Ω× {t = 0}.
(4.46)

for a time-independent vector field b ∈ C0,1(ΩT ), f ∈ C(0, T ;L2(Ω)) and u0 ∈ C(Ω). It is in
particular defined for arbitray dimension d ∈ N on regularly simplicially partitioned domains. The
proposed scheme – recast from their original variational formulation into an algebraic one – reads:

mi
uk+1
i − uki
τ

+
N∑
j=1

ε(∇ϕi,∇ϕj)ukj +
N∑
j=1

max{0, βij}uki + min{0, βij}ukj = (f(·, kτ), ϕi)

u0 = Ihu0

(4.47)

for i = 1, . . . , N , where Ih is the nodal interpolator onto V 1
h and the βij are defined for any two

adjacent nodes pi, pj ∈ N and satisfy

βij = −βji (4.48)

|βij | ≤ ‖b‖L∞(Ω) |Γij | (4.49)∣∣∣∣∣βij −
∫

Γij

b · n ds

∣∣∣∣∣ ≤ C ‖b‖W 1,∞(Ω) h
d
T , (4.50)

where n is the unit outward normal to Ci on Γij and T ∈ T is a d-simplex containing the edge
between pi and pj .

They then prove in their Theorem 1.1 a discrete mass conservation of this scheme and that, given
f, u0 ≥ 0, the solution remains non-negative under the assumptions that Th is of acute type and
that the CFL-like time-step condition

τ ≤ κ2

(d+ 1)ε+ cdκ ‖b‖L∞(Ω)

, (4.51)

holds, where κ is the minimal perpendicular length of all simplices T ∈ Th and cd is a dimension-
dependent constant with, e.g., c2 = 4 and c3 = 6. Their Theorem 1.2 contains the following:
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Theorem 4.16 (Baba and Tabata, 1981). Let Th be a family of shape-regular triangulations and
let the time-step condition

τ ≤ 2κ2

(d+ 1)2ε
(1− δ) (4.52)

hold, where δ ∈ (0, 1) is some number independent of h. Assume that the solution u to (4.46)
satisfies the regularity condition u ∈ Z1 := C1,0.5(0, T ;L2(Ω)) ∩ C1(0, T ;H1(Ω)) ∩ C(0, T ;Hm(Ω))
for m > d/2. Then for the error ek := uk − Ih(u(·, kτ)) it holds that

max
k=0,...,NT

‖ek‖L2(Ω) ≤ C ‖u‖Z1
h (4.53)(

τ

NT−1∑
k=0

∥∥∥∥ek+1 + ek

2

∥∥∥∥2

H1(Ω)

)1/2

≤ C ‖u‖Z1
h (4.54)

with C = C(σTh , ε, δ,Ω, d,m, ‖b‖W 1,∞(Ω)). 4

Remark 4.17 (Algebraic upwinding vs the upwinding of Baba and Tabata). Under the additional
assumption that div b = 0 and b · n = 0 on ∂Ω, the convective matrix C = (b · ∇ϕj , ϕi)i,j=1,...,N is
skew-symmetric. The choice βij := 2cij therefore satisfies (4.48). The following lemma asserts that
also the slight variation (4.49′) of (4.49) and (4.50) hold with this choice. The additional constant
σT /2 in (4.49′) has to be accounted for in the time-step condition (4.51) for positivity, changing it
in the following way:

τ ≤ κ2

(d+ 1)ε+ cdκ ‖b‖L∞(Ω) σT /2
, (4.51′)

whereas the the difference between (4.49) and (4.49′) can be absorbed in the constant C in the last
theorem, and thus Therorem 4.16 still holds true.

The proof of Proposition 4.14 with I replaced by {1, . . . , N} and ηij substituted by βij then shows
that adding the upwinding matrix Y defined there amounts to what can be interpreted as an up-
winding method in the sense of the paper of Baba and Tabata. Note that we have now gotten rid
of Assumption 4.9 but have required b · n = 0 on ∂Ω, an assumption we need to make in order for
the boundary terms in (4.34) to vanish.

Indeed, this assumption seems hard to avoid when one tries to define and derive information about
the signs of the βij solely from the convective part of the stiffness matrix (i.e. through the terms
cij), because of the skew-symmetry property required in (4.48) and because one has to infer the
signs of an approximation to

∫
Γij
b·n ds exclusively from the cij , which is then hard to do because in

order to obtain something resembling the normal n over Γij , one certainy needs both the directions
∇ϕi and ∇ϕj , hence both cij and cji. But without b · n = 0 on ∂Ω, their relation is (for adjacent
boundary nodes pi and pj) polluted by the boundary term

∫
∂Ω ϕiϕjb · n ds basically unrelated to

what happens on Γij .

This indicates that, if the boundary conditions are not purely homogeneous Dirichlet and if b · n 6=
0 on ∂Ω, then the manipulation suggested in Proposition 4.14 can no longer be interpreted as
upwinding. 4
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Lemma 4.18. Let Ω ⊂ Rd, d = 2, be partitioned by a regular, shape-regular triangulation, b ∈
W 1,∞(Ω) with div b = 0 and let π : W 1,∞(Ω) → RT0 be the interpolator onto the lowest order
Raviart-Thomas space characterized by

(π(b) · n)|S =

∫
S
b · n ds (4.55)

for each simplex side S with outer unit normal n. Let Γij and nij be defined as in Theorem 4.12
and set βij := 2(b · ∇ϕj , ϕi). Then it holds that∣∣∣∣∣βij −

∫
Γij

b · nij ds

∣∣∣∣∣ ≤ C(d, σT )hdT ‖b‖W 1,∞(Ω) (4.56)

|βij | ≤
σT
2
‖b‖L∞(Ω) |Γij | (4.49′)

for all nodes pi with (4.34) and neighbours pj, where T is a triangle containing pi and pj. 4

Proof. We decompose the error into three parts, one of which we already know to be vanishing:∣∣∣∣∣2(b · ∇ϕj , ϕi)−
∫

Γij

b · n ds

∣∣∣∣∣ ≤|2((b− πb) · ∇ϕj , ϕi)|+

∣∣∣∣∣2(πb · ∇ϕj , ϕi)−
∫

Γij

πb · n ds

∣∣∣∣∣︸ ︷︷ ︸
=0 by (4.38) and (4.39)

+

∣∣∣∣∣
∫

Γij

(πb− b) · n ds

∣∣∣∣∣ .
(4.57)

An L∞ estimate of ϕi∇ϕj on Ωi ∩ Ωj gives

|((b− πb) · ∇ϕj , ϕi)| ≤ C(σT )h−1
Tk
‖b− πb‖L1(Ωi∩Ωj)

(4.58)

and Corollary A.2 allows us to estimate

‖b− πb‖L1(Γij,k) ≤ C(d, σT )
(
h−1
Tk
‖b− πb‖L1(Tk) + ‖∇(b− πb)‖L1(Tk)

)
, (4.59)

where Tk, k = 1, 2 are the triangles constituting Ωi ∩ Ωj . In order to employ the Bramble-Hilbert
type Lemma A.3, we assert that for the standard d-simplex T̂ , the embedding W 1,∞(T̂ ) ↪→W 1,1(T̂ )
holds and that the Raviart-Thomas interpolator on T̂ is bounded:∥∥πT̂ (v)

∥∥
W 1,1(T̂ )

≤ C(d) max
i=1,...,d+1

∣∣∣∣∫
Si

v · n ds
∣∣∣∣ ≤ C(d) ‖v‖W 1,1(T̂ ) ≤ C(d) ‖v‖W 1,∞(T̂ ) (4.60)

by norm-equivalence in finite-dimensional spaces, the trace inequality (Theorem A.1) and the em-
bedding. Also, πT̂ is the identity on P0(T̂ )d. Now Lemma A.3 yields for any T ∈ T

‖b− πb‖L1(T ) ≤ C(d, σT )hd+1
T |b|W 1,∞(T ) (4.61)

‖∇(b− πb)‖L1(T ) ≤ C(d, σT )hdT |b|W 1,∞(T ). (4.62)

Collecting all the estimates, the first assertion follows.
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For the second estimate, note that∣∣∣∣∣
∫

Ωi∩Ωj

b · ∇ϕjϕi dx

∣∣∣∣∣ ≤ ‖b‖L∞(Ω)

3
(|T1||∇ϕj |T1 |+ |T2||∇ϕj |T2 |) . (4.63)

For a node pr of Tk let Sr,k be the side of Tk opposite this node and hr,k the height of Tk perpendicular
to Sr,k, for k = 1, 2. Then it holds that |∇ϕr|Tk | = h−1

r,k and therefore

|Tk||∇ϕj |Tk | =
|Tk|
hj,k

=
1

2
|Sj,k| ≤

1

2
hTk =

1

2
σTkρTk =

1

2
σTk

ρTk
|Γij,k|

|Γij,k| (4.64)

and we can estimate the last quotient by

ρTk
|Γij,k|

= 3
ρTk
mr,k

≤ 3
ρTk
hr,k
≤ 3

2
, (4.65)

where mr,k is the length of the median of the third node pr in Tk and the last inequality holds
because the incircle of Tk is completely contained in Tk and tangential to all sides. It follows that

|βij | ≤
2

3
‖b‖L∞(Ω)

3

4
σT |Γij | =

σT
2
‖b‖L∞(Ω) |Γij |, (4.66)

which proves the second inequality. �

Remark 4.19 (Total variation on triangular meshes and the LED property). In [Jam95], Jameson
makes the important observation that for r = 1 the total variation

Varrp(v) =

(∫
Ω
‖∇v‖rp dx

)1/r

(4.67)

loses its qualification as a measure of oscillation in the two-dimensional case on triangular meshes,
which he shows by comparing this term for the two continuous piecewise linear functions displayed
in Figure 4.4 (triangles have side lengths 1) and p = 1, 2,∞. If we denote the left function by v1

and the right one by v2, we obtain the results

r p Varrp(v1) Varrp(v2)

1 1 4 + 2
√

3 6 +
√

3
2 6 7

∞ 2 + 2
√

3 5 +
√

3

2 2 (4
√

3)1/2
(

14
3

√
3
)1/2

.

Our result here differs from Jameson’s for p =∞ and v2, where he states 5 + 3
√

3, so we carry out
in detail the computation for this case.

Let the 14 triangles be indexed like the entries of a (2 × 7)-matrix. Then it suffices to compute
the area of these triangles and ‖∇v2|T11‖∞ and ‖∇v2|T12‖∞, since the gradient vectors on all other
triangles are mirror images of the aforementioned gradients across the coordinate axes and the
∞-norm is invariant under these particular reflections.
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All triangles have height h =
√

3
2 and therefore area |T | =

√
3

4 . The vector ∇v2|T12 has no x-
component, so that

‖∇v2|T12‖∞ = ‖∇v2|T12‖2 =
1

h
=

2√
3
. (4.68)

The ∞-norm of ∇v2|T11 clearly is the modulus of its x-component, so that

‖∇v2|T11‖∞ = cos(30◦) ‖∇v2|T12‖∞ =

√
3

2
· 2√

3
= 1. (4.69)

Summing up, we obtain

Var1
∞(v2) =

∫
Ω
‖v2‖∞ dx =

√
3

4

(
10 · 2√

3
+ 4 · 1

)
= 5 +

√
3. (4.70)

Be that as it may, the total variation of v2 is greater than that of v1 in all considered cases (we
have added r = p = 2), although v2 certainly oscillates less than v1.

Jameson then proposes the local extremum diminishing (LED) property (requiring that local ex-
trema not be accentuated and no local extrema be created) as a suitable property that is readily
applicable to scalar functions on domains of any dimension. The following observation shows that
this property implies the TVD property in 1D:

Let I = (α, β) ⊂ R be an interval, N ∈ N, T a triangulation of I with vertices α = x1 < · · · <
xN = β and u ∈ V 1(T ). It is I = {2, . . . , N − 1} and we set

Imax := {i ∈ I : u(xi) is a local maximum}, Imin := {i ∈ I : u(xi) is a local minimum}. (4.71)

Then for the total variation it holds

TV(u) =

N∑
i=2

|u(xi)− u(xi−1)| = 2

 ∑
i∈Imax

u(xi)−
∑
i∈Imin

u(xi)

+ σαu(α) + σβu(β), (4.72)

where

σα =

{
−1 if u(α) ≤ u(x2)

1 else
σβ =

{
−1 if u(β) ≤ u(xN−1)

1 else.
(4.73)

This shows that a scheme which diminishes all existing extrema and does not create new ones also
diminishes the total variation. 4

4.3 LED conditions for semi-discrete problems

The content and proofs of the following are (with some slight variations and unless other citations
are given) based on Chapter 3 of [Kuz10].
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Figure 4.4: Two piecewise linear functions; the left one has lower total variation

Definition 4.20 (Matrices of non-negative type). LetK ∈ RN×N be a matrix and J ⊂ {1, . . . , N}
a set of indices. Then we call K of J -non-negative type, if

N∑
j=1

kij = 0 for all i ∈ J and (4.74)

kij ≥ 0 for all i ∈ I, j ∈ {1, . . . , N} \ {i} (4.75)

holds and simply of non-negative type if J = {1, . . . , N}. 4

Definition 4.21 (Semi-discrete LED scheme). Consider the semi-discrete scheme in algebraic
form

M
du

dt
= Ku+ r. (4.76)

Then – motivated by the properties of classical solutions to the transient convection-diffusion equa-
tion shown in Proposition 2.18 – we call the scheme local extremum diminishing (LED) if

dui
dt
≤ 0 whenever i ∈ I, ui ≥ max

j∈K(i)
uj and ri ≤ 0, (4.77)

dui
dt
≥ 0 whenever i ∈ I, ui ≤ min

j∈K(i)
uj and ri ≥ 0. (4.78)

4

Theorem 4.22. Let u,M,K and r define semi-discrete scheme as in (4.76). Then if M =
diag(m1, . . . ,mN ) is a diagonal matrix with positive diagonal entries and

∑N
j=1 kij = 0 for i ∈ I,

the scheme (4.76) is LED if and only if K is of I-non-negative type. 4

Proof. Assume first kij ≥ 0 for all i ∈ I and j ∈ {1, . . . , N} \ {i}. Then if ui ≥ maxj∈K(i) uj and
ri ≤ 0 for some i ∈ I, we obtain because of the zero row sum property

dui
dt

=
1

mi

 N∑
j=1

kijuj + ri

 =
1

mi︸︷︷︸
≥0

 ∑
j∈K(i)

kij︸︷︷︸
≥0

(uj − ui)︸ ︷︷ ︸
≤0

+ ri︸︷︷︸
≤0

 ≤ 0 (4.79)

and analogously dui
dt ≥ 0 for local minima and ri ≥ 0. To see that condition (4.75) is also necessary,

assume that kij0 < 0 for some j0 6= i. Then the following situation is possible: u has a local
maximum at pi, i ∈ I, for some t > 0 and uj0 − ui < 0 is arbitrarily large in modulus while uj
remains bounded for j ∈ K(i) \ {j0}. This destroys (4.79). �
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Definition 4.23 (Delaunay triangulation). Let Ω ⊂ Rd with d ∈ {2, 3} be a polygonal domain
triangulated by T . Then T is called a Delaunay triangulation if (CT )◦ ∩ N = ∅ for all T ∈ T ,
where CT is the (filled, i.e. d-dimensional) circumsphere of T . 4

Lemma 4.24 (Characterisation and Properties of the 2D Delaunay triangulation, [Bar92, Section
3.2]). For a planar domain Ω ⊂ R2 triangulated by T the following are equivalent:

(i) T is a Delaunay triangulation.

(ii) For any two adjacent triangles T1, T2 ∈ T with T1 = conv{pk, pi, pj} and T2 = conv{pi, pj , pl}
it holds that

∠pjpkpi + ∠pjplpi ≤ 180◦. (4.80)

Furthermore, out of all triangulations of a given point set, a Delaunay triangulation maximises
minT∈T ∠min(T ) and minimises maxT∈T ∠max(T ). 4

The following assertion from [Bar92, page 48] showcases the significance of the Delaunay triangu-
lation for the discrete Laplacian to be of non-negative type.

Proposition 4.25. Let Ω ⊂ R2 be triangulated by T and N = {pi : i = 1, . . . , N}. Then the
discrete Laplace operator ∆ := −D = −(∇ϕj ,∇ϕi)i,j=1,...,N satisfies

δij ≥ 0 for i 6= j (4.81)

if and only if T is a Delaunay triangulation. 4

Proof. Let pi, pj ∈ N be adjacent nodes and T = conv{pi, pj , pk} and Sr the side opposite pr,
hr the associated perpendicular height, nr the associated unit outward normal and α := ∠pipkpj .
Then

cosα = − cos∠ninj = −ni · nj = −∇ϕi|T · ∇ϕj |T hihj (4.82)

and using

sinα =
hj
|Si|

⇒ hihj = sinα hi|Si| = 2 sinα |T | (4.83)

we obtain

∇ϕi|T · ∇ϕj |T = − cosα

2 sinα |T |
= −cotα

2|T |
(4.84)

and thus, if T ′ = conv{pi, pj , pl} is the triangle sharing the side Sk = pipj with T and β = ∠piplpj

δij = −(∇ϕj ,∇ϕi) =
1

2
(cotα+ cotβ) . (4.85)

Then arguing as in [Bar92, page 48], we see

δij =
1

2

sin(α+ β)

sinα sinβ
, (4.86)

which is non-negative if and only if α+ β ≤ 180◦, which is the case for any two triangles sharing a
side precisely if and only if T is Delaunay, as stated in Lemma 4.24. �
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Remark 4.26. Unfortunately, for d = 3, T being a Delaunay triangulation no longer guarantees
that property (4.81) holds, which Barth shows by means of a counterexample in [Bar92, page 48
ff.]. 4

A simple but more restrictive sufficient condition can be given for the discrete Laplacian to satisfy
(4.81) in any dimension d:

Definition 4.27 (Non-obtuseness and acuteness). Let d ∈ N, T a collection of d-simplices, T =
conv{q1, . . . , qd+1} ∈ Rd a particular d-simplex, fi = conv{q1, . . . , qi−1, qi+1, . . . , qd+1} the facet
opposite qi and ni its outer unit normal. Then T is called non-obtuse if

ni · nj ≤ 0 for all i, j ∈ {1, . . . , d+ 1}, i 6= j (4.87)

or equivalently

αij := arccos(ni · nj) ≥
π

2
for all i, j ∈ {1, . . . , d+ 1}, i 6= j (4.88)

holds, where the αij are the (exterior) dihedral angles.

