Analysis of Algebraic Flux Correction Schemes for
Transient Convection-Diffusion Equations

MASTER’S THESIS

submitted by

Paul Korsmeier

supervised by

Prof. Dr. Volker John
Dr. Petr Knobloch

INSTITUTE OF MATHEMATICS
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
FREIE UNIVERSITAT BERLIN

Berlin, July 2018






Contents

ILatin Letters| v
Greek Letters| viii
[Other Symbols| ix
[Remarks on Notationl x
(1__Introductionl 1
[2  Existence, Uniqueness, Maximum Principle and Standard Galerkin Approxima- |
[_tionl 9
2.1 Weak Solutionl . . . .. . . . . . e 10
2.2 The Weak Maximum Principle] . . . . . .. ... ... ... ... 0. 17
[2.3  Semi-Discretisation in Space by Finite Elements| . . . . .. ... ... ... ..... 19
[2.3.1  First Order Semi-Discrete Convergencel . . . . . . .. .. ... ... ..... 20

[2.3.2  Higher Order Semi-Discrete Convergencel . . . . . . .. . . ... ... .... 21

[2.4  Time-Discretisation by 6-Stepping| . . . . . . . . . . . ... .o 24
3__The Reduced Probleml 27
3.1  Convergence to the Reduced Problemase —0 . . . ... ... ... .. ....... 29

[4  First Order Upwinding of the Convective Part and the LED Principle| 37
4.1 Upwinding in One Dimension| . . . . . . . . . . . . . ... .. ... ... ....... 37
411 Total Variationl . . . . . . . . . .o 37

[4.1.2  Equivalence of FD, FEand FV| . . . . . .. ... ..o 000000 38

4.1.3  Upwinding in 1D implhes TVD| . . . . . .. .. ... ... .. 0. 40

4.2 Upwinding in Multiple Dimensions| . . . . . . .. .. . ... .. ... ... ...... 42
[4.2.1  Manipulation of the Stiftness Matrix Resulting in Upwindingl . . . . . . . .. 42

[4.2.2  The Upwind Finite Element Method of Baba and Tabata] . . . . . . ... .. 47

4.3 LED conditions for semi-discrete problems|. . . . . . . .. . ... ... ... 51

iii



[6 Flux Corrected Transport|
5.1  Zalesak’s Original FCT| . . . ... .. o

5.3 Proposition of a T'wo-Step FC'T' Method for the Finite Element Dirichlet Problem|

5.4 The FCT Approach of Kuzmin| . . . . . . ... ... ... ... ... ... ....
6.4.1 Formal Semi-Discrete Limited Schemel . . . . . .. ... ... ... ... ...
[5.4.2  Fully Discrete Limited Scheme| . . . . . . . . . ... ... ... ... .....
5.4.3  An Attempt to Establish Unique Solvability|. . . . . . .. .. ... ... ...
5.4.4 Semi-smooth Newton Methodl . . . . . . . ... ... .. ... ... ... ...

6 Conclusion|

[A Tools from the Theory of Finite Elements|

(B Tools from the Theory of Ordinary Differential Equations|

(Bibliography|

[Statement of Authorship (Selbststandigkeitserklarung)|

iv

101

103

104

106

111



Latin Letters

Notation

Description
bilinear form associated to L

divergence-free convection field

= (bv 1)

boundary parts of Sy, ¢ =1,2,3

open norm ball of radius r around z € R¢

full convection matrix

generic positive constant

non-negative reaction term

compactly supported smooth functions on an open set S C R™
bound for a

positive coercivity constant of a

i-th cell of the barycentric dual mesh

auxiliary function in Section

constant in Poincaré-Friedrichs inequality

diffusion matrix
set of differentiability points of a function f
a notion of generalised directional derivative of a function f at x

auxiliary functions in Chapter

function in Section to find solutions h(7)

right-hand side (linear source term) (unless locally defined other-
wise)

raw antidiffusive flux in Chapter |5| (unless locally defined other-
wise)

raw internodal flux from node j to node ¢

backward exit locus
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Notation Description Page

G- backward exit locus in 9Q x [0,T) 28

Gi(T) auxiliary function in Section 71

h € RY(RM)  solution update from time step n to n + 1 in Chapter 71

h >0 mesh width of T i

hr diameter of d-simplex T’ X1

T index set of interior nodes

K cRVXN .= (C+eD)

K(7) index set of neighbours of node p;

K; positive constant independent of € in Chapter

L e RVXN =K+Y

L elliptic differential operator

M eN number of interior nodes of T

Mc full consistent mass matrix

My, full lumped mass matrix

N eN number of nodes of T

N node set of T

N interior node set of T

N1, N certain null sets @

PZ-jE sum of mnon-negative (non-positive) antidiffusive fluxes into
node/cell i

P*(S) polynomials of degree < k on the set S C R?

PCH(V,R™)  piecewise C* functions mapping V C R” to R™

Pe cell Péclet number

Qf admissible non-negative (non-positive) correction for node/cell 4

+ QF

R; é,cut off at 1

Sy characteristic tube of a set X C G

T7>0 a positive time 9

TeT a d-simplex E

T triangulation of x|

TV discrete total variation

U weak solution to convection-diffusion-reaction equation; in Chap- @
ter |3t solution to reduced probem |7_7|
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Notation
Uuo
uE

Description

initial condition

solution to convection-diffusion-reaction equation in Chapter
neighbourhood of 7, (B2(V'))

continuous piecewise polynomial (of order < k) functions
VE(T) N Hg ()

shorthand for V*(T,)

shorthand for VF(T,)

continuous total variatiation

forward /backward exit points of 1z

upwinding/discrete diffusion matrix
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Greek Letters

Notation

T

or
oT

T+ (T)

Pi

Description
correction factor for antidiffusive fluxes

generic small positive numbers

diffusion coeefficient

characteristic associated to T € Q x (0,7T)
outflow boundary

inflow boundary

parabolic boundary

parabolic boundary of Qr

a domain
the cylider © x (0,7

insphere radius of d-simplex T'

shape factor of d-simplex T
shape factor of T

time-step length in a time-discretised scheme

forward /backward exit times associated to T € 2 x (0,T)
implicitness parameter in a 6-stepping

i-th piecewise linear nodal basis function
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Other Symbols

Notation Description Page
xt =max(0,z) >0

x~ = min(0,z) <0
|| Hausdorff measure, absolute value, Euclidean norm or induced E]
matrix norm

S° interior of a set S C R?

S closure of a set S ¢ R?

X* topological dual of a Banach space X

(,) == (-, )x*xx duality pairing associated to a Banach space X

;) L? product on {2

A° restriction of a matrix A € RV*¥ to interior nodes
Opf(x) Bouligand subdifferential of a function f at point x

Of (x) Clarke’s generalised Jacobian of a function f at point x

X



Notation and Nomenclature

The notation in this work is certainly standard, but we introduce at this point some frequently
used notation and nomenclature to preclude ambiguity and for later reference.

Definition 0.1 (General nomenclature and notation). Let d € N.

By a domain  C R? we mean an open connected set.
Whenever we say smooth, we mean infinitely many times differentiable.

For an open set S C R" with n € N, we denote by C§°(S) the set of smooth real-valued
functions with compact support in S.

(-,+) denotes the L? scalar product on €.
|| is defined depending on the context:

e For z € C, |z| denotes the absolute value of x.

e For a vector v € R?, if not stated otherwise, |v| denotes the Euclidean 2-norm.

e If S C R? s of Hausdorff dimension d’, then by |S| we mean the d’-dimensional Hausdorff
measure of S.

For x € R? and 7 > 0, B,(z) denotes the open Euclidean norm ball of radius r around z.

Due to the symbol € being reserved as the diffusion coefficient (see (1.1))), we will use 4, to
be able to carry out calculus in the usual notation. No confusion should arise from this.

C > 0 is a generic positive constant whose value is allowed to change even between two usages
in the same line.

A

Definition 0.2 (Triangulations). Let Q C R? be a domain.

(i)

A triangulation or simplicial partition or simplicial mesh T on € is a collection of closed
d-simplices T such that 7° NT'° = ) for all distinct T,7" € T and

U =0 (0.1)

TeT

X



Even when not explicitly stated, we shall always assume that the triangulation is regular, i.e.

TNT =0 or TNT is a subsimplex of both T and T". (0.2)

(ii) Equation (0.1) implies that a triangulated domain € is polyhedral. Actually, we take the
existence of a triangulation as the defining property of a polyhedral domain.

(iii) Let 7 be a regular triangulation of {2. We do not differentiate between vertices and nodes
and define

(iv) For a closed d-simplex T, we define
(a) hy:=max{|z —y|: z,y € T} (its diameter)
(b) pr:=max{p>0:3x €T : B.(x) C T} (the insphere radius)
(¢) or := hr/pr (the shape factor)
(d) a side or facet of T to be a (d — 1)-subsimplex.
(v) For a triangulation 7 define

h = hr (it h width
(a) max hr (its mesh width)

(b) o7 := maxop (its shape factor)
TeT

A family of triangulations (7p,)ner (usually formally indexed by its mesh width) is called
shape-regular if o := supyc;o7, < oo. It is called quasi-uniform if there exists a constant
7 > 0 such that minper;, > 7h for all h.

(vi) For an enumerated node set N' = {p; : i = 1,..., N} and a node p; € N we say that a node
Dj, J # 1 is a neighbour of p; if there exists T' € T with p;,p; € T. We define the set of
neighbour indices of node p; as

K(i):={j€{1,...,N} :pj is a neighbour of p;}. (0.3)
A

Definition 0.3 (Finite Element Spaces). Let k € N and Q@ € R? a domain partitioned by a
regular triangulation 7.

(i) For any set S C R? of sufficient cardinality we define

PE(S): = f: 8 = R: f(z) = Z Cax® (0.4)

aeNg:|a|<k

with the usual multi-index notation.

X1



(ii) The space V¥ := V¥(T) denotes the continuous piecewise k-polynomial elements
VET) = {feC%Q): flp e PX(T) for all T € T} ¢ HY(Q) (0.5)
and VJ 1= VF(T):= VF(T) N HL(Q) is its counterpart with vanishing boundary values.
(iif) If 7 = Ty, the shorthands V¥ and th,o can be convenient.

(iv) For an enumerated node set N' = {p1,...,pn} and i € {1,..., N} define the i-th nodal basis
function or i-th hat function ¢; € V(T) by wi(p;) = ij.

A

Definition 0.4 (Matrices of the standard Galerkin method). Let 7 be a triangulation of 2 with
nodes p;, ¢ = 1,...,N. Then we define the associated full consistent mass matriz Mg, the full
diffusion matriz D and the full convection matriz C by

Mo € RVXN mij = (5, Pi), (0.6)
D e RVXN dij == (V;, Vi)
Ce RNXN Cij = (b ) V@]v SDZ)’

respectively, the stiffness matriz or negative transport operator K as
K :=—(C+e€D) (0.9)

and the full lumped mass matriz My € RM*M by
N
My, := diag(myq, ..., mpr) m; ::Zmij. (0.10)
j=1

For A € {M¢,My,D,C, K} define the restricted counterpart A° := A7z := (a;j)i jez- A

xii



1. Introduction

In this thesis we will be interested in the numerical solution of time-dependent (also called unsteady
or transient) convection-diffusion equations and a method called “Finite Element Flux Corrected
Transport” (FEM-FCT) that is expected to alleviate or resolve a severe problem inherited in the
standard VO1 finite element treatment thereof: the emergence of spurious (i.e. unphysical) oscilla-
tions in the vicinity of steep gradients in the approximate solutions. These occur when the diffusion
part of the differential operator is dominated by its convective part.

Specifically, let Q C R? be a domain, T > 0 some positive time, Qp := Q x (0,T] the cylinder,
b: Qr — R a given vector field satisfying div(h) = 0 and 0 < € < 1101l Lo (2) -

Then for some initial datum ug :  — R and some f : Qp — R the differential formulation of the
problem of interest is to find u : Q7 — R satisfying

u—eAu+b-Vu=f inQp
u=0 on dQ x[0,T] (1.1)
u=1wuy on ) x {t=0}.

We will generally restrict ourselves to homogeneous Dirichlet boundary conditions on 992 x [0, T]].

In order to witness in a simple case the spurious effects of applying a standard finite element
method to such a problem, let us contrast our expectations of the true solution and the reality of
the discrete solution for the one-dimensional example problem

Ut — €Ugy + Uy =0 in (0,4) x (0,7
u=0 on {0,4} x [0,T] (1.2)
U = X[1,2] on (074) X {t = 0}7

where x| o] is the characteristic function of the interval [1,2].

We expect the solution u to display only the two effects of convection and diffusion; for instance
if we interpret up = x[1,2] as an initial spatial distribution of a substance’s concentration in the
one-dimensional container 2 = (0,4) in which the fluid is transported with constant velocity b = 1
(the container’s walls are no obstacle to the fluid flow), we expect u(t) for 0 < ¢t < 2 to be a (slightly,
since € < b) smoothed version of the shifted initial profile X[1+¢.2+¢- For t > 2 the homogeneous
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Dirichlet condition at x = 4 will steer the profile down rapidly to the value 0 at that point.

Neglecting for a moment the boundary conditions and pretending the domain were 2 = R,
describes pure diffusion in a shifting coordinate system. Since it is the nature of the diffusion (=
heat) equation on R that features of the initial profile flatten out, become blurred (convolved with
a Gaussian kernel of increasing width, in fact) and less extreme over time, we can expect the values
of u(+,t) to always remain within the interval [0, 1] and wu(-,t) to be of decreasing total variation
as t increases. These two principles will be reflected in the parabolic weak maximum principle (see
Theorem and Proposition respectively. A good numerical approximation should have
these properties in a discrete sense, too.

If, however, we consider the discretisation using the finite element space Vhl0 over the triangulation
Ty, given by the equidistant grid 0 = xg < 1 < --- < 2y = 4 dividing 2 = (0,4) into N intervals
of length h = 4/N and 6-stepping with a constant time-step 7 > 0 for the time-discretisation, then
the results violate these two requirements. For our example, we fix € := 1073 < 1 = b.

Let u}' denote the discrete solution at grid-point (ih, n7). Then this discretisation gives the implicit
scheme

2 1
§6tu?+1 + g(étu;ff — 5tu?_+11) =40 (eLlu;1+1 + Lguzﬂ“) + (1 —0) (eLiui + Lguy'), (1.3)
where
ntl _ . n u o —2ul +u u . —
Gt i= S L= L = L (1)

and 6 € [0,1]. Setting uj = u}, = 0 for all n € N realises the homogeneous Dirichlet boundary
condition. For 8 = 0,0.5, 1 this is the forward Euler, Crank-Nicolson and backward Fuler method,
respectively.

For instance, let us choose N = 100 and plot the solutions with 8 = 0, 0.5, 1 at four different times
t. We set 7 = h? to make sure that the forward Euler method is stable (for values significantly
larger than that, this method produces wild oscillations resulting in numerical overflow). The re-
sults are shown in Figure Oscillations lead to values outside the initial function range [0, 1]
and cause an increase in total variation. The sharp drop near the boundary point x = 4 causes
particularly severe ones. Since this effect occurs not only for § = 0 but also for the unconditionally
stable Crank-Nicolson and backward Euler method, we see that it cannot be attributed to a pos-
sible instability of the time-discretisation, but rather that it is an inherent deficiency in the finite
element space-discretisation.

Hence let us now focus on the forward Euler method. In order to make this method truly explicit,
a technique called mass lumping is commonly used. In the considered 1D case, this diagonalisation
of the mass-matrix M = (¢;, ¢;)i j—o,..N in conjunction with setting 6 = 0 yields the scheme

St = eLyul + Liul'. (1.5)

The explicitness of this method makes it computationally cheaper, but more importantly there
are now conditions on h, 7 that, when complied with, ensure that the resulting method no longer



produces the above negative effects. In Section [I.1.3] we will learn that the crucial numbers here
are

bh 2¢

P = — d = _—
(& c an Yy Th2,

(1.6)
where Pe is the so-called cell Péclet number that characterises how much b dominates € in a cell of
size h.

The following table summarises an experiment in which N and 7 are varied independently of each
other so that Pe and 7y are in a range around certain threshold values. A green field symbolises that,
at time ¢ = 0.01 (actually, ¢ = n7 for n = [0.01/7]), the numerical solution’s range is contained in
[0, 1], whereas a red field represents the case that this range is exceeded.

This indicates that the mass-lumped explicit Euler scheme does not show oscillations if and only if
Pe <2 and v < 1. That this condition is indeed sufficient will be shown in Section

If we change the definitions of {2 and ug slightly in order to march the profile to the right boundary
more quickly, we can compare for Pe = 1 and 7 = h?/10e = 10~* the lumped and non-lumped
scheme at t = 1073 and ¢ = 0.2. It is seen that, as predicted by the above table, the lumped version
is free of oscillations for these values h,7. The non-lumped version no longer shows the terrible
boundary oscillation of before, but still some oscillations at the first time-steps, see Figure [[.2] and

Figure [I.3

Now, the conditions Pe = bh/e < 1 and 7 < h?/2¢ are extremely restrictive for a large ratio |b|/e
and likely to make also the mass-lumped method unusable due to excessive computational
effort. In order to make the explicit Euler scheme non-oscillatory with a reasonable time-step
constraint, we need to replace the central difference approximation L§ by the one-sided difference

Ljup = ———"1, (1.7)

where the superscript u stands for upwind. Since the “wind” b > 0 is directed towards the right,
this uses only information located upwind from (i.e. to the left of) node i to compute the advection

3



contribution to u?“. With this modification, the time-step threshold for stability will turn out to

be .
b 2\

A quick experiment with N = 400 and a range of for values 7 near 7, verifies this, see Figure [1.4
For 7 < 7, the scheme shows no spurious oscillations or out-of-range values, regardless of the size
of the Péclet number Pe, but as can be seen from a comparison with the exact and central scheme
solutions in Figure it adds a large amount of artificial diffusion.

In short, the subject-matter of this thesis is to understand this behaviour in the one-dimensional
case, find a generalisation of upwinding to the case of domains Q C R for d > 2 and then analyse
the method of flux-corrected transport (FCT), which is an attempt to blend the upwinded and the
standard Galerkin method in such a way that their respective strengths are maximised and their
weaknesses minimised, i.e. such that both spurious oscillations and excessive numerical diffusion
are kept at a minimum.

Chapter |2 covers some standard results on the existence and uniqueness of weak solutions of solu-
tions to the linear second order parabolic problem on domains ¢ R% with homogeneous Dirichlet
boundary conditions, as well as on the stability and convergence of the discretisation by the method
of lines (first in space, then in time) using Vhl,o finite elements and 6-stepping. With the weak max-
imum principle, an important property of classical solutions will be introduced that will later give
rise to the concept of local extremum diminishing (LED) semi-discrete schemes.

Chapter [3] is of little relevance to the following chapters but it is an interesting application of the
(strong) maximum principle. It studies the uniform convergence of the convection-diffusion solu-
tions to the reduced problem’s solution, i.e. the problem without a diffusion term, under certain —
partly natural and partly technical — conditions on the considered domain on which this conver-
gence takes place.

In Chapter {4 we introduce the notion of total variation and total variation diminishing (TVD)
schemes in one dimension and show that the latter is a natural property that the upwinded explicit
mass-lumped scheme has. We then generalise the upwinding procedure of the convective part of
the stiffness matrix to the case d = 2 and show that the resulting scheme can be seen as a member
of the class of upwind finite element methods of Baba and Tabata. Finally, the LED principle is
introduced and conditions are given such that the scheme thus upwinded is LED.

Chapter [o| finally, presents the original FCT method for conservation laws in multiple space di-
mensions devised by Zalesak in 1979 and Kuzmin’s approach from [Kuz10] to apply this framework
in a non-linear blend of the upwinded and standard finite element method. Conditions for well-
posedness of the arising non-smooth non-linear problem and for local convergence of a semi-smooth
Newton method are investigated.
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Figure 1.1: Results for N = 100 and 8 = 0, 0.5 and 1 at four different times ¢ in comparison with
the exact solution obtained by a very fine discretisation
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Figure 1.2: Comparison of the non-lumped scheme ((1.3) and the lumped scheme (1.5 for Q =
(0,0.6), uo = X[0.205, Pe =1 and 7 = h?/10e = 10~*
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Figure 1.4: The upwinded scheme with N = 400 for values 7 near the critical value 7,
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Figure 1.5: Comparison of the explicit central, explicit upwind scheme and exact solutions for
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2. Existence, Uniqueness, Maximum Prin-
ciple and Standard Galerkin Approxi-
mation

Let T' > 0 be a time and Q7 := Q x (0, 7] the cylinder. We want to prove existence and uniqueness
of a weak solution u : Q7 — R to

ur+Lu=f inQp
u=0 on 92 x[0,T] (2.1)
u=wug on x {t=0},

where Lu := —eAu+b-Vu+cu is the elliptic (spatial) differential operator and  C R? is a domain
with Lipschitz boundary.

Assumption 2.1. We fix the following assumptions about the functions constituting the data:

b e WHe(Qp, RY) with divb =0 (2.2a)
ce L*(Qr,R) with ¢ >0 (2.2b)
feL*Qr) (2.2c)
ug € L*(Q). (2.2d)

Furthermore, for the sake of simplicity, we assume the operator L and therefore the functions b and
¢ to be independent of t! A

Remark 2.2. Equation (2.2al) is actually equivalent to b being Lipschitz continuous with Lipschitz
constant [|b]|yy1,00(q,. gay (see [Alt16, Theorem 10.5]) A

Definition 2.3. Define the bilinear form a : H(Q) x H}(2) — R associated to the elliptic
operator L by
a(u,v) := e(Vu, Vv) + (b - Vu,v) + (cu,v). (2.3)

A

The following two results are well-known from the theory of elliptic partial differential equations:

9



Lemma 2.4 (Poincaré-Friedrichs inequality). There exists a constant Cpr(2) > 0 such that for
all v e HY(Q)
HU||L2(Q) < Cpr HVUHL2(Q) : (2.4)

Lemma 2.5 (Boundedness and coercivity of a). The bilinear form a is bounded by

Ca = €+ [[bl] oo () + €l oo @) - (2.5)

If we assume in addition that that c — %div(b) > 0, then a is coercive with constant
co = (Chpp+1)" e (2.6)
A

Proof. The first part of the statement is trivial. For the coercivity, note that
1 1.
(b-Vu+ cu,u) = <2b,V(u2)> + (cu,u) = — (2 d1v(b),u2) + (e, u?) > ¢ HUH%Q(Q) >0, (2.7)

so that
a(u,u) > €|[Vull72q) > (Chp + 1) ellullfq) - (2.8)
]

2.1 Weak Solution

Definition 2.6 (Abstract function spaces). Let (X, ]|-]|) be a real Banach space and T' > 0.

(i) For p € [1,00] we denote by LP(0,T; X) the Banach space of Bochner measurable functions
f:10,T] — X such that

T
Wi = [ 15O dt < o0 (2.9)

for p € [1,00) and
1f1 Lo 0,7:x) = eS[SS?p 1]l < oo (2.10)

)

(ii) The space C([0,T]; X) is the space of continuous functions f : [0,7] — X with the norm
et = max 1 < . (2.11)
A

Definition 2.7 (Weak derivatives of abstract functions). Let X, T be as before. Foru € L(0,T; X)
we say that v € L!(0,T; X) is a weak time derivative of u if

T T
/ o' (t)u(t) dt = —/ o(t)v(t) dt (2.12)
0 0
for all ¢ € C§°((0,T),R). We write v’ := v, since by a fundamental lemma of calculus of variations
type argument there exists at most one such weak time derivative. A
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Note that — as usual — LP(0,T; X) C L*(0,T; X) for p € [1, 0] by Holder’s inequality, since [0, T’
has finite Lebesgue measure in R.

Definition 2.8. For X,T as before, the Sobolev space W1P(0,T; X) is defined as
WP(0,T; X) := {v € LP(0,T; X) : v exists and v' € LP(0,T; X)} (2.13)

with norm

(S e + W@l d)"" for p e [100) -

HUHWLP(O,T;X) = ,
esssuppo 7 ([[v]l + [[v[]) for p = oo.

H'(0,T; X) is used as an abbreviation for W12(0,T; X) and hints at the fact that this is a Hilbert
space. A

Remark 2.9. We will encounter the case u € L?(0,T; Hi(2)) and v/ € L*(0,T; H1()). Defi-
nition does not immediately give sense to this combination of expressions, since H{ () and its
dual H~1(Q) are different spaces. To make sense of this, we need to regard Hg () as a subspace
of H=1(Q) by means of the embedding ¢3 o ¢1, where

HY(Q) — L*(Q) — H Q). (2.15)

L1 L2

Here, ¢; is the inclusion and t; maps f € L*(2) to the functional v — [, fv dz in H~1(Q).
Note that ¢o is indeed injective, because H}(€2) is dense in L*(Q). A

Theorem 2.10 ([EvalO, Theorem 5.9.2.3]). Let u € L*(0,T; H}(Q)) and v’ € L*(0,T; H1(Q)).
Then

(i) v € C([0,T); L?(R?)) and
(i) t — Hu(t)H%g(Q) is absolutely continuous and differentiable a.e. on [0,T] with

() gy = 20 0), u(0). (216)

Here, (-,-) := (-, ) x+xx denotes the duality pairing of a Banach space X, in this case X = H}(Q)
and X* = H~Y(Q). A

Lemma 2.11 (Characterisation of weak time derivatives). Let X be a Banach space and T' > 0.
For two functions u,v € L*(0,T; X) the following assertions are equivalent:

(i) v="1.
(ii) t — (f,v(t)) is the weak time derivative of t — (f,u(t)) for all f € X*. A

Proof. Let ¢ € C§°((0,T),R). Then

T T
/ O (t)u(t) dt = —/ o(t)u(t) dt (2.17)
0 0



is equivalent to
T T
<ﬁ/'¢umwdn=<ﬂ—/ p(tyult) dt) ¥ f € X* (2.18)
0 0

by Hahn-Banach’s theorem. But bounded linear functionals can be shifted under the Bochner
integral, so we obtain equivalence of (2.17) to

T T
/ O (O)(f, u(t)) dt:/ o) (f,v(t)) dt forall fe X*. (2.19)

0 0
O

We now follow [EvalO, page 373] with some added details in devising a weak formulation for
. Let us proceed formally by supposing that this problem has a smooth solution. Then we
can multiply the differential equation by a test function v € H} (), integrate over 2 and apply
integration by parts to obtain

(ut, v) + a(u,v) = (f,v) (2.20)
with the bilinear form a from Definition 2.3

Regarding u and f as abstract functions u : [0,7] — H}(Q) and f : [0,T] — L*(Q) and abusing
notation slightly, let us argue that we can equate (u'(t))(z) = (u(t))(x) := us(t, z) for almost every
x € ). Because of the assumed smoothness of the solution, we have

u,us € L*(0,T; L*(Q))

and therefore also
T T
/ ug(t)p(t) dt —/ u(t)'(t) dt € L*(Q) (2.21)
0 0

with arbitrary ¢ € C§°((0,T),R). For z € Q, let B := B.(x) be a ball around x entirely contained
in Q. Then xp € L*(Q) defines a linear functional on L?(Q) via

— (xB,v) = /Bv dx (2.22)

and we obtain

</OT u(t)p(t) dt) (x) = lim <)>§g: ot / w(t > iy 0T (&i:;i;”ut(t)) 0

T XB T
— [ ( *”wmﬂwwﬁz/umww@ﬁ
0 =0 \IXB.()l 0

= —/OT (z,t)¢'(t) dt = — lim OT < XB(a) ,u(x,t)> $(t) dt

‘XBE (z) |

(2.23)

for almost every x € Q. Hence we can replace u; by ' in (2.20)).
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As is made plausible in |[Eval0], a weak solution should be sought such that u'(t) € H~(Q) for
almost all ¢ € [0, T, which is why we we replace (v/,v) by (uv/,v). Our weak formulation of (2.1]) is
therefore to find u € L?(0,T; H3(Q2)) with v’ € L%(0,T; H~(Q)) satisfying

{(u’(t), v) + alult),v) = (f(t),v) for all v € Hy(9), for ae. t e [0,T] (2.24)

u(0) = uyp.

Since HE(€2) is reflexive, this is equivalent to finding u € L?(0, T'; H} (Q)) with o’ € L*(0,T; H1(2))
satisfying

{<u<t>,vy +a(u(t),v) = (f(t),v) for all v Hi(Q), for ae. t [0, (2.25)

u(0) = up

(due to Lemma , where - denotes the weak time derivative of the real-valued function ¢
(u(t),v); but then Theorem allows us to replace the duality pairing by the L? inner product:

Find u € L*(0,T; H} () with o' € L?(0,T; H1(£2)) such that

(2.26)

(u(t),v) + a(u(t),v) = (f(t),v) for all v € H}(Q), for a.e. t € [0,T]
u(0) = uo.

Remark 2.12. The condition u(0) = ug makes sense if u € L2(0,T; H}(Q)), v’ € L?(0,T; H~1(2)),
since then we have by Theorem that u is uniformly continuous on [0,7] when understood as
an L?(2)-valued function. A

Now we are in a position to prove existence and uniqueness for problem (2.26)). This is the content
of |[QV94, Theorem 11.1.1], whose proof we follow while also adding details.

Theorem 2.13 (Existence, uniqueness and energy estimate). Let Assumption hold. Then

there exists a unique solution u € C([0,T]; L*(Q)) N L?(0,T; H} () with v’ € L*(0,T; H1(2)) to
the weak problem (2.26)) and the energy estimate

t 1 t
)y + o /0 () syt < lwoliZaqoy + — /D ) ds (227)

holds for all t € [0,T]. A

Proof. The proof’s core is a semi-discretisation in space by the so called Faedo-Galerkin method.
Let (¢;);en be a sequence in H} () forming an orthonormal basis with respect to the H'(Q) scalar
product (-, ) 1) = (+,-) +(V+, V:) and set VN :=span{¢1,...,¢n}. Then we consider the finite-
dimensional evolution problem:

Find uV : [0,7] — V¥ such that

{(uN(t),qﬁj)/—i—a uM(t),6;) = (f(1),¢;) forj€{l,...,N}, forae. t€(0,T) (2.28)

UN(O) = uév = HN(U()),
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where Iy : H}(Q) — V¥ is the orthogonal projection onto V¥ with respect to the L? inner
product (-,-). We introduce the mass matrix M, stiffness matrix A, right-hand side F'(¢), initial

value ¢ and unknown vector c¢™:
mij == (95, i) fori,j € {1,...,N}
aij = a(dj, ¢;) for i, € {1,...,N}
Fi(t) .= (f(t), i) forie{1,...,N} (2.29)
66\,]1' = (Iln(uo), ¢i) = (uo, ¢;) forie{l,...,N}
o (t) = (UN(t)7¢z'>H1(Q) forie{1,...,N}.

Given that M is symmetric and positive definite, (2.28]) can be equivalently written as

{(cN ) (t) =M~ (F(t) — AcN(t)) for ae. t € (0,T) (2:30)

AN0) = = MEY.

We see that this is a finite-dimensional ordinary differential equation with a right hand side affine
in ¢V but not necessarily continuous in t.

Let us assert the conditions fqr the application Qf Carathéodory’s local existence and uniqueness
theorem (Theorem [B.3). Set F\(t) := M~ F(t), A:= M~'A.

(i) The function g(t,cV) := F(t) — AcV is defined on [0,T] x RN, measurable in t for each fixed
cN € RY and Lipschitz continuous in ¢V with the time-independent Lipschitz constant |A|
for each fixed t € [0, T7.

(ii) For R € Ry arbitrarily large, it holds that
lg(t,¢M)| < H(t) == |F(t)| + |A|R for all ¢V € Bg(0)

and H € L'([0,T)):

T 2 T T T N
> Ay (2 12 2 4, 12 2
( / \F(t)\dt) <1 [ PP a7 [ PP =T S0

N T
i=1

-~

2
IfIILQ(QT)

(2.31)

By Theorem there exists § > 0 and a unique absolutely continuous function ¢V : [0,5] — RV

satisfying
t

Nity=cy —|—/ g(s,cN(s)) ds. (2.32)
0

We need the solution to exists globally on [0,7]. If the maximally extended solution were only
defined on [0, T") for T' < T, then ¢V (t) would have to approach the boundary of Br(0). Remember

14



that we can choose R > 0 arbitrarily large; it suffices therefore to show that the maximally extended
solution remains bounded uniformly with respect to T" < T'. We have

t t t
CN(t):c(])V—l-/ F(t) — AcN(t) dt:Cév—i-/ F(t) dt—A/ N(t) dt
0 0 0

and therefore . .
N (6)] < || + / B(t)] di+|A] / N (o)) dr.
0 0

=:h(t)

The function h is monotonically increasing, so Gronwall’s lemma in integral form (Theorem |B.1))
yields

0] < exp(e ] (1e§] + / Flds) < exp(]A) (\co + i i) <

This is the uniform bound. Remebering that the solution , which has just been shown to exist
on [0,7"), is both weakly and almost everywhere strongly diﬁerentiable with (V) (t) = g(t, N (1)),
we see that is solved.

The boundedness of ¢V and the fact that F € L*(0, T; RY) (see (2.31))) gives ¢ € H'(0,T;RY) and,
by H' orthogonality of the basis (¢1, ..., ¢n), that uY € HL(0,T; H}(Q)) with HuNH

le

H(0,T;H () —

NHHl(o,T;RN) < 00. For any fixed t € (0,T) we can now test with v := u™ (¢):

(™) (@), u™ () +a(u™(t),u™ (1)) = (F(),u™(2)) (2.33)

and apply Theorem [2.10] coercivity of a, Holder’s and Young’s inequalities to obtain for almost
every t € [0,T]:

1d 1 a
2t 18" Ol 2y e 1V @ 1) < 1Ol 6V 0 2@y < 5o 17Oz +5 (6 Ol 2y
(2.34)
Remember that H'HHl(Q) > ||'||L2(Q) and multiply by 2:
d
0 Ol + el ey < = 1Oy (2.35)

Recall further that, by Theorem [2.10, the function ¢ — Hu (t)” 12(Q) is absolutely continuous.

Therefore we may integrate over (0,7),7 € (0,7] and apply the second fundamental theorem of
calculus for absolutely continuous functions in order to obtain the energy estimate (2.27)) for the
Galerkin solution:

I Ol 6o [ 19 Oy 902 198 i+ [V ON a6 00

SHuoll
which tells us that (u")yen is a bounded sequence in L>(0,T; L2(Q)) N L%(0,T; H}(Q)).

Now we make use of the fact that L?(0,7; Hi(Q2)) and L?(0,T; H1(2)) are Hilbert spaces and
therefore reflexive and that L>(0,T; L?(Q)) is (via the usual isomorphism) isomorphic to the dual
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space of L'(0,T; L*(Q2)), which is a separable Banach space. It follows that there exists a subse-
quence of (u™")nen (We do not denote the fact that it is a subsequence) and

u € L®(0,T; L*(Q)) N L*(0,T; Hy(Q)) (2.37)
with
u™ 5w in L0, T; L2(Q)) and u™ = in L2(0,T; H} (Q)), (2.38)
where = and — denote weak* and weak convergence, respectively.

Fix j € N and multiply for any N > j the first line of ([2.28)) by some ¥ € C([0,77]) with ¥(T) = 0,
integrate over [0, 7] and perform integration by parts to see
N N ooy T
- [ @ ®.0)¥ @) dt = 0) 8O + [ at0).0)90) @t = [ (10090 at. 239)
Note that ¢;¥’ € L1(0,T;L?(2)) and a(-,¢;¥) € L?(0,T; H~*(Q)) by the boundedness of a and

remeber that u)) was defined to be the L? projection onto V. We thus obtain by letting N — oo:

T T T
- / (ult), &)W (8) dt — (g, §;) T (0) + / alult), é;) V(1) di = / (F(8), ;)0 (0) dt.  (2.40)
0 0 0

Since j € N can be chosen arbitrarily large and span{¢; : j € N} is dense in H}(£2), we can extend
the result to arbitrary v € Hg(Q):

T T T
- [ v de = o, 0w0) + [ atu v de= [ (se.0v0 d @2
0 0 0

which gives us the first line of (2.26]) by testing with all ¥ € C5°((0,7")). In addition, notice that
u'(t) = f(t) —a(u(t), ) € L*(0,T; H~1(Q)), so that the regularity requirement of a weak solution
is met, too.

It remains to prove that the initial value ug is assumed in the L? sense to finish the existence proof.
To this end, repeat the integration by parts argument with v instead of ¥ and require in addition
that ¥(0) = 1:

T T T
- / (ut), )V (t) dt — (u(0),v) + / au(t), o) ¥ (1) di = / P00 dt (2.42)
0 0 0

for all v € H}(2). Comparing with (2.41) gives
(u(0),v) = (ug,v) for all v € H}(Q) (2.43)

and therefore u(0) = ug owing to the density of HZ(Q) in L*(Q).

The energy estimate follows by testing with v = u(¢) and applying Theorem m

W/ (), u(t)) +a(u®), u(t)) = (Ft),ult)) for ae. t €0,T] (2.44)
=3 llu®)?
—24dt L2(Q)
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and then proceeding analogously as from (2.33) to (2.36]).

Finally, we show uniqueness. Set f = 0 and ug = 0; then we only need to show that u = 0 is the
unique solution in this case. But from the energy estimate

d

el <0 (2.45)
and Gronwall’s lemma for absolutely continuous functions in differential form (Theorem [B.2) it
follows that ||u(t)”%2(m = Hu(t)||%2(QT) = 0 for all t > 0; hence u = 0 almost everywhere on
Qr. O

By merely introducing the additional condition ug € H3(f2) to ensure some compatibility of the
data on 02 x [0, 7, a higher regularity of the weak solution can be shown.

Assumption 2.14. Let Assumption and ug € H}(Q) hold. A

Proposition 2.15 (|QV94, Proposition 11.1.1]).  Let Assumption hold. Then the weak solu-
tion to problem (2.26)) belongs to L°°(0,T; HE(Q)) N HY(0,T; L?(Q)) with the energy estimate

T T
2
esssup u(0) sy + [ 0Oy @0 < C (Tuallney + [ 1Oy ), (240
t€[0,T] 0 0
C = C(cq) being a constant independent of T . A

2.2 The Weak Maximum Principle

The weak maximum principle for classical solutions of the convection-diffusion equation bounds
the solution on Qp by its initial-boundary values on I'r := Qg \ Qp = Q x {0} U9 x [0,T] and
will play an important role in the following chapters.

Theorem 2.16 (Parabolic weak maximum principle, [Eval0, Theorem 7.1.4.8]). Let Q C R? be
a domain and

d d
Lu:=— Z AUy, + Z bity, (2.47)
i,j=1 i=1
with the coefficients continuous on Qp and A := (@ij)ij=1,..d satisfying an ellipticity (i.e. sym-

metric positive definiteness) property uniformly in (z,t). Let u € C3(Qr) N C(Qr) (twice (once)
continuously differentiable in space (time)).

(i) If u + Lu < 0 on Qr, then maxg_—u = maxr,. u.
(ii) If uy + Lu > 0 on Qp, then ming - u = minp;, u. A

The proof relies strongly on the proof of the weak maximum principle for the elliptic case. Because
we need a result from the proof of this latter assertion, we state it here including its proof from
[Eval0, Theorem 6.4.1.1].

Theorem 2.17 (Elliptic weak maximum principle). Let L be unchanged and u € C?(2) N C(Q).
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(1) If Lu < 0 in Q, then maxgu = maxsq U.
(i) If Lu > 0 in €2, then ming v = mingg u. A
Proof. 1.) The important point is that, wherever u attains a local maximum in some point xg € €2,

there holds Lu(xzg) > 0. Indeed, the smoothness assumptions on u imply that the first derivative
vanishes and the Hessian form is negative semi-definite:

Du(zg) =0 (2.48)
D?u(zg) <0 (2.49)

The matrix A := (a;4j(20))i j=1,..4 is symmetric and positive definite, hence we find an orthogonal
matrix O such that
OAOT = diag(dy, ..., dqg) (2.50)

with dy,...,dq > 0 and we can use the affine transformation of variables y = x¢g + O(z — x9), or
x —x9 = OT (y — w0). With this transformation, it holds that

des d d

(2

Uy, = E Uy, —— = g Uy, Oki and Ugyz; = E Uy, 1, Oki Ol (2.51)
k=1 k=1

and therefore

d d d d
D iliage, = D Y ity 0kioy = ) dktiy,y, < 0. (2.52)
k=1

ij=1 kl=14,j=1

The vanishing first derivative at zy then yields Lu(zg) > 0.

2.) The argument just made shows that, if the strict inequality Lu < 0 holds on €, then local
maxima inside ) are impossible and therefore part (i) of the theorem holds in this case.

3.) If only Lu < 0, define for \,e > 0
us(z) := u(x) + e’ for x € Q. (2.53)
Then, with a uniform ellipticity constant 6 > 0,
Lue = Lu+eL(eX) < ee™™ (=X?aq1 + Ab1) < ee™1 (=20 + A ||b]| o)) < 0 (2.54)

for large A > 0, since then the term in brackets is negative independently of €. Letting ¢ — 0 and
using step 2.), we find that

max « = lim max v, = lim max u, = maxu (2.55)
Q e—=0 Q e—0 0Q o0
and part (i) is proven. Part (ii) follows by considering —u. O

Proposition 2.18 (Interior local extrema diminish). Let the operator L be as in Theorem
u€ C3Qr)NC(Qr), f=u+ Lu and (xo,t0) € 2 x (0,T).

(i) If w has a local maximum with respect to x at (xo,to) and if f(xo,to) < 0, then u(xo,to) < 0.
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(ii) If u has a local minimum with respect to x at (xg,ty) and if f(xo,t9) > 0, then ui(xo,to) > 0.

The inequalities are strict if so are the local extrema or if f(xo,to) <0 (>0). A

Proof. This simply follows from w; = f — Lu, the assumption on f(zo,t9) and Lu(zg,tp) > 0 at
interior local maxima, which was shown in step 1.) of the proof of Theorem The strictness
assertion holds because the inequalities ([2.49) and thus (2.52)) are strict for strict local maxima. [

2.3 Semi-Discretisation in Space by Finite Elements

This section is based on Chapter 11.2 of [QV94]. For the entire section, let Assumption hold.
We revisit the Faedo-Galerkin idea used in the proof of Theorem [2.13| with a practical choice for
the finite subspace, and instead of just passing to infinite dimension, we are interested in error
estimates for finite dimension.