T is called acute if the inequality is strict for all pairs of facets. The mentioned properties can be
assigned to T by requiring them to hold for all T ∈ T . 4

Apparently, Ciarlet and Raviart [CR73, page 23 f.] were the first to propose the following result (al-
though they do not speak about angles and use a strenghtened condition to deal with an additional
reaction term):

Proposition 4.28. Let d ≥ 2, Ω ⊂ Rd be triangulated by T and assume all T ∈ T are non-obtuse.
Then (4.81) holds. 4

Proof. Let i, j ∈ {1, . . . , N}, i 6= j and T ⊂ supp (∇ϕi · ∇ϕj). Then pi and pj are adjacent
nodes. In local coordinates T = conv{q1, . . . , qd+1}, w.l.o.g. with q1 = pi and q2 = pj . Let
fk, nk, hk for k = 1, . . . , d+1 be the facets, outer unit normals and perpendicular heights associated
to vertex qk. Recall that ∇ϕi|T = −h−1

1 n1 and ∇ϕj |T = −h−1
2 n2 and that this implies that

sign(∇ϕi|T · ∇ϕj |T ) = sign(n1 · n2). Therefore

δij = −(∇ϕi,∇ϕj) = −
∑
T∈T

∫
T
∇ϕi|T · ∇ϕj |T︸ ︷︷ ︸

≤0

dx ≥ 0. (4.89)

�

Remark 4.29 (Restrictiveness of non-obtuse and acute triangulations). Especially acute triangu-
lations are so restrictive that they need not even exist in higher dimensions. Also, given an initital
triangulation, local or even global mesh refinement maintaining non-obtuseness can require special
conditions on the initial mesh. Here we give some results about acute triangulations mentioned or
proved in [KPP12]:

• Every n-gon in R2 has a triangulation into O(n) acute triangles.

• The 3-cube has an acute triangulation.
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• The d-cube cannot be acutely triangulated for d ≥ 4 and Rd cannot be triangulated for d ≥ 5.

But even in two dimensions, while a global red refinement of all triangles in T into four similar tri-
angles does not change the occurring angles, a simple red-green local refinement step can introduce
obtuse angles.

In [KK05] the authors use so-called path tetrahedra to take on the task of global and local refinement
of non-obtuse triangulations in three dimensions. A path tetrahedron is a tetrahedron in which
there exist three edges that form a non-closed path and are mutually orthogonal. They show that
in 3D a red refinement of a single tetrahedron usually introduces obtuse interior dihedral angles
and propose a global refinement into a new regular triangulation of so-called path tetrahedra under
the condition that all T ∈ T contain their circumcenter and have non-obtuse triangles as their
faces. For their proposed non-obtuse local refinement around a vertex of a cluster of tetrahedra
containing that vertex they need to assume that one of the tetrahedra of the unrefined cluster is
already a path tetrahedron and that all the tetrahedra of that cluster are mirror images of another
tetrahedron of the cluster.

In summary, without going into much detail, we see that even the concept of non-obtuse triangu-
lations seems rather restrictive when the task is to triangulate complex domains in two or three
dimensions and to refine these meshes globally or locally such that non-obtuseness is preserved. 4

Now we recall that we intend to solve the convection-diffusion equation with homogeneous Dirichlet
boundary conditions. Since in this case the boundary values are vanishing a priori, one needs only
to compute the values of the discrete solution at interior nodes. A clean way of doing this in
the standard Galerkin approach is to restrict the mass and stiffness matrix so that only entries
corresponding to pairs of inner nodes remain. More specifically, let N = {p1, . . . , pN} and let I be
the index set of interior nodes, #I = M . Then the semi-discrete standard Galerkin problem is to
find u ∈ V 1

0 (T ) such that

(ut, v) + a(u, v) = (f, v) for all v ∈ V 1
0 (T ), (4.90)

where a(u, v) = ε(∇u,∇v) + (b · ∇u, v).

Remark 4.30. We remember that, since {ϕi : i = 1, . . . , N} is a partition of unity on Ω, D and
C have zero row sums. 4

Then problem (4.90) reads in algebraic formulation, where uI ∈ RM are the coordinates of the
discrete solution with respect to the basis {ϕi : i ∈ I} of V 1

0 (T ):

(MC)II
duI
dt

+ (D + C)IIuI = (f, ϕi)i∈I . (4.91)

Now on the way towards an LED version of this problem, there are two questions:

1.) How to obtain the lumped mass matrix? Two obvious possible ways to do this would be:

a) to lump the row entries of the full matrix MC into the diagonal to obtain ML and then
restrict to (ML)II
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b) or to lump the row entries of (MC)II into the diagonal, i.e. to first restrict and then
lump.

2.) If a diffusion or upwinding matrix Y has to be applied to the stiffness matrix for the semi-
discrete scheme to become LED, the same question arises. Should the order be

a) to first add such a matrix to K = −(D + C) and then restrict to KII

b) or to add such a matrix to KII?

As for the first question, answer a) seems to be the right one, because if we choose b), we lose
the property that the diagonal entries of the lumped mass matrix equal the area or volume of the
associated barycentric dual cell (see Lemma 4.8) for nodes adjacent to boundary nodes. This was,
however, part of the interpretation of the upwind finite element method as a finite volume scheme.
As for the second question, let us recall Proposition 4.14 and Remark 4.15, where we made the
case for the order given in a) when upwinding by adding the matrix Y . In this case of algebraic
upwinding, the order given in a) ensures that the interior barycentric dual cells receive their con-
vective contribution from the surrounding cells which are upwind, even if these cells are boundary
dual cells. In the context of adding a diffusion matrix to the stiffness matrix to guarantee the LED
criterion from Theorem 4.22, proceeding in this order guarantees that the zero boundary values
are used in determining whether u has a local extremum at a node next to the boundary; see the
following proof for this.

We can now restate Theorem 4.22 for the homogeneous Dirichlet problem:

Theorem 4.31. Let the domain Ω ⊂ Rd be triangulated by T , the node set be numbered N =
{pi : i = 1, . . . , N}, I the index set of N ◦, #I = M , and denote for u ∈ V 1

0 (T ) by u ∈ RM also
its coordinates with respect to the standard nodal basis. Let ML = diag(m1, . . . ,mM ) with mi > 0,
K ∈ RN×N with kij = 0 for j /∈ K(i),

∑N
j=1 kij = 0 for i ∈ I ⊂ {1, . . . , N} and r ∈ RM . Then the

semi-discrete scheme

ML
du

dt
= KIIu+ r (4.92)

is LED if and only if K is of I-non-negative type. 4

Proof. We repeat the proof of Theorem 4.22 setting uj = 0 for j /∈ I. Assume first kij ≥ 0 for all
i ∈ I and j = 1, . . . , N , j 6= i. Then if ui ≥ maxj∈K(i) uj and ri ≤ 0 for some i ∈ I, we obtain
because of the zero row sum property

dui
dt

=
1

mi

∑
j∈I

kijuj + ri

 =
1

mi

 N∑
j=1

kijuj + ri

 =
1

mi︸︷︷︸
≥0

 ∑
j∈K(i)

kij︸︷︷︸
≥0

(uj − ui)︸ ︷︷ ︸
≤0

+ ri︸︷︷︸
≤0

 ≤ 0

(4.93)
and analogously dui

dt ≥ 0 for local minima and ri ≥ 0. The necessity proof can be copied verbatim
from the proof of Theorem 4.22. �

If the triangulation T of the domain Ω ⊂ Rd is such that for the full diffusive matrix D, its negative
−D is of positive type, then we see from Proposition 4.14 that upwinding the convective part C
algebraically in the way suggested there is sufficient to ensure for the semi-discrete scheme (4.91)
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to be LED. We have seen in Proposition 4.25 a sufficient and necessary condition, namely that
T is a Delaunay trianguation, for this to be the case when d = 2 and a sufficient but restrictive
criterion for any d ≥ 2 in Proposition 4.28, namely the non-obtuse angle condition on T . We have
also mentioned in Remark 4.26 Barth’s negative result that a 3D Delaunay triangulation does not
guarantee the non-negative off-diagonal entries of −D.

Let us now state two dissatisfactory properties of the LED schemes developed thus far.

Remark 4.32 (Oscillations in LED schemes on irregular meshes). LED schemes in d ≥ 2 are
not necessarily free of oscillations. Consider the simple case of a triangulated domain Ω ⊂ R2

containing the triangulated portion displayed in Figure 4.5 which in turn contains a portion of
{(x, y) ∈ R2 : y = 0} and an initial state u0 ∈ C(Ω) such that u0 ≡ 0 on Ω ∩ {y = 0} and that the
values −1 and 1 are attained at the nodes above (below) {y = 0}. Let b ≡ (1, 0).

Then for very small ε > 0 and away from ∂Ω, u solving ut − ε∆u + b · ∇u = 0 on ΩT should
display almost pure advection along lines {y = const.} without ripples. The triangulation shown in
Figure 4.5 is non-obtuse, so if it is extended non-obtusely to all of Ω, the semi-discrete finite element
method with upwinded convective part will be an LED scheme. However, as can be seen from the
inclinations of the effective dual cell boundaries (dashed lines) of C1 and C2, the upwind advective
flux balance into C1 will be positive and the flux balance into C2 will be negative, thus allowing
a ripple structure along Ω ∩ {y = 0} to develop, even though these ripples will not constitute new
local extrema.

The reason such ripples can occur in the considered situation of three not quite parallel lines
{u = −1}, {u = 0} and {u = 1} is the irregularity of the shown mesh with respect to the direction
of b. It allows for fluxes into C1 and C2 from nodes that should not have an advective influence.
The effective dual cell tops and bottoms would be horizontal for a regular Friedrichs-Keller tri-
angulation on the other hand, thus not allowing polluting fluxes into these cells from the line of
constantly valued nodes above and below {y = 0}. For an advection field b variable in space and
general u0, even a regular mesh could not preclude such an effect.

We conclude that suppressing all conceivable notions of oscillation is somewhere between hard and
impossible to reconcile with the desire for developing methods involving spatially variable fields b
on geometrically irregular simplicial meshes, at least if these meshes are not specially adapted to
b. We therefore carry on with the LED principle. 4

Remark 4.33 (Godunov type order barrier). Similar to [HV03, page 59] for 1D constant ad-
vection, we can show that in general we run into a first consistency order barrier with our linear
compact stencil LED schemes.

To show this, we consider the 1D problem ut = Lu := εuxx − bux in Ω = (α, β) ⊂ R, where b > 0
is a constant. Let α = x1 < · · · < xN = β be equidistant grid points defining the triangulation T
with |T | = h = (c− a)/(N − 1) for all T ∈ T . Then for i ∈ {2, . . . , N − 2}, row i of a semi-discrete
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Figure 4.5: A situation where the upwinded finite element method produces oscillations

LED scheme with compact stencil has the form

dui
dt

= (Lhu)i :=

1∑
k=−1

akui+k (4.94)

with
∑1

k=−1 ak = 0 and a−1, a1 ≥ 0, where the coefficients αk do not depend on i because T is
equidistant and ε and b are constants. Denote by Pe the cell Péclet number, Pe = hb/ε, and let
u, ux, uxx be shorthands for u(xi), ux(xi), uxx(xi). Assuming the exact solution u is smooth enough,
Taylor series expansion gives

(Lu)(xi)−
1∑

k=−1

aku(xi+k) = εuxx − bux −
1∑

k=−1

ak

(
u+ khux +

1

2
k2h2uxx

)
+O(h3)

= −

(
1∑

k=−1

ak

)
u−

(
b+ h

1∑
k=−1

kak

)
ux +

(
ε− h2

2

1∑
k=−1

k2ak

)
uxx +O(h3).

(4.95)

The first bracket vanishes as long as a0 = −(a−1 + a1). For the other two brackets to vanish, we
need to solve (

h −h
h2/2 h2/2

)(
a−1

a1

)
=

(
b
ε

)
⇐⇒

(
a−1

a1

)
=

1

h3

(
h2/2 h
−h2/2 h

)(
b
ε

)
. (4.96)

Since a1 must be non-negative, the second equation cannot be satisfied in our case of interest Pe > 2
and thus second order consistent approximation of L by Lh is impossible. First order consistency
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implies (a1 − a−1)h = −b.

The first order limitation gives numerical solutions of LED schemes an overly diffused quality. 4

The LED schemes we have looked at so far are linear, which makes them unable to adapt their
behaviour to the solution they are producing. On the other hand, the necessity part of the proof
of Theorem 4.22 and our observations in the introduction suggest that spurious local extrema
develop because of large jumps in the solution at neighbouring points, e.g. at layers or spikes. On
smoother parts of the solution, the second-order standard Galerkin approximation will usually be
well-behaved and therefore superior to a linear LED scheme because of its second order convergence
rate. A hybridisation of the two approaches is what we need in order to avoid the excessive diffusion
of LED or upwind schemes (manifested in the Godunov order barrier) in solution regions where
no spurious effects are created by the standard scheme while fully engaging the LED schemes at
places where oscillations would otherwise develop. Since such a hybrid scheme would necessarily
have to act upon information about the shape of the solution at the current time-step, it has to
be solution-dependent. Hence, such a scheme cannot not be linear, although we are dealing with a
linear problem.
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5. Flux Corrected Transport

5.1 Zalesak’s Original FCT

In [Zal79], Zalesak presents an extension of the flux corrected transport (FCT) method invented
by Boris and Book [BB73; BBH75; BB76] to multi-dimensional problems in a clear and adaptable
fashion. We thus take Zalesak’s paper as our entry point to FCT and also take the liberty of adapt-
ing his presentation for two-dimensional tensor product grids to general tessellations C of domains.

So let Ω ⊂ Rd be a domain, J := {1, . . . , N} and C = {Cj : j ∈ J } a collection of closed cells
Cj ⊂ Ω such that C◦i ∩C◦j = ∅ for i 6= j and

⋃
C∈C C = Ω. Set Γj := ∂Cj for j ∈ J and Γij := Γi∩Γj

and call two distinct cells Ci, Cj adjacent if Γij 6= ∅. If ∂Cj∩∂Ω = ∅, we call Cj an interior cell, oth-
erwise a boundary cell. For each boundary cell Cj we introduce a ghost cell Cgj ∈ Rd \Ω such that
Cgj ∩Cj = ∂Cj∩∂Ω and set Cg := {Cgj : Cj is a boundary cell} and Ng := #Cg. We number the cells
in Cg as cells CN+1, . . . , CN+Ng . This allows us to describe the boundary of all cells as composed
of portions shared with another cell: Define K(j) = {k ∈ {1, . . . , N +Ng} : Ck is adjacent to Cj}
for j ∈ J .

Then Zalesak’s version of multi-dimensional FCT applies to schemes in flux form that compute
numerical solution values uni associated to cell Ci and time step n and have the following form:

wn+1
i = wni +

1

|Ci|
∑
j∈K(i)

Fnij for i ∈ J . (5.1)

The Fij are called the inter-cell fluxes and are defined for any pair of adjacent cells/points. They
must satisfy Fij = −Fji in order for Fij to signify a transfer of substance from Cj into Ci. The
upper index n in Fnij will be henceforth omitted.

FCT offers a way to combine two separate methods of the form (5.1) that should be designed to solve
the same problem but have different properties. These methods in flux form are then determined by
two sets of fluxes {FLij} and {FHij }, the low order and the high order fluxes. Typically, the methods
given by the low order fluxes will be highly diffusive but non-oscillatory (or in our case: LED),
while the higher order flux method will – as indicated by the name – be of higher convergence
order. FCT proceeds with the following steps, where always i ∈ J , j ∈ K(i):

(1) Compute the fluxes FLij and FHij .
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(2) Compute the antidiffusive fluxes Aij := FHij − FLij .

(3) Compute the low order or transported and diffused solution

utdi := uLi := uni +
1

|Ci|
∑
j∈K(i)

FLij . (5.2)

(4) Compute the corrected or limited antidiffusive fluxes ACij := αijAij , where αij = αji ∈ [0, 1].

(5) Apply limited antidiffusion:

un+1
i := utdi +

1

|Ci|
∑
j∈K(i)

ACij . (5.3)

The flux limiting step (4) is of course the crucial one. The constants αij = αji ∈ [0, 1] should be
chosen as large as possible but as small as is necessary so that the limited antidiffusive fluxes in step
(5) do not cause any unwanted effects in un+1. The objective is to ensure that un+1

i ∈ [umin
i , umax

i ]
for each i ∈ J and user-defined bounds umin

i ≤ umax
i whose suitable definition we will come back

to in a moment. For each i ∈ J define

P+
i :=

∑
j∈K(i)

A+
ij (5.4)

Q+
i := |Ci|(umax

i − utdi )+ (5.5)

R+
i :=

min
(

1,
Q+
i

P+
i

)
if P+

i > 0

1 if P+
i = 0

(5.6)

P−i :=
∑
j∈K(i)

A−ij (5.7)

Q−i := |Ci|(umin
i − utdi )− (5.8)

R−i :=

min
(

1,
Q−i
P−i

)
if P−i < 0

1 if P−i = 0,
(5.9)

where we use the definition x+ := max(0, x) ≥ 0 and x− := min(0, x) ≤ 0 and have some changes
in comparison to the definitions in [Zal79]: we define P−i and Q−i with the opposite sign, which has
no influence on the quotient Q−i /P

−
i and in the second case in R+

i and R−i we assign the value 1
instead of 0 and instead of requiring a priori that umin

i ≤ utdi ≤ umax
i we have added cut-offs in the

definitions of Q+
i and Q−i .

Zalesak’s proposed limiting procedure is given by setting for any i ∈ J and j ∈ K(i)

αij :=

{
min(R+

i , R
−
j ) if Aij ≥ 0

min(R+
j , R

−
i ) if Aij < 0.

(5.10)

We note that the choice (5.10) ensures the necessary symmetry condition αij = αji for Aij 6= 0
because Aji = −Aij and that, given umin

i ≤ utdi ≤ umax
i for all i ∈ J , the choices in (5.7) – (5.10)
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ensure umin
i ≤ un+1

i ≤ umax
i for all i ∈ J :

un+1
i = utdi +

1

|Ci|
∑
j∈K(i)

αijAij

= utdi +
1

|Ci|

 ∑
j∈K(i):Aij<0

αijAij +
∑

j∈K(i):Aij>0

αijAij


∈ utdi +

1

|Ci|

 ∑
j∈K(i):Aij<0

αijAij ,
∑

j∈K(i):Aij>0

αijAij


⊂ utdi +

1

|Ci|

R−i ∑
j∈K(i):Aij<0

Aij , R
+
i

∑
j∈K(i):Aij>0

Aij


= utdi +

1

|Ci|
[
R−i P

−
i , R

+
i P

+
i

]
⊂ utdi +

1

|Ci|
[
Q−i , Q

+
i

]
= [umin

i , umax
i ].

(5.11)

Remark 5.1 (Preprocessing of antidiffusive fluxes before correction step (4)). Zalesak mentions
two ways of altering the fluxes Aij before limiting them in step (4). He uses two-dimensional tensor
product grids with discrete coordinates (i, j) and denotes the flux from cell (i, j) into cell (i+ 1, j)
by Ai+1/2,j , the flux from (i, j) into (i, j + 1) by Ai,j+1/2 (opposite sign convention!).

• Cancellation of diffusive “antidiffusive” fluxes:
Set Ai+1/2,j = 0 if

Ai+1/2,j(u
td
i+1,j − utdi,j) < 0

and Ai+1/2,j(u
td
i+2,j − utdi+1,j) < 0

or Ai+1/2,j(u
td
i,j − utdi−1,j) < 0

 (5.12)

and Ai,j+1/2 = 0 if

Ai,j+1/2(utdi,j+1 − utdi,j) < 0

and Ai,j+1/2(utdi,j+2 − utdi,j+1) < 0

or Ai,j+1/2(utdi,j − utdi,j−1) < 0

 . (5.13)

This is done to suppress unexpected diffusive behaviour of the antidiffusive fluxes when their
direction of mass transport is down gradients. Conditions (5.12) and (5.13) seem to be de-
signed to detect situations where utd is monotone rather than zig-zagging in x- or y-direction,
respectively, and where additional diffusion in this respective direction is thus uncalled for.
However, Zalesak claims this adjustment to be of cosmetic nature in most cases.

On irregular meshes, the grid points are no longer aligned along two orthogonal directions
and there is no obvious way of generalising these three-piece conditions. One way (called
prelimiting in [Kuz10]) is to set Aij = 0 (we are back to our own notation and sign convection!)
whenever Aij(u

td
i −utdj ) > 0, which amounts to reducing conditions (5.12) and (5.13) to their

first inequality.

63



• Limiting along coordinate directions first: If the low order scheme produces a solution utd that
is monotonic along an axis parallel grid line and the antidiffusive step destroys that property
(this usually happens if there is a large gradient in the solution transverse to this line), then
one-dimensional limiting of the fluxes Ai+1/2,j and Ai,j+1/2 along the x- and y-direction can
be performed prior to the two-dimensional limiting step in order to keep new extrema in the
axis direction restrictions from being accentuated or created.

4

Zalesak’s proposed choices for the umin
i and umax

i are either

umin
i := min

j∈K(i)∪{i}
unj umax

i := max
j∈K(i)∪{i}

unj (5.14)

or

umin
i := min

j∈K(i)∪{i}
uaj umax

i := max
j∈K(i)∪{i}

ubj , (5.15)

where uaj := min(utdj , u
n
j ) and ubi := max(utdj , u

n
j ) and the right-hand choice is expected to perform

better because it can undo to some extent excessive diffusion developed in utd.

5.2 Intermezzo: M-Matrices

Definition 5.2 (Z-, monotone and M-matrix). Let A ∈ Rn×n be a matrix. A is called a Z-matrix
if aij ≤ 0 for all pairs i 6= j. A non-singular matrix is called monotone if its inverse has non-negative
entries, i.e. if A−1 ≥ 0. A monotone Z-matrix is called an M-matrix. 4

Definition 5.3 (Irreducibility). A matrix A ∈ Cn×n is called irreducible if there exists no per-
mutation matrix P ∈ {0, 1}n×n such that

PAP T =

[
A11 A12

0 A22

]
(5.16)

with square blocks A11 and A22. A more usable equivalent definition is given in terms of directed
paths: For 1 ≤ i, j ≤ n, a sequence

aik1 , ak1k2 , . . . , akr−1kr , akrj (5.17)

of non-zero entries of A is called a directed path from i to j. Now A is irreducible if and only if
there exists a directed path connecting i and j for any pair (i, j) ∈ {1, . . . , n}2. 4

Definition 5.4 (Diagonal dominance). A matrix A ∈ Cn×n is called (weakly) diagonally dominant
if

|aii| ≥
n∑
j=1
j 6=i

|aij | (5.18)

holds for i = 1, . . . , n and strictly so if the inequality is strict for all i = 1, . . . , n. A is called
irreducibly diagonally dominant if it is an irreducible matrix and (5.18) holds for at least one
i ∈ {1, . . . , n}. 4
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Lemma 5.5. A strictly or irreducibly diagonally dominant matrix A is non-singular. 4

Proof. This is well-known and a simple consequence of the Gershgorin circle theorem in the strictly
diagonally dominant case, see [Var00, Theorem 1.21] for the proof in this case. If A is irreducibly
diagonally dominant, then a sharpened version of Gershgorin’s theorem, see [Var00, Theorem 1.18],
has to be used. �

Theorem 5.6 (Perron-Frobenius, [Var00, Theorem 2.7]). Let 0 ≤ A ∈ Rn×n be an irreducible
matrix. Then

(i) ρ(A) > 0 and ρ(A) is an eigenvalue of A.

(ii) There exists x > 0 such that Ax = ρ(A)x.

(iii) ρ(A) increases strictly when any entry of A is increased.

(iv) ρ(A) is a simple eigenvalue of A. 4

Lemma 5.7. If 0 ≤ A ∈ Rn×n is irreducible, then either

n∑
j=1

aij = ρ(A) for i = 1, . . . , n (5.19)

or

min
i=1,...,n

n∑
j=1

aij < ρ(A) < max
i=1,...,n

n∑
j=1

aij (5.20)

4

Proof. This proof is some simplification of the one of [Var00, Lemma 2.8]. Let 1 denote the vector
with 1 as each component. Then if all row sums of A are equal to some σ ≥ 0, A1 = σ1, 1 is
an eigenvector with eigenvalue σ and hence σ ≤ ρ(A). If λ ∈ C is an eigenvalue of A, then by
Gershgorin’s theorem

|λ| − aii ≤ |λ− aii| ≤
n∑
j=1
j 6=i

aij = σ − aii for some i ∈ {1, . . . , n}, (5.21)

which shows ρ(A) ≤ σ and concludes the proof of (5.19) if all row sums are equal. For the case
where the row sums are not all equal to some common value, we confine ourselves to proving the
second inequality in (5.20). Since A is irreducible, each row must contain some positive entry. We
define a new irreducible B ≥ 0 by increasing such an entry in all rows k with

n∑
j=1

akj < max
i=1,...,N

n∑
j=1

aij =: σ (5.22)

to the extent that all row sums of B are exactly equal to σ. Now we conclude from the case just
treated and part (iii) of Theorem 5.6 that ρ(A) < ρ(B) = σ. �
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Theorem 5.8. Let A ∈ Rn×n be a strictly diagonally dominant or irreducibly diagonally dominant
Z-matrix with aii > 0 for i = 1, . . . , n. Then A is an M-matrix. 4

Proof. From Lemma 5.5 it follows that A is invertible. Define D := diag(a−1
11 , . . . , a

−1
NN ) and

B := I −DA. Then

bij =

{
0 if i = j

−aij
aii

if i 6= j,
(5.23)

which shows B ≥ 0. If A is strictly diagonally dominant, then

n∑
j=1

|bij | < 1 for i = 1, . . . , n (5.24)

shows that ρ(B) ≤ ‖B‖∞ < 1.

If A is irreducibly diagonally dominant and not strictly diagonally dominant, then B is irreducible,
too. To prove this claim, we note that irreducibility of a matrix A depends only on its pattern P ,
where

pij =

{
1 if aij 6= 0

0 else.
(5.25)

Therefore X := −DA is irreducible. Let 1 ≤ i 6= j ≤ n and let

xik1 , . . . , xkrj (5.26)

be a directed path of non-zero elements from i to j. Then we can eliminate any members of the
form xkk from this chain and see that there exists a connected path

bik1 , . . . , bkrj , (5.27)

since bkl = xkl for k 6= l. For j = i we take a path without members of the form xkk from i to
some auxiliary l 6= i and concatenate it with its reverse path to obtain a directed path of non-zero
elements of B from i to i.

Now we infer from

min
i=1,...,n

n∑
j=1

bij < 1 = max
i=1,...,n

n∑
j=1

bij , (5.28)

and Lemma 5.7 that ρ(B) < 1 and argue as in the proof of [Var00, Theorem 3.18] to finish the
proof: The matrix DA = I − B is invertible because the Neumann series (I − B)−1 =

∑∞
k=0B

k

converges. All powers of B are non-negative, hence (I − B)−1 ≥ 0. Therefore A−1D−1 ≥ 0 and
A−1 ≥ 0. �

5.3 Proposition of a Two-Step FCT Method for the Finite Ele-
ment Dirichlet Problem

Let Ω ⊂ Rd be triangulated by T , #N = N and let I with #I = M be the index set of interior
nodes. Take MC ,ML, C,D,K ∈ RN×N to be as in Definition 0.4 and Y ∈ RN×N to be a discrete
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diffusion matrix with zero row sums such that

L := K + Y (5.29)

has non-negative off-diagonal matrices. Then we have the standard Galerkin and the LED method
for the convection-diffusion equation with f ≡ 0:

M◦C
duH

dt
= K◦uH (5.30)

M◦L
duL

dt
= L◦uL. (5.31)

Let us propose a two-step FCT method even though the present high and low order schemes are not
in flux form, but in which there are antidiffusive fluxes that satisfy the anti-symmetry property.
Assume we have computed uk and want to combine the high order and low order fully discrete
solution by a θ-stepping,

(MC − θτK)◦uH,k+1 = (MC + (1− θ)τK)◦uk (5.32)

(ML − θτL)◦uL,k+1 = (ML + (1− θ)τL)◦uk (5.33)

in order to compute an “in-between” new time-step solution uk+1. Defining the matrices

Â := MC − θτK B̂ := MC + (1− θ)τK (5.34)

A := ML − θτL B := ML + (1− θ)τL (5.35)

and f◦ := (A− Â)◦uH,k+1 + (B̂ −B)◦uk, the high order step can be equivalently written as

A◦uH,k+1 = A◦uL,k+1 + f◦ = B◦uk + f◦ (5.36)

and dropping f◦ in this equation would yield the low order solution. Now we set

f := (A− Â)uH,k+1 + (B̂ −B)uk (5.37)

and decompose each component of fi, i ∈ I, into a sum of internodal fluxes fij . We have

f = (ML −MC − θτY )uH,k+1 + (MC −ML − (1− θ)τY )uk

= (ML −MC)(uH,k+1 − uk)− τY (θuH,k+1 + (1− θ)uk)
(5.38)

and thus for i = 1, . . . , N

fi = mi(u
H,k+1 − uk)i −

N∑
j=1

mij(u
H,k+1 − uk)j − τ

N∑
j=1

yij(θu
H,k+1 + (1− θ)uk)j

=

N∑
j=1
j 6=i

mij

[
(uH,k+1
i − uH,k+1

j )− (uki − ukj )
]

+ τyij

[
θ(uH,k+1

i − uH,k+1
j ) + (1− θ)(uki − ukj )

]

=

N∑
j=1
j 6=i

(mij + θτyij)(u
H,k+1
i − uH,k+1

j )− (mij − (1− θ)τyij)(uki − ukj )︸ ︷︷ ︸
=:fij

,

(5.39)
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where we set uj = 0 for j /∈ I. The symmetry of MC and yij = yji for i ∈ I, j ∈ {1, . . . , N}, i 6= j
then immediately gives fji = −fij . Note that for θ = 0 (and only in that case) this decomposition
of f renders (5.36) to have the form (5.3) with αij = 1 for all i, j. For θ 6= 0 we therefore work
with solutions multiplied from the left by A◦ so we do not lose the local nature of antidiffusive fluxes.

If now α ∈ [0, 1]N×N is symmetric and F := (fij)i,j=1,...,N we obtain a flux corrected solution uk+1

by solving
A◦uk+1 = A◦uL,k+1 + diag(Fα)I = B◦uk + diag(Fα)I . (5.40)

Given values umin
i , umax

i for i ∈ I we set

umin := (umin
i )i∈I umax := (umax

i )i∈I (5.41)

umin
A := A◦umin umax

A := A◦umax (5.42)

and then apply Zalesak’s limiting strategy to obain suitable αij to ensure that

A◦uk+1 ∈ [umin
A , umax

A ]. (5.43)

The matrix A◦ is an M-matrix (see Lemma 5.9), hence (A◦)−1 ≥ 0 (non-negative entries). This
implies that

uk+1 ∈ [umin, umax], (5.44)

which was the declared goal. If θ = 0 and thus A◦ = M◦L, these identities are even equivalent.

Lemma 5.9. The matrix A◦ (for A defined in (5.35)) is an M-matrix. 4

Proof. We have by definition A = ML−θτL, where ML is a positive diagonal matrix, θ ≥ 0, τ > 0,
L has zero row sums and lij ≥ 0 for i 6= j. Therefore A is a Z-matrix with positive diagonal and
positive row sums and thus strictly diagonally dominant for θ > 0. Restricting A to A◦ = AII
removes some non-positive column entries from each remaining row, thus only increasing the row
sums. It follows from Theorem 5.8 that A◦ is an M-matrix for θ > 0. In the case θ = 0 the matrix
A reduces to ML and the assertion is trivial. �

5.4 The FCT Approach of Kuzmin

In Kuzmin’s method, no independent calculation of the high order solution step is performed;
rather, the new time step solution is attempted to be attained in a single non-linear step or by a
linearised version of a non-linear step.

From now on, f will no longer be a linear source term as in (2.1), but f will stand for fluxes unless
locally defined otherwise.

5.4.1 Formal Semi-Discrete Limited Scheme

Disregarding boundary conditions, in Section 4.1 of [Kuz10], Kuzmin operates with the full consis-
tent and lumped mass matrices and uses the following definition for the discrete diffusion matrix:

Definition 5.10 (Kuzmin’s discrete diffusion matrix). A discrete diffusion matrix Y ∈ RN×N in
the sense of Kuzmin has to satisfy
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(i) Y is symmetric with
∑N

j=1 yij = 0 for i = 1, . . . , N .

(ii) For L := K + Y it holds lij ≥ 0 for all i, j ∈ {1, . . . , N} with i 6= j.

Hence the lower bound for yij , i 6= j is

yij := max(0,−kij ,−kji). (5.45)

It is this choice for Y that will henceforth be referred to as Kuzmin’s discrete diffusion matrix. 4

Remark 5.11. With Kuzmin’s discrete diffusion matrix, the whole operator K = −(C + εD) is
manipulated, not just the convective part C. This can be thought of a “minimally invasive” way
to obtain an LED semi-discrete scheme; the natural diffusion introduced by εD is used to reduce
the amount of artificial diffusion that would be introduced by defining Y as the upwinding matrix
from (4.43). 4

The linear high order and low order semi-discrete schemes

MC
du

dt
= Ku and ML

du

dt
= Lu, (5.46)

where L := K + Y , are connected formally by noticing that

ML
du

dt
= Lu+ f (5.47)

returns the high order method for

f = (ML −MC)
du

dt
− Y u (5.48)

and the low order method for f = 0. Therefore, f can be regarded as a sum of unlimited or raw
antidiffusive fluxes. Kuzmin then suggests the following decomposition of f into raw antidiffusive
internodal fluxes fij :

fij :=

(
mij

d

dt
+ yij

)
(ui − uj) for i 6= j. (5.49)

This decomposition is motivated by the following calculation which makes use of the zero row sum
property of ML −MC and Y :

fi =

(
(ML −MC)

du

dt

)
i

− (Tu)i = mi
dui
dt
−

N∑
j=1

mij
duj
dt
−

N∑
j=1

yijuj

=
N∑
j=1
j 6=i

mij
d

dt
(ui − uj)− yij(uj − ui) =

N∑
j=1
j 6=i

fij .

(5.50)

As should for a flux, it holds that fij = −fji for all i 6= j since MC and Y are symmetric matrices.
Now each such flux can be limited by multiplying fij by some αij ∈ [0, 1], where αij = αji should
hold in order to maintain antisymmetry. Setting

f ij := αijfij and f i :=
N∑
j=1
j 6=i

f ij and f = (f i)i=1,...,N , (5.51)
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a new formal limited scheme

ML
du

dt
= Lu+ f (5.52)

is generated. It should be noted that, with the Zalesak limiter, the αij will depend non-linearly
and non-smoothly on u and f and thus (5.52) cannot be cast into the shape of an explicit ODE in
an obvious way. Hence (5.52) may not be a well-posed semi-discrete problem. Nevertheless, a fully
discrete version may be solvable.

5.4.2 Fully Discrete Limited Scheme

In [Kuz10, Section 4.4], a full discretisation by means of a θ-stepping is suggested:

(ML − θτL)un+1 = (ML + (1− θ)τL)un + τf(un+1, un), (5.53)

where f is defined as in (5.51) and the differential d/dt in (5.49) is replaced by a difference quotient
to define

fij := mij

(un+1
i − un+1

j )− (uni − unj )

τ
+ yij

(
θ(un+1

i − un+1
j ) + (1− θ)(uni − unj )

)
. (5.54)

A limiting strategy for the αij motivated by Zalesak’s work is given by setting

P+
i :=

∑
j∈K(i)

f+
ij (5.55)

Q+
i :=

mi

τ
(ũmax
i − ũi) (5.56)

R+
i :=

min
(

1,
Q+
i

P+
i

)
if P+

i > 0

1 if P+
i = 0

(5.57)

P−i :=
∑
j∈K(i)

f−ij (5.58)

Q−i :=
mi

τ
(ũmin
i − ũi) (5.59)

R−i :=

min
(

1,
Q−i
P−i

)
if P−i < 0

1 if P−i = 0
(5.60)

and

αij :=

{
min(R+

i , R
−
j ) for fij ≥ 0

min(R−i , R
+
j ) for fij < 0.

(5.61)

Here, the values involving ũ are gathered from time steps before time mark n+ 1 and thus the Q+
i

and Q−i are constants with respect to the variable un+1 of the nonlinear problem (5.53).