Let V;, € H(2) be an N-dimensional subspace with basis (¢1,...,¢n) and set V := H(Q) for
brevity. Then the semi-discrete Galerkin problem is

{(UZ(t),Uh) + a(up(t),vy) = (f(t),vy) for all v, € V4, for ae. t € (0,T) (2.56)

up(0) = uo,p,

where ugp, € Vj is some approximation to ug € L?*(2). Define the N-dimensional component
vectors ¢ and ¢y by

N N
up(t) = Z cj(t)ej, upp = Z €0,5; (2.57)
=1 =1
and define M, A € RN*N and F: [0,7] — RY by
mij = (5, ¢i), aij = a(pj, pi), Fi(t) == (f(1), ¢i)- (2.58)

Then ([2.56)) can once again be cast in the shape of an ordinary differential equation:

(2.59)

d(t)= MY (F(t) — Ac(t)) for ae. t € (0,T)
c(0) = ¢

and a unique global absolutely continuous solution in the sense of Carathéodory’s theorem exists;
similarly as in the proof of Theorem [2.13] (without the orthogonality of basis) we obtain u; €
HY(0,T;V) and the energy estimate

T 1 T
2 2 2 2
lun(T)lz20) +¢a | Nun@lzn ) dt < llunollzz@y+ — [ IIFOI72) dt (2.60)
0 " e Jo
which shows stability of the semi-discrete solution in the norms of C([0, T]; L(2)) and L%(0,T; V).
Let us turn to the question of convergence of the semi-discrete method for the choice V}, = V}ﬁo with
k € N. The first proposition deals with the case £ = 1, whereas the second proposition allows for
arbitrary k € N and gives a higher order of convergence even for k = 1 as long as higher regularity

assumptions than Assumption hold.
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2.3.1 First Order Semi-Discrete Convergence

Lemma 2.19 ([QV94, Corollary 11.1.1]). Assume that the solution u to (2.26|) satisfies u(t) €
H?(Q) and

[0(0) B0y < COULROI a0 + [0(8) 3 ) (261)
for a.e. t € [0,T]. Then v € L?(0,T; H*(Q)) N HY(0,T;L*(Q))NC°([0,T); V) and
2 r 2 2
s (Ol oy + [ (O] )+ 00 )

te[0,T] (2.62)

SC@G)(HWH; /Hf()lle dt)

A

Remark 2.20. (2.61)) is guaranteed for any d € N if Q is a domain with C? boundary and for
plane convex polygonal domains Q C R2. A

Proposition 2.21. Let u be the solution to (2.26)), (Ty)s a shape-regular family of triangulations
of @ C RY for d < 3 and uy, the solution to ([2.56) for the space Vj, := Vil,. Assume (2.61)). Then

o) = un ) ey + o [ ulr) = (e (2.63)

t
< lluo = o 4l12a gy + Cleas Ca)l? (nuo,hnzl(m ol + [ 17O df)

for each t € [0,T]. A

Proof. We take the proof of |[QV94, Proposition 11.2.1] with some added details. Recall that we
assume ug € V' by requiring Assumption to hold. Set e(t) := u(t) — up(t). Then

(€'(t),v) +ale(t),v) =0 forallv eV, (2.64)

holds for almost every ¢t € [0,7]. For any such ¢, we choose v(t) := up(t) —w(t) for w(t) € V}, to be
defined momentarily. Then for each € > 0 we find using Young’s inequality in the last step that

%%(e(t), e(t)) + ale(t), e(t)) = (€'(t), ult) — w(t)) + ale(t), u(t) — w(t)
< €O 2y 108) = 00 gy + Calle®lln oy 0 — w0 Ollirey (265)
< €]l g2 lult) = wOl 2@y + f;i lu(t) = w(®) 7 ) + € e @)

for a.e. t € [0,7]. Assuming (2.61) and using Sobolev’s embedding we see that u(t) € H?(Q) C
C(Q) for almost every t € [0, T] and that we may choose w(t) € V}, to be the piecewise linear nodal
interpolator of u(t). Employing Lemma leaves us with the estimate

la(t) = w(t) 122y + 1 ult) = w(t) 121y < CH* u(®) g2y - (2.66)
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Let us choose € = ¢,/2, multiply (2.65) by 2, subtract ¢, He(t)||?{1(m and use Young’s inequality:

d d
e + calle(®) 10 <

< L e(t) 2y + alelt), e(t)
< O[O oy B I ey + SR )y 267
< Clear Ca) ([[€(8)][ 720 + 10®) 2 ) 22

for almost every ¢ € [0,T]. Integrating this on (0,¢) gives

t
le(®)I13 20 + ca /0 le() 3y dr < lluo = uolZa

. (2.68)
2 2
+ C(Caa Ca)hg/o (HUI(T)HLz(Q) =+ Hu;’L(T)HLQ(Q) + HU(T)HJ%IQ(Q)) dr.
Similarly to Proposition [2.15] one can show
[ 100y dr < Ctea) (noalBy + [ 150 7). (2.60)
which leads straight to (2.63)) when combined with (2.62]). O

2.3.2 Higher Order Semi-Discrete Convergence

A better order of convergence can be obtained when assuming higher regularity of the true solution.
The proof of this claim builds on approximation properties of the “elliptic projection operator”
which necessitate the property of adjoint reqularity. Let us recall some results from the theory of
Galerkin methods for elliptic equations.

Definition 2.22 (Adjoint regularity). Let Q C R? be a domain, V := H}(Q),a:V xV - R a
bounded coercive bilinear form with constants C, and c,, respectively, and f € V*. Then we call
the problem

ueV:alu,v)=(f,v) forallveV (2.70)
adjoint regular if the solution ¢(r) of the adjoint problem

peVialv,p)=(r,v) forallveV (2.71)
lies in H%(Q) for all r € L%(Q). A

Remark 2.23. Adjoint regularity is guaranteed for any d € N if  is a domain with C? boundary
and for plane convex polygonal domains Q C R2. A

Theorem 2.24 (Céa’s Lemma). Let Q C R? be a domain, m € N, V := H}(Q),a: VxV =R a
bounded coervice bilinear form with constants C, and c, respectively. Let furthermore f € V* and
Vi be a finite-dimensional subspace of V' and u,up the solutions defined by

ueV:alu,v)={(f,v) forallveV (2.72)
up € Vi s alup,v) = (f,v) for allv € Vj,. (2.73)
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Then it holds that

a

- < — inf — . 2.74
= wnlly < 2* inf lu—oly (2.74)
A

Theorem 2.25 (Aubin-Nitsche trick, [QV94, Proposition 6.2.2]). Let Q@ C R? for d < 3 be
triangulated by a shape-reqular family of triangulations (Ty)p and let problem be adjoint
reqular and u € VN H*(Q), s € N, its solution. Set V}, := Vokh and let up, € Vy, be the solution of
the discrete problem ’

a(up,v) = (f,v) forallv eV, (2.75)

satisfying
lu = unll i () < Cuh |[ull e gy + (2.76)

for l:=min(k,s —1). If u € H*(Q?) for s > 2, then
lu = unll 2y < CHH lull i g - (2.77)
A

Proof. We add some details to Quarteroni and Valli’s proof. A duality argument is applied in order
to rewrite the L? norm:

rUu—U a(u — up, (r
bl = sp U g, unelr)
rerznfor 72y rezzingoy  I7llze(e)

lo(r) = ()l g
< sup Collu—wnllgg e
reL2(Q)\{0} ||7”HL2(Q)

(2.78)

)

using that Galerkin “orthogonality” gives a(u—wup, ¢(r)) = a(u—up, @(r) —1(r)) for any ¥(r) € Vj,.
Since d < 3, H?(2) — C(Q) by Sobolev’s embedding theorem; we may therefore take (r) to be
the nodal interpolator of ¢(r) satisfying ||o(r) — ¥(r)|| g1(q) < Ch|l@(r)] g2(q)- Now we only need
that [lo(r)ll g2q) < Clirllpzg) (e ¢ L%(Q) — H?*(Q) is bounded), for then we can infer

e = unll ey < CCa lu = unll g gy h < CCLCh™ fullgros gy (2.79)

Let (1, 0(rn)) — (r,¢) in L2(Q) x H*(Q) as n — oo. Since o(r,) € V N H?(S)), we obtain in
particular [[¢(ry) — ¢l 1) — 0, implying for each v € V:

a(v,¢) = lim a(v,¢(ry)) = lm (ry,,v) = (r,v), (2.80)

n—o0 n—oo

which just states that ¢ = ¢(r). The graph of ¢ in L?(Q2) x H?(f2) is thus closed and ¢ is bounded
by the closed graph theorem. O

Remark 2.26. The constant C, appearing in Theorem [2.25]is typically derived from Céa’s lemma
in conjunction with general interpolation space results. Therefore, by (2.74]), it will behave un-
favourably (like e~!) for small diffusion € > 0. A
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Proposition 2.27 (|QV94, Proposition 11.2.2], modified). Consider Q C RY for d < 3, trian-
gulated by the shape-regular family of triangulations (Tp)n. Assume that problem @ 18 adjoint
reqular and let u be its solution. Moreover, assume ug € H*1(Q) and v’ € LY(0,T; H*1(Q)) for
k € N>1. Let uy, be the solution to for the space Vy, = V,{fo. Then

[u(t) = un(®)ll L2 (o) < lluo — vo,nll 2o

t 1/2 (2.81)
2
+Chk+1 <||u0”Hk+1(Q) + </0 HUI(T)HH’“‘H(Q) dT) )

holds for all t € [0, T], where C is dependent in particular on € and T and independent of h. A

Proof. We modify slightly Quarteroni and Valli’s proof. For v € V = H}(Q) define by 7(v) the
“elliptic projection operator” defined as the unique solution to

m € Vi ra(mop) = alv,vp)  for all vy, € V. (2.82)
Then Céa’s lemma for the functional a(v,-) and the Aubin-Nitsche trick yield
o= 7(0) 20y + B llo = 7)oy € CHF ol iy for all ve HH(@) (289
with a constant C' independent of v (but scaling like e~ !). For all fixed ¢ € [0,7] we decompose
up(t) — u(t) = wi(t) + wat) (2.84)

with wi(t) := up(t) — w(u(t)) and wy(t) := w(u(t)) — u(t). The error term weo(t) is then easily
estimated using the results of Céa and Aubin-Nitsche:

lws ()l 20y < OO u®)l e o)
! 1/2 (2.85)
2
< CpFtt (!uollm+1(g) + (/o HUI(T)HHIH'l(Q) dT) ) .

For wy (t), we have for each v;, € V}, that

(Wi (), vn) + a(wi(t), vn) = (up,(t), vn) + alun(t), vn) = ((x o u)'(t), va) — a(m (u(t)), v)
= (f(t),vn) — a(u(t),vn) = ((w o w)'(t), vn) (2.86)
= (W'(t),vn) = ((mow)'(t), vn) = (—ws(t), vn)-

Setting vy, := w1 (t) and employing coercivity of a gives
= w1l 720) + ca lwr ()7 0y < —(wh(t), wi(?)). (2.87)

Multiplying by 2, integration and Young’s inequality give

t t
1
\wl(t)H%?(Q)JF?Ca/O lwr ()| ds < le(o)\%z(mﬂL/o 3 [ wh(s) HLz ) F2¢a [Jwi (s 720y ds
(2.88)
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and thus

”wl(t)H%%Q) < ||w1(0)||%2(9) + 8; /Ot lez(S)Hi2(Q) ds (2.89)
o t 1/2
s (8)l 2 < s ()2 + C ( [ s ds) . (2.90)
The time derivative commutes with 7, hence
Hwé(s)um(g) = [|m(u/(s)) - u/(S)HL2(Q) < Onf Hu/(S)HH’VH(Q) : (2.91)
Furthermore,
s (Ol 2y < luno — woll ey + Il — 7 (w(O))l 20y - (2.92)
<CMFH ol s 0
Adding (2.85)) and (2.90) and employing the last two relations yields the assertion. O

Remark 2.28. The previous two a priori convergence result and the fully discrete result from the
next section are of limited practical use in our case of small € > 0 because and the comment
after reveal that the term e~ ! is hidden in the constants. This can be interpreted in two
ways: the a priori estimate could be far from being sharp or, if it is rather sharp, the errors due to
oscillations arising in the standard Galerkin method manifest themselves in this estimate. A

2.4 Time-Discretisation by #-Stepping

This section is based on Chapter 11.3 of [QV94]. Let 6 € [0, 1]. Then to obtain a computable prob-
lem, we need a method to discretise and numerically solve the ordinary differential equation posed
by the semi-discrete problem . The simplest class of methods to accomplish this is the class
of f-stepping methods, in which the time-derivative is approximated by a simple forward-difference
and the right-hand side is evaluated at the last known and the current time-step. These evaluations
are weighted by 1 — 8 and 6, respectively. Hence, the parameter 6 is aptly called the implicitness
parameter of the method. For § = 0, 8 = 0.5 and § = 1 the methods are called forward (or ez-
plicit) Euler method, Crank-Nicolson method and backward (or implicit) Euler method, respectively.

Let 0 =ty < t; < --- <tn, <T be points in time and 7,, := t41 —t,, n =1,...,Np — 1. For

simplicity we only consider constant time-step lengths, i.e. 7, = 7 = const. and ¢, = n7. The fully
discretised problem is thus to find uj; € Vj,, n = 1,..., Ny, satisfying

un—l—l — _ _
R )+ a(Bul + Oul vp) = (0f (1) + 0F (tn),vn)  for all vy, € V,

- (2.93)
u) = Uo,h
forn=0,...,Np — 1, where § := 1 — . Writing again
N N
up = Z i ugp = Z C0,j¥; (2.94)
j=1 j=1
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and defining Mo, A € RV*N and F* € RN by

mi; = (5, ¢i), aij == a(p;, i), ' = (f(tn), 0i) (2.95)
fori,j=1,...,N and n =0,..., Nr — 1, we have to solve

(Mg +07A)™ = (Mo — (1 — 0)TA)™ +0F™ + (1 — 9)F™ (2.96)

in order to obtain ¢"t! € RN for n = 0,..., Ny — 1. The system matrix is positive definite because

so are Mg and A.

Lemma 2.29 (Inverse inequality for piecewise polynomials, |[QV94, Proposition 6.3.2]).  Let (Tn)n
be a shape-regular, quasi-uniform family of triangulations of the domain Q C R% and V}, := V}f cV.
Then there exists a constant Ciny € Rsg such that

IVoRl1 72y < Cinoh ™2 [lvall2(q) (2.97)
for all vy, € V. A

Proposition 2.30 (Stability, [QV94, Theorem 11.3.1]). Assume that the map t — |[|f|[;2(q) s
bounded on [0, T] and that (Tp)n is a shape-regular family of triangulations of Q. For 6 € [0,1/2)
assume, in addition, that (Tp)n is quasi-uniform and that the time-step restriction
1+ Cian < 26(1
h? (1—20)C?%’
holds, where Cip, is the constant from the inverse inequality in Lemma . Then uj from ([2.93))
satisfies the stability relation

(2.98)

lunll L2y < Co <HU0,hHL2(Q) + ts[ltl)%} ”f(t)HL2(Q)> forn=0,1,..., N, (2.99)
€10,

where the constant Cp > 0 is a non-decreasing function of c;', Cy and T and is independent of
Np, 7 and h. A

Theorem 2.31 (Convergence, [QV94, Theorem 11.3.2]). Assume that u}(0) € L*(2), f; €
L%(Qr) and that (Ty)n is shape-regular. For 0 € [0,1/2), assume that (Ty)n is quasi-uniform
and that the time-step restriction (2.99) holds. Then the following error estimate holds for the

semi-discrete solution uy, : [0,T] =V}, and the fully discrete solution u} € Vi, n=0,..., Np:
) T 1/2

e = un(ta)l 2y < Cor (Huuowm) + /0 1£:() 132 ds) (2.100)

formn=0,...,Np. If 6 =1/2 and fu € L*(Qr), u},(0) € L*(2), then
T 1/2
n 2
[uhy = un(tn)ll 20y < C(7)° (HUZ(O)HLQ(Q) +/0 1 et () 120 ds) (2.101)

forn = 0,...,Np. The contants Cy and C are non-decreasing functions of c;*, Cy, T and are
independent of N7, 7 and h. A
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3. The Reduced Problem

Since we are dealing with the class of convection-diffusion-reaction equations where the diffusive
part of the operator is dominated by its counterparts, it is interesting to study the relationship
between our problem of interest

(ue)y — €Aue +b-Vue +cuc = f  in Qp

ue=0 on 92 x[0,T] (3.1)
ue =wup on Qx {t=0}

and the so-called reduced problem

u+b-Vutcu=f inQp
u=0 ongG_ CONx]|0,T] (3.2)
u=wug on ) x {t=0}

that is obtained by dropping the diffusive part of the operator, i.e. by formally setting ¢ = 0, and
restricting the Dirichlet portion of the boundary to G_, cf. the following definition. Cancelling
all second-order derivatives changes the nature of the problem from parabolic to hyperbolic and
necessitates the above restriction of the Dirichlet boundary, as will become apparent now.

In this chapter we will make generous regularity assumptions (to assure the existence of smooth
enough classical solutions and auxiliary functions) and prove the convergence result Theorem
on special subdomains of Q7 using a parabolic maximum principle.

Definition 3.1 (Characteristics, exit times, exit locus). Set b := (b,1) € Wh®(Qz, R*1). For
T = (z,t) € Qr define the associated characteristic vz as the solution to the ordinary differential

equation
{’Yx(t) =7z - - (3.3)
5(s) =b(yz(s)) for s € [7_(Z), 74(T)],

where the forward and backward exit times 7+ (%) are defined by

T+ (%) :=sup{1T >t : vz(s) € A x (0,T) for s € (t,7)} (3.4)
7_(Z) :=1inf{r <t:79z(s) € A x (0,T) for s € (7,1)}. (3.5)
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(By “the characteristic of Z” we will also mean the image vz([7—(Z), 74+(T)].)

Then the forward and backward exit points T+ of vz are defined as
T :=z(1=(T)) € 0Qr (3.6)
T4 = z(1+(T)) € Q. (3.7)

G_, the backward exit locus in 0Qx[0,T), is the subset of 9Qx [0, T") that consists of all characteristic
backward exit points:

G- :={ye o x][0,T):y=71_ for some T € Qr} (3.8)
and the backward exit locus G is
G={yelr:y=7_forsomez € Qr} =G_UQ x {0}. (3.9)

Then the definition of the functions Z — 74 (Z) and T — T, which are constant along characteris-
tics, can be naturally extended to G. A

Remark 3.2. Note that in our notation “exit” refers to the interior €27 of the cylinder, not its
closure. A

Proposition 3.3. Suppose that, on top of Assumption[2.], b,c, f and ug are regular enough to
admit a classical solution to (3.2)) and give sense to the following terms. Then for any T := (x,t) €
Qr, u(Z) can be obtained through the following steps:

(i) Compute the associated characteristic vz and backwards exit time 7_(T).
(ii) Solve the ordinary differential equation
#(5) = f(s) — (s)ia(s) (3.10)
on [t (Z), t] with initial value to := w(T_), where f(s) := f(yz(s)) and &(s) := c(yz(s)).
(i1i) Set u(vz(s)) = u(s) for s € [7_(T),t]. A

Proof. Tt holds by construction that

ug(,t) + b2, t) - Vu(z, t) = u(v2(t)) + b(1z(t)) - Vulrz(t)) = % 7tU(%(S))
d

ds|,_,

(3.11)
w(s) = f(z,t) — c(z, t)u(x, t).

O

From the way solutions are constructed in Proposition [3.3] as solutions of ordinary differential equa-
tions along characteristics it follows that the reduced problem in the case of classical solutions is
well-posed if values are only prescribed on G and are left unprescribed on the remaining part of
I'r. It makes no physical sense to prescribe data on forward exit points.

Obviously, the method of characteristics also yields solutions for discontinuous initial boundary
data and discontinuous f, as long as b € WLOO(Q,]Rd) or — equivalently — b Lipschitz continuous

on 2 is assumed. We shall ignore the seemingly delicate subject of

28



Definition 3.4 (Boundary decomposition). The boundary 9 of a C' domain © C R¢ can be
decomposed into the three subsets

I'_:={x€9Q:b(x) n<0} (the inflow boundary of ) (3.12)
Lo :={zx€dQ:b(x) n=0} (the parabolic boundary of Q) (3.13)
Iy :={x€0Q:b(x) n>0} (the outflow boundary of ), (3.14)
where n is the outside unit normal of 0€). A
Remark 3.5. Obviously, I'_ x [0,T) C G. A

Remark 3.6 (Layers). For small ¢ > 0, it is expected that the solution to is in some
sense close to the solution of the reduced problem, at least at some distance to (I'o UT'}) x [0, T].
Near (I'gUTI'y) x [0, 7], however, steep gradients in the solution of the parabolic problem are to be
expected due to the discrepancy between the values of the reduced problem obtained by integrating
along characteristics and the homogeneous Dirichlet boundary conditions. These regions of
rapid change in the solution are called boundary layers. One distinguishes between exponential and
parabolic boundary layers, which occur along I'y x [0,7] and Ty x [0,T], respectively.

The fact that the sequence of solutions of convection-diffusion-reaction equations as € | 0 does not
converge in the L> norm to the solution of the limiting operator (e = 0, no diffusion) makes
a so-called singulary-perturbed problem.