We might be interested in investigating whether problem (5.53) is well-posed for small τ > 0. We
therefore restate it in a way that is equivalent for positive τ but also defined in the limiting case
τ = 0. Namely, we consider

(ML − θτL)un+1 = (ML + (1− θ)τL)un + f(un+1, un), (5.62)

with (5.51) unchanged,

fij := mij

(
(un+1
i − un+1

j )− (uni − unj )
)

+ yijτ
(
θ(un+1

i − un+1
j ) + (1− θ)(uni − unj )

)
(5.63)

and
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P+
i :=

∑
j∈K(i)

f+
ij (5.64)

Q+
i := mi(ũ

max
i − ũi) (5.65)

R+
i :=

min
(

1,
Q+
i

P+
i

)
if P+

i > 0

1 if P+
i = 0

(5.66)

P−i :=
∑
j∈K(i)

f−ij (5.67)

Q−i := mi(ũ
min
i − ũi) (5.68)

R−i :=

min
(

1,
Q−i
P−i

)
if P−i < 0

1 if P−i = 0.
(5.69)

as well as (5.61) unchanged.

A natural question which is – unfortunately – not adressed in any of the works of Kuzmin et al.
is for which choices of time step τ > 0 the problem (5.62) possesses a solution or even a unique
solution. With the Zalesak limiter just presented, this is not trivial because of the nonlinear and
nonsmooth nature of the problem. Apart from abstract existence (and maybe uniqueness) results,
it would be desirable to have a practical algorithm at hand (such as a fixed point iteration or a
Newton method) that can be shown to converge to such solutions. While so-called fixed point
iterations with acceleration techniques and Newton methods have been implemented by Kuzmin et
al. in [Kuz10] and [MKK07], respectively, and seem to work, the questions of existence and whether
(5.62) represents in some form a contraction that would justify using a fixed point algorithm or if
convergence criteria for non-smooth Newton methods are met has not been addressed.

5.4.3 An Attempt to Establish Unique Solvability

5.4.3.1 Problem Reformulation

Let us introduce the notation

h := un+1 − un, cij(τ) := mij + θτyij , gij(τ) := τyij(u
n
i − unj ) (5.70)

to restate problem (5.62) in slightly simplified form. To this end, we note that we may indeed
switch to the variable h because R+

i and R−i depend on un+1 only through the fij and each fij can
be written as

fij(h, τ) = (mij + θτyij)
(

(un+1
i − uni )− (un+1

j − unj )
)

+ τyij(u
n
i − unj )

= cij(τ)(hi − hj) + gij(τ).
(5.71)

After defining
F (h, τ) := (ML − θτL)h− f(h, τ)− τLun (5.72)

we notice that
F (0, 0) = 0, (5.73)

which can be interpreted as un being the sought solution at τ = 0, and that solving problem (5.62)
for some τ > 0 is equivalent to finding some (unique?) h(τ) such that

F (h(τ), τ) = 0. (5.74)

This renders the problem in a form that might be amenable to some form of implicit function
theorem argument.
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5.4.3.2 Implicit Function Theorem for Locally Lipschitz Continuous Functions

The singular goal of this subparagraph it to prove Theorem 5.14.

Theorem 5.12 (Rademacher). Let U ⊂ Rn be open and f : U → Rm be locally Lipschitz contin-
uous. Then f is differentiable almost everywhere in U . 4

Definition 5.13 (Generalised Jacobian). Let U ⊂ Rn be open and f : U → Rm locally Lipschitz
continuous at x ∈ U . Let Df ⊂ U be the set of points in which f is differentiable.

(a) The set ∂Bf(x) := {G ∈ Rm×n : ∃ (xn)n∈N ⊂ Df with xn → x and ∇f(xn) → G} is called
the B- or Bouligand subdifferential.

(b) The set ∂f(x) := conv (∂Bf(x)) is called the generalised Jacobian in the sense of Clarke.

(c) If f : Rn × Rm ⊃ U → Rn, we denote by Πx∂f(x, y) the set of projections G ∈ Rn×n of
elements [G H] ∈ ∂f(x, y). 4

Theorem 5.14 (Implicit function theorem for Lipschitz functions, [Hin10, Theorem 2.6]). Let
f : Rn × Rm → Rn be Lipschitz continuous in a neighbourhood of a point (x0, y0) ∈ Rn × Rm for
which f(x0, y0) = 0. Assume that all matrices in Πx∂f(x0, y0) are non-singular. Then there exist
open neighbourhoods Vx0 of x0 and Vy0 of y0 such that for every y ∈ Vy0 the equation f(x, y) = 0
has a unique solution x = ϕ(y) ∈ Vx0 and in particular ϕ(y0) = x0. Furthermore, the function
ϕ : Vy0 → Vx0 is Lipschitz continuous. 4

Lemma 5.15. For U ⊂ Rn open and f : U → Rm locally Lipschitz continuous and x ∈ U the
generalised Jacobian ∂f(x) is a non-empty, compact, convex set and the set-valued map ∂f is upper
semicontinuous. 4

Proposition 5.16 (Specialised chain rule, [Hin10, Corollary 2.1]). Let U, f, x be as before. Then
for any y ∈ Rm it holds ∂(yT f)(x) = yT∂f(x). 4

Definition 5.17 (Clarke’s generalised directional derivative). Let U ⊂ Rn be open and f :
U → Rm a locally Lipschitz continuous function, x ∈ U and v ∈ Rn. Then define its generalised
directional derivative f◦(x; ·) : Rn → Rm in the sense of Clarke as

f◦(x; v) := supDf (x; v), (5.75)

where

Df (x; v) :=

{
lim
n→∞

f(xn + tnv)− f(xn)

tn
: xn → x and tn ↓ 0

}
. (5.76)

Note that (Rm,≤) with x ≤ y understood elementwise is a vector lattice, hence suprema make
sense. 4

Lemma 5.18. Let U, f, x, v be as in the previous definition. Then

(i) Df (x; v) ⊂ Rm is non-empty and compact.

(ii) yTDf (x; v) = DyT f (x; v) for all y ∈ Rm. 4
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Proof. For xn → x and tn ↓ 0 the sequence (f(xn + tnv)− f(xn))/tn remains bounded (uniformly
with respect to the choice of sequence) and a convergent subsequence can be selected because Rm
is finite-dimensional. Hence the set is non-empty and bounded. Sequential closedness follows from
a diagonal sequence argument:

Let d1, d2, · · · ∈ Df (x; v) and d ∈ Rm such that |dk − d| ≤ 2−k for k ∈ N. We want to show that
d ∈ Df (x; v) and thus need to find a sequence (xn, tn) with xn → x, tn ↓ 0 such that

f(xn + tnv)− f(xn)

tn
→ d for n→∞. (5.77)

For each k ∈ N, let xkn and tkn ≥ 0 be sequences with |xkn − x|, tkn, |qkn − dk| ≤ 2−n, where

qkn :=
f(xkn + tknv)− f(xkn)

tkn
. (5.78)

Then the choice xn := xnn and tn := tnn gives us all the desired properties since tn ≥ 0, |xn−x|, tn ≤
2−n and

|qnn − d| ≤ |qnn − dn|+ |dn − d| ≤ 2−n+1 → 0 for n→∞. (5.79)

Assertion (ii) is not hard to see. �

Proposition 5.19 (Generalised gradient = subdifferential, [Cla75, Proposition 1.4]). Let U ⊂ Rn
be open, x ∈ U and g : U → R locally Lipschitz continuous. Then g◦(x; ·) is the support function
of ∂g(x). More explicitly, for any v ∈ Rn

g◦(x; v) = max{u · v : u ∈ ∂g(x)T }, (5.80)

∂g(x)T = {u ∈ Rn : u · w ≤ g◦(x;w) ∀ w ∈ Rn} (5.81)

and therefore
∂g(x)v = [−(−g)◦(x; v), g◦(x; v)]. (5.82)

4

In [Thi82, Section 4], Thibault extends the notion of Clarke’s generalised derivative and subdif-
ferential to Hausdorff locally convex vector spaces X and Y and functions f : X → Y which are
Lipschitz at a point x ∈ X in a certain sense such that ∂(y∗ ◦f)(x) ∈ X∗ is declared for all y∗ ∈ Y ∗.
He then asks the question whether a set-valued mapping ∆f (x; ·) : X → CC(Y ) into the set CC(Y )
of non-empty closed convex subsets of Y exists such that

∂(y∗ ◦ f)(x) · v = y∗(∆f (x; v)) for all y∗ ∈ Y ∗ and v ∈ X, (5.83)

where he defines ∂g for real-valued functions g as the subdifferential, such that the definition re-
duces to (5.81) for X = Rn. He calls such a mapping – when it exists – the generalized Clarke
derivative. The following proposition will show that this introduces no ambiguity with our previous
definition of the generalised Jacobian.

In order to avoid the long and technical proofs, let us strip down the generality of Thibault’s results
to our needs by only considering X = Rn and Y = Rm. We know from Proposition 5.16 that a
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mapping as in (5.83) exists for locally Lipschitz continuous f : Rn → Rm: for x, v ∈ Rn, simply
set ∆f (x; v) := ∂f(x)v. What is new is that such a set-valued mapping, when it exists, must be
unique:

Proposition 5.20 ([Thi82, Proposition 4.1]). Let f : Rn → Rm be locally Lipschitz continuous
and ∆f : Rn × Rn → CC(Rm) ⊂ P(Rm) be a set-valued mapping into the set of all non-empty
closed convex subsets of Rm satisfying at each fixed x ∈ Rn

∂(yT f)(x) · v = yT∆f (x; v) for all y ∈ Rm, v ∈ Rn, (5.84)

where ∂g(x) = {u ∈ Rn : u · v ≤ g◦(x; v) ∀ v ∈ Rn} for g : Rn → R locally Lipschitz continuous.
Then this mapping is unique. 4

Proof. Fix (x, v) ∈ Rn × Rn and assume there exist two different such sets ∆1
f (x; v) and ∆2

f (x; v).

W.l.o.g. there exists z ∈ ∆1
f (x; v)\∆2

f (x; v). By the hyperplane separation theorem (also known as
the Hahn-Banach Theorem in the context of locally convex topological vector spaces), there exists
y ∈ Rm such that

yT z < inf
(
yT∆2

f (x; v)
)

(5.85)

and thus yT∆1
f (x; v) and yT∆2

f (x; v) cannot be both equal to ∂(yT ◦ f)(x) · v. �

Proposition 5.21 ([Thi82, Proposition 4.5]). Let U ⊂ Rn be open, f : U → Rm locally Lipschitz
continuous and x ∈ Rn. Then ∂f(x)v = convDf (x; v) for any v ∈ Rn. 4

Proof. Let y ∈ Rm. Then from Definition 5.17, (5.82) and Lemma 5.18 we obtain

∂(yT f)(x)v = [−(−yT f)◦(x; v), (yT f)◦(x; v)] = convDyT f (x; v) = conv yTDf (x; v)

= yT convDf (x; v).
(5.86)

The claim follows from closedness (even compactness) of Df (x; v) and the uniqueness asserted in
Proposition 5.20. �

We are now ready to prove an even more general result than Theorem 5.14, the theorem and its
proof being taken from [Kum91]. For the context of this theorem we shall make the following
definition:

Definition 5.22 (Regularity). Let U ⊂ Rn×Rm be open, f : U → Rn locally Lipschitz continuous
and (x∗, t∗, a∗) ∈ U × Rn such that f(x∗, t∗) = a∗. We call f regular at (x∗, t∗, a∗) if there exist
neighbourhoods N(x∗) ⊂ Rn of x∗ and N(a∗, t∗) ⊂ Rn × Rm of (a∗, t∗) and a Lipschitz continuous
function g : N(a∗, t∗)→ N(x∗) such that f(g(a, t), t) = a for all (a, t) ∈ N(a∗, t∗). 4

Theorem 5.23 ([Kum91, Theorem 1]). The function f is regular at (x∗, t∗, a∗) if and only if

0 /∈ Df ((x∗, t∗); (v, 0)) for each v ∈ Rn \ {0}. (5.87)

If (5.87) holds, then

v ∈ Dg((a∗, t∗); (α, τ)) ⇐⇒ α ∈ Df ((x∗, t∗); (v, τ)). (5.88)

4
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Lemma 5.24. Condition (5.87) is equivalent to the existence of some ε > 0 such that∥∥f(x1, t1)− f(x2, t2)
∥∥ ≥ ε(∥∥x1 − x2

∥∥+
∥∥t1 − t2∥∥) (5.89a)

whenever
x1, x2 ∈ Bε(x∗), t1, t2 ∈ Bε(t∗) and

∥∥t1 − t2∥∥ ≤ ε ∥∥x1 − x2
∥∥ . (5.89b)

4

Proof. Let (5.89) be true, v ∈ Rn \ {0}, xk → x∗, tk → t∗ and λk ↓ 0 such that

u := lim
k→∞

f(xk + λkv, tk)− f(xk, tk)

λk
∈ Df ((x∗, t∗); (v, 0)) (5.90)

exists. Then ‖u‖ ≥ ε ‖v‖ > 0 and (5.87) follows. Now assume (5.89) is false for all ε > 0. Then
there exist sequences εk, x

1
k, x

2
k, t

1
k, t

2
k with εk ↓ 0 for k →∞ satisfying (5.89b) for each k ∈ N such

that ∥∥f(x1
k, t

1
k)− f(x2

k, t
2
k)
∥∥ < εk(

∥∥x1
k − x2

k

∥∥+
∥∥t1k − t2k∥∥) (5.91)

for each k ∈ N. In particular, λk :=
∥∥x2

k − x1
k

∥∥ 6= 0 for each k ∈ N. Set vk := (x2
k−x1

k)/λk. W.l.o.g.
vk → v ∈ Sn−1 ⊂ Rn for k →∞. Keeping in mind that x1

k + λkvk = x2
k, we obtain∥∥f(x1

k + λkv, t
1
k)− f(x1

k, t
1
k)
∥∥ ≤ ∥∥f(x2

k, t
2
k)− f(x1

k, t
1
k)
∥∥+

∥∥f(x1
k + λkv, t

1
k)− f(x1

k + λkvk, t
2
k)
∥∥

≤
∥∥f(x2

k, t
2
k)− f(x1

k, t
1
k)
∥∥+ Lip(f)

(∥∥t1k − t2k∥∥+ λk ‖vk − v‖
)

< εk((1 + εk)λk) + Lip(f)(εkλk + λk ‖vk − v‖)
≤ λk (2εk + Lip(f)(εk + ‖vk − v‖))

(5.92)

for each k ∈ N. Hence 0 ∈ Df ((x∗, t∗); (v, 0)) and (5.87) is false. �

Proof of Theorem 5.23. For our purpose it suffices to show that (5.87) (or equivalently (5.89))
implies regularity. We may assume f is Lipschitz continuous on all of U with constant L.
Suppose for some neighbourhoods N(x∗) and N(a∗, t∗) there exists a function g : N(a∗, t∗)→ N(x∗)
such that f(x, t) = a for x = g(a, t). Then this function is unique and Lipschitz continuous after
possibly reducing the neighbourhoods: Let (a1, t1), (a2, t2) ∈ N(a∗, t∗) and xk = g(ak, tk). Then
the relation

ε
∥∥x1 − x2

∥∥ ≤ ∥∥t1 − t2∥∥+
∥∥a1 − a2

∥∥ (5.93)

is trivial for
∥∥t1 − t2∥∥ > ε

∥∥x1 − x2
∥∥ and follows from (5.89) for

∥∥t1 − t2∥∥ ≤ ε ∥∥x1 − x2
∥∥.

In order to obtain existence of g, set t1 = t2 = t∗ in (5.89). It follows that f(·, t∗) is a Lipschitz
homeomorphism between Bε(x

∗) and its image S := f(Bε(x
∗), t∗) ⊂ Rn. S is open by the invariance

of domain theorem, so there exists a δ > 0 such that φ := f(·, t∗)−1 : Bδ(a
∗) → Bε(x

∗) is well-
defined and Lipschitz continuous. Now let (a, t) be such that L ‖t− t∗‖+‖a− a∗‖ < δ. This choice
implies that

ha,t(x) := φ(f(x, t∗)− f(x, t) + a) (5.94)

is a well-defined continuous map from {x ∈ Rn : (x, t) ∈ U} into Bε(x
∗). Indeed,

‖f(x, t∗)− f(x, t) + a− a∗‖ ≤ L ‖t− t∗‖+ ‖a− a∗‖ < δ (5.95)
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by assumption, hence ha,t makes sense and maps into Bε(x
∗). We can regard it as a self-map on

Bε(x∗). There exists a fixed point x0 ∈ Bε(x∗) by Brouwer’s fixed point theorem and

x0 = ha,t(x0) ⇐⇒ f(x0, t
∗) = f(x0, t

∗)− f(x0, t) + a ⇐⇒ f(x0, t) = a. (5.96)

Set g(a, t) := x0. �

Proof of the implicit function theorem, Theorem 5.14. If all matrices [G H] ∈ ∂f(x0, y0) have a
non-singular left block G ∈ Rn×n, then for any v ∈ Rn \ {0} it holds

[G H](v, 0) = Gv 6= 0, (5.97)

or equivalently

0 /∈ ∂f(x0, y0)(v, 0) = convDf ((x0, y0); (v, 0)) for any v ∈ Rn \ {0}, (5.98)

where we have used the characterisation from Proposition 5.21. In particular this implies

0 /∈ Df ((x0, y0); (v, 0)) for any v ∈ Rn \ {0}, (5.99)

which is just condition (5.87) ensuring regularity of f at (x0, y0, 0). This in turn implies the
existence of neighbourhoods and an implicit function ϕ with the stated properties. �

5.4.3.3 Piecewise Ck Functions and Local Lipschitz Continuity of F

Definition 5.25 (Piecewise Ck functions). Let V ⊂ Rn be open, f ∈ C(V,Rm) and k ∈ N ∪∞.
Then f is called a PCk function and we write f ∈ PCk(V,Rm) if for every x0 ∈ V there exists a
neighbourhood W ⊂ V of x0 and a finite collection of functions f i ∈ Ck(W,Rm), i = 1, . . . , r such
that f is a continuous selection of f1, . . . , f r on W , meaning that

f(x) ∈ {f1(x), . . . , f r(x)} for all x ∈W. (5.100)

We call the sets

I(x) := {i : f(x) = f i(x)} and Ie(x) :=
{
i ∈ I(x) : x ∈ {y ∈W : f(y) = f i(y)}◦

}
(5.101)

the active and the essentially active index set at x, respectively. 4

We take [Ulb02, Proposition 2.20] and add a calculus rule for quotients and continuous selections:

Proposition 5.26. Let k ∈ N ∪ {∞} and V ⊂ Rn open.

(i) The class of PCk functions is closed under composition, finite summation and multiplication
whenever these operations make sense.