Interior layers are common to both the parabolic and the reduced problem and stem from discon-
tinuities in the initial-boundary data. In the reduced case, these are propagated into the interior of
Qr along the characteristics, while in the case of small non-vanishing diffusion these interior layers
remain steep, but not discontinuous, being also subject to the smoothing effect of diffusion. A

3.1 Convergence to the Reduced Problem as ¢ — 0

This section is concerned with the adaptation of the proof of |[GFLRT83, Theorem 4.3] from the
stationary case to our time-dependent problem.

Let us for this section consider the situation that the data is smooth and compatible enough such
that the solutions to the parabolic problem and to the reduced problem are classical
solutions in C?(Syx), where Sy, is a subdomain of the cylinder to be defined shortly. In particular, no
internal boundary layers occur. The previous remark tells us that the parabolic problem exhibits,
however, boundary layers in the vicinity of (I'o UT'-) x [0,T]; as a consequence, a convergence

ue = u in L®(Sy) ase — 0 (3.15)

cannot be expected if Sy, has accumulation points in (I'g UT'}) x [0,7]. Such a result can only be
proved by further restricting to a suitable subset of Sy.

Definition 3.7. For a subset ¥ C G define its induced characteristic tube Sy, by
Sy i={{t):T=(r,t) eXand t <7 <74 (ZT)} C Q% (0,7) (3.16)
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and decompose its boundary into four disjoint parts:

0S8y =X W (S N x (0,T)W(dSs N (N x (0, TN\ GW(OSsNQ x {t=T}. (3.17)

=:B1(%) =:B2(%) =:B3(%)

A
The following two lemmata ensure that Sy, is a domain under reasonable conditions on > C G.
Lemma 3.8. (i) The function T — 7_(T) is in C(Q x (0,T),R).
(i) T — 74(T) is in C(2 x (0,7) UG, R).
(i4i) T+ T are in C(2 x (0,T), R4, A

Proof. 1t suffices to show the assertions for the subscript “4”. To see that 7, is continuous on
QOx(0,7)uG,let T = (z,t),y = (y,r) € 2% (0,T)UG, e > 0 and 7 > ¢ such that 0 < 74 (T) —7 < e.
For fixed small enough o > 0 the trajectory © := yz([t+a, 7]) is compact and contained in 2x (0, 7),
hence a neighbourhood B,(©) of this trajectory is also contained in € x (0,7) for small r > 0.
From the theory of ordinary differential equations we know that for |(x,t) — (y,r)| < ¢ it holds

W(7) = 1(7) (3.18)

uniformly in 7 € [t+«, 7] as § — 0. In particular, for small enough 6 we see that v5(7) € Q2 x (0,7)
for 7 € [t + , 7] and thus 74(y) > 7 > 74 (%) — €. Interchanging the roles of T and 7, we obtain

7+(7) > 74(T) — € and +(T) > 14 (y) — ¢ (3.19)

or, equivalently, |74 (y) — 74 (Z)| < € for |(z,t) — (y,7)| <  with § > 0 small enough.

Now that we have proven that 7, is continuous, it follows again from the theory of ordinary
differential equations (specifically, from the continuity of an ODE solution in the initial data and
in its argument) that T — T4 = (74 (Z)) is continuous. O

Lemma 3.9. Let X CG.
(i) It ¥ is open in O x [0,T) UQ x {0}, then Sx. C Q x (0,T) is open in RIFL,
(ii) If ¥ is path-connected, so is Sy..

In particular, if the premises of (i) and (ii) hold, then Sy, is a domain. A

Proof. We use Lemma To show (i), let T € Sx. Then the continuity of T — Z_ on Q x (0,7
implies that small enough open r-balls around x have their image in a small neighbourhood V C X
containing T_. The continuity of 71 on G then yields that B,(Z) C Sy, for small enough r > 0.
For the proof of (ii), let 7,7 € Sy. If these points lie on the same characteristic, the latter gives
a path in Sy between T and . Otherwise, T and 7 can be connected to Z_ € ¥ and 7_ € X,
respectively, by the trajectories of their respective characteristics. Let ¢ : [0,1] — X be continuous
with ((0) =Z_ and ¢(1) =y_. Then {([0,1]) C G is compact and thus there exists ;1 > 0 such that
vz(T) € Sy, for each Z = (z,t) € ((]0,1]) and 7 € (¢, + p). Then the path 7 : [0,1] — Sy defined
by

“o N Lo
3(r) = e (H6m) + 5 +75) (3.20)
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is continuous and connects the characteristic trajectories of * and y within Sy,. By concatenating
the three paths collected so far, we find a continuous path in Sy, from T to 7. O

Corollary 3.10. IfSs C 2 x (0,T) is a domain, then so is 7;(Sx) = {x € Q: (z,t) € Sx}. A
Proof. This follows from the fact that 7, : R — R? 7 (z,t) = z, is an open continuous map. [

Let us fix the following assumptions:

Assumption 3.11. (i) The reaction term is strictly positive: There exists a constant ¢y > 0
such that ¢ > ¢y on Q.

(ii) Q c R? is a domain with C? boundary.

(iii) b,c,up and f are sufficiently smooth and compatible to allow for classical C%(Sy;) solutions
ue and u.

(iv) ¥ C G is compact and such that an open neighbourhood V of ¥ in 99 x [0,T) U Q x {0} is
contained in I'_ x [0,T)UQ x {0} and such the boundary portion By (V) of dSy is a compact
subset of I'y x [0, 7).

(v) For V as in (iv), there are constants vo,c > 0 and a function ¥ € C?(7,(Sy)) such that for
d := dist (-, 09)

U(z) = —d(z) on Uy :={z € m(Sy) : dist(z, m:(B2(V))) <~} (3.21)
U(x) < —cy  onm(Sy)\U, .
holds for all 0 < v < 9. Then we define F, := ¥ on, € C%(Sy).
A

Remark 3.12. Part (i) of the assumption does not pose a loss of generality, since by a simple
transformation, problems (3.1) and (3.2) can be altered such that the reaction term is strictly
bounded away from zero. Indeed, for some A > 0 define

uMz,t) = e Mu(z, 1), u(z,t) = e Mu(x, t) and M, t) = e M f(x, ) (3.22)

for (z,t) € Qp. Then u, and u are solutions of the problems (3.1) and (3.2]), respectively, if and
only if u} and u* are solutions to the same problems with ¢ replaced by ¢+ X > A > 0. Thus, if for
a subset S C Q1 we have shown that

for a constant K independent of €, we obtain qualitatively the same result for the original problem:

u) — u)‘H < Ke (3.23)
Lo (8)

e = ull oo gy < M Ke. (3.24)

In certain cases, the cylinder Q7 may be approximated well by Sy satisfying assumption (iv),
namely if the bundle of characteristics touching the parabolic boundary does not occupy a significant
fraction of the volume of Qp. A
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For proving our desired convergence result, we need a maximum principle on non-cylindrical do-
mains (i.e. not of the form €2 x I for a real interval I). To this end, we cite a strong maximum
principle from Friedman:

Proposition 3.13 (Strong maximum principle on general domains, [Fri64, Chapter 2, Theorem

1]). Let D C R be a domain, aij,b; and ¢ > 0 fori,j = 1,...,d continuous functions on D.
Let L be a parabolic operator defined by
ou d
Lu:=— — b 3.25
YT ;1 ”a axj ; (3.25)

or u € C?(D) (continuous xz-derivatives of degree 2, once continuously differentiable in t) where
1 g Y

parabolicity means that
d

D (@, 1)6& >0 (3.26)
ij=1
for any (z,t) € D and £ € R4\ {0}. Then if Lu > 0 and u has a negative minimum in D attained
at a point T = (x,t) € D, it follows that u(y) = u(T) for ally € D that can be connected to T by a
simple connected curve in D along which the t-coordinate is non-increasing going from gy to T. A

Corollary 3.14 (Weak maximum principle for characteristic tubes of balls). LetZ € G andr > 0
such that B := B.(T) N (02 x [0,T) UQ x {0}) is contained in G. Let L be as in Proposition [3.1
with ¢ > 0 bounded away from zero and let u,v € C*(Sg) with

lul <o on B U B (B) U Bsy(B) (3.27)
|Lu| < Lo on Sp. (3.28)
Then |u| < v on Sp. A

Proof. We first show that w > 0 on B U B1(B) U By(B) and Lw > 0 on Sg imply w > 0 on Sg.
The set Sp is compact. If p := min_ sy W < 0 were true, then this minimum could not be attained
on BUB1UB3 by the premise and not on the interior Sp owing to Proposfmonu since every point
of Sp can, by definition of Sp, be connected to a point arbitrarily close to B along a characteristic.
By continuity, it follows that w(Z) < 0 is impossible for T € Sp. Hence p < 0 must be attained at
some T € B3(B) C Q x {t = T}. Therefore Vw(Z) = 0, wy(Z) < 0 and the second order term in
Lw(T) is non-negative, giving

- ow 0w _
Lo@) = | 5~ - JZ:: U G +b-Vuw +\c<”%)_/ () <0, (3.29)

a contradiction. Now the assertion follows from linearity of £ and by considering w :=v +u. O

Theorem 3.15. Assume the statements and notation from Assumption . Define ~(e) :=
—e'21n(e) and U, := Uye) % 10,T]. Then~(e) | 0 as € L 0 and there exists an eg > 0 and a constant
K such that

e = ull oo (s\0) < K€ for € < e (3.30)

and K does not depend on e. A
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Proof. All constants K;,7 = 1,2,... in this proof will be independent of ¢ as long as ¢ < ¢y for

some €y > 0. Set
By := B,(To) N (82 x [0,T) UQ x {0}), (3.31)

where By (Tp) is the open ball in R4*! of radius s > 0 around Zg. We shall prove that, for any
To € ¥ and r > 0 such that B, C V, the desired result holds on Sp, /2 Then by compactness of
>, we can cover Sy, by the characteristic tubes of finitely many balls such that the corresponding
balls of halved radius cover X and the assertion follows.

Define the differential operators
Lo(v) :=v+b-Vov+cv, Li(v) := Av, Le:=Ly— el (3.32)

and the error function z. := ue — u. With the help of the parabolic maximum principle from
the last chapter, it can be seen that ||u.|| Loo(Qp) Temains bounded uniformly in e. Thus, because
Lc(ze) = Leue — Lou~+eLiu = €eAu on Qp and u, and u agree on G, we have the following estimates:

|ze] < K3 on Sp, (3.33)
2e =0 on X (3.34)
|Leze| < Kae on Sp, . (3.35)

In order to circumvent problems arising from the non-smoothness of the boundary 07, we regard a
Lipschitz continuous extension of b to a smooth domain D D Qr with dist(dQz, dD) small enough.
Due to our assumption that B, C T'_ x [0,7) U Q x {0}, the extension backward in time of the
characteristics vz, Z € B,, exit 07 at Z and cut the smooth surface M := 0D. For T € B,, let
T~ be the intersection of M and the extended characteristic through . Then we find a smooth
function ¥ on M such that

=—3 forz=7,,7 € B,y
w(z) € [_%’ O] for z = E’Yaf € B3r/4 \ Br/2 (336)
=0 else.

We extend this function constantly along characteristics to obtain a function Fy € C?(Sg,). This
is achieved by defining F{y to be the solution of the problem

OFy+b-VEy=0 onS
o ’ br (3.37)
Fy=1% on M.
Now we define the barrier function S. € C?(Sp,) by
. Fy(T) Fy ()

Se(T) := K3e+ p(e) + Kyexp (K561/2> + Kgexp (K76 (3.38)

with K3, ..., K7, u(e) > 0 to be determined momentarily. At first we note that
S.(Z) > Kze > 0 = |z.(T)| on B, (3.39)
Se(T) > min(Ky, Kg) > Ky > |2.(T)] on By (B,) U Ba(B;) (3.40)
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for K4, K¢ > K by construction of the functions Fjy and Fy which vanish on B (B,) and By(B;),

respectively. In order to be able to apply Corollary we compute for T € Sp,:

LSe(T) = o(T)(Ksze + p(e))

+ Kyexp <§§S5/)2) {atFO(x);;;)QVFO(x) . (?{1:21(72) N |V1;§§f)|2> + c(:L‘)}
+ Kgexp (F ;(if)) {c(m) _ AFE;@”) 4 K}?e (b V() — I;yva(x)\?) } .

(3.41)

The first braced term is non-negative for € < ¢y for large enough K5 > 0 due to our assumption

that ¢ > ¢o > 0 and (3.37).

Asserting non-negativity of the second brace needs more careful attention. The term ¢ — AF /K7
is non-negative for large enough K7. If 7 € Sg. N Uy, x [0, 7] for 79 > 0 chosen small enough, then
Assumption (iv) and (v) give for some constants uy, My, Mo > 0 that

M >b-VFy >p >0 and My > |VF|? (3.42)

on Uy, x [0,T], because —Vd is the outward unit normal on 02 for d = dist(-,0€2). From this we
infer that

E(@) = b-VF,(T) [;yw;(xn? >0 (3.43)

for 7 € U, x [0,T] for all 0 < v < g for sufficiently large K.
If, on the other hand, 7 € Sg, \ U, x [0, 7], Assumption (v) gives that Fy () < —cvy and thus

K exp <F+(x)> (E(x)> < Kgexp <_C’Y> <E<x)/K7> . (3.44)

Kre Kre Kre €

This — possibly not everywhere non-negative — term can be counterbalanced by setting

K — K.
p(e) == =S exp (C’Y> =8 (3.45)
Kre ) €

with Kg > max_
have

€S E(Z)/K7. Overall, we have shown that for suitably chosen K3, ..., Kg, we

LSe > coKze > Koe > |‘C€Ze| on SfBr (346)
Corollary then gives us the desired estimate:

|2e(T)| < K3e+ Kqexp < Fo(@) ) + Kgexp <F+(x)> + Ko exp (?) s for 7 € Sp,. (3.47)

Kxel/? Kre co €] €
If we set v := v(€) := —€'/2In(e), then y(¢) L 0 as € | 0 and we can show that the right hand side
of (3.47) is O(e) on Sp, , \ Uy(e) % [0,T7]; indeed, on Sp, ,, we have Fy = —r/2 by construction, so
that
Fo@) \ _ /2N _ yon
exp (K561/2> = exp <K5€1/2 =0(") asel0 (3.48)
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for any n € N. On Sp, , \ Uy (o) x [0,T], by construction, Fy < —cy(e) = ce'/?1n(e), so that

F () cIn(e) sz n
o (T ) <o (i) = =0 3.49

for any n € N, which also shows that the last summand in (3.47) is O(e") for any n € N. This
shows that
2¢(Z)| = O(e) on Sp,,, \ Uy x [0,T] asel0, (3.50)

which — combined with the remark made in the beginning of this proof — concludes the proof. [
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4. First Order Upwinding of the Con-
vective Part and the LED Principle

4.1 Upwinding in One Dimension

We have seen in the introduction that employing an upwind-facing difference instead of a central
difference in the convective part of the transport operator in the mass-lumped finite element scheme
seems to resolve the oscillation issues in the considered one-dimensional homogeneous convection-
diffusion equation with forward Euler stepping.

In order to understand why this is the case, in subsection we put forth an interesting property
of one-dimensional convection-diffusion equations that prohibits oscillations in classical solutions.
In the subsequent section, we show that in the considered 1D case, finite element (FE), finite volume
(FV) and finite difference (FD) schemes with explicit Euler time-stepping are essentially equivalent
and introduce the term upwinding and the rationale for its use.

4.1.1 Total Variation

Definition 4.1 (Continuous total variation). Let o < f € R and t € Rsg. Define the total
variation of a function f : [a, f] — R as

n—1
Var(f; o, B]) := sup {Z|f($z'+1) —fl@i):neN,a<z < - <mn < 5} :
i=0

For a function ¥ defined on the U-shaped set I'; := [a, 8] x {0} U {a, B} x [0,t] C R? define its total
variation Var(W;T;) on this set by
Var(¥;Ty) := Var(¥; [a — t, 3+ t] C R), (4.1)

where ¥ is defined through ¥ in the obvious way by flapping down the “walls” of the U onto
R x {0}. A

Proposition 4.2 (Evolution of total variation for 1D convection-diffusion, [Sat69, Theorem 2]).
Leta< B eR, T >0,0:=(a,), U := (o, ) x(0,¢t) fort € (0,T] and T'p = Q7 \ (e, B)x{t =T}
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as usual. Consider the problem

(4.2)
u=¥ onl7p,

{ut — QUgy +bu, =0  in Qp
where a,b, a, and b, are Holder continuous on Qp and ¥ is continuous on I with bounded varia-
tion, i.e. Var(V;I'r) < oco. Then the (classical) solution to this problem satisfies

Var(u(-,t); [a, B]) < Var(¥;T) for all t € [0,T). (4.3)
A

Remark 4.3. In particular, the above theorem states that for continuous initial-boundary con-
ditions ¥ with homogeneous Dirichlet boundary data, the total variation of the homogeneous 1D
convection-diffusion (classical) solution at any time ¢t > 0 can never exceed the total variation of
the initial value ug. This justifies calling the oscillations observed in the introductory example
spurious, as they clearly increase the total variation. A numerical scheme diminishing a discrete
total variation for this problem would thus be desirable. A

Definition 4.4 (Discrete total variation, TVD). Let I C Z be an interval and v = (v;)ier a
discrete function. Then, analogously to the definition of the total variation of functions on the
continuum, its total variation is defined as

TV(0) ==Y [vip1 — vil, (4.4)

i€l
where v; := 0 for j ¢ I. A scheme updating v/ to v/T! = (vf“)ie] is called total variation
diminishing (TVD) if ‘ A
TV (/T < TV(v?). (4.5)

A

4.1.2 Equivalence of FD, FE and FV
Let Q = (o, ) C R, b € Ry constant. We would like to solve

Up — €Upye +buy =0 in Qp
u=0 ondQx[0,T] (4.6)
u=1wuy on ) x{t=0}

on a triangulation 7 of  with nodes a = 1 < -+ < zy =  dividing € into intervals of equal
length h = (8 —a)/(IN —1) by employing forward Euler time-stepping with a fixed time-step length
7. Assume ug € Vi (Q) and let u] be a shorthand for uy(ih, j7), the sought numerical solution at
the grid points.

We show that the finite difference scheme
JHL

J J J J J
Y W Wiy —2up Uiy Wiy — Uy . B
. € 2 +b 57, =0 forie{2,...,N -1} (4.7)
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is rather universal in the sense that it can also be interpreted as a finite element or finite volume
scheme. Indeed, the standard Galerkin FE scheme with explicit Euler time-steps reads

un—i—l —un
<, gol) +e(ul, (pi)z) +b(uh, i) =0 forallie{2,...,N —1} (48)

T UQ.

Writing this using the matrices Mg, C°, D° € RMXM from Definition with M = N — 2, the
Galerkin method can be restated equivalently (now denoting by u™ € R =2 the coefficients of the
discrete solution at time n7 with respect to the hat function basis)

n+l _ ,n
M¢, <H> +eD°u" + C°u" =0

T (4.9)
UO = Uup.
Simple calculations show that
2 1 .

mi; = gh mi; = 6h for i —j] =1 mi; = 0 else (4.10)

2 1
dii = 7 dij = y for i —j| =1 dij = 0 else (4.11)

1
cii =0 Cijitl = ig cij =0 else (4.12)

for 4,5 € {1,...,N}. Replacing Mg by the restricted lumped mass matrix M; and dividing the
whole equation by h, we immediately obtain the FD scheme (4.7). Note that, for the equivalence
to hold, we really need to sum over all j € {1,..., N} in (0.10).

In order to interpret (4.7)) as a FV method, we introduce the dual cells
Ci := 172, Tiy1/2),

where ;4 1/9 = (v; + ®41)/2 for i € {1,...,N — 1}, x1/3 = &1,Tn41/2 = oN, and interpret ug
as an approximation to the mean value of the true solution u over C; at time j7 (as opposed to
the interpretation as nodal values in FD). If we integrate the differential equation in (4.6 over an

interior cell C;, i € {2,..., N — 1}, we re-obtain the underlying conservation law
d1 , — —
g e e =Tl = Flps (413)
where .
=7 . € .
FZ+1/2 = Eu($i+1/2737) - Eux(xi+1/27]7—) (4.14)

are the true fluxes at the cell boundaries. Now we set ujl = ug\, = 0 to implement the boundary
conditions, use the natural approximations

u(xi-‘rlajT) + ’U,(.%'Z‘,jT)
2

U($i+1,j7’) - U(ﬂl’i,j’f)
h

W(&iy1)2,J7) & (4.15)

Up(Tit1/2,JT) & (4.16)
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to define the numerical fluxes as

J J J J
F it U Uy Y
i+1/2 " oh 2

(4.17)

approximate the time derivative by a forward difference and remember our interpretation of uf to
obtain the FV scheme

j J J J J J
uj A 2uy +uyy plit1 — Yic
T h? 2h ’

which is, again, exactly (4.7)).

J+1
w; ' —

(4.18)

We call the first summand in the numerical flux the central flux approximation to the convec-
tive flux; in this approximation, both adjoining cells of an interface x; /5 enter with the weighting
factor 1/2. It is well-known that a von Neumann stability analysis for the reduced hyperbolic
problem (e = 0 and no boundary condition on {5} x [0,T]) reveals that the central flux scheme
is unconditionally unstable, i.e. unstable no matter how small 7 > 0 is chosen. This is commonly
explained by the reasoning that the stencil of the numerical convective flux resulting from the cen-
tral approximation includes a point downwind from the interface ;1o (i.e. to the right (left) of
Tiyyyp for b>0 (for b < 0), which is unnatural since information is advected along characteristics
from upwind from x; ;5.