(ii) If f, g ∈ PCk(V,R) and g is a continuous selection of functions g1, . . . , gr ∈ Ck(V,R) such
that 0 /∈ gk(V ) for all k ∈ {1, . . . , r}, then f/g ∈ PCk(V,R).

(iii) If f : V → Rm is a continuous selection of finitely many functions f1, . . . , fr ∈ PCk(V,Rm),
then also f ∈ PCk(V,Rm). 4
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Proof. We prove only the last statement. Each function fk ∈ PCk(V,Rm) is itself a continuous
selection of functions f1

k , . . . , f
r
k ∈ Ck(V,Rm) on a neighbourhood Wk ⊂ V of x0, for each x0 ∈ V .

It follows that

f(x) ∈ {f1
1 (x), . . . , f r1 (x), . . . , f1

r (x), . . . , f rr (x)} for all x ∈
r⋂

k=1

Wk, (5.102)

which implies f ∈ PCk(V,Rm). �

Lemma 5.27. The function F (h, τ) = (ML − θτL)h − f(h, τ) − τLun from (5.72) is piecewise
smooth in the sense of Definition 5.25, i.e. F ∈ PC∞(RN+1,RN ). 4

Proof. The first and last summand of F are obviously in C∞(RN+1,RN ) and piecewise smoothness
of f can be shown componentwise. Then, because sums of PC∞ functions are again PC∞ according
to Proposition 5.26, it is sufficient to show that f ij = αijfij ∈ PC∞(RN+1,R) for all i = 1, . . . , N

and all j ∈ K(i). We define α+
ij , α

−
ij : RN+1 → R on the whole space RN+1 by

α+
ij := min(R+

i , R
−
j ) and α−ij := min(R−i , R

+
j ). (5.103)

With this definition, we see that

αijfij =

{
α+
ijfij for fij ≥ 0

α−ijfij for fij < 0.
(5.104)

Set H± := H±ij := {(h, τ) ∈ RN+1 : fij(h, τ) ≷ 0}. If Q+
i = Q−i = Q+

j = Q−j = 0, then αijfij ≡ 0

on RN+1 and there is nothing to show. In case 0 ∈ {Q+
i , Q

−
j } and 0 /∈ {Q−i , Q

+
j }, αijfij ≡ 0 on H+

and it suffices to show that α−ijfij ∈ PC∞(RN+1,R). Then the selection

αijfij =

{
0 for fij ≥ 0

α−ijfij for fij < 0
(5.105)

is continuous because of |a−ijfij | ≤ |fij | and the assertion follows from Proposition 5.26 (iii). The

case 0 /∈ {Q+
i , Q

−
j } and 0 ∈ {Q−i , Q

+
j } is analogous.

Hence let us show that a+
ijfij ∈ PC∞(RN+1,R) for 0 /∈ {Q+

i , Q
−
j }. In this case we can even show

that α+
ij ∈ PC∞(RN+1,R); then Proposition 5.26 (i) yields α+

ijfij ∈ PC∞(RN+1,R) as a product
of a PC∞ function and a C∞ function.
Since α+

ij = min(R+
i , R

−
j ) and min ∈ PC∞(R2,R), it is sufficient to show R+

i , R
−
j ∈ PC∞(RN+1,R),

again using Proposition 5.26 (i). W.l.o.g. we restrict ourselves to proving R+
i ∈ PC∞(RN+1,R).

We can rewrite

R+
i =

min
(

1,
Q+
i

P+
i

)
if P+

i > 0

1 if P+
i = 0

(5.106)

as

R+
i =

Q+
i

P̃+
i

with P̃+
i := max(P+

i , Q
+
i ) > 0 (5.107)
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In light of Proposition 5.26 (ii) it suffices to show that P̃+
i is a continuous selection of finitely many

PC∞(RN+1,R>0) functions. Recall that

f+
ij (h, τ) = [cij(τ)(hi − hj) + gij(τ)]+ for j ∈ K(i). (5.108)

Clearly, f+
ij ∈ PC∞(RN+1,R) for all j ∈ K(i) and thus P+

i ∈ PC∞(RN+1,R) as a finite sum

of such functions. We therefore have functions P+,1
i , . . . , P+,n

i ∈ C∞(RN+1,R) such that P+
i is a

continuous collection of those on RN+1. In order to obtain strictly positive functions to select P̃+
i

from, we introduce a monotonically non-decreasing function η ∈ C∞(R,R) such that

η(x) =

{
x for x ≥ Q+

i
Q+
i

2 for x ≤ Q+
i

2 .
(5.109)

Then η◦P+,k
i ∈ C∞(RN+1,R) with η◦P+,k

i (h, τ) ≥ Q+
i /2 > 0 for k = 1, . . . , n and all (h, τ) ∈ RN+1.

Of course η ◦P+
i is continuous as a concatenation of continuous functions and hence is a continuous

selection of the smooth functions η◦P+,k
i . Using η◦P+

i instead of P+
i does not change the definition

of P̃+
i :

P̃+
i = max(P+

i , Q
+
i ) = max(η ◦ P+

i , Q
+
i ). (5.110)

We have thus shown that P̃+
i is a continuous selection of the functions η ◦P+,1

i , . . . , η ◦P+,n
i , Q+

i ∈
C∞(RN+1, [Q+

i /2,∞)), from which we infer that α+
ij ∈ PC∞(RN+1,N ) for 0 /∈ {Q+

i , Q
−
j } (and

α−ij ∈ PC∞(RN+1,N ) for 0 /∈ {Q−i , Q
+
j }). Now it remains to show that the selection

αijfij =

{
α+
ijfij for fij ≥ 0

α−ijfij for fij < 0
(5.111)

is continuous for 0 /∈ {Q+
i , Q

−
i , Q

+
j , Q

−
j }. Let (h, τ) ∈ RN+1 such that fij(h, τ) = 0 and consider

a sequence (hn, τn) → (h, τ) for n → ∞. Then fij(hn, τn) → fij(h, τ) = 0 and |α±ijfij(hn, τn)| ≤
|fij(hn, τn)| → 0 = α+

ijfij(h, τ) = αijfij(h, τ). Proposition 5.26 (iii) gives αijfij ∈ PC∞(RN+1,R).
�

The next proposition allows to show that a PC1 function is locally Lipschitz (on compact convex
neighbourhoods of points). This is the statement of the subsequent Corollary 5.29.

Proposition 5.28 ([Sch12, Proposition 4.1.2]). Let V ⊂ Rn be convex, f1, . . . , f l : V → Rm
Lipschitz continuous on V with constants L1, . . . , Ll. Then if f ∈ C(V,Rm) is a continuous selection
of f1, . . . , f l, it is also Lipschitz continuous with constant L = max(L1, . . . , Ll). 4

Corollary 5.29 ([Sch12, Corollary 4.1.1]). Let V ⊂ Rn be open and f ∈ PC1(V,Rm). Then f is
locally Lipschitz continuous. 4

Now we can apply the PCk theory to our function F from (5.72) to show local Lipschitz continuity.

Corollary 5.30. The function F (h, τ) = (ML − θτL)h − f(h, τ) − τLun from (5.72) is locally
Lipschitz continuous. 4
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Corollary 5.31. Let i ∈ {1, . . . , N} and j ∈ K(i) and define the open sets H± ⊂ RN+1 by

H± := H±ij := {(h, τ) ∈ RN+1 : fij(h, τ) ≷ 0}. (5.112)

Then αij |H+ ∈ PC∞(H+,R) and αij |H− ∈ PC∞(H−,R). In particular, these two functions are
locally Lipschitz continuous. 4

Proof. For reasons of analogy, showing αij |H+ ∈ PC∞(H+,R) suffices. This is trivial if 0 ∈
{Q+

i , Q
−
j }, for then αij |H+ ≡ 0. On the other hand, in the proof of Lemma 5.27 it was shown that

α+
ij ∈ PC∞(RN+1,R) for 0 /∈ {Q+

i , Q
−
j }. Since H+ ⊂ RN+1 is open and αij |H+ = α+

ij |H+ , piecewise
smoothness follows immediately and Lipschitz continuity follows from Corollary 5.29. �

5.4.3.4 Non-Singularity of the Generalised Jacobian Πh∂F (0, 0)

Lemma 5.32. There exists an open neighbourhood V of (0, 0) such that for all i ∈ {1, . . . , N},
j ∈ K(i) and for all (h, τ) ∈ V with P (h, τ) 6= 0 either

min

(
Q

P
, 1

)
= 0 or min

(
Q

P
, 1

)
= 1, (5.113)

holds on a neighbourhood U ⊂ V of (h, τ), where Q ∈ {Q+
i , Q

−
j , Q

−
i , Q

+
j } and P ∈ {P+

i , P
−
j , P

−
i , P

+
j }

with matching super- and subscript. 4

Proof. P is continuous, thus P (h, τ) 6= 0 implies P 6= 0 on a neighbourhood of (h, τ). The first
identity is obviously true for Q = 0. Define now S := {Q+

k , |Q
−
k | : k = 1, . . . , N} \ {0} and set

m := minS > 0. Since f±ij is continuous for each i ∈ {1, . . . , N}, j ∈ K(i) and fij(0, 0)± = 0, we
have for an open neighbourhood V 3 (0, 0) that∣∣∣∣ m

P (h, τ)

∣∣∣∣ > 1 (5.114)

whenever P (h, τ) 6= 0, P ∈ {P+
i , P

−
j , P

−
i , P

+
j } and thus the second identity in (5.113) holds for

Q 6= 0. �

Lemma 5.33. Let V be the neighbourhood of (0, 0) from Lemma 5.32, i ∈ {1, . . . , N} and j ∈
K(i).

(i) If 0 ∈ {Q+
i , Q

−
j } and 0 ∈ {Q−i , Q

+
j }, then αijfij ≡ 0 on RN+1.

(ii) If 0 /∈ {Q+
i , Q

+
j , Q

−
i , Q

+
j }, then αij ≡ 1 on V . 4

Proof. For assertion (i), we notice that

αij(h, τ) = min(R+
i , R

−
j ) = 0 on H+

ij = {(h, τ) ∈ RN+1 : fij(h, τ) > 0} (5.115)

αij(h, τ) = min(R−i , R
+
j ) = 0 on H−ij = {(h, τ) ∈ RN+1 : fij(h, τ) < 0} (5.116)

fij(h, τ) = 0 on H0
ij = {(h, τ) ∈ RN+1 : fij(h, τ) = 0}, (5.117)
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since P+
i (h, τ) > 0, P−j (h, τ) < 0 on H+

ij and P−i (h, τ) < 0, P+
j (h, τ) > 0 on H−ij and thus R = Q/P

in all four index cases. It follows that the product αijfij vanishes everywhere. For assertion (ii) we
can apply the previous lemma to see that

αij(h, τ) = min(R+
i , R

−
j ) = 1 on H+

ij ∩ V (5.118)

αij(h, τ) = min(R−i , R
+
j ) = 1 on H−ij ∩ V. (5.119)

For (h, τ) ∈ V with fij(h, τ) = 0 we have, either due to (h, τ) ∈ V and P (h, τ) 6= 0 or due to R = 1
for P = 0, that αij(h, τ) = 1. �

Lemma 5.34. Let V be the neighbourhood from Lemma 5.32. If necessary, shrink V such that
ckl(τ) ≥ mkl/2 > 0 for all k ∈ {1, . . . , N}, l ∈ K(k) and τ with (h, τ) ∈ V . Fix i ∈ {1, . . . , N}. If
f i is differentiable at (h, τ) ∈ V , then for each j ∈ K(i) one of the following conditions must hold:

(i) fij(h, τ) 6= 0,

(ii) 0 ∈ {Q+
i , Q

−
j } and 0 ∈ {Q−i , Q

+
j },

(iii) 0 /∈ {Q+
i , Q

−
j , Q

−
i , Q

+
j }. 4

Proof. Let (h, τ) ∈ V . We show that if there exists j0 ∈ K(i) such that neither of the three
conditions hold, then f i is not directionally differentiable at (h, τ). Hence, suppose that for some
j0 ∈ K(i) it holds fij0(h, τ) = 0 and one of the following is the case:

• Case 1: 0 ∈ {Q−i , Q
+
j0
} and 0 /∈ {Q+

i , Q
−
j0
} or

• Case 2: 0 ∈ {Q+
i , Q

−
j0
} and 0 /∈ {Q−i , Q

+
j0
}.

W.l.o.g. we may assume the first case. Set v ∈ RN \ {0} such that vi − vj0 > 0 and vi − vk = 0 for
all k 6= j0. Then for any δ ∈ R and for all k ∈ K(i):

fik(h+ δv, τ) = cik(τ)(hi − hk + δ(vi − vk)) + gik(τ) =

{
fik(h, τ) for k 6= j0

δcij0(τ)(vi − vj0) for k = j0.
(5.120)

For δ ∈ (0, δ0] and small enough δ0, (h± δv, τ) ∈ V . Furthermore, from (5.120) we see

fij0(h+ δv, τ) > 0 and fij0(h− δv, τ) < 0, (5.121)

so from the definition of αij , our assumption Case 1 and Lemma 5.32 it follows that

αij0(h+ δv, τ) = 1 and αij0(h− δv, τ) = 0. (5.122)

Now we can show that f i is not directionally differentiable in direction of v at (h, τ) because the
right-sided and left-sided limits disagree. To this end, set

K := {j ∈ K(i) : fij(h, τ) 6= 0} and L := {j ∈ K(i) : fij(h, τ) = 0} 3 j0. (5.123)

From fij(h, τ) > 0 it follows that P+
i , P

−
j 6= 0 on a neighbourhood of (h, τ); likewise, for fij(h, τ) < 0

it follows that P−i , P
+
j 6= 0 on a neighbourhood of (h, τ). Employing Lemma 5.32, we see that αij

is locally constant around (h, τ) for j ∈ K and therefore the first sum in the decomposition

f i(h, τ) =
∑
j∈K

αijfij +
∑
j∈L

αijfij (5.124)
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is differentiable at (h, τ) for smoothness of the fij . We can thus focus on the second sum:

lim
δ↓0

∑
j∈L

=1 for j=j0︷ ︸︸ ︷
αij(h+ δv, τ)

=fij(h,τ)=0 for j 6=j0︷ ︸︸ ︷
fij(h+ δv, τ) −αij(h, τ)

=0︷ ︸︸ ︷
fij(h, τ)

δ
= lim

δ↓0

δcij0(τ)(vi − vj0)

δ
> 0, (5.125)

but for the limit from the other side we obtain

lim
δ↓0

∑
j∈L

=0 for j=j0︷ ︸︸ ︷
αij(h− δv, τ)

=fij(h,τ)=0 for j 6=j0︷ ︸︸ ︷
fij(h− δv, τ) −αij(h, τ)

=0︷ ︸︸ ︷
fij(h, τ)

−δ
= 0. (5.126)

This finishes the proof, as we have shown that the negation of conditions (i) – (iii) for some j0 ∈ K(i)
precludes differentiability of f i at (h, τ). �

Corollary 5.35. Let V be the neighbourhood from Lemma 5.32 and i ∈ {1, . . . , N}. If f i is
differentiable at (h, τ) ∈ V , then for each j ∈ K(i) such that αijfij does not vanish identically on
RN+1, it holds that αij is constant with αij ≡ 0 or αij ≡ 1 on a neighbourhood of (h, τ). 4

Proof. According to Lemma 5.34, for each j ∈ K(i) one of three conditions stated there must hold,
the second of which implies that αijfij vanishes identically on RN+1.
The first sufficient condition is fij(h, τ) 6= 0. If fij(h, τ) > 0 it follows that P+

i , P
−
j 6= 0 on a

neighbourhood of (h, τ); likewise, for fij(h, τ) < 0 it follows that P−i , P
+
j 6= 0 on a neighbourhood

of (h, τ). Employing Lemma 5.32, we see that αij is locally constant around (h, τ).
In Lemma 5.33 it has been shown that the third sufficient condition implies αij ≡ 1 on V . �

We are now in a position to show existence of a unique solution h(τ) for small τ > 0. Let us note
that F can be decomposed into a smooth part g and f :

F (h, τ) := (ML − θτL)h− τLun︸ ︷︷ ︸
=:g(h,τ)

−f(h, τ). (5.127)

Proposition 5.36. Πh∂F (0, 0) is symmetric positive definite, in particular it is non-singular. 4

Proof. Firstly, let us note that ∇hg(0, 0) = ML, so that we need only investigate the structure of
the set Πh∂f(0, 0). Secondly, recall that Πh∂f(0, 0) is the convex hull of Πh∂Bf(0, 0), the projec-
tion onto the left square part of the Bouligand subdifferential ∂Bf(0, 0), see Definition 5.13. Since
convex combinations of symmetric positive definite matrices are again symmetric positive definite,
it is sufficient to show the claim for each H := ΠhH̃, where H̃ ∈ ∂Bf(0, 0).

To obtain an element H̃ ∈ ∂Bf(0, 0), let ((hn, τn))n∈N be an arbitrary sequence in DF = Df , the

set of differentiability points of F or f – which are the same set – such that (hn, τn) → (0, 0) and
∇f(hn, τn)→ H̃ for some H̃ ∈ RN×(N+1). Since we are only interested in the limit, we may assume
that (hn, τn) ∈ V for all n ∈ N, where V is the neighbourhood from Lemma 5.32. Corollary 5.35
assures us that we can regard all αij for i ∈ {1, . . . , N}, j ∈ K(i) as locally constant around
(hn, τn), with the values attained lying in {0, 1}. It is therefore easy to compute the Jacobian
Hn := ∇hf(hn, τn) of the function f at (hn, τn) as it is affine on a neighbourhood of this point:
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hnik =


∑

j∈K(i) α
n
ijcij(τn) for k = i

−αnikcik(τn) for k ∈ K(i)

0 else,

(5.128)

for αnij ∈ {0, 1} and αnij = αnji for all i ∈ {1, . . . , N}, j ∈ K(i). Considering that αnij ∈ {0, 1} and
cij(τn)→ cij(0) = mij > 0 for each i ∈ {1, . . . , N}, j ∈ K(i) as n→∞, convergence of the sequence
(Hn)n∈N requires that each sequence (αnij)n∈N eventually become constant: αnij = αij ∈ {0, 1} for
n ∈ N large enough. It follows that Hn → H with

hik =


∑

j∈K(i) αijmij for k = i

−αikmik for k ∈ K(i)

0 else.

(5.129)

Hence, each G ∈ Πh∂BF (0, 0) is of the form ML − H for symmetric matrices H of the form
(5.129). Define P := ML −MC − H, where MC is the consistent (non-lumped) mass matrix, so
that ML −H = MC + P . More explicitly,

pik =


∑

j∈K(i)(1− αij)mij for k = i

(αik − 1)mik for k ∈ K(i)

0 else,

(5.130)

which constitutes a symmetric matrix with zero row sums, non-negative diagonal elements and non-
positive off-diagonal elements. Then by Gershgorin’s theorem, P is positive semidefinite, rendering
G = ML −H = MC + P positive definite. �

Theorem 5.37. There exists some δ > 0 such that for all τ ∈ (0, δ) there exists a unique h(τ)
with F (h(τ), τ) = 0. 4

Proof. According to Corollary 5.30, our function F is locally Lipschitz continuous on RN × R and
in particular Lipschitz continuous on a neighbourhood of the point (0, 0) at which F (0, 0) = 0
holds (see (5.73)). Proposition 5.36 ensures that Πh∂F (0, 0) is non-singular, because all matrices
in this set are symmetric positive definite. Now from the implicit function theorem (Theorem 5.14)
it follows that there exist neighbourhoods of U of h = 0 and V of τ = 0 such that for all τ ∈ V
there exists a unique h(τ) such that F (h(τ), τ) = 0 for τ ∈ V . The function V 3 τ 7→ h(τ) is even
Lipschitz continuous. �

5.4.3.5 Non-Singularity Away from the Point (h, τ) = (0, 0)

So far, the analysis has been relying heavily on the fact that the αij become locally constant at points
of differentiability for small enough (h, τ), which essentially turns the nonlinear function f into a lin-
ear one. The price for this is that the above existence and uniqueness result possibly holds only for
a very small time-step bound δ > 0. In fact, the argument that αij ≡ 1 locally around (h, τ) = (0, 0)
in the case 0 /∈ {Q+

i , Q
−
j , Q

−
i , Q

+
j } only works assuming that |P+

i | ≤ |Q
+
i |, |P

−
j | ≤ |Q

−
j |, |P

−
i | ≤ |Q

−
i |

and |P+
j | ≤ |Q

+
j |, which can be guaranteed only by assuming ‖(h, τ)‖ to be small enough. Obvi-

ously, the moduli of the quantities Q can be very small. Such a tiny neighbourhood of (h, τ) = (0, 0)
is then likely to be departed from by solutions to F (h(τ), τ) at reasonable time-step choices for τ .
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Therefore, a result guaranteeing regularity of ∇h(F (h, τ)) at arbitrary points (h, τ) ∈ RN × R>0

would be desirable.

Since the implicit function theorem for Lipschitz functions (Theorem 5.14) requires the regularity
of convex combinations of limits of Jacobians, it seems advisable and practical to seek not only
regularity of such Jacobians, but some notion of regularity that is preserved under convex com-
binations. Such classes are, for example, the class of strictly or irreducibly diagonally dominant
matrices (by rows or columns) with positive diagonal (see Lemma 5.38 below) or the class of positive
definite matrices. To obtain such Jacobians, unfortunately, we will have to set θ = 0 (explicit Euler
stepping) because the additional terms θτyij in the definition of cij in (5.70), which are positive
for i 6= j and negative for i = j, may destroy the favourable symmetric positive definite or diagonal
dominance properties of the regarded matrices.

5.4.3.5.1 Some Facts about Matrix Classes of Interest. This paragraph is a collection of
simple lemmata used in the next paragraph.

Lemma 5.38 (Positive combinations of diagonally dominant matrices). Let A,B ∈ Rn×n be
diagonally dominant (by rows or columns) with non-negative diagonal entries and C := λA + µB
for some λ, µ > 0. Then the following assertions hold:

(i) C is diagonally dominant.

(ii) If A or B is strictly diagonally dominant, so is C.

(iii) If A and B have positive diagonals, A has non-negative and B has non-positive off-diagonal,
and in each row (column) there is some cancellation, i.e. for i = 1, . . . , n there exists j 6= i
such that aij > 0 and bij < 0, then C is strictly diagonally dominant.

(iv) If A,B ≥ 0 and A or B is irreducibly diagonally dominant, so is C. 4

Proof. We may restrict to diagonal dominance by rows; then we easily compute for i = 1, . . . , n:

λaii + µbii −
n∑
j=1
j 6=i

|λaij + µbij | ≥ λ

aii − n∑
j=1
j 6=i

|aij |

+ µ

bii − n∑
j=1
j 6=i

|bij |

 ≥ 0, (5.131)

and this inequality is strict for rows i such that the corresponding inequality for A or B is strict
for row i. Let now A have non-negative and B have non-positive off-diagonal and let there be
cancellation in each row. Note that |λaij +µbij | ≤ |λaij |+ |µbij | for j 6= i and equality holds if and
only if 0 ∈ {aij , bij}. Setting Ki := {j ∈ {1, . . . , n} : aij > 0 and bij < 0}, Li := {1, . . . , n}\Ki∪{i}
and

∆i :=
∑
j∈Ki

(|λaij |+ |µbij | − |λaij + µbij |) > 0, (5.132)

we see that

λaii + µbii −
∑
j 6=i
|λaij + µbij | = λaii + µbii −

∑
j 6=i

(|λaij |+ |µbij |)︸ ︷︷ ︸
≥0

+∆i > 0 (5.133)
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in each row i because of cancellation. For the last assertion, let w.l.o.g. A be irreducibly diagonally
dominant. Then cij > 0 for each pair (i, j) with aij > 0, hence C is irreducible. �

Lemma 5.39. Let A,B ∈ Rn×n be such that A ≥ 0 is diagonally dominant by columns. For
i = 1, . . . , n set

∆i(A) := aii −
∑
j 6=i

aji ≥ 0 (5.134)

Σi(B) :=
n∑
j=1

bji. (5.135)

If A+B ≥ 0 and

Σi(B) ≤ ∆i(A) + 2bii for i = 1, . . . , n, (5.136)

then A+B is diagonally dominant by columns. In particular, this holds if B has vanishing column
sums and non-negative diagonal elements. 4

Proof. For i = 1, . . . , n we see that

aii + bii −
∑
j 6=i

(aji + bji) = ∆i(A) + 2bii − Σi(B) ≥ 0. (5.137)

�

Proposition 5.40. Let A ∈ Rn×n be positive definite, λ1 > 0 the minimal eigenvalue of its
symmetric part and E ∈ Rn×n a perturbation. Then A+ E is positive definite if ‖E‖2 < λ1. 4

Proof. For a matrix M ∈ Rn×n, denote by Msym := (M + MT )/2 its symmetric part and by
Mskew := (M −MT )/2 its skew-symmetric part. We need to show that (A+E)sym = Asym +Esym

is symmetric positive definite. By our premise we have

max {|µ| : µ ∈ σ(Esym)} = ‖Esym‖2 =

∥∥∥∥E + ET

2

∥∥∥∥
2

≤ ‖E‖2 < λ1. (5.138)

If µ1 denotes the minimal eigenvalue of Esym, we therefore obtain µ1 > −λ1. For the minimal
eigenvalue of Asym + Esym we can now infer using Rayleigh quotients:

min{λ : λ ∈ σ(Asym + Esym)} = min
‖x‖2=1

xT (Asym + Esym)x

≥ min
‖x‖2=1

xTAsymx+ min
‖x‖2=1

xTEsymx = λ1 + µ1 > 0.
(5.139)

�

Lemma 5.41. The mass matrix MC is strictly diagonally dominant for d = 1, weakly diagonally
dominant for d = 2 and not diagonally dominant for d = 3. 4
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Proof. For d ∈ {1, 2, 3}, let T̂ d := conv{e1, . . . , ed} be the standard simplex. It is known that
|T̂ d| = 1/d! and elementary calculus shows∫

T̂ 1

x2 dλ1 =

∫ 1

0
x2 dx =

1

3
=

1

3
|T̂ 1| (5.140)∫

T̂ 2

x2 dλ2 =

∫ 1

0

∫ 1−x

0
x2 dy dx =

1

12
=

1

6
|T̂ 2| (5.141)∫

T̂ 3

x2 dλ3 =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
x2 dz dy dx =

1

60
=

1

10
|T̂ 3| (5.142)

and ∫
T̂ 1

x(1− x) dλ1 =

∫ 1

0
x(1− x) dx =

1

6
=

1

6
|T̂ 1| (5.143)∫

T̂ 2

xy dλ2 =

∫ 1

0

∫ 1−x

0
xy dy dx =

1

24
=

1

12
|T̂ 2| (5.144)∫

T̂ 3

xy dλ3 =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
xy dz dy dx =

1

120
=

1

20
|T̂ 3|. (5.145)

By affine transformations, the first and last term of each line are equal also for arbitrary d-simplices
T d = conv{p1, . . . , pd+1} ⊂ Rd if x and 1 − x (d = 1) or x and y (d ∈ {2, 3}) are replaced by ϕk
and ϕl, respectively, for k 6= l, k, l ∈ {1, . . . , d + 1}, where ϕk is the linear standard basis function
on T d associated with node pk.

Let now p be a node of T with basis function ϕ. The assertion follows from the fact that, per
element T ∈ T containing p, the term

∫
T d ϕ

2 dx contributes to the diagonal of MC only once but
terms of the form

∫
T d ϕψ dx (ψ being the basis function of another node of T ) contribute d times

to the off-diagonal entries of the row of MC associated with p. �

5.4.3.5.2 Investigation of Generalised Jacobians Away from (h, τ) = (0, 0). The goal of
this paragraph is to find out whether non-singularity of Πh∂F (h, τ) can be guaranteed at arbitrary
(h, τ) ∈ RN×R>0. The computation and analysis of Jacobians at points in DF = Df is complicated
now by multiple issues:

• If convergence τn → 0 does not hold, then cij(τn) 6→ mij unless θ = 0.

• The terms αij can no longer be argued to be constant around differentiability points (h, τ) ∈
DF ∩ RN × R>0. Therefore they have to be differentiated, too.

• From differentiability of the components f i =
∑

j∈K(i) αijfij at some point (h, τ) ∈ DF ,
differentiability of the individual summands does not follow.

• From differentiability of the product αijfij at some point, differentiability of the first factor
(at least in some direction) is not immediate either.

The objective is thus to find arguments that allow for sum and product rules in order to break
down the problem of determining the Jacobians. The following proposition is a crucial ingredient:
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Proposition 5.42 (Invariance of generalised Jacobian under removal of null sets, [FP87]). Let
r > 0, Br(x) ⊂ Rn the open r-ball around x ∈ Rn, f : Br(x) → Rm locally Lipschitz continuous
and S ⊂ Br(x) a set of Lebesgue measure zero. Then with the redefined Bouligand subdifferential

∂SBf(x) := {G ∈ Rm×n : ∃ (xn)n∈N ⊂ Df \ S with xn → x and ∇F (xn)→ G} (5.146)

it still holds that ∂Sf(x) := conv(∂SBf(x)) = ∂f(x). 4

A null set we certainly want to remove from Df is the set of points such that one of the terms
αijfij , i ∈ {1, . . . , N}, j ∈ K(i) is not differentiable. This way, differentiability of the summands
defining the components of f is guaranteed and a sum rule for differentiation can be applied. Hence,
set

Nij :=
{

(h, τ) ∈ RN+1 : αijfij is not differentiable at (h, τ)
}

(5.147)

and
N1 :=

⋃
i∈{1,...,N}
j∈K(i)

Nij . (5.148)

The sets Nij (and thus N1) are null sets according to Rademacher’s theorem since the αijfij are
locally Lipschitz continuous on RN+1. The second null set should be the set

N2 :=
⋃

i∈{1,...,N}
j∈K(i)

H0
ij ⊂ RN × R>0, (5.149)

where
H0
ij =

{
(h, τ) ∈ RN × R>0 : fij(h, τ) = 0

}
. (5.150)

Lemma 5.43. For i ∈ {1, . . . , N}, j ∈ K(i) the set H0
ij ⊂ RN ×R>0 is a set of Lebesgue measure

zero. 4

Proof. For arbitrary fixed τ ∈ R>0, the set H0,τ
ij := {h ∈ RN : f(h, τ) = 0} is an affine hyperplane

of RN × {τ}, i.e. an (N − 1)-dimensional affine subspace:

fij(h, τ) = 0 ⇐⇒ cij(τ)︸ ︷︷ ︸
>0

(hi − hj) = −gij(τ) ⇐⇒ hi − hj = −gij(τ)/cij(τ). (5.151)

It follows that H0,τ
ij is a set of vanishing N -dimensional Lebesgue measure in RN × {τ} for each

τ ≥ 0 and from Fubini’s theorem we obtain the assertion by integrating the characteristic function
of H0,τ

ij as follows:

λN+1(H0
ij) =

∫
RN×R>0

χH0
ij
dλN+1 =

∫ ∞
0

∫
RN×{τ}

χ
H0,τ
ij

dhdτ = 0. (5.152)

�

Discarding the set N2 offers the advantage that the existence of an explicit formula for the deriva-
tives of αij along coordinate directions e1, . . . , eN (for fixed τ0) and a product rule can be shown:

Lemma 5.44. Let N1 and N2 be the null sets defined in (5.148) and (5.149), respectively.
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(i) For any (h0, τ0) ∈ RN × R>0 \ N2, i,m ∈ {1, . . . , N}, j ∈ K(i), the function αij has well-
defined one-sided directional derivatives at (h0, τ0) in both coordinate directions em and −em.

(ii) If in addition (h0, τ0) ∈ RN ×R>0 \ (N1 ∪N2), then these two one-sided derivatives agree and
the following product rule holds:

∂

∂hm
(αijfij)(h0, τ0) =

(
∂

∂hm
αij(h0, τ0)

)
fij(h0, τ0) + αij(h0, τ0)

∂

∂hm
fij(h0, τ0), (5.153)

where the partial derivatives of αij can be computed explicitly:

• Case 1: fij(h0, τ0) > 0.

(a) If αij(h0, τ0) = Q+
i /P

+
i (h0, τ0), then

∂αij
∂hm

(h0, τ0) ∈
{

0,
−Q+

i

P+
i (h0, τ0)2

∂P+
i

∂hm
(h0, τ0)

}
(5.154)

with

∂P+
i

∂hm
(h0, τ0) =



∑
k∈K(i)

fik(h0,τ0)>0

cik(τ0) for m = i

−cim(τ0) for fim(h0, τ0) > 0

0 else.

(5.155)

(b) If αij(h0, τ0) = Q−j /P
−
j (h0, τ0), then

∂αij
∂hm

(h0, τ0) ∈

{
0,

−Q−j
P−j (h0, τ0)2

∂P−j
∂hm

(h0, τ0)

}
(5.156)

with

∂P−j
∂hm

(h0, τ0) =



∑
k∈K(j)

fjk(h0,τ0)<0

cjk(τ0) for m = j

−cjm(τ0) for fjm(h0, τ0) < 0

0 else.

(5.157)

(c) If Q+
i /P

+
i (h0, τ0), Q−j /P

−
j (h0, τ0) > 1, then

∂

∂hm
αij(h0, τ0) = 0 for m = 1, . . . , N. (5.158)

• Case 2: fij(h0, τ0) < 0.

(a) If αij(h0, τ0) = Q−i /P
−
i (h0, τ0), then

∂αij
∂hm

(h0, τ0) ∈
{

0,
−Q−i

P−i (h0, τ0)2

∂P−i
∂hm

(h0, τ0)

}
(5.159)
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with

∂P−i
∂hm

(h0, τ0) =



∑
k∈K(i)

fik(h0,τ0)<0

cik(τ0) for m = i

−cim(τ0) for fim(h0, τ0) < 0

0 else.

(5.160)

(b) If αij(h0, τ0) = Q+
j /P

+
j (h0, τ0), then

∂αij
∂hm

(h0, τ0) ∈

{
0,

−Q+
j

P+
j (h0, τ0)2

∂P+
j

∂hm
(h0, τ0)

}
(5.161)

with

∂P+
j

∂hm
(h0, τ0) =



∑
k∈K(j)

fjk(h0,τ0)>0

cjk(τ0) for m = j

−cjm(τ0) for fjm(h0, τ0) > 0

0 else.

(5.162)

(c) If Q−i /P
−
i (h0, τ0), Q+

j /P
+
j (h0, τ0) > 1, then

∂

∂hm
αij(h0, τ0) = 0 for m = 1, . . . , N. (5.163)

4

Proof. W.l.o.g. we can assume case 1: fij(h0, τ0) > 0, so that αij = min(R+
i , R

−
j ) with

R+
i = min

(
Q+
i

P+
i

, 1

)
and R−j = min

(
Q−j

P−j
, 1

)
(5.164)

on a neighbourhood of (h0, τ0).

(1) If Q+
i /P

+
i (h0, τ0), Q−j /P

−
j (h0, τ0) > 1, we have αij(h, τ0) ≡ 1 on a neighbourhood of h0 and

(5.158) follows.

(2) If 0 ∈ {Q+
i , Q

−
j }, then αij(·, τ0) ≡ 0 and (5.154) or (5.156) holds trivially.

(3) If R+
i (h0, τ0) < R−j (h0, τ0), then αij(·, τ0) = Q+

i /P
+
i (h, τ0) with

P+
i (h, τ0) =

∑
k∈K(i)

fik(h0,τ0)>0

cik(τ0)(hi − hk) + gik(τ0) (5.165)

on a neighbourhood of h0, so that αij(·, τ0) is differentiable on this neighbourhood and

∂αij

∂h+
m

(h0, τ0) =
∂αij

∂h−m
(h0, τ0) (5.166)

are given by (5.154) and (5.155).
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(4) The case R−j (h0, τ0) < R+
i (h0, τ0) is treated analogously.

(5) If 0 < R+
i (h0, τ0) =

Q+
i

P+
i

(h0, τ0) =
Q−j
P−i

(h0, τ0) = R−j (h0, τ0), define

J +(h) := {j ∈ K(i) : fij(h, τ0) > 0} (5.167)

J −(h) := {k ∈ K(j) : fjk(h, τ0) < 0} (5.168)

and let V ⊂ RN be a neighbourhood of h0 such that J ±(h) = J ±(h0) for all h ∈ V . Furthermore,
define

H0,+,− :=
{
h ∈ RN : Q+

i P
−
j (h, τ0)−Q−j P

+
i (h, τ0)

=
>
<

0
}
. (5.169)

Then clearly h0 ∈ H0 ∩ V and since the map Q+
i P
−
j (·, τ)−Q−j P

+
i (·, τ) is affine on V we have that

H0 ∩ V is the intersection of V with a hyperplane and H± ∩ V are the intersections of V and the
adjoining half-spaces.