This gives rise to the following alteration in the numerical flux called upwinding of the convective
part:

J J J
jup % YWip1 — Y
Fi+1/2 T bﬁl — e 2 z’ (419)
yielding the upwinded scheme
gl — 2wl 4 ul —
o A 2 b —L =0 forie {2, N -1} (4.20)
i

4.1.3 Upwinding in 1D implies TVD
Proposition 4.5 (|[Har83, Lemma 2.2]). A difference scheme of the form
ugH = uz + C+,i+1/2(ug+1 — ui) — C,,i,l/Q(ug — “‘gq) for j € Ng,i € Z (4.21)
is TVD provided that
C_it1/2:Chiv1220and C_; 10+ Cjp1/p <1 (4.22)
holds for all i € Z. A

Note that we can extend the scheme (4.20) to have the form needed to apply the previous theorem
by requiring v} = 0 for any j € No,i € Z\{2,..., N —1}. This extension does not change the total
variation.
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Corollary 4.6. The upwinded scheme (4.20) is TVD under the CFL-like condition

. (2 n Zg) <1 (4.23)
A
Proof. Simple shifting of terms shows
ﬂ“zﬂ+;@ﬂfmb—cz+f>w—ﬂ4)hMEQWqN—H (4.24)
and of course
W =ul =0 foricZ\{2,...,N—1}. (4.25)

In view of Proposition [4.5] we define

e fori€ {2,...,N—1 Te 4+ forie{2,...,N—1
a2 = { J , Cyiqpi=qm 0 { J (4.26)
0 else else
and see that the only condition to be fulfilled is (4.23]). O

Note that without upwinding, i.e. if central differences are applied in the convective part, the
scheme is

Jj+1
ui —

ul U‘g+1 - 2“? + u{_l “g+1 - u{_l .
- L —¢ 2 +b 5T =0 forie{l,...,N —1}, (4.27)

and the constants for Harten’s lemma are

/_{;—; forie{2,... .N-1} /_{§+$ forie{2,...,N—1}
itl/2 = o O icyy0i=

0 else 0 else,
(4.28)
so that the conditions
h2 bh
T< — and Pe:=— <2 (4.29)
2¢ €

on the time-step and the cell Péclet number Pe have to imposed in order for Harten’s criterion to
guarantee the TVD property. The second condition can be formulated equivalently as

2
2
b—h<1<:>h2b2§462<:>h—< ¢

2¢ — 2 — b2’ (4.30)

because all terms involved are positive. This shows that the severe time-step restriction 7 < 2¢/b?
applies. We have seen in the introduction that conditions (4.23) and (4.29) seem to not only
sufficient but also necessary for the upwinded (the non-upwinded) mass-lumped scheme to be
TVD.
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4.2 Upwinding in Multiple Dimensions

The combination of mass lumping and upwinding the convective part of the differential operator
carried out in the previous section can also be applied in multidimensional problems. For this
purpose, we want to show an equivalence of the FE convective part to a central numerical FV flux
and then propose a manipulation of the stiffness matrix that represents upwinding. This is the
content of the following subsection.

4.2.1 Manipulation of the Stiffness Matrix Resulting in Upwinding

We restrict ourselves to the case d = 2, but a generalization to conforming simplicial meshes in any
dimension should be possible.

Definition 4.7 (Barycentric dual mesh). Let 7 be a triangulation of  C R2. Then its associated
barycentric dual mesh is constructed in the following way:

e Connect the barycenter of each T' € T with the midpoint of its sides. This partitions each
triangle into three quadrangles.

e Out of these quadrangles, define for each node p; € N the cell C; around this node as the
union of quadrangles Q with p; € Q (see Figure . A

Figure 4.1: A triangulation (black) and its barycentric dual mesh (blue)

Lemma 4.8 (Connection between barycentric dual cells and mass lumping). For all dual cells
Ci, i = 1,...,N, it holds m; = |C;|, where the m; are the diagonal entries of the lumped mass
matriz M, A

Proof. The quadrangles of the first step of Definition [4.7] each have one third of the area of the
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triangle they lie in, so that

N

1
Cl= 3 3iTl= [ eido=3(es00 = mi (4.31)
TeT p,eT Q j=1
because the hat functions form a partition of unity on €. O

Motivated by the work in [Sel93], we show that the approximation of convection in the standard
finite element approximation method with Vhl0 elements can be interpreted as a central flux finite
volume approximation. Deviating from Selmin’s paper, we consider only linear convection, but
with a flux non-constant in space. However, for our argument to work, we need an additional
assumption on the space-dependence of the vector field b, namely that b is elementwise constant
and b € H(div; Q).

Assumption 4.9. b:Q x[0,7] — R? is time-independent and piecewise constant on each T' € T
and for each shared edge e = 9T N T, its normal component b - n. is continuous on e. A

Remark 4.10. This is equivalent to requiring that b(-,t) € R7p(£2), the lowest-order Raviart-
Thomas space, with divb = 0. If the considered field b is not constant in space, a vector field
as required by the assumption can be, for instance, obtained by projecting a time-independent,
divergence-free field b € W (Qr) into the lowest order Raviart-Thomas space R7o(2) via the
standard projection operator 7 that sets the normal components of 7(b(-,t)) to the value [ b(-,t)-
n ds on each inter-element edge e. A

Lemma 4.11. Let T C R? be a triangle. Then, with the notation from Fz'gure it holds that

lini + long = ‘T|Vg0¢ (4.32)
lin1 = lang + l3ng, (4.33)
where n,., r = 1,2,3, are supposed to be unit vectors. A

Figure 4.2: Notation for Lemma [4.11
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PkDj

Proof. Simple geometrical vector calculus shows that E = —5*. Denoting the triangle side
opposite p; by S;, the outer normal over S; by n!, the perpendicular height over S; by h; and
recalling that

1 1o
T Vi = 5\5i!hz'v<ﬂi = —5\51-!11 ,

the first equation follows from the divergence theorem applied to the triangle AT B. Another quick
vector calculation shows that the lines labelled by their lengths 1, l2, 3 form a triangle with outer
unit normals —nq,n9, n3, and thus the second equation follows. O

Theorem 4.12. Let Assumption[{.9 hold and let p; be a node of T such that
/ wipib-n ds=0 (4.34)
o0N

holds for j =1,...,N. Then for u € RY

Ui + Uj
> (b-Veneu= Y mi— 5 ., (4.35)
JEK(i) JEK(i)
where
nij = lij1 bl - mija + lij2 blr, - nijo = / b-nds  forp; orpj interior (4.36)
Nij = lij1 bl - naja = / b-nds for p; and p; boundary nodes (4.37)

and njp 15 the outward unit normal of C; on I'yjy = 0C; N OC; N1y, and li; 1, the length of Ty,

(see Figure[4.5). A

Proof. Since, by Assumption b € RTo(S2) with b7 constant for all T' € T, we see that

(b- Vi)=Y /Tb'VSOiSDj de = /Tdiv(bSDi)SOj dx

TeT TeT
=- Z / @ib-V; dr + Z / pipjb-n ds (4.38)
TeT /T ret /T

= /QSOib -Vj dr=—(b-Vj,¢;)

holds for j =1,..., N. Therefore we get
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Figure 4.3: Notation for Theorem [4.12

2(b- Vi, ;) = (b-Vsoi,%‘) —(b-Voj, i)

Tk
= Z (b!Tk Vil - i — bz, - Veoslmy, | ’)
k=1
@32 b
2 |3T1 (=lijaniga 4+ lang — (Lijaniga + lans))
b
+ |§2 (=lijanija + lons — (Lijanij2 + lsns)) (4.39)
@33 b
€33 ’3T1 (=2li51n451 + lang — l3n3)
b
+ |§2 . (_2lij,2nij,2 + lgng — lsns)
= 1y,

where the terms involving 75 are simply dropped if p; and p; are adjacent boundary nodes. Fur-
thermore, the 1;; sum up to zero:

S o= Y / pnds= 3 [ divbds=o, (4.40)
JEK(4) T:p;eT A(TNCy) T:p;eT TnC;
which holds true for boundary nodes p; only because of the assumption made in (4.34]). We thus

conclude that ——
Y 0V edui= Y mi— 5 (4.41)
JEK (i) JEK (1)
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O

Remark 4.13. The technical assumption made in equation is not restrictive when treating
the homogeneous Dirichlet problem, because then only values wu; for interior nodes p; are non-
trivial and therefore the boundary integral vanishes for all nodes of interest. However, for different
boundary conditions like no-flux or homogeneous Neumann boundary conditions, this condition
amounts to assuming that b-n = 0 on 02 and that therefore the convective part is skew-symmetric.
We shall see that we need to make this assumption if we want to upwind our finite element scheme
by algebraic manipulations using only the information given by the convective part of the stiffness
matrix. A

If — similar to the one-dimensional case — we reinterpret the vector u € R as the values of a
function piecewise constant over the dual cells, we see from Theorem that the convective
part C of the stiffness matrix can be interpreted as being discretised by a central flux. Then we
can mimick the strategy that seemed to work in 1D and use an upwind flux instead, hoping that
the resulting modified Galerkin scheme will be a non-oscillatory one. Hence we replace the terms

nij(u; 4 uj)/2 in (4.35) by

(4.42)

mjui fOI‘ T]Z‘j Z 0
niju;  for n;; <O0.

Proposition 4.14. Let Assumption hold and C € RN*N be the full convective matriz, Cij =
(b-Vej,¢i). Let T C {1,...,N} be the set of indices of non-Dirichlet nodes, i.e. uj =0 holds a
priori for all j ¢ T. Assume that (4.34]) holds for alli € T. Let Y € RN*N be given by

=2 jer@) Cj fori=j
Yij = ¢ij <0 (4.43)
—leig fori # j.

Then the upwinded version of the convective part C° = Crz € RM*M of the Galerkin stiffness
matriz should be defined as (C +Y)° = (C+Y)zz. A

Proof. Due to homogeneous boundary conditions, we have some u € RY with uj =0 for j ¢ 7 and
seek a matrix C' € RM*M guch that

CUI Z nl]uz+ Z NijUy-

JEK(3) JEK(i)
1:5>0 7i5 <0

With the choice C = (C +Y)zx1, we obtain exactly that:

(CUI)Z’: Z (cij — leiluy — 2 Z CijUi = Z (cij — leiluy — 2 Z CijUi

JET\{i} JEK (i) JEK (i) JEK(i)
ci; <0 ci; <0 (4 44)
(4.40) '
= > 2ei(uj — ) - > o _Ui)! S omgui Y miguis
JEK(3) JEK () JEK (i) JEK ()
ci; <0 15 <0 15 <0 15 >0
]
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Remark 4.15. The matrix Y from (4.43)) satisfies y;; = y;; for all 4,5 with (4.34) and has

vanishing row sums:

N

N N N N N
Syii==2> = leil= > leil = > lel == e =0. (4.45)
7j=1 7=1 7j=1 7=1 7j=1

Jj=1
;<0 JF#i ¢;;<0 cij >0

Such matrices are called “discrete diffusion operators” in [Kuzl0] and we have just argued that
they may be called upwinding matrices. A

4.2.2 The Upwind Finite Element Method of Baba and Tabata

In [BTR81], Baba and Tabata have developed and analysed an upwinded finite element scheme for
the transient convection-diffusion equation with zero-flux boundary conditions:

ug — eAu +div(ub) = f  in Qp
(eVu—ub)-n=0 ondQx(0,7T) (4.46)
u=ug on N x {t =0}

for a time-independent vector field b € C%1(Q7), f € C(0,T;L*(2)) and ug € C(Q). It is in
particular defined for arbitray dimension d € N on regularly simplicially partitioned domains. The
proposed scheme — recast from their original variational formulation into an algebraic one — reads:

k+1 k N N
u’ — un .
mi% + e(Vi, chj)uf + ZmaX{O, Bw}uf + min{0, Bw}ugf = (f(-,kT), i) (4.47)
j=1 j=1 :
ul = Ihug

for t = 1,..., N, where I} is the nodal interpolator onto Vh1 and the 3;; are defined for any two

adjacent nodes p;,p; € N and satisfy
Bij = —Bji (4.48)
18451 < 1101l oo (2 T35 (4.49)
8, — /F b ds| < C bllyroeay b (4.50)

ij

where n is the unit outward normal to C; on I';; and T' € T is a d-simplex containing the edge
between p; and p;.

They then prove in their Theorem 1.1 a discrete mass conservation of this scheme and that, given
f,uo > 0, the solution remains non-negative under the assumptions that 7 is of acute type and
that the CFL-like time-step condition

I€2

(d+1)e+ car [|bll o (o)

T < (4.51)

holds, where k is the minimal perpendicular length of all simplices T' € T, and ¢q4 is a dimension-
dependent constant with, e.g., co = 4 and c3 = 6. Their Theorem 1.2 contains the following:
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Theorem 4.16 (Baba and Tabata, 1981). Let Ty, be a family of shape-regular triangulations and
let the time-step condition
SPN (4.52)
~ (d+1)% ’
hold, where 6 € (0,1) is some number independent of h. Assume that the solution u to
satisfies the reqularity condition u € Z1 := C%0>(0,T; L?(2)) N C1(0,T; H(Q)) N C(0,T; H™())
for m > d/2. Then for the error ej, := u* — Iy,(u(-, k7)) it holds that

k
pnax etz o) < Cllullz, b (4.53)
€ +e
(T >l ) < Clully, h (4.54)
k=0 H1(Q)
with C = C(o7;,,€,0,Q,d,m, Hb||W1’OO(Q))_ A

Remark 4.17 (Algebraic upwinding vs the upwinding of Baba and Tabata). Under the additional
assumption that divb = 0 and b-n = 0 on 012, the convective matrix C' = (b- Vj, ;)i j=1,.. N is
skew-symmetric. The choice §;; := 2¢;; therefore satisfies . The following lemma asserts that
also the slight variation of and hold with this choice. The additional constant
or/2 in has to be accounted for in the time-step condition for positivity, changing it
in the following way:

KQ

d+ 1)e + caki [|b]| oo () 07/2

< @51))
whereas the the difference between (4.49) and (4.49[) can be absorbed in the constant C'in the last
theorem, and thus Therorem still holds true.

The proof of Proposition with Z replaced by {1,..., N} and n;; substituted by 8;; then shows
that adding the upwinding matrix Y defined there amounts to what can be interpreted as an up-
winding method in the sense of the paper of Baba and Tabata. Note that we have now gotten rid
of Assumption but have required b-n = 0 on 02, an assumption we need to make in order for
the boundary terms in to vanish.

Indeed, this assumption seems hard to avoid when one tries to define and derive information about
the signs of the §;; solely from the convective part of the stiffness matrix (i.e. through the terms
cij), because of the skew-symmetry property required in and because one has to infer the
signs of an approximation to frij b-n ds exclusively from the c;;, which is then hard to do because in
order to obtain something resembling the normal n over I';;, one certainy needs both the directions
Vi and V;, hence both ¢;; and ¢j;. But without b-n = 0 on 012, their relation is (for adjacent
boundary nodes p; and p;) polluted by the boundary term |, a0 Pipjb - n ds basically unrelated to
what happens on I';.

This indicates that, if the boundary conditions are not purely homogeneous Dirichlet and if b-n #
0 on 0f2, then the manipulation suggested in Proposition [4.14] can no longer be interpreted as
upwinding. A
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Lemma 4.18. Let Q C R, d = 2, be partitioned by a regular, shape-regular triangulation, b €
Whee(Q) with divh = 0 and let 7 : WL (Q) — RTy be the interpolator onto the lowest order
Raviart-Thomas space characterized by

(x(b) - n)s = /Sb-n ds (4.55)

for each simplex side S with outer unit normal n. Let I';; and n;; be defined as in Theorem
and set By :=2(b- Vj, ;). Then it holds that

8= [ bemy ds| < O ol Pl (4.56)
ij
oT
1Biil < =5~ lIbll o0 0 [T (4.49)
for all nodes p; with (4.34)) and neighbours p;, where T' is a triangle containing p; and p;. A

Proof. We decompose the error into three parts, one of which we already know to be vanishing:

<[2((b = 7b) - Vepjs i) +

2(b-Vg0j,<pi)—/ b-nds

Iy

2(mb-Vej, i) — / b -n ds

=0 by and (4.57)

+

/F (mb—b) -n ds

ij
An L* estimate of p;Vp; on €; N Q; gives
(6= 78) - Vs )| < Clor)h b= 7bl s s (4.58)

and Corollary allows us to estimate

b= 7bll 31,y < Cdsor) (W 10 = Tola gy + 19 = 7Dl gsgryy) . (459)
(Fisa)

where T}, k = 1,2 are the triangles constituting €2; N €2;. In order to employ the Bramble-Hilbert
type Lemma we assert that for the standard d-simplex 7', the embedding W1°(T") «— WL1(T")
holds and that the Raviart-Thomas interpolator on 1" is bounded:

/v-nds
S;

by norm-equivalence in finite-dimensional spaces, the trace inequality (Theorem |[A.1]) and the em-
bedding. Also, 74 is the identity on P*(7)%. Now Lemma yields for any T' € T

HTFT(U>HI/V1,1(T) S C(d) max

i=1,.d 41 < C(d) [lllyrra gy < C(@) [[0llyprree 7y (4.60)

b= Ty < Cldsrr ) bl ey (461)
196 = 7)1 ry < C(d, o7 )bl (462)

Collecting all the estimates, the first assertion follows.
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For the second estimate, note that

/ b-Vyip; dr
QN

For anode p, of T}, let S, ;. be the side of T}, opposite this node and h,.j, the height of T}, perpendicular
to Sy, for k = 1,2. Then it holds that |V, |7, | = k. and therefore

80
< 5 O (DVeyln | +1T2lIVesln) (4.63)

\Tk] 1 1 1 1 PT,
|Tk||V90J|Tk| =T |S] k| §UTkPTk = JTk T ‘ 15,k (4-64)
]Jf ‘ ij,k ’
and we can estimate the last quotient by
Ty, P, P, 3
=3 <3 — 4.65
1% My Jo hy g 2 ( )

where m,;, is the length of the median of the third node p, in T}, and the last inequality holds
because the incircle of T}, is completely contained in T}, and tangential to all sides. It follows that

3 oT
1Bij| < 3 ||b||L<>°(Q —or|lijl = —- 5 [10]] oo () T (4.66)

which proves the second inequality. O

Remark 4.19 (Total variation on triangular meshes and the LED property). In |[Jam95], Jameson
makes the important observation that for » = 1 the total variation

Var’( ( / Vo, d:c> v (4.67)

loses its qualification as a measure of oscillation in the two-dimensional case on triangular meshes,
which he shows by comparing this term for the two continuous piecewise linear functions displayed
in Figure (triangles have side lengths 1) and p = 1,2, 00. If we denote the left function by vy
and the right one by vs, we obtain the results

r| p | Vary(v1) | Vary(vs)
1|1 [44+2V3] 6++3
2 6 7
00| 2+2V3 | 5+3
21 92 (4\/§)1/2 (1374\@)1/2

Our result here differs from Jameson’s for p = oo and vy, where he states 5+ 3v/3, so we carry out
in detail the computation for this case.

Let the 14 triangles be indexed like the entries of a (2 x 7)-matrix. Then it suffices to compute
the area of these triangles and ||Vvz|1y, |lco and |[Vv2|7y, ||leo, since the gradient vectors on all other
triangles are mirror images of the aforementioned gradients across the coordinate axes and the
oo-norm is invariant under these particular reflections.
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All triangles have height h = § and therefore area |T| = %. The vector Vua|r, has no z-
component, so that

1 2
HvW’TmHOO = HVW‘TmHQ = 7 = ﬁ (4.68)

The oo-norm of Vuy|7,, clearly is the modulus of its z-component, so that

IVva| i, [loo = c0s(30%) [[Voalry, oo = <= - —= = 1. (4.69)

Summing up, we obtain

V3 2
Varl_(vy) = /9””2’“) do = == <1o 7 +4. 1> =5+V3. (4.70)

Be that as it may, the total variation of vo is greater than that of v in all considered cases (we
have added r = p = 2), although vy certainly oscillates less than v;.