Two subcases need to be considered:

(a) R+
i (h0, τ0) = R−j (h0, τ0) < 1. Then (possibly after shrinking V ) we have R+

i = Q+
i /P

+
i and

R−j = Q−j /P
−
j on V and

αij(·, τ0) = Q+
i /P

+
i (·, τ0) on (H0 ∪H+) ∩ V (5.170)

αij(·, τ0) = Q−j /P
−
j (·, τ0) on (H0 ∪H−) ∩ V, (5.171)

so that ∂
∂h±m

αij(h0, τ0) can be computed by (5.154) – (5.155) if h0± δem ∈ (H0 ∪H+)∩V and

by (5.156) – (5.157) if h0 ± δem ∈ (H0 ∪H−) ∩ V for small δ > 0.

(b) R+
i (h0, τ0) = R−j (h0, τ0) = 1. Then h0 ∈ H0 ∩H0

i ∩H0
j ∩ V , where we define

H0,+,−
i :=

{
h ∈ RN : Q+

i

=
>
<
P+
i (h, τ0)

}
(5.172)

H0,+,−
j :=

{
h ∈ RN : Q−j

=
>
<
P−j (h, τ0)

}
. (5.173)

Now if h0 ± δem ∈ (H+
i ∪H0

i ) ∩ (H−j ∪H0
j ) ∩ V for small δ > 0, we have ∂

∂h±m
αij(·, τ0) = 0,

otherwise we can argue as in case (a).

It remains to show that, if (h0, τ0) ∈ RN × R>0 \ (N1 ∪N2), then

∂

∂h+
m
αij(h0, τ0) =

∂

∂h−m
αij(h0, τ0). (5.174)

The one-sided derivatives can only differ in case (5). In case (5)(a), (5.174) holds by construction
of H0 if h0 + δem, h0 − δem ∈ V ∩H0 for small δ > 0. Otherwise we have h0 ± δem ∈ V ∩H± or
h0 ± δem ∈ V ∩H∓ and hence

∂

∂h+
m
αij(h0, τ0) =

−Q+
i

P+
i (h0, τ0)2

∂P+
i

∂hm
(h0, τ0) (5.175)
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or
∂

∂h−m
αij(h0, τ0) =

−Q+
i

P+
i (h0, τ0)2

∂P+
i

∂hm
(h0, τ0) (5.176)

and the product rule for ∂
∂h±m

αijfij(h0, τ0) in conjunction with fij(h0, τ0) 6= 0 and differentiability

of fij gives

∂

∂hm
αij(h0, τ0) =

∂

∂h+
m
αij(h0, τ0) =

∂

∂h−m
αij(h0, τ0) =

−Q+
i

P+
i (h0, τ0)2

∂P+
i

∂hm
(h0, τ0). (5.177)

In case (5)(b) we can argue the same way to find that the left- and right-handed directional
derivatives in coordinate directions must agree, but now ∂

∂hm
αij(h0, τ0) = 0 is possible. �

Lemma 5.44 justifies using the following product rule at points (h, τ) ∈ RN × R>0 \ (N1 ∪N2):

∂

∂hm
f i(h, τ) =

∑
j∈K(i)

αij(h, τ)
∂

∂hm
fij(h, τ) +

∑
j∈K(i)

(
∂

∂hm
αij(h, τ)

)
fij(h, τ) (5.178)

and thus the decomposition ∇hf(h, τ) = N +O with

Nim :=

{∑
k∈K(i) αik(h, τ)cik(τ) for m = i

−αim(h, τ)cim(τ) for m 6= i
, Oim :=

∑
j∈K(i)

(
∂

∂hm
αij(h, τ)

)
fij(h, τ). (5.179)

Remark 5.45. Recall that cij(τ) = mij + θτyij = mij for θ = 0 independently of τ . 4

Remark 5.46. The matrix O can be regarded as a perturbation of positive definiteness, since it is
still true (for θ = 0) that ML−N is positive definite. The matrix O cannot in general be expected
to be symmetric, but ML − N − O might still be positive definite, which one could attempt to
show by the positive definiteness perturbation result of Proposition 5.40. Bounds for the minimal
eigenvalues of the mass matrix MC can be computed as shown in [Fri72]. 4

Assumption 5.47. Let us now focus on the case θ = 0 and d = 2. 4

Then we know from Lemma 5.41 that MC is weakly diagonally dominant. We hope to use
this property in order to show some non-singularity implying diagonal dominance property of
the generalised Jacobian of ∇hF (h, τ) at (h, τ) ∈ RN × R>0 \ (N1 ∪ N2) that is preserved as
(h, τ)→ (h0, τ0) ∈ RN×R>0. Let us decomposeO = O1+O2 at a point (h, τ) ∈ RN×R>0\(N1∪N2)
with:

O1
im :=

{
0∑

j∈K(i)\{m}

(
∂

∂hm
αij

)
fij

, O2
im :=


∑

j∈K(m)

(
∂

∂hm
αmj

)
fmj for m = i(

∂
∂hm

αim

)
fim1{m∈K(i)} for m 6= i,

(5.180)

where

1{statement} :=

{
1 if the statement is true

0 else.
(5.181)

Lemma 5.48. Let Assumption 5.47 hold. Then ∇hF (h, τ) is weakly diagonally dominant by
columns at (h, τ) ∈ RN × R>0 \ (N1 ∪N2). 4
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Proof. We will make use of Lemma 5.39 with A := MC and B := −O1 to first show that MC−O1 is
weakly diagonally dominant and then prove the same for ML−N −O1 and finally for ∇hF (h, τ) =
ML −N −O.

(1) A ≥ 0 and A is weakly diagonally dominant since we assume d = 2.

(2) B has a vanishing diagonal by definition. Now we show that B has zero column sums. Note
that

j ∈ K(i) ⇐⇒ i ∈ K(j) and αij = αji, fij = −fji. (5.182)

With this it follows immediately from the definition that O2 has zero column sums, so that it
suffices to show that O has zero column sums. But it follows, again from (5.182), that

N∑
i=1

∑
j∈K(i)

(
∂

∂hm
αij

)
fij = 0. (5.183)

(3) Let us now prove that A + B ≥ 0. aii + bii = aii = mii > 0, so it remains to consider i 6= m.
We omit the argument (h, τ). For m ∈ K(i) we have

aim + bim = mim −
∑

j∈K(i)\{m}

(
∂

∂hm
αij

)
fij ≥ mim −

∑
j∈K(i)\{m}

[(
∂

∂hm
αij

)
fij

]+

. (5.184)

According to Lemma 5.44 we may assume that

αij ∈

{
Q+
i

P+
i

,
Q−j

P−j
,
Q+
j

P+
j

,
Q−i
P−i

}
(5.185)

for each summand of the summation sign in the previous equation; otherwise ∂
∂hm

αij = 0 for
m = 1, . . . , N . We can then distinguish between four cases:

• Case 1: fij > 0, αij =
Q+
i

P+
i

and m 6= i. Then
(

∂
∂hm

αij

)
fij =

Q+
i

(P+
i )2

mim1{fim>0}fij ≥ 0.

• Case 2: fij > 0, αij =
Q−j
P−j

and m 6= j. Then
(

∂
∂hm

αij

)
fij =

Q−j
(P−j )2

mjm1{fjm<0}fij ≤ 0.

• Case 3: fij < 0, αij =
Q−i
P−i

and m 6= i. Then
(

∂
∂h+

m
αij

)
fij =

Q−i
(P−i )2

mim1{fim<0}fij ≥ 0.

• Case 4: fij < 0, αij =
Q+
j

P+
j

and m 6= j. Then
(

∂
∂hm

αij

)
fij =

Q+
j

(P+
j )2

mjm1{fjm>0}fij ≤ 0.

We see that we can ignore terms in (5.184) associated to the cases 2 and 4 (due to their sign). It
now follows for fim(h, τ) > 0 and fim(h, τ) < 0 from

Q+
i

(P+
i )2

mim

∑
j∈K(i)\{m}
αij=Q

+
i /P

+
i

fij ≤
Q+
i

P+
i

mim ≤ mim, (5.186)

Q−i
(P−i )2

mim

∑
j∈K(i)\{m}
αij=Q

−
i /P

−
i

fij ≤
Q−i
P−i

mim ≤ mim, (5.187)
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respectively, that aim + bim ≥ 0 for m ∈ K(i). Now we check the case m 6= i, m /∈ K(i). Then
aim = mim = 0 and ∂

∂hm
αij is non-vanishing only if

αij ∈

{
Q+
j

P+
j

,
Q−j

P−j

}
and m ∈ K(j). (5.188)

Since m /∈ K(i), it holds m 6= j for all j ∈ K(i) and therefore

bim = −
∑
j∈K(i)

(
∂

∂hm
αij

)
fij ≥ 0 (5.189)

by cases 2 and 4 above. This concludes the proof that A+B ≥ 0.

(4) Lemma 5.39 yields that A + B = MC − O1 is weakly diagonally dominant. To demonstrate
that ML −N −O1 is diagonally dominant, we note that

ML −N −O1 = MC −O1 + P with P = ML −MC −N . (5.190)

P is a matrix with zero column sums, non-negative diagonal and non-positive off-diagonal and thus
diagonally dominant. Lemma 5.38 gives that MC − O1 + P is (weakly) diagonally dominant by
columns as the sum of two diagonally dominant matrices with non-negative diagonals.

(5) In this final step, we show that ML −N −O = ML −N −O1 −O2 is diagonally dominant by
repeating the same argument used in the previous step, with P replaced by −O2. It was already
shown above that O2 has zero column sums. To obtain that O2 has non-positive diagonal and
non-negative off-diagonal elements, we need only ensure that(

∂

∂hm
αjm

)
fjm ≥ 0 for j ∈ K(m). (5.191)

Once again, four cases must be considered:

• Case 1: fjm > 0 and αjm =
Q+
j

P+
j

. Then
(

∂
∂hm

αjm

)
fjm =

−Q+
j

(P+
j )2

(−mjm)fjm ≥ 0.

• Case 2: fjm > 0 and αjm = Q−m
P−m

. Then
(

∂
∂hm

αjm

)
fjm = −Q−m

(P−m)2

(∑
k∈K(m)
fmk<0

mmk

)
fjm ≥ 0.

• Case 3: fjm < 0 and αjm =
Q−j
P−j

. Then
(

∂
∂hm

αjm

)
fjm =

−Q−j
(P−j )2

(−mjm)fjm ≥ 0.

• Case 4: fjm < 0 and αjm = Q+
m

P+
m

. Then
(

∂
∂hm

αjm

)
fjm = −Q+

m

(P+
m)2

(∑
k∈K(m)
fmk>0

mmk

)
fjm ≥ 0.

Hence we have that −O2 is diagonally dominant by columns, being a matrix with zero column
sums, non-negative diagonal and non-positive off-diagonal. The proof is thus complete. �
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Unfortunately, the above proof gives only weak diagonal dominance and thus no criterion for non-
singularity. A rather crude but easy fix to this would be to define more strictly the cut-off in the
functions αij . Namely, instead of β = 1 let β ∈ [0, 1) and redefine

αij :=

{
min(R+

i , R
−
j ) for fij ≥ 0

min(R−i , R
+
j ) for fij < 0

with R∗k :=

{
min

(
Q∗k
P ∗k
, β
)

for P ∗k 6= 0

β for P ∗k = 0
(5.192)

for k ∈ {i, j} and ∗ ∈ {+,−}. Then all the properties shown thus far for αij and αijfij involv-
ing piecewise smoothness, local Lipschitz continuity and formulae for directional derivatives hold
analogously, but the occurrence of cancellation in the sum MC − O1 + P yields strict diagonal
dominance:

Lemma 5.49. Let Assumption 5.47 hold. With β ∈ [0, 1) and the redefined functions αij from
(5.192) it holds that G := ∇hF (h, τ) is strictly diagonally dominant by columns for (h, τ) ∈ RN ×
R>0 \ (N1 ∪N2). Specifically, for each column m = 1, . . . , N of this matrix there exists a constant
cm(β) > 0 independent of (h, τ) such that

|gmm| −
∑
i 6=m
|gim| ≥ cm > 0. (5.193)

4

Proof. We can copy the proof of Lemma 5.48 verbatim up to equations (5.186) and (5.187), which
can be strengthened due to the redefinition of the αij :

Q+
i

(P+
i )2

mim

∑
j∈K(i)\{m}
αij=Q

+
i /P

+
i

fij ≤
Q+
i

P+
i

mim ≤ βmim, (5.194)

Q−i
(P−i )2

mim

∑
j∈K(i)\{m}
αij=Q

−
i /P

−
i

fij ≤
Q−i
P−i

mim ≤ βmim, (5.195)

so that
aim + bim ≥ (1− β)mim for m ∈ K(i). (5.196)

The matrix A + B = MC − O1 ≥ 0 is still non-negative with positive diagonal elements and
both matrices A+B and −O2 are still weakly diagonally dominant by columns with non-negative
diagonal. What is new is that A+B+P = ML−N −O1 with P := ML−MC −N is now strictly
diagonally dominant by columns. Since

pim =

{∑
j∈K(i)(1− αij)mij for m = i

(αim − 1)mim for m 6= i,
(5.197)

we have that P has positive diagonal and non-positive off-diagonal elements. When adding Z := A+
B and P , cancellation occurs due to the fact that zim ≥ (1−β)mim > 0 and pim ≤ (β− 1)mim < 0
for m ∈ K(i). Specifically, we set for m = 1, . . . , N the m-th “column dominance”

∆m :=
∑

i∈K(m)

(|zim|+ |pim| − |zim + pim|) (5.198)
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which allows the estimate and the (h, τ) independent definition

∆m ≥ 2(1− β)
∑

i∈K(m)

mim =: cm. (5.199)

As in the proof Lemma 5.38 (iii) we see that

zmm + pmm −
∑
i 6=m
|zim + pim| ≥ ∆m ≥ cm > 0 (5.200)

and this carries over to G := ∇hF (h, τ) = Z + P −O2. �

Proposition 5.50. Under the condition θ = 0, d = 2 and with the functions αij redefined as
in (5.192) with some β ∈ [0, 1), the generalised Jacobian Πh∂F (h, τ) is non-singular for arbitrary
(h, τ) ∈ RN × R>0. 4

Proof. Each element of Πh∂F (h, τ) can be obtained as the limit of a sequence ∇hF (hn, τn) in
RN × R>0 \ (N1 ∪ N2) with (hn, τn) → (h, τ) as n → ∞. All of these matrices were proven in
Lemma 5.49 to be strictly diagonally dominant by columns with a “column dominance” at least
cm > 0 for each row m = 1, . . . , N . The same must hold in the limit. �

5.4.3.5.3 Building In the Homogeneous Dirichlet Boundary Conditions. So far in Sec-
tion 5.4, we have been ignoring the boundary conditions by basing our entire analysis on a non-linear
blend of the high order and low order problems in (5.46). Thereby we have implicitly been solving
the problem with Neumann rather than Dirichlet boundary conditions. Let us now show that the
results obtained so far also hold when attention is paid to the boundary conditions.

Possibly after renumbering the nodes, we can assume that I := {1, . . . ,M} ⊂ {1, . . . , N} for some
M < N is the set of interior node indices. Set

D := {1, . . . , N} \ I, (5.201)

the set of (Dirichlet) boundary nodes. A straightforward way to ensure that un+1 vanishes at
boundary nodes is to only solve for the interior node values un+1

I and to fix un+1
D = 0 a priori. Since

we then solve for the difference h◦ := (un+1 − un)I , this amounts to finding a unique h◦ = h◦(τ) ∈
RM for τ > 0 such that

F̃ (h◦, τ) = (ML − θτL)◦h◦ − τL◦unI − f̃(h◦, τ) = 0, (5.202)

where, as in the previous chapter, A◦ := AII for a matrix A ∈ RN×N and

f̃ = π ◦ f ◦ ι (5.203)

with

π : RN → RM , π(x) = xI (5.204)

ι : RM × R>0 → RN × R>0, ι(h◦, τ) =

([
h◦

0

]
, τ

)
. (5.205)
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Slightly abusing notation, we set αij(h
◦, τ) := (αij ◦ ι)(h◦, τ) and fij(h

◦, τ) := (fij ◦ ι)(h◦, τ)
and see immediately that αijfij ∈ PC∞(RM × R>0) and is locally Lipschitz continuous for each
i ∈ I, j ∈ K(i). Furthermore, for i,m ∈ I and j ∈ K(i) (j ∈ D is allowed!), the derivatives
∂

∂h◦m
αij(h

◦
0, τ0) and ∂

∂h◦m
fij(h

◦
0, τ0) can still be computed according to the rules of Lemma 5.44 as

long as (h◦0, τ0) ∈ RM × R>0 \ (N1 ∪N2), where the null sets N1 and N2 are now defined by

N1 :=
⋃
i∈I

j∈K(i)

Nij with Nij = {(h◦, t) ∈ RM+1 : αijfij is not differentiable at (h◦, τ)}, (5.206)

N2 :=
⋃
i∈I

j∈K(i)

H◦ij with H◦ij = {(h◦, τ) ∈ RM × R>0 : fij(h
◦, τ) = 0}. (5.207)

Then at (h◦0, τ0) ∈ RM × R>0 \ (N1 ∪N2) we can decompose analogously as before

∇h◦ f̃(h◦, τ) = A+ B = A+ B1 + B2 (5.208)

with A,B,B1,B2 ∈ RM×M defined by

Aim :=

{∑
k∈K(i) αik(h

◦, τ)cik(τ) for m = i

−αim(h◦, τ)cim(τ) for m 6= i
(5.209)

Bim :=
∑
j∈K(i)

(
∂

∂h◦m
αij(h

◦, τ)

)
fij(h

◦, τ) (5.210)

and

B1
im :=

{
0∑

j∈K(i)\{m}

(
∂

∂h◦m
αij

)
fij

, B2
im :=


∑

j∈K(m)

(
∂

∂h◦m
αmj

)
fmj for m = i(

∂
∂h◦mαim

)
fim1{m∈K(i)} for m 6= i.

(5.211)

Again, let Assumption 5.47 hold, i.e. d = 2 and θ = 0. We now need to show four things to ensure
diagonal dominance by columns of ∇F̃ (h◦, τ) = M◦L −∇h◦ f̃(h◦, τ):

(i) M◦C − B1 ≥ 0

(ii) Σm(−B1) ≤ ∆m(M◦C) for m = 1, . . . ,M , with the notation of Lemma 5.39.