Jameson then proposes the local extremum diminishing (LED) property (requiring that local ex-
trema not be accentuated and no local extrema be created) as a suitable property that is readily
applicable to scalar functions on domains of any dimension. The following observation shows that
this property implies the TVD property in 1D:

Let I = (o, 8) C R be an interval, N € N, T a triangulation of I with vertices « = 1 < -+ <
ry=pBanduc VYT). ItisZ={2,...,N — 1} and we set

Tmax = {t € T : u(z;) is a local maximum}, Zpin = {i € T : u(z;) is a local minimum}. (4.71)

Then for the total variation it holds

N
TV(w) =) u(w) —ulzi)| =2 > w@)— > ul@) | +oaula) +ogu(B),  (4.72)
i=2 1€Tmax i€Lmin
where
) -1 ifu(a) < u() -1 ifw(B) <ulzy-1)
o= {1 else o8 = {1 else. (4.73)

This shows that a scheme which diminishes all existing extrema and does not create new ones also
diminishes the total variation. A

4.3 LED conditions for semi-discrete problems

The content and proofs of the following are (with some slight variations and unless other citations
are given) based on Chapter 3 of [Kuz10].
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Figure 4.4: Two piecewise linear functions; the left one has lower total variation

Definition 4.20 (Matrices of non-negative type). Let K € R¥*¥ be a matrixand J C {1,..., N}
a set of indices. Then we call K of J-non-negative type, if

N
Z kij =0 forall i€ J and (4.74)
j=1
kij >0 forallieZ,je{l,...,N}\{i} (4.75)
holds and simply of non-negative type it 7 ={1,...,N}. A

Definition 4.21 (Semi-discrete LED scheme). Consider the semi-discrete scheme in algebraic
form

d
Mdi; = Ku+r. (4.76)

Then — motivated by the properties of classical solutions to the transient convection-diffusion equa-
tion shown in Proposition — we call the scheme local extremum diminishing (LED) if

du;

<0 whenever i € Z,u; > max u; and r; <0, (4.77)

dt JEK (i)

d

CZZ >0 whenever i € Z,u; < jrenfg(lz) uj and r; > 0. (4.78)
A
Theorem 4.22. Let u,M,K and r define semi-discrete scheme as in . Then if M =
diag(myq,...,my) is a diagonal matriz with positive diagonal entries and Z] 1kij =0 foriel,
the scheme (4.76) is LED if and only if K is of Z-non-negative type. A

Proof. Assume first k;j; > 0 for all i € 7 and j € {1,..., N} \ {i}. Then if u; > max;cx ;) u; and
r; < 0 for some ¢ € Z, we obtain because of the zero row sum property

dl 1 1
Y Zk”uj—i-r, = — | Y ki (w—uw)+ o | <0 (4.79)
m; ~—~ ~—
E

and analogously dul > 0 for local minima and r; > 0. To see that condition is also necessary,
assume that k;j, < 0 for some jy # ¢. Then the following situation is possible: u has a local
maximum at p;, ¢ € Z, for some ¢ > 0 and u;, —u; < 0 is arbitrarily large in modulus while u,;
remains bounded for j € K(i) \ {jo}. This destroys (4.79). O
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Definition 4.23 (Delaunay triangulation). Let Q C R? with d € {2,3} be a polygonal domain
triangulated by 7. Then T is called a Delaunay triangulation if (C7)° "N = 0 for all T € T,
where Cr is the (filled, i.e. d-dimensional) circumsphere of 7. A

Lemma 4.24 (Characterisation and Properties of the 2D Delaunay triangulation, [Bar92), Section
3.2]).  For a planar domain Q C R? triangulated by T the following are equivalent:

(i) T is a Delaunay triangulation.

(it) For any two adjacent triangles Ty, To € T with Ty = conv{py, pi,p;} and T> = conv{p;, p;, pi}
it holds that
Zpjpipi + £pjpipi < 180°. (4.80)

Furthermore, out of all triangulations of a given point set, a Delaunay triangulation mazximises
minyper Zmin(T) and minimises maxper Zmax(T). A

The following assertion from [Bar92, page 48] showcases the significance of the Delaunay triangu-
lation for the discrete Laplacian to be of non-negative type.

Proposition 4.25. Let Q C R? be triangulated by T and N' = {p; : i = 1,...,N}. Then the
discrete Laplace operator A := —D = —(V;, Vi) j=1,..N satisfies

0ij >0 fori#j (4.81)
if and only if T is a Delaunay triangulation. A

Proof. Let p;,pj € N be adjacent nodes and T' = conv{p;,p;,pr} and S, the side opposite p;,
h, the associated perpendicular height, n, the associated unit outward normal and « := Zp;pyp;.
Then

cosa = —cos Zninj = —n; - nj = —=Vi|r - Voji|r hih; (4.82)
and using
. hj . .
sina = 5] = hihj =sina h|S;| = 2sina |T| (4.83)
we obtain
S s

and thus, if 7" = conv{p;, pj, pi} is the triangle sharing the side S, = p;p; with T and 5 = Zp;pip;
1
0ij = —(Vj, Vi) = 3 (cot o + cot 3) . (4.85)

Then arguing as in |Bar92, page 48], we see

_ lsin(a+p)

L 4.86
Y 2sinasin B’ (4.86)

which is non-negative if and only if o + 8 < 180°, which is the case for any two triangles sharing a
side precisely if and only if 7 is Delaunay, as stated in Lemma O
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Remark 4.26. Unfortunately, for d = 3, 7 being a Delaunay triangulation no longer guarantees
that property (4.81) holds, which Barth shows by means of a counterexample in |[Bar92, page 48
ff.]. A

A simple but more restrictive sufficient condition can be given for the discrete Laplacian to satisfy

(4.81)) in any dimension d:

Definition 4.27 (Non-obtuseness and acuteness). Let d € N, T a collection of d-simplices, T' =
conv{qi,...,qar1} € R? a particular d-simplex, f; = conv{qi,...,qi_1,Git1,--.,qa+1} the facet
opposite ¢; and n; its outer unit normal. Then T is called non-obtuse if

ni-n; <0 foralli,je{l,...,d+1},i#j (4.87)
or equivalently

aj := arccos(n; - nj) > foralli,je{l,...,d+1},i#j (4.88)

il
2
holds, where the «;; are the (exterior) dihedral angles.

T is called acute if the inequality is strict for all pairs of facets. The mentioned properties can be
assigned to T by requiring them to hold for all T € T. A

Apparently, Ciarlet and Raviart [CR73|, page 23 f.] were the first to propose the following result (al-
though they do not speak about angles and use a strenghtened condition to deal with an additional
reaction term):

Proposition 4.28. Letd > 2, Q C R? be triangulated by T and assume all T € T are non-obtuse.

Then (4.81) holds. A
Proof. Let i,j € {1,...,N}, i # j and T C supp (Vy; - Vy;). Then p; and p; are adjacent
nodes. In local coordinates T = conv{qi,...,qa+1}, w.lo.g. with ¢t = p; and ¢2 = p;. Let
fr,ng, hi for k= 1,..., d+1 be the facets, outer unit normals and perpendicular heights associated
to vertex gr. Recall that V| = —hflnl and Voj|lr = —hglng and that this implies that

sign(Vei|r - Vj|r) = sign(n; - ng). Therefore
5ij = —(thi,V(pj) = — Z / V‘Pi’T . V(pj‘T dz > 0. (4.89)

TeT /T 20

O

Remark 4.29 (Restrictiveness of non-obtuse and acute triangulations). Especially acute triangu-
lations are so restrictive that they need not even exist in higher dimensions. Also, given an initital
triangulation, local or even global mesh refinement maintaining non-obtuseness can require special
conditions on the initial mesh. Here we give some results about acute triangulations mentioned or
proved in [KPP12]:

e Every n-gon in R? has a triangulation into O(n) acute triangles.

e The 3-cube has an acute triangulation.
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e The d-cube cannot be acutely triangulated for d > 4 and R? cannot be triangulated for d > 5.

But even in two dimensions, while a global red refinement of all triangles in 7 into four similar tri-
angles does not change the occurring angles, a simple red-green local refinement step can introduce
obtuse angles.

In [KKO05| the authors use so-called path tetrahedra to take on the task of global and local refinement
of non-obtuse triangulations in three dimensions. A path tetrahedron is a tetrahedron in which
there exist three edges that form a non-closed path and are mutually orthogonal. They show that
in 3D a red refinement of a single tetrahedron usually introduces obtuse interior dihedral angles
and propose a global refinement into a new regular triangulation of so-called path tetrahedra under
the condition that all T" € T contain their circumcenter and have non-obtuse triangles as their
faces. For their proposed non-obtuse local refinement around a vertex of a cluster of tetrahedra
containing that vertex they need to assume that one of the tetrahedra of the unrefined cluster is
already a path tetrahedron and that all the tetrahedra of that cluster are mirror images of another
tetrahedron of the cluster.

In summary, without going into much detail, we see that even the concept of non-obtuse triangu-
lations seems rather restrictive when the task is to triangulate complex domains in two or three
dimensions and to refine these meshes globally or locally such that non-obtuseness is preserved. A

Now we recall that we intend to solve the convection-diffusion equation with homogeneous Dirichlet
boundary conditions. Since in this case the boundary values are vanishing a priori, one needs only
to compute the values of the discrete solution at interior nodes. A clean way of doing this in
the standard Galerkin approach is to restrict the mass and stiffness matrix so that only entries
corresponding to pairs of inner nodes remain. More specifically, let N'= {p1,...,pn} and let Z be
the index set of interior nodes, #Z = M. Then the semi-discrete standard Galerkin problem is to
find u € Vi (T) such that

(ug,v) + a(u,v) = (f,v) for all v € Vi (T), (4.90)
where a(u,v) = ¢(Vu, Vv) + (b- Vu,v).

Remark 4.30. We remember that, since {¢; : i =1,..., N} is a partition of unity on Q, D and
C' have zero row sums. AN

Then problem (#.90) reads in algebraic formulation, where uz € RM are the coordinates of the
discrete solution with respect to the basis {¢; : i € T} of Vi{(T):

dur

(MC)ZIW + (D + C)zzuz = (f, ¢i)icz- (4.91)

Now on the way towards an LED version of this problem, there are two questions:
1.) How to obtain the lumped mass matrix? Two obvious possible ways to do this would be:

a) to lump the row entries of the full matrix M¢ into the diagonal to obtain M, and then
restrict to (Mp)zz
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b) or to lump the row entries of (M¢)zz into the diagonal, i.e. to first restrict and then
lump.

2.) If a diffusion or upwinding matrix Y has to be applied to the stiffness matrix for the semi-
discrete scheme to become LED, the same question arises. Should the order be

a) to first add such a matrix to K = —(D + C) and then restrict to K7z

b) or to add such a matrix to K777

As for the first question, answer a) seems to be the right one, because if we choose b), we lose
the property that the diagonal entries of the lumped mass matrix equal the area or volume of the
associated barycentric dual cell (see Lemma for nodes adjacent to boundary nodes. This was,
however, part of the interpretation of the upwind finite element method as a finite volume scheme.
As for the second question, let us recall Proposition and Remark where we made the
case for the order given in a) when upwinding by adding the matrix Y. In this case of algebraic
upwinding, the order given in a) ensures that the interior barycentric dual cells receive their con-
vective contribution from the surrounding cells which are upwind, even if these cells are boundary
dual cells. In the context of adding a diffusion matrix to the stiffness matrix to guarantee the LED
criterion from Theorem [4.22] proceeding in this order guarantees that the zero boundary values
are used in determining whether u has a local extremum at a node next to the boundary; see the
following proof for this.

We can now restate Theorem for the homogeneous Dirichlet problem:

Theorem 4.31. Let the domain Q C R? be triangulated by T, the node set be numbered N' =
{pi:i=1,...,N}, T the index set of N°, #I = M, and denote for u € V@{(T) by u € RM also
its coordinates with respect to the standard nodal basis. Let My = diag(maq, ..., mas) with m; > 0,
K € RN with ki =0 for j ¢ K(i), Z;v:lk:l-j =0foricZTC{l,...,N} andr € RM. Then the
semi-discrete scheme

d
MLdfqtjl = Krzu+r (492)
1s LED if and only if K is of T-non-negative type. A

Proof. We repeat the proof of Theorem setting u; = 0 for j ¢ Z. Assume first k;; > 0 for all
i€Zand j=1,...,N, j# i Then if u; > max;c;)u; and r; < 0 for some ¢ € Z, we obtain
because of the zero row sum property

N
du; 1 1 1
dz = — Ek‘ij’u]’—i—’l"i = — Zk‘ijuj‘-i—ﬁ' = — Z ]{IZ']' (uj—ui)+ T <0
t m; \ 4 m; \ “— m; | ~—
JET Jj=1 ~~ \JEK() ) <0 <0
>0 - -
(4.93)
and analogously défj > 0 for local minima and r; > 0. The necessity proof can be copied verbatim
from the proof of Theorem O

If the triangulation 7 of the domain  C R? is such that for the full diffusive matrix D, its negative
—D is of positive type, then we see from Proposition that upwinding the convective part C
algebraically in the way suggested there is sufficient to ensure for the semi-discrete scheme (4.91))
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to be LED. We have seen in Proposition [£.25] a sufficient and necessary condition, namely that
T is a Delaunay trianguation, for this to be the case when d = 2 and a sufficient but restrictive
criterion for any d > 2 in Proposition [4.28] namely the non-obtuse angle condition on 7. We have
also mentioned in Remark Barth’s negative result that a 3D Delaunay triangulation does not
guarantee the non-negative off-diagonal entries of —D.

Let us now state two dissatisfactory properties of the LED schemes developed thus far.

Remark 4.32 (Oscillations in LED schemes on irregular meshes). LED schemes in d > 2 are
not necessarily free of oscillations. Consider the simple case of a triangulated domain Q C R?
containing the triangulated portion displayed in Figure which in turn contains a portion of
{(z,y) € R? : y = 0} and an initial state ug € C(£2) such that ug =0 on QN {y = 0} and that the
values —1 and 1 are attained at the nodes above (below) {y = 0}. Let b = (1,0).

Then for very small ¢ > 0 and away from 9%, u solving u; — eAu + b - Vu = 0 on Qp should
display almost pure advection along lines {y = const.} without ripples. The triangulation shown in
Figure[4.5]is non-obtuse, so if it is extended non-obtusely to all of €2, the semi-discrete finite element
method with upwinded convective part will be an LED scheme. However, as can be seen from the
inclinations of the effective dual cell boundaries (dashed lines) of C; and C9, the upwind advective
flux balance into C7 will be positive and the flux balance into Co will be negative, thus allowing
a ripple structure along Q N {y = 0} to develop, even though these ripples will not constitute new
local extrema.

The reason such ripples can occur in the considered situation of three not quite parallel lines
{u=—1},{u =0} and {u = 1} is the irregularity of the shown mesh with respect to the direction
of b. It allows for fluxes into Cy and C5 from nodes that should not have an advective influence.
The effective dual cell tops and bottoms would be horizontal for a regular Friedrichs-Keller tri-
angulation on the other hand, thus not allowing polluting fluxes into these cells from the line of
constantly valued nodes above and below {y = 0}. For an advection field b variable in space and
general ug, even a regular mesh could not preclude such an effect.

We conclude that suppressing all conceivable notions of oscillation is somewhere between hard and
impossible to reconcile with the desire for developing methods involving spatially variable fields b
on geometrically irregular simplicial meshes, at least if these meshes are not specially adapted to
b. We therefore carry on with the LED principle. A

Remark 4.33 (Godunov type order barrier). Similar to [HV03, page 59] for 1D constant ad-
vection, we can show that in general we run into a first consistency order barrier with our linear
compact stencil LED schemes.

To show this, we consider the 1D problem u; = Lu := €uyz, — bu, in Q = (o, ) C R, where b > 0
is a constant. Let a = z1 < --- < zy = 8 be equidistant grid points defining the triangulation 7
with [T|=h = (¢c—a)/(N —1) forall T € T. Then for i € {2,..., N — 2}, row i of a semi-discrete
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Figure 4.5: A situation where the upwinded finite element method produces oscillations

LED scheme with compact stencil has the form

du;

1
e (Lpu); == Z kWit (4.94)

k=-1

with Z}lg:_1 ar = 0 and a_1,a7 > 0, where the coefficients aj do not depend on ¢ because T is
equidistant and e and b are constants. Denote by Pe the cell Péclet number, Pe = hb/e, and let
U, Uy, Ugy De shorthands for u(z;), ug (x;), ure (x;). Assuming the exact solution u is smooth enough,
Taylor series expansion gives

1 1
1
(Lu)(z;) — k_z_l apu(Tisg) = €Ugy — buy, — k;1 ak (u + khuy + 2k:2h2um) + O(h?)
. . 2 (4.95)
= _ <Z ak> u — <b+h Z k‘ak> Uy + (e— o) Z /-c2ak> um—l—O(hg).
k=—1 k=—1 k=—1
The first bracket vanishes as long as ap = —(a—1 + a1). For the other two brackets to vanish, we

need to solve

h —h a_1\ (b a_1\ 1 (h%/2 R\ (b
<h2/2 h2/2> (al ) B (6) (a1> T3 \-h%2 h)\e)" (4.96)
Since a1 must be non-negative, the second equation cannot be satisfied in our case of interest Pe > 2
and thus second order consistent approximation of L by Lj is impossible. First order consistency
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implies (a1 — a—1)h = —b.
The first order limitation gives numerical solutions of LED schemes an overly diffused quality. A

The LED schemes we have looked at so far are linear, which makes them unable to adapt their
behaviour to the solution they are producing. On the other hand, the necessity part of the proof
of Theorem [4.22] and our observations in the introduction suggest that spurious local extrema
develop because of large jumps in the solution at neighbouring points, e.g. at layers or spikes. On
smoother parts of the solution, the second-order standard Galerkin approximation will usually be
well-behaved and therefore superior to a linear LED scheme because of its second order convergence
rate. A hybridisation of the two approaches is what we need in order to avoid the excessive diffusion
of LED or upwind schemes (manifested in the Godunov order barrier) in solution regions where
no spurious effects are created by the standard scheme while fully engaging the LED schemes at
places where oscillations would otherwise develop. Since such a hybrid scheme would necessarily
have to act upon information about the shape of the solution at the current time-step, it has to
be solution-dependent. Hence, such a scheme cannot not be linear, although we are dealing with a
linear problem.
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5. Flux Corrected Transport

5.1 Zalesak’s Original FCT

In [Zal79], Zalesak presents an extension of the flux corrected transport (FCT) method invented
by Boris and Book [BB73; BBH75; BB76] to multi-dimensional problems in a clear and adaptable
fashion. We thus take Zalesak’s paper as our entry point to FCT and also take the liberty of adapt-
ing his presentation for two-dimensional tensor product grids to general tessellations C of domains.

So let Q € R? be a domain, J = {1,...,N} and C = {C; : j € J} a collection of closed cells
C; C Q such that CyNe; = 0 fori# jand Upee C = Q. Set I'; := 9C;j for j € J and T;; := ;NI
and call two distinct cells C;, C; adjacent if T';; # 0. If 0C;NIQY = 0, we call C; an interior cell, oth-
erwise a boundary cell. For each boundary cell C; we introduce a ghost cell Cg € R?\ Q such that
C’gﬂC = 0C;NON and set C9 := {Cg Cjisa boundary cell} and N, := #C9. We number the cells
in Cg as cells Cnt1,...,CNn,- ThlS allows us to describe the boundary of all cells as composed
of portions shared with another cell: Define K(j) = {k € {1,...,N 4+ Ny} : C} is adjacent to C;}
for j € J.

Then Zalesak’s version of multi-dimensional FCT applies to schemes in fluz form that compute
numerical solution values ' associated to cell C; and time step n and have the following form:

n+l _ w?
) w;

w, for: e J. (5.1)

JEK

The Fj; are called the inter-cell fluxes and are defined for any pair of adjacent cells/points. They
must satisfy Fj; = —F}; in order for Fj; to signify a transfer of substance from Cj into C;. The
upper index n in Fj} will be henceforth omitted.

FCT offers a way to combine two separate methods of the form that should be designed to solve
the same problem but have different properties. These methods in flux form are then determined by
two sets of fluxes {Fl?} and {Fg}, the low order and the high order fluxes. Typically, the methods
given by the low order fluxes will be highly diffusive but non-oscillatory (or in our case: LED),
while the higher order flux method will — as indicated by the name — be of higher convergence
order. FCT proceeds with the following steps, where always i € J,j € K (i):

(1) Compute the fluxes FZ? and Flgf
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(2) Compute the antidiffusive flures A;j := Fg — Fzg’

(3) Compute the low order or transported and diffused solution

> FL (5.2)

JEK (i)

td . L ._ . n

u

1
|C

(4) Compute the corrected or limited antidiffusive fluzes Aicj = a; Aij, where a5 = aj; € [0,1].

(5) Apply limited antidiffusion:

S

ntl . g ld Z AS (5.3)

jGK ()

The flux limiting step (4) is of course the crucial one. The constants c;; = «aj; € [0,1] should be
chosen as large as possible but as small as is necessary so that the limited antidiffusive fluxes in step
(5) do not cause any unwanted effects in «"*'. The objective is to ensure that u} ™ € [u", u?¥]
for each i € J and user-defined bounds umm < 4" whose suitable definition we will come back

to in a moment. For each ¢ € J define

> AL (5.4) Pri= ) A (5.7)

JEK (i) JEK()
Qf = |Cil(uf"™ — uf)* (55) Q7 =ICil(w™ —ui?)” (5:8)
. QF — . Q7 i e
R{F :: min (1, Pj) it P7 >0 (5.6) R - min (1, P[) it P <0 (5.9)
1 if PH=0 1 if P~ =0,
where we use the definition % := max(0,z) > 0 and = := min(0,z) < 0 and have some changes

in comparison to the definitions in [Zal79]: we define P, and @; with the opposite sign, which has
no influence on the quotient ;" /P, and in the second case in R;-" and R, we assign the value 1
instead of 0 and instead of requiring a priori that u?ﬁn < ugd < u*® we have added cut-offs in the
definitions of Qj‘ and @, .

Zalesak’s proposed limiting procedure is given by setting for any i € J and j € K(i)

in(R,R;) if 4; >0
Qi 1= {mln( vt ) ! ) = (510)

min(R}, R;7) if A <0.