(iii) −B2 is diagonally dominant by columns with non-negative diagonal elements.

(iv) P := M◦L−M◦C −A is diagonally dominant by columns with non-negative diagonal elements.

Then (i) and (ii) in conjunction with Lemma 5.39 imply that M◦C − B1 is diagonally dominant
by columns and, together with (iii) and (iv), that M◦L − ∇h◦ f̃(h◦, τ) is diagonally dominant by
columns.

Ad (i). This was already proven in Lemma 5.48: Note that (M◦C)im = (MC)im and (B1)im = (O1)im
for i,m ∈ I.
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Ad (ii). Since MC ≥ 0 has weakly diagonally dominant columns, we have for m = 1, . . . ,M

∆m(M◦C) =
∑

j∈K(m)∩D

mjm ≥ 0. (5.212)

On the other hand, by the same symmetry argument used in the proof of Lemma 5.48 to show that
−O1 has zero column sums, we obtain for m = 1, . . . ,M that

Σm(−B1) = −
∑
i∈I

∑
j∈K(i)∩D

(
∂

∂h◦m
αij(h

◦, τ)

)
fij(h

◦, τ). (5.213)

We omit the argument (h◦, τ) and estimate

Σm(−B1) ≤ −
∑
i∈I

∑
j∈K(i)∩D

[(
∂

∂h◦m
αij

)
fij

]−

=
∑
i∈I

∑
j∈K(i)∩D
αij=Q

−
j /P

−
j

fjm<0

(
−Q−j
(P−j )2

fij

)
mjm +

∑
i∈I

∑
j∈K(i)∩D
αij=Q

+
j /P

+
j

fjm>0

(
−Q+

j

(P+
j )2

fij

)
mjm

=
∑

j∈K(m)∩D
fjm<0

mjm

Q−j

(P−j )2

∑
i∈I

j∈K(i)

αij=Q
−
j /P

−
j

fji +
∑

j∈K(m)∩D
fjm>0

mjm

Q+
j

(P+
j )2

∑
i∈I

j∈K(i)

αij=Q
+
j /P

+
j

fji

≤
∑

j∈K(m)∩D
fjm<0

mjm

Q−j

P−j
+

∑
j∈K(m)∩D
fjm>0

mjm

Q+
j

P+
j

≤
∑

j∈K(m)∩D

mjm = ∆m(M◦C),

(5.214)

where we have used the calculations of the first Cases 1 – 4 in the proof of Lemma 5.48 for the first
equality sign.

Ad (iii). Using what we have proven for −O2 in Lemma 5.48, we see that Z := −B2 is diagonally
dominant by columns with

|zii| −
∑
j 6=i
|zji| = −

∑
j∈K(i)∩∈D

O2
ji ≥ 0. (5.215)

Ad (iv). The elements of P for i,m ∈ {1, . . . ,M} are given by

Pim =

{∑
k∈K(m)mmk(1− αmk) ≥ 0 for m = i

(αim − 1)mim ≤ 0 for m 6= i,
(5.216)

so that for m = 1, . . . ,M ∑
i∈I
Pim =

∑
k∈K(m)∩D

(1− αmk)mmk ≥ 0. (5.217)
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Again, we are only able to show weak diagonal dominance and an argument to either show strict
dominance in every column or irreducibility and strictness in one column may be possible but would
have to be attained by a more careful analysis.
If the αij are redefined to be cut off at values β ∈ [0, 1) instead of β = 1 as (5.192), then the addition
of M◦C − B1 and P introduces cancellation such that ∇F̃ (h◦, τ) is strictly diagonally dominant by
columns with uniform positive strictness in RM × R>0 \ (N1 ∪N2) and we obtain

Proposition 5.51. Under the condition θ = 0, d = 2 and with the functions αij redefined as in
(5.192) with some β ∈ [0, 1), the generalized Jacobian Πh∂F̃ (h◦, τ) is non-singular for arbitrary
(h◦, τ) ∈ RM × R>0. 4

5.4.4 Semi-smooth Newton Method

We now take some material from [Ulb02, Chapter 2] to show that our F := F (·, τ) defined in
(5.72) is semi-smooth for all τ ≥ 0. This property is needed to prove convergence of the following
algorithm:

Algorithm 5.52 (Semi-smooth Newton Method). Let f : Rn → Rn be locally Lipschitz, x0 ∈ Rn.
Set k := 0.

(1) Unless a stopping criterion is met, solve

G(xk)dk = −f(xk) (5.218)

for dk, where G(xk) ∈ ∂f(xk).

(2) Set xk+1 := xk + dk and k = k + 1 and go to step (1). 4

Definition 5.53 (Semi-smoothness, higher order semi-smoothness). Let V ⊂ Rn be open, f :
V → Rm and x ∈ V .

(i) f is called semi-smooth at x if it is locally Lipschitz around x and one of the three equivalent
conditions holds:

(a) The limit
lim

G∈∂f(x+td̃)

d̃→d, t↓0

Gd̃ (5.219)

exists for all all d ∈ Rn.

(b) All one-sided directional derivatives f ′(x; d) (d ∈ Rn) at x exist and

sup
G∈∂f(x+d)

‖f(x+ d)− f(x)−Gd‖ = O(‖d‖) as d→ 0. (5.220)

(c) All one-sided directional derivatives f ′(x; d) (d ∈ Rn) at x exist and

sup
G∈∂f(x+d)

∥∥Gd− f ′(x; d)
∥∥ = O(‖d‖) as d→ 0. (5.221)

(ii) f is called α-order semi-smooth at x for α ∈ (0, 1] if it is locally Lipschitz around x, f ′(x; ·)
exists and one of the two equivalent conditions holds:
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(a)
sup

G∈∂f(x+d)
‖f(x+ d)− f(x)−Gd‖ = O(‖d‖1+α) as d→ 0. (5.222)

(b)
sup

G∈∂f(x+d)

∥∥Gd− f ′(x; d)
∥∥ = O(‖d‖1+α) as d→ 0. (5.223)

4

Remark 5.54. The equivalences of the above definition are the subject of Propositions 2.7 and
2.14 of [Ulb02]. 4

Theorem 5.55 (Local convergence of semi-smooth Newton method). Let f : Rn → Rn be locally
Lipschitz continuous and semi-smooth at x∗, f(x∗) = 0 and ∂f(x∗) non-singular. Then there exists
ε > 0 such that for all initial x0 ∈ Bε(x

∗) the sequence (xk)k∈N generated by Algorithm 5.52 is
well-defined, converges to x∗ and satisfies

‖xk+1 − x∗‖ = O(‖xk − x∗‖) for k →∞. (5.224)

If in addition f is α-order semi-smooth at x∗ for some α ∈ (0, 1] then the convergence rate improves:

‖xk+1 − x∗‖ = O(‖xk − x∗‖1+α) for k →∞. (5.225)

4

Proof. We note, as is proven in [Hin10, Theorem 2.8.], that upper semicontinuity of ∂f implies the
existence of C, δ > 0 such that G is invertible with

∥∥G−1
∥∥ ≤ C for all G ∈ ∂f(x), x ∈ Bδ(x∗). The

rest of this proof is taken from [Ulb02, Propositions 2.12 and 2.18].

(1) Set ek := xk − x∗ and let Gk ∈ ∂f(xk) be the choice made in Algorithm 5.52. Then Gkdk =
−f(xk) and

Gkek+1 = Gk(dk + ek) = −f(xk) +Gkek = −(f(x∗ + ek)− f(x∗)−Gkek). (5.226)

Setting k = 0 and employing (5.220) we see that we can choose x0 ∈ Bδ(x
∗) such that G0e1 ≤

(2C)−1‖e0‖. Then

‖e1‖ ≤ ‖G−1
0 ‖‖G0e1‖ ≤

1

2
‖e0‖, (5.227)

from which q-linear convergence ek → 0, k →∞ follows by induction.

(2) Having proved convergence, we can use (5.226) and (5.220) once again to obtain q-superlinear
convergence:

‖Gkek+1‖ = O(‖ek‖) as ‖ek‖ → 0. (5.228)

(3) Now consider the case that f is α-order semi-smooth for some α ∈ (0, 1]. From (5.226) and
(5.222) follows

‖Gkek+1‖ = O(‖ek‖1+α) as ‖ek‖ → 0. (5.229)

As before, q-linear convergence follows by induction for ‖x∗ − x0‖ small enough and this time we
obtain the improved rate

‖ek+1‖ ≤
∥∥G−1

k

∥∥ ‖Gkek+1‖ = O(‖ek‖1+α). (5.230)

98



�

Proposition 5.56 ([Ulb02, Proposition 2.26]). Let V ⊂ Rn. If f ∈ PC1(V,Rm), then f is
semi-smooth on V . If f ∈ PC2(V,Rm), then f is even 1-order semi-smooth on V . 4

Corollary 5.57. For any fixed τ ≥ 0, the function F (h) := F (h, τ) = (ML − θτL)h − f(h, τ) −
τLun is 1-order semi-smooth on RN . In particular, if h∗ is such that F (h∗) = 0 and ∂F (h∗) is non-
singular, then the semi-smooth Newton method from Algorithm 5.52 converges locally at quadratic
rate. 4

Proof. Combine Lemma 5.27, Proposition 5.56 and Theorem 5.55. �
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6. Conclusion

In this thesis we have examined transient convection-diffusion equations with dominant convection
and homogeneous Dirichlet boundary conditions on triangulated bounded domains Ω ⊂ Rd for
d ≥ 1 both from a theoretical and numerical analysis point of view.

On the purely theoretical side, we have shown uniform converge of regular solutions on certain
subdomains of C2 domains Ω to the solution of the reduced problem as ε ↓ 0.

In the case d = 1, with the parabolic maximum principle and Proposition 4.2 about the decreasing
nature of total variation of classical solutions we have seen that the oscillations observed in the V 1

0

finite element discretisations are indeed unphysical as they lead to values exceeding the range of the
initial boundary conditions and to an increase in total variation. The criterion given by Harten’s
lemma (Proposition 4.5) has allowed us to show that the physically plausible manipulation of up-
winding the convective C part of the stiffness matrix C+ εD makes the mass-lumped explicit Euler
scheme TVD and thus free of oscillations under merely a CFL-like condition on the time step size
τ . Later we have seen that, as a linear LED scheme, it cannot be of consistency order greater than
1, which is often called Godunov’s order barrier and manifests itself in strongly smeared solutions.

For d = 2 it was then proved that, for elementwise constant divergence-free fields b, the mass-lumped
semi-discrete method can be interpreted as a finite volume scheme over the barycentric dual mesh
with a central flux approximation for the convective flux and that performing an upwinding of this
finite volume scheme amounts to the addition of a discrete diffusion/upwinding matrix Y just large
enough to cancel all non-negative off-diagonal entries of −C. We have thus elucidated somewhat
this purely algebraic step. Projecting a general b ∈W 1,∞(Ω) onto the lowest order Raviart-Thomas
space RT0, we have argued that the method resulting from such an upwinding belongs to the class
of upwind finite element methods of Baba and Tabata.

Furthermore, we have seen that the resulting scheme is local extremum diminishing (LED) for d = 2
if T is a Delaunay triangulation, since in this case the diffusive part −εD has non-negative off-
diagonal elements. Unfortunately, the concept of total variation for functions from V 1

0 (T ) loses its
meaning in two dimensions, so that even characterising what “being oscillatory” means for a scheme
becomes less obvious than in 1D. Upwinding on an irregular triangular mesh still permits spurious
oscillations when the directions of advection and a gradient in the discrete solution are transverse,
which was demonstrated in Remark 4.32. However, the LED property of the semi-discrete upwinded
scheme ensures that a discrete version of the weak maximum principle is respected.
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The remainder of the work was dedicated to the non-linear variant of FCT suggested in [Kuz10]
which aims at restoring the high order finite element scheme to the greatest extent while suppress-
ing the emergence and enhancement of oscillations. By reformulating the problem in the form
F (h(τ), τ) = 0 and showing that F is piecewise smooth and thus locally Lipschitz continuous, the
application of an implicit function theorem for Lipschitz continuous functions was possible.
The required regularity of the generalised Jacobian Πh∂F at points (h0, τ0) with F (h0, τ0) = 0 at
which one wishes to extend this equation to τ from some interval [τ0, τ0 + δ] was successful for
(h0, τ0) = (0, 0), since the nonlinear function F (·, 0) becomes affine on a neighbourhood of h0 = 0.
Hence we have shown that for some positive time-step bound δ > 0 there exists a unique solution
h(τ) to this non-linear problem for time steps τ ≤ δ.
The attempt undertaken for the explicit Euler method (θ = 0) to extend this result and show that
the generalised Jacobians Πh∂F (h, τ) are non-singular for any (h, τ) with τ > 0 was complicated
by the fact that the mass matrix MC is strictly diagonally dominant only for d = 1. Therefore
we have only been able to show weak diagonal dominance, but no strict or irreducible diagonal
dominance. It seems that this desired result is either formulated too strongly or that, at least for
d = 3 or θ > 0, a different kind of non-singularity of Πh∂F (h, τ) has to be proved, e.g. positive
definiteness.

If a h(τ) satisfying F (h(τ), τ) = 0 exists and Πh∂F (h(τ), τ) is non-singular, however, then the
semi-smoothness of F (·, τ) implied by its piecewise smoothness guarantees locally quadratic con-
vergence of the semi-smooth Newton method.

Apart from solvability, other questions regarding the analysis of the non-linear FCT method still
need to be addressed properly, most fundamentally whether or under which time-step restrictions
it diminishes local extrema and what its rate of convergence in terms of powers of h is.
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A. Tools from the Theory of Finite El-
ements

Theorem A.1 (Trace inequality). Let Ω ⊂ Rd be a domain with Lipschitz boundary and p ∈
[1,∞]. Then

‖v‖Lp(∂Ω) ≤ C(Ω) ‖v‖1−1/p
Lp(Ω) ‖v‖

1/p
W 1,p(Ω)

for all v ∈W 1,p(Ω).

4

Proof. See [BS08], Theorem 1.6.6. �

Corollary A.2 (Scaled L1 trace inequality for simplices). Let T ⊂ Rd be a d-simplex and S one
of its sides. Then for v ∈W 1,1(T ) it holds that

‖v‖L1(∂S) ≤ C(d, σT )(h−1
T ‖v‖L1(T ) + ‖∇v‖L1(T )) (A.1)

4

Proof. This follows from by transformation onto the standard simplex T̂ , the trace inequality in
Theorem A.1 and transformation back onto T . �

Lemma A.3 (Interpolation error on simplices). Let T ⊂ Rd be a d-simplex, T̂ the standard d-
simplex and F : T̂ → T, F (x̂) = Ax̂+ τ an affine bijection. Let k,m ∈ N0 and p, q ∈ [1,∞] be such
that the continuous embedding

W k+1,p(T̂ ) ↪→Wm,q(T̂ )

by inclusion exists and let Î ∈ L(W k+1,p(T̂ ),Wm,q(T̂ )) be a bounded linear operator with

Î|Pk(T̂ ) = idPk(T̂ )

(an interpolation operator). Then for the interpolation operator I ∈ L(W k+1,p(T ),Wm,q(T )) given
by Iu ◦ F = Î(u ◦ F ) the error estimate

|u− Iu|Wm,q(T ) ≤ Cσ(T )
m−dmin{0, 1

q
− 1
p
}
h
k+1−m+d

(
1
q
− 1
p

)
T |u|Wk+1,p(T ) (A.2)

holds for each u ∈W k+1,p(T ), and C = C(k,m, p, q, T̂ , ‖Î‖). 4

Proof. See [Dzi10, Satz 3.31]. �
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B. Tools from the Theory of Ordinary
Differential Equations

Theorem B.1 (Gronwall’s inequality in integral form, [Joh16, Lemma A.53]). Let T ∈ (0,∞],
f, g ∈ L∞((0, T ),R) and λ ∈ L1((0, T ),R≥0). If the implict estimate

f(t) ≤ g(t) +

∫ t

0
λ(s)f(s) ds for a.e. t ∈ [0, T ] (B.1)

holds, then so does explicit estimate

f(t) ≤ g(t) +

∫ t

0
exp

(∫ t

s
λ(τ) dτ

)
λ(s)g(s) ds for a.e. t ∈ [0, T ]. (B.2)

If g is continuous and montonically increasing, then

f(t) ≤ exp

(∫ t

0
λ(τ) dτ

)
g(t). (B.3)

4

Theorem B.2 (Gronwall’s inequality in differential form, [Eva10, Appendix B.2 j]). Let f ∈
C([0, T ],R≥0) be absolutely continuous and g, λ ∈ L1([0, T ],R≥0) such that

f ′(t) ≤ λ(t)f(t) + g(t) for a.e. t ∈ [0, T ]. (B.4)

Then

f(t) ≤ exp

(∫ t

0
λ(s) ds

)(
f(0) +

∫ t

0
g(s) ds

)
for all t ∈ [0, T ]. (B.5)

4

Theorem B.3 (Carathéodory’s local existence and uniqueness theorem). Let t0 ∈ R, y0 ∈ Rn,
b, T > 0, Ωy := Bb(y0) and ΩT := (t0, t0 + T )× Ωy. Consider a function f : ΩT → Rn meeting the
following Carathéodory conditions:

(a) For each fixed y ∈ Ωy the function t 7→ f(t, y) is measurable.

(b) For each fixed t ∈ (t0, t0 + T ) the function y 7→ f(t, y) is continuous.
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(c) There exists a function F ∈ L1((t0, t0+T ),R≥0) such that ‖f(t, y)‖ ≤ F (t) for any (t, y) ∈ ΩT .

Then the following statements hold true:

(i) There exists some a ∈ (0, T ] and an absolutely continuous function y : [t0, t0 + a] → Rn
solution to the integral form of the initial value problem y′(t) = f(t, y(t)) and y(0) = y0, i.e.

y(t) = y0 +

∫ t

0
f(s, y(s)) ds for all t ∈ [t0, t0 + a]. (B.6)

(ii) At each t ∈ [t0, t0 + a] such that the integrand is continuous at t, the strong form

y′(t) = f(t, y(t)) (B.7)

of the ordinary differential equation holds at t.

(iii) If in addition to the above Carathédory conditions the Lipschitz condition

‖f(t, y1)− f(t, y2)‖ ≤ G(t) ‖y1 − y2‖ (B.8)

holds on ΩT for some G ∈ L1((t0, t0 +T ),R≥0), then the solution on [t0, t0 +a] is unique. 4

Proof. References to proofs can be found in [Joh16, Theorem A.50]. �
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