We note that the choice (5.10) ensures the necessary symmetry condition «o;; = ay; for A;; # 0
because Aj; = —A;; and that, given u" < y!? <y for all 4 € 7, the choices in (5.7) — (5.10)
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ensure u?m < U?H <™ forall i € J:

up = el > Ay
" jEK (i)
1
= ugd + il Z ai;Aij + Z a;; Aij
T\ jeK (i):A4;<0 JEK(i):Ai;>0
1
d
€ u + il > agdy, Y aydy (5.11)
¢ JEK(i):Ai;<0 JEK(i):A;;>0
1 _
C uﬁd + Tl R; Z Aij,R;r Z Ajj
’ FEK (i):Ai; <0 JEK (i):Ai;>0
1
=ul +— Ry P ,R'P| cul’+ — [Q;,Qf
&l ) cult o Q]
= [, ).

Remark 5.1 (Preprocessing of antidiffusive fluxes before correction step (4)). Zalesak mentions
two ways of altering the fluxes A;; before limiting them in step (4). He uses two-dimensional tensor
product grids with discrete coordinates (7, j) and denotes the flux from cell (7, j) into cell (i + 1, 5)
by Ajy1/2,5, the flux from (4,7) into (4,5 + 1) by A; ;11,2 (opposite sign convention!).

o (Cancellation of diffusive “antidiffusive” fluzes:
Set AZ-H/QJ =0if
Aipr o (Uit ; — ulh) <0
and AHl/Q’]-(u’Z‘fﬁlrQJ z+1 ) <0 (5.12)
or Ai+1/2,j(“§,c§' - Uﬁu) <0
and A; j11/0 =0 if

td td
Ajjr1pa(uifn — uig) <0

and  Ajjip(ul®y —ulh ) <0 3. (5.13)
or Ai,j+1/2(uf,c§' - Ufz‘—l) <0

This is done to suppress unexpected diffusive behaviour of the antidiffusive fluxes when their
direction of mass transport is down gradients. Conditions and seem to be de-
signed to detect situations where 4/ is monotone rather than zig-zagging in x- or y-direction,
respectively, and where additional diffusion in this respective direction is thus uncalled for.
However, Zalesak claims this adjustment to be of cosmetic nature in most cases.

On irregular meshes, the grid points are no longer aligned along two orthogonal directions
and there is no obvious way of generalising these three-piece conditions. One way (called
prelimiting in [Kuz10]) is to set A;; = 0 (we are back to our own notation and sign convection!)
whenever A;;(ul? — ué-d) > (0, which amounts to reducing conditions ([5.12)) and ((5.13)) to their
first inequality.

63



e Limiting along coordinate directions first: If the low order scheme produces a solution u¢ that
is monotonic along an axis parallel grid line and the antidiffusive step destroys that property
(this usually happens if there is a large gradient in the solution transverse to this line), then
one-dimensional limiting of the fluxes A; /5 ; and A; j1/o along the x- and y-direction can
be performed prior to the two-dimensional limiting step in order to keep new extrema in the
axis direction restrictions from being accentuated or created.

A
Zalesak’s proposed choices for the uini“ and uj"** are either
u™ = min uy u;" = max uf (5.14)
JEK (i)u{i} JEK ()U{i}
or
u™ = min  u¢ WP = max  ul, (5.15)
jeK®U{i} 7 jek@u{i} 7
where u§ := min(uz-d, u?) and u? = max(uéd, u?) and the right-hand choice is expected to perform

better because it can undo to some extent excessive diffusion developed in u!¢.

5.2 Intermezzo: M-Matrices

Definition 5.2 (Z-, monotone and M-matrix). Let A € R™™" be a matrix. A is called a Z-matriz
if a;; < 0 for all pairs ¢ # j. A non-singular matrix is called monotone if its inverse has non-negative
entries, i.e. if A~! > 0. A monotone Z-matrix is called an M-matriz. A

Definition 5.3 (Irreducibility). A matrix A € C™*" is called irreducible if there exists no per-
mutation matrix P € {0,1}"*" such that

(5.16)

pAPT — {An A12:|

0 A

with square blocks A1 and Ass. A more usable equivalent definition is given in terms of directed
paths: For 1 <1i,j < n, a sequence

Qiky s Qi - - - 5 Oy 1oy > Ok (5.17)
of non-zero entries of A is called a directed path from 7 to j. Now A is irreducible if and only if

there exists a directed path connecting i and j for any pair (i,5) € {1,...,n}%. A

Definition 5.4 (Diagonal dominance). A matrix A € C"*" is called (weakly) diagonally dominant
if N
|| > Z\azj\ (5.18)
j=1
JF
holds for ¢ = 1,...,n and strictly so if the inequality is strict for all ¢ = 1,...,n. A is called

irreducibly diagonally dominant if it is an irreducible matrix and (5.18]) holds for at least one
ie{l,...,n}. A
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Lemma 5.5. A strictly or irreducibly diagonally dominant matriz A is non-singular. A

Proof. This is well-known and a simple consequence of the Gershgorin circle theorem in the strictly
diagonally dominant case, see [Var00, Theorem 1.21] for the proof in this case. If A is irreducibly
diagonally dominant, then a sharpened version of Gershgorin’s theorem, see [Var00, Theorem 1.18],
has to be used. g

Theorem 5.6 (Perron-Frobenius, [Var00, Theorem 2.7]). Let 0 < A € R™ ™ be an irreducible
matriz. Then

(i) p(A) >0 and p(A) is an eigenvalue of A.
(ii) There exists x > 0 such that Ax = p(A)x.
(i1i) p(A) increases strictly when any entry of A is increased.
(iv) p(A) is a simple eigenvalue of A. A

Lemma 5.7. If0 < A € R"™ " is irreducible, then either

n

Zaij = p(A) fori=1,...,n (5.19)

j=1

or
n n
nin Z a;j < p(A) < ,nax Z aij (5.20)
7j=1 7=1

A

Proof. This proof is some simplification of the one of [Var00, Lemma 2.8]. Let 1 denote the vector
with 1 as each component. Then if all row sums of A are equal to some ¢ > 0, A1 = o1, 1 is
an eigenvector with eigenvalue o and hence o < p(A). If A € C is an eigenvalue of A, then by
Gershgorin’s theorem

n

A — @i < |\ — ag) SZaij:a—aii for some i € {1,...,n}, (5.21)
i=1
J#i

which shows p(A) < ¢ and concludes the proof of if all row sums are equal. For the case
where the row sums are not all equal to some common value, we confine ourselves to proving the
second inequality in . Since A is irreducible, each row must contain some positive entry. We
define a new irreducible B > 0 by increasing such an entry in all rows k with

n n
Zakj < i—rlllaXNZaij =0 (5.22)
j=1 T =1

to the extent that all row sums of B are exactly equal to 0. Now we conclude from the case just
treated and part (iii) of Theorem [5.6| that p(A) < p(B) = o. O
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Theorem 5.8. Let A € R™™ be a strictly diagonally dominant or irreducibly diagonally dominant
Z-matriz with a; >0 fori=1,...,n. Then A is an M-matrix. A

Proof. From Lemma it follows that A is invertible. Define D := diag(al_ll, . ,a]_vﬁv) and
B:=1-DA. Then
0 ifi=j
—al ifi#
which shows B > 0. If A is strictly diagonally dominant, then
n
D lbijl <1 fori=1,...,n (5.24)
j=1
shows that p(B) < ||B|leo < 1.

If A is irreducibly diagonally dominant and not strictly diagonally dominant, then B is irreducible,
too. To prove this claim, we note that irreducibility of a matrix A depends only on its pattern P,

where
pij = 7 (525)
0 else.

Therefore X := —DA is irreducible. Let 1 < i # j < n and let
Likps e Qj‘krj (526)

be a directed path of non-zero elements from ¢ to j. Then we can eliminate any members of the
form z from this chain and see that there exists a connected path

bikys - bk, 5, (5.27)

since by, = xy; for k # [. For j = ¢ we take a path without members of the form zj; from i to
some auxiliary [ # ¢ and concatenate it with its reverse path to obtain a directed path of non-zero
elements of B from i to i.

Now we infer from . .
min b;; < 1= max by 5.28
zlnz; " zlnz; E (5:28)

J= J=

and Lemma that p(B) < 1 and argue as in the proof of [Var00, Theorem 3.18] to finish the
proof: The matrix DA = I — B is invertible because the Neumann series (I — B)™! = Y22 BF

converges. All powers of B are non-negative, hence (I — B)™' > 0. Therefore A~'D~! > 0 and
A7l >o0. 0

5.3 Proposition of a Two-Step FCT Method for the Finite Ele-
ment Dirichlet Problem

Let Q C R? be triangulated by 7, #/N = N and let 7 with #Z = M be the index set of interior
nodes. Take M¢c, My, C, D, K € RVXN to be as in Definition and Y € RV*N to be a discrete
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diffusion matrix with zero row sums such that
L=K+Y (5.29)

has non-negative off-diagonal matrices. Then we have the standard Galerkin and the LED method
for the convection-diffusion equation with f = 0:

d H

Méfgt = K°u! (5.30)
d L

ME% = L°u®. (5.31)

Let us propose a two-step FCT method even though the present high and low order schemes are not
in flux form, but in which there are antidiffusive fluxes that satisfy the anti-symmetry property.
Assume we have computed u* and want to combine the high order and low order fully discrete
solution by a 0-stepping,

(Mg — 07 K)°uft P = (Mo + (1 — )7 K)°u® (5.32)
(My, — 07L)°ul*+ = (M + (1 — 6)7L)°u* (5.33)
in order to compute an “in-between” new time-step solution «**!. Defining the matrices
A:= Mg —0rK B:=Mc+(1-0)1K (5.34)
A:= My —06rL B:= Mg+ (1-60)7L (5.35)

and f°:= (A - fl)"qukJ“:l + (B — B)°u", the high order step can be equivalently written as
AouH,k+1 _ AOuL’k+1 + fo _ Boukz + fo (536)
and dropping f° in this equation would yield the low order solution. Now we set
fi=(A—Au* (B - BWF (5.37)
and decompose each component of f;, i € Z, into a sum of internodal fluxes f;;. We have
f= (Mg — Mg — 67Y)u 1 1 (Mo — My — (1 — 0)7Y)u”
Hk+1 k H,k+1 k (5.38)
= (Mg — Mc)(u™ " — ") — 7Y (u 5 (1 — 0)u®)

and thus fori=1,...,N

N N
fz' _ mi(uH’kH _ uk)z o Zmz‘j(uHJH_l _ uk)j o szij(guH,k-‘rl + (1 o 9)uk)j
j=1 j=1

I
AMZ

EU

mij {(Uf’kﬂ — i M = (uf - Uf)} + TYij [G(Uf’k“ — w4 (1= 0) (uf — )

.S
S

(mij + 07yi) (u] T — WY — (mg; — (1= 0)7y) (b — ub),

=:fij

I
.MZ

N

.S
el

(5.39)
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where we set u; = 0 for j ¢ Z. The symmetry of M¢ and y;; = y;; fori € Z, je {1,... N}, i #j
then immediately gives fj; = — f;;. Note that for # = 0 (and only in that case) this decomposition
of f renders to have the form with a;; = 1 for all ¢,j. For 6 # 0 we therefore work
with solutions multiplied from the left by A° so we do not lose the local nature of antidiffusive fluxes.
If now a € [0, 1]¥*V is symmetric and F := (fij)ij=1,...~ we obtain a flux corrected solution uktl
by solving

ACuFtL = APy LR 4 diag(Fa)r = Bou® + diag(Fa)z. (5.40)

min

Given values ;™™ u;"** for i € T we set

U™ = (") U = () jeg (5.41)
uin = A%y min uyt = A (5.42)

and then apply Zalesak’s limiting strategy to obain suitable «;; to ensure that
ACuF L e [uBin, ugex), (5.43)

The matrix A° is an M-matrix (see Lemma [5.9)), hence (A°)~! > 0 (non-negative entries). This
implies that

k+1

u" € u

min
, U

max] (5.44)

which was the declared goal. If § = 0 and thus A° = M7, these identities are even equivalent.
Lemma 5.9. The matriz A° (for A defined in (5.35))) is an M-matriz. A

Proof. We have by definition A = My — 67L, where M7, is a positive diagonal matrix, 8 > 0, 7 > 0,
L has zero row sums and [;; > 0 for i # j. Therefore A is a Z-matrix with positive diagonal and
positive row sums and thus strictly diagonally dominant for > 0. Restricting A to A° = Azz
removes some non-positive column entries from each remaining row, thus only increasing the row
sums. It follows from Theorem that A° is an M-matrix for @ > 0. In the case 8 = 0 the matrix
A reduces to M, and the assertion is trivial. ]

5.4 The FCT Approach of Kuzmin

In Kuzmin’s method, no independent calculation of the high order solution step is performed;
rather, the new time step solution is attempted to be attained in a single non-linear step or by a
linearised version of a non-linear step.

From now on, f will no longer be a linear source term as in ([2.1]), but f will stand for fluxes unless
locally defined otherwise.

5.4.1 Formal Semi-Discrete Limited Scheme

Disregarding boundary conditions, in Section 4.1 of [Kuz10], Kuzmin operates with the full consis-
tent and lumped mass matrices and uses the following definition for the discrete diffusion matrix:

Definition 5.10 (Kuzmin’s discrete diffusion matrix). A discrete diffusion matrix ¥ € RV*V in
the sense of Kuzmin has to satisfy
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(i) Y is symmetric with Y%, gy =0 fori=1,...,N.
(ii) For L :== K +Y it holds l;; > 0 for all ¢,j € {1,..., N} with i # j.
Hence the lower bound for y;;, i # j is
yij = max(0, —ki;, —kji). (5.45)

It is this choice for Y that will henceforth be referred to as Kuzmin’s discrete diffusion matriz. A

Remark 5.11. With Kuzmin’s discrete diffusion matrix, the whole operator K = —(C + €D) is
manipulated, not just the convective part C'. This can be thought of a “minimally invasive” way
to obtain an LED semi-discrete scheme; the natural diffusion introduced by €D is used to reduce
the amount of artificial diffusion that would be introduced by defining Y as the upwinding matrix

from (4.43])). A

The linear high order and low order semi-discrete schemes

du du
M, =K Mp,— =1 4
o u and Lo u, (5.46)
where L := K + Y, are connected formally by noticing that
d
My, d@; =Lu+f (5.47)

returns the high order method for

d
f= (M — Mc)dit” ~Yu (5.48)
and the low order method for f = 0. Therefore, f can be regarded as a sum of unlimited or raw
antidiffusive fluxes. Kuzmin then suggests the following decomposition of f into raw antidiffusive

internodal fluzes f;;:

d o
fij = (mijdt + yij) (ui — uy) for i # j. (5.49)

This decomposition is motivated by the following calculation which makes use of the zero row sum
property of My — Mg and Y:

N
du du;
fi = <(ML - MC) dt) (Tu)z = sz - z; ij dt Zymu]

=
Y4
= Zmz‘j%(uz‘ uj) = yij(uj — i) Z fij-
j=1
i J#z
As should for a flux, it holds that f;; = —fj; for all i # j since M¢c and Y™ are symmetric matrices.

Now each such flux can be limited by multiplying f;; by some a;; € [0, 1], where a;; = a;; should
hold in order to maintain antisymmetry. Setting

(5.50)

fij = aijfij and Tz = ?ij and ? - (7i)i=1,...,Na (5~51)
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a new formal limited scheme

ML‘C%‘ =Lu+f (5.52)

is generated. It should be noted that, with the Zalesak limiter, the o;; will depend non-linearly
and non-smoothly on u and f and thus cannot be cast into the shape of an explicit ODE in
an obvious way. Hence may not be a well-posed semi-discrete problem. Nevertheless, a fully
discrete version may be solvable.

5.4.2 Fully Discrete Limited Scheme

In [Kuz10} Section 4.4], a full discretisation by means of a 6-stepping is suggested:

(Mp, — 07 L)u™ = (Mg + (1 — 0)7L)u™ + 7 f(u™ u™), (5.53)

where f is defined as in (5.51)) and the differential d/dt in (5.49) is replaced by a difference quotient
to define

(! — bt — (= )

T

fig = myg s (0 =)+ (1 =0 —up)). (5:54)

A limiting strategy for the o;; motivated by Zalesak’s work is given by setting

Pr= > fi (5.55) P i= > f (5.58)
JEK () JEK ()

QF = D (amex — g,) (5.56)  Q; = i(gmin _ g,) (5.59)

T T
. QSN ¢ pt . Q; P
Ry =™ (1L3) itpF>o0 (557 Ryi={ (L5) itp <o (5.60)
1 if Pt =0 1 if P~ =0
and

in(R;,R;) for fi; >0

iy = an( - i) or fiy 2 (5.61)
min(R; , k) for fi; <O0.

Here, the values involving @ are gathered from time steps before time mark n + 1 and thus the Qj
and @; are constants with respect to the variable u™*1 of the nonlinear problem (5.53).

We might be interested in investigating whether problem ([5.53)) is well-posed for small 7 > 0. We

therefore restate it in a way that is equivalent for positive 7 but also defined in the limiting case
7 = 0. Namely, we consider

(Mp, — rL)u™ ™ = (M, + (1 — 0)7L)u" + f(u", u™), (5.62)
with (5.51)) unchanged,
fij = mq; ((u?H — ) — (uf - U?)) + YT (9(U?+1 —uft) + (1 - 0) (uf — u?)) (5.63)
and
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pr= " fF (5.64) P i= > f (5.67)

JEK(9) JEK (i)
Q= mi (W — @) (5.65) Qi :=my(a™™ — ;) (5.68)
. Q+) . + . Q. . _
1,%) if P >0 1,% ) if P~ <0
RF={"" ( pr) (5.66) R-:={ ( z- ) e (5.69)
1 if PH=0 1 if P~ =0.

as well as (5.61]) unchanged.

A natural question which is — unfortunately — not adressed in any of the works of Kuzmin et al.
is for which choices of time step 7 > 0 the problem possesses a solution or even a unique
solution. With the Zalesak limiter just presented, this is not trivial because of the nonlinear and
nonsmooth nature of the problem. Apart from abstract existence (and maybe uniqueness) results,
it would be desirable to have a practical algorithm at hand (such as a fixed point iteration or a
Newton method) that can be shown to converge to such solutions. While so-called fixed point
iterations with acceleration techniques and Newton methods have been implemented by Kuzmin et
al. in [Kuz10] and [MKKO7], respectively, and seem to work, the questions of existence and whether
(5.62)) represents in some form a contraction that would justify using a fixed point algorithm or if
convergence criteria for non-smooth Newton methods are met has not been addressed.

5.4.3 An Attempt to Establish Unique Solvability
5.4.3.1 Problem Reformulation
Let us introduce the notation
hoi=u"tt -y, cij (1) == my; + 0Ty, 9ij (1) == Tyij(ui —u}) (5.70)

to restate problem ([5.62) in slightly simplified form. To this end, we note that we may indeed
switch to the variable h because Rj and R, depend on u™*! only through the fij and each f;; can
be written as

Fig ) = (mig + 0ryg) (i =) = (! =)} 7y (uf = o)

(5.71)
= cij(1)(hi = hj) + gi5(7).
After defining
F(h,7) = (My — 07L)h — f(h,7) — TLu" (5.72)
we notice that
£(0,0) =0, (5.73)

which can be interpreted as u™ being the sought solution at 7 = 0, and that solving problem (5.62)
for some 7 > 0 is equivalent to finding some (unique?) h(7) such that

F(h(r),7) = 0. (5.74)

This renders the problem in a form that might be amenable to some form of implicit function
theorem argument.
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5.4.3.2 Implicit Function Theorem for Locally Lipschitz Continuous Functions
The singular goal of this subparagraph it to prove Theorem

Theorem 5.12 (Rademacher). Let U C R™ be open and f: U — R™ be locally Lipschitz contin-
wous. Then f is differentiable almost everywhere in U. A

Definition 5.13 (Generalised Jacobian). Let U C R™ be open and f : U — R™ locally Lipschitz
continuous at x € U. Let Dy C U be the set of points in which f is differentiable.

(a) The set Opf(x) :={G € R™" : 3 (xy)neny C Dy with z, — x and V f(z,) — G} is called
the B- or Bouligand subdifferential.

(b) The set Of(x) := conv (Opf(x)) is called the generalised Jacobian in the sense of Clarke.

(c) If f:R"xR™ D> U — R", we denote by II,0f(z,y) the set of projections G € R"™*"™ of
elements [G H] € 0f(z,y). A

Theorem 5.14 (Implicit function theorem for Lipschitz functions, [Hinl0, Theorem 2.6]). Let
f:R" xR™ — R"™ be Lipschitz continuous in a neighbourhood of a point (xo,yo) € R™ x R™ for
which f(zo,y0) = 0. Assume that all matrices in 11,0f(xo,yo) are non-singular. Then there exist
open neighbourhoods Vi, of xo and Vi, of yo such that for every y € V,, the equation f(x,y) =0
has a unique solution x = ¢(y) € Vg, and in particular ¢(yo) = xo. Furthermore, the function
@ Viyo — Vi is Lipschitz continuous. A

Lemma 5.15. For U C R" open and f : U — R™ locally Lipschitz continuous and x € U the
generalised Jacobian O f(x) is a non-empty, compact, convex set and the set-valued map Of is upper
semicontinuous. A

Proposition 5.16 (Specialised chain rule, [Hin10, Corollary 2.1]). Let U, f,x be as before. Then
for any y € R™ it holds (y” f)(x) = yTOf (). A

Definition 5.17 (Clarke’s generalised directional derivative). Let U C R"™ be open and f :
U — R™ a locally Lipschitz continuous function, x € U and v € R™. Then define its generalised
directional derivative f°(z;-) : R™ — R™ in the sense of Clarke as

[2(x;v) :=sup Dy(x;v), (5.75)

where

f(@n +thv) — f(25)

Dy(x;v) := { lim cxy — xand t, | 0} . (5.76)

Note that (R™, <) with z < y understood elementwise is a vector lattice, hence suprema make
sense. A

Lemma 5.18. Let U, f,x,v be as in the previous definition. Then
(i) D¢(z;v) C R™ is non-empty and compact.
(ii) yTDy(z;v) = Dyr¢(x;v) for all y € R™. A
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Proof. For z, — z and t, | 0 the sequence (f(x,, + t,v) — f(x))/tn remains bounded (uniformly
with respect to the choice of sequence) and a convergent subsequence can be selected because R
is finite-dimensional. Hence the set is non-empty and bounded. Sequential closedness follows from
a diagonal sequence argument:

Let dq,ds, -+ € Dy(x;v) and d € R™ such that |dy — d| < 27% for k € N. We want to show that
d € Dy(x;v) and thus need to find a sequence (xy,t,) with x, — x, t,, | 0 such that

f(xn + tnv) — f(l'n)
ln

—d for n — oc. (5.77)

For each k € N, let z¥ and t¥ > 0 be sequences with 2% — x|,k |¢F — di| < 27", where

k. S @n+ o) = flam)
g, = m .

(5.78)

Then the choice z,, := ] and t,, := ]! gives us all the desired properties since t,, > 0, |z, — x|, t,, <
27" and
lg" —d| < |g" —dp| + |dp —d| <271 =0 for n — oc. (5.79)

Assertion (ii) is not hard to see. O
Proposition 5.19 (Generalised gradient = subdifferential, [Cla75, Proposition 1.4]). LetU C R"

be open, x € U and g : U — R locally Lipschitz continuous. Then g°(x;-) is the support function
of 0g(z). More explicitly, for any v € R"

¢°(x;v) = max{u-v: u € dg(x)T}, (5.80)
dg(x)T ={ueR" 1 u-w < ¢g°(x;w) ¥V w € R} (5.81)
and therefore
9g(z)v = [=(—g)°(x;v), ¢° (23 v)]. (5.82)
A

In |Thi82, Section 4], Thibault extends the notion of Clarke’s generalised derivative and subdif-
ferential to Hausdorff locally convex vector spaces X and Y and functions f : X — Y which are
Lipschitz at a point T € X in a certain sense such that (y*o f)(T) € X* is declared for all y* € Y™*.
He then asks the question whether a set-valued mapping A (7;-) : X — CC(Y) into the set CC(Y)
of non-empty closed convex subsets of Y exists such that

O(y* o f)(@) -v=y"(Af(x;v)) forally* € Y and v € X, (5.83)

where he defines dg for real-valued functions g as the subdifferential, such that the definition re-
duces to for X = R”. He calls such a mapping — when it exists — the generalized Clarke
derivative. The following proposition will show that this introduces no ambiguity with our previous
definition of the generalised Jacobian.

In order to avoid the long and technical proofs, let us strip down the generality of Thibault’s results
to our needs by only considering X = R™ and Y = R™. We know from Proposition that a
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mapping as in (5.83) exists for locally Lipschitz continuous f : R — R™: for x,v € R", simply
set A¢(x;v) := 0f(x)v. What is new is that such a set-valued mapping, when it exists, must be
unique:

Proposition 5.20 ([Thi82, Proposition 4.1]). Let f : R™ — R™ be locally Lipschitz continuous
and Ay : R* x R* — CC(R™) C P(R™) be a set-valued mapping into the set of all non-empty
closed convex subsets of R™ satisfying at each fized x € R"

OyT f)(x) -v =y  Ap(z;v) for ally € R™ v € R, (5.84)

where 0g(x) = {u € R" : u-v < ¢°(x;v) Vv € R"} for g : R™ — R locally Lipschitz continuous.
Then this mapping is unique. A

Proof. Fix (z,v) € R™ x R™ and assume there exist two different such sets A}(m; v) and A%(w; v).
W.lo.g. there exists z € A} (z;0)\ A% (z;v). By the hyperplane separation theorem (also known as
the Hahn-Banach Theorem in the context of locally convex topological vector spaces), there exists
y € R™ such that

yTz < inf (yTA?c(a:; v)) (5.85)

and thus yTA}(a:; v) and yTAfc(x; v) cannot be both equal to d(yT o f)(z) - v. O

Proposition 5.21 ([Thi82, Proposition 4.5]). Let U C R™ be open, f : U — R™ locally Lipschitz
continuous and x € R™. Then 0f(x)v = conv Dy (z;v) for any v € R". A

Proof. Let y € R™. Then from Definition (5.82) and Lemma we obtain

Oy F)(@)v = [=(=y" f)°(z;0), (" £)° (w;0)] = conv Dyr p(w;v) = conv y” Dy (;v)

5.86
=y conv Dy (x;v). (5.86)

The claim follows from closedness (even compactness) of Dy(x;v) and the uniqueness asserted in

Proposition O

We are now ready to prove an even more general result than Theorem the theorem and its
proof being taken from [Kum91|. For the context of this theorem we shall make the following
definition:

Definition 5.22 (Regularity). Let U C R"xR™ be open, f : U — R" locally Lipschitz continuous
and (z*,t*,a*) € U x R" such that f(z*,t*) = a*. We call f regular at (x*,t*,a*) if there exist
neighbourhoods N (z*) C R™ of 2* and N(a*,t*) C R™ x R™ of (a*,t*) and a Lipschitz continuous
function g : N(a*,t*) — N(z*) such that f(g(a,t),t) = a for all (a,t) € N(a*,t*). A

Theorem 5.23 ([Kum91|, Theorem 1]). The function f is reqular at (x*,t*,a*) if and only if

0¢ Ds((z*,t"); (v,0))  for each v e R™ \ {0}. (5.87)

If holds, then
v € Dy((a,t"); (o, 7)) <= a € Ds((z",t"); (v,7)). (5.88)
A
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Lemma 5.24. Condition (5.87) is equivalent to the existence of some € > 0 such that

17t — 72 2 e(||e’ — 2 + ¢ - 2]) (5.808)
whenever

zt 2% € B.(z*), t',t? € B.(t*) and Htl - t2H <e Hacl - :L'ZH . (5.89b)

A

Proof. Let (5.89)) be true, v € R™\ {0}, zp — z*, tx — t* and A\ | 0 such that

v e lim [z + Ngv, ty) — fok, te)
k—o0 Ak

exists. Then |lu|| > e||v|]| > 0 and (5.87)) follows. Now assume ([5.89) is false for all ¢ > 0. Then
there exist sequences ey, a:,lc, xi, t,1€, ti with e | 0 for £ — oo satisfying (5.89b)) for each k£ € N such
that

€ Dy((z*,t7); (v,0)) (5.90)

1f @@k tr) = faf )| < enl(|z — ai]| + [tk — &I (5.91)

for each k € N. In particular, A := Hx% - xi” # 0 for each k € N. Set vy, := (22 —x1)/\. W.Lo.g.
v = v e S C R for k — co. Keeping in mind that x}c + AU = wi, we obtain

1F ok + A, ) = flags )| < (1 (s t2) = F s t)]| + ([ (i + e, 1) = fg + Avs 15)]|
< |[£ (s 1) = Syt + Lin(F) ([t — 2R]] + e o = o)
<er((1+ Ek) k) + Lip(f)(exAr + Ak [[ve — vl[)
< Mk (2ex + Lip(f)(ex + |lvi — vl]))
(5.92)
for each k € N. Hence 0 € Dy((x*,t¥); ) and ({ is false. O

Proof of Theorem [5.25. For our purpose it suffices to show that (or equivalently )
implies regularity. We may assume f is Lipschitz continuous on all of U with constant L.
Suppose for some neighbourhoods N (z*) and N (a*,t*) there exists a function g : N(a*,t*) — N(x*)
such that f(z,t) = a for x = g(a,t). Then this function is unique and Lipschitz continuous after
possibly reducing the neighbourhoods: Let (a',t'), (a2,t?) € N(a*,t*) and ¥ = g(a*,t*). Then
the relation

cllet = a2 < 1 = 2 + ol 2] (5.99)

is trivial for Htl - t2H > ¢ Hxl — :L'ZH and follows from for Htl — t2H <eg HJJI — sz

In order to obtain existence of g, set t! = t> = ¢t* in . It follows that f(-,t*) is a Lipschitz
homeomorphism between B, (z*) and its image S := f(B:(x*),t*) C R™. S is open by the invariance
of domain theorem, so there exists a § > 0 such that ¢ := f(-,t*)~! : Bs(a*) — B-(z*) is well-
defined and Lipschitz continuous. Now let (a,t) be such that L ||t — t*|| + ||la — a*|| < §. This choice
implies that

hat(x) == ¢(f(x,1") — f(z,t) +a) (5.94)

is a well-defined continuous map from {z € R": (z,t) € U} into B.(z*). Indeed,
1f (2, %) = f(z,t) +a—a”[| < Lt =t + fla —a™| < 6 (5.95)
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by assumption, hence h,; makes sense and maps into B.(z*). We can regard it as a self-map on

B.(x*). There exists a fixed point zg € B:(z*) by Brouwer’s fixed point theorem and
zo = hat(v0) <= f(20,t") = f(z0,t") — f(20,1) + @ <= f(z0,t) = a. (5.96)
Set g(a,t) := xo. O

Proof of the implicit function theorem, Theorem[5.1]] If all matrices [G H] € df(xo,yo) have a
non-singular left block G € R™"*", then for any v € R™ \ {0} it holds

(G H|(v,0) = Gv # 0, (5.97)
or equivalently
0 ¢ 9f(20,y0)(v,0) = conv Dy ((z0,%0); (v,0)) for any v € R™ \ {0}, (5.98)
where we have used the characterisation from Proposition In particular this implies
0 ¢ D¢((z0,90); (v,0)) for any v € R" \ {0}, (5.99)

which is just condition (5.87) ensuring regularity of f at (xg,yo,0). This in turn implies the
existence of neighbourhoods and an implicit function ¢ with the stated properties. O
5.4.3.3 Piecewise C* Functions and Local Lipschitz Continuity of F

Definition 5.25 (Piecewise C* functions). Let V' C R" be open, f € C(V,R™) and k € N U oo.
Then f is called a PC* function and we write f € PC*(V,R™) if for every zo € V there exists a
neighbourhood W C V of g and a finite collection of functions f* € C¥(W,R™), i =1,...,r such
that f is a continuous selection of f!,..., f" on W, meaning that

f(x) e {fY=),...,f[(x)} forallzecW. (5.100)

We call the sets

I(x):={i: f(z) = fi(z)} and I%x):= {Z clx):xe{yeW: fly) = fl(y)}o} (5.101)

the active and the essentially active index set at x, respectively. A
We take [Ulb02, Proposition 2.20] and add a calculus rule for quotients and continuous selections:

Proposition 5.26. Let k € NU{oo} and V C R™ open.

(i) The class of PC* functions is closed under composition, finite summation and multiplication
whenever these operations make sense.

(i) If f,g € PC*(V,R) and g is a continuous selection of functions g*,...,g" € C*(V,R) such
that 0 ¢ g*(V) for all k € {1,...,r}, then f/g € PC*(V,R).

(i) If f : V — R™ is a continuous selection of finitely many functions f1, ..., f, € PCK(V,R™),
then also f € PC*(V,R™). A
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Proof. We prove only the last statement. Each function f;, € PC*(V,R™) is itself a continuous
selection of functions f,%, L€ C*(V,R™) on a neighbourhood W}, C V of g, for each o € V.
It follows that

f@) e {fl@), ... fi@),. ... f@),..., fl(x)} forallze )W, (5.102)

k=1
which implies f € PC*(V,R™). O

Lemma 5.27. The function F(h,7) = (My — 07L)h — f(h,7) — 7Lu™ from (5.72) is piecewise
smooth in the sense of Deﬁnition i.e. F'€ PC®RNTLRN), A

Proof. The first and last summand of F' are obviously in C*°(RY*! RY) and piecewise smoothness
of f can be shown componentwise. Then, because sums of PC* functions are again PC™ according
to Proposition it is sufficient to show that ﬁj = ;i fij € PC®(RNTL R) for all i =1,..., N
and all j € K(i). We define ajj, g RY*1 5 R on the whole space RNt by

a;-; = min(Rj,Rj_) and o = min(R;,Rj). (5.103)

With this definition, we see that

s fig for fi; >0
aijfij = i torfig 2 (5.104)
aijfij for fij < 0.

Set HE := H;: := {(h,7) € RN : fi;(h,7) 2 0}. If Qf = Q; = QF = Q; =0, then ay; fi; =0
on RV*1 and there is nothing to show. In case 0 € {Q], QJ_} and 0 ¢ {Q., Q;‘}, a;jfij =0 on HF
and it suffices to show that «a;; fi; € PC>®(RN+1 R). Then the selection

0 for f;; >0
afy =40 frfu= (5.105)
aijfij for fij <0

is continuous because of |a;; fij| < |fi;| and the assertion follows from Proposition (iii). The
case 0 ¢ {Q;, Q; } and 0 € {Q;, Q;r} is analogous.

Hence let us show that a;;fij € PC®(RN*LR) for 0 ¢ {Q;, @; }. In this case we can even show
that a;-; € PC>(RN*1 R); then Proposition (i) yields a;;fij € PC>®(RN*1 R) as a product
of a PC'* function and a C'*° function.

Since 0427; = min(R}, R]_) and min € PC*(R?,R), it is sufficient to show R}, R; € PC>®RN*LR),
again using Proposition (i). W.lLo.g. we restrict ourselves to proving R} € PC>(RN*1 R).
We can rewrite

+
min(l Qi) if P >0

RS = TP (5.106)
1 if PF=0
as
+ ~
Rf = 151 with Pt == max(P;", Q) >0 (5.107)
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In light of Proposition (ii) it suffices to show that ]5;r is a continuous selection of finitely many
PC>(RN*1 R.() functions. Recall that

o (hy ) = [eij () (hi = hy) + gij ()] for j € K(3). (5.108)

Clearly, fii € PC®(RN*!R) for all j € K(i) and thus P € PC>(RN*!R) as a finite sum
of such functions. We therefore have functions Pf’l, . ,P;r’" € C°(RN*1 R) such that PZ-Jr is a
continuous collection of those on RV*1. In order to obtain strictly positive functions to select P;r

from, we introduce a monotonically non-decreasing function n € C*°(R,R) such that

r +
n(z) = {x fore 2@, (5.109)

Qr QF
5 fOI'.'I:S 5 -

Then noP,"" € C°°(RN+1 R) with noP,""(h,7) > QF/2 > 0fork=1,...,nand all (h,7) € RN+,
Of course no Pf is continuous as a concatenation of continuous functions and hence is a continuous
selection of the smooth functions non’k. Using no PZ.+ instead of P,L.+ does not change the definition
of PZ.JF:

Pt =max(P", Q) = max(no P,QF). (5.110)

We have thus shown that ]E’Z-’L is a continuous selection of the functions no P;“l, ...,mo P;“”, Q;r €
C>®(RNTL[Q; /2,00)), from which we infer that oz;; € PO®RN+LN) for 0 ¢ {Qj,Q;} (and

oy € PC®(RNTLN) for 0 ¢ {Q;, Qj}) Now it remains to show that the selection

T f i >0
aijfij = alﬁf” or fij 2 (5.111)
Oéijfij for fij <0

is continuous for 0 ¢ {Q],Q;, ;’,Q;} Let (h,7) € RY*! such that f;;(h,7) = 0 and consider
a sequence (hy,T,) — (h,7) for n — oco. Then fi;(hyn, ) — fij(h,7) = 0 and \a%fij(hn,m)\ <

|fij(hn’7—n)| —+ 0= Oéjjfij(h,T) = Oéijfij(h,T). Proposition (111) gives aijfij € PCOO(RN—i_l,R)‘
U

The next proposition allows to show that a PC! function is locally Lipschitz (on compact convex
neighbourhoods of points). This is the statement of the subsequent Corollary

Proposition 5.28 (|Sch12, Proposition 4.1.2]). Let V. C R™ be conver, f,...,f' : V — R™
Lipschitz continuous on V with constants L', ..., L'. Then if f € C(V,R™) is a continuous selection
of f1,..., f', it is also Lipschitz continuous with constant L = max(L",... L"). A

Corollary 5.29 ([Sch12, Corollary 4.1.1]). Let V. C R™ be open and f € PCY(V,R™). Then f is
locally Lipschitz continuous. A

Now we can apply the PC* theory to our function F from (5.72)) to show local Lipschitz continuity.

Corollary 5.30. The function F(h,7) = (Mg — 67L)h — f(h,7) — 7Lu™ from (5.72)) is locally
Lipschitz continuous. A
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Corollary 5.31. Letic {l,...,N} and j € K(i) and define the open sets H C RN*1 by
H* := Hjs :={(h,7) e RN fij(h,7) 2 0}. (5.112)

Then oijlg+ € PC®(H',R) and a;j|g- € PC®(H™,R). In particular, these two functions are
locally Lipschitz continuous. A

Proof. For reasons of analogy, showing «;;|g+ € PC*(HT,R) suffices. This is trivial if 0 €
{Q?, Qj_}, for then a;j|y+ = 0. On the other hand, in the proof of Lemma it was shown that

a;; € PC®RNTLR) for 0 ¢ {Qf, Q5 }. Since HY C RN is open and aij| g+ = of| g+ plecevvlse
smoothness follows immediately and Lipschitz continuity follows from Corollary [5.29 ‘

5.4.3.4 Non-Singularity of the Generalised Jacobian I1,0F(0,0)

Lemma 5.32. There exists an open neighbourhood V' of (0,0) such that for all i € {1,...,N},
j € K(i) and for all (h,7) € V with P(h,T) # 0 either

min (?3’ 1> =0 or min (g, 1> =1, (5.113)
holds on a neighbourhood U C V of (h,T), where Q € {Q], Q;.Q;, Q;‘} and P € {P}, PP, Pj‘}
with matching super- and subscript. A

Proof. P is continuous, thus P(h,7) # 0 implies P # 0 on a neighbourhood of (h, 7). The first
identity is obviously true for Q = 0. Define now S := {Q:, Q] :k=1,...,N}\ {0} and set
m = minS > 0. Since fz-j; is continuous for each i € {1,...,N},j € K(i) and f;;(0,0)* = 0, we
have for an open neighbourhood V' > (0,0) that

m

i

(5.114)

gh;ngver P(h,7) #0, P € {Pi+,Pj_,Pi_,Pj+} and thus the second identity in (5.113)) holds foEl]"

Lemma 5.33. Let V be the neighbourhood of (0,0) from Lemma[5.59, i € {1,...,N} and j €

(i) If 0 € {Q;F,Qj_} and 0 € {Q;,Q;’}, then ay;fij =0 on RNTL,
(ii) If 0 ¢ {QF,QF,Q;,Qf}, then ajj =1 on V. A

Proof. For assertion (i), we notice that

aij(h,7) = min(R, R;) = 0 on H} ={(h,7) e RN*': fi;(h,7) > 0} (5.115)
aij(h,7) = min(R; , Rf) = 0 on H; = {(h,7) € RN fii(h,7) < 0} (5.116)
fii(h,7) =0 on Hj; = {(h,7) € RN*1: fii(h,7) = 0}, (5.117)



since B;" (h,7) > 0, P;"(h,7) < 0on H;; and P (h,7) <0, P;"(h,7) > 0 on H;; and thus R = Q/P
in all four index cases. It follows that the product a;j f;; vanishes everywhere. For assertion (ii) we
can apply the previous lemma to see that

ajj(h,7) = min(R{, R)
aij(h,7) = min(R;, R)

For (h,7) € V with f;;(h,7) = 0 we have, either due to (h,7) € V and P(h,7) # 0 or due to R =1
for P =0, that a;j(h,7) = 1. O

1 on HnV (5.118)
1 on H;;NV. (5.119)

Lemma 5.34. Let V be the neighbourhood from Lemma[5.33 If necessary, shrink V such that
cu(T) > mpg /2 >0 for allk € {1,...,N}, I € K(k) and 7 with (h,7) € V. Fizi e {1,...,N}. If
fi is differentiable at (h,7) € V, then for each j € K (i) one of the following conditions must hold:

(i) fij(h,T) #0,
(i) 0 € {Q;,Q;} and 0 € {Q;, Q] },
(i1) 0 ¢ {Qf, Q7 ,Q;,Q} A

Proof. Let (h,7) € V. We show that if there exists jo € K(i) such that neither of the three
conditions hold, then f; is not directionally differentiable at (h, 7). Hence, suppose that for some
Jo € K(i) it holds f;,(h,7) = 0 and one of the following is the case:

e Case 1: 0 € {Q;,Q};} and 0 ¢ {Q;ran_o} or
o Case 2: 0 € {Q,Q;} and 0 ¢ {Q;, Q1 }.

W.lLo.g. we may assume the first case. Set v € R \ {0} such that v; — vj, > 0 and v; — vy = 0 for
all k # jo. Then for any § € R and for all k € K(i):

fir(h,T) for k # jo

- (5.120)
(5C¢j0 (T)(UZ' — ’Ujo) for k = Jo-

Jik(h 4 6v,7) = ca(7)(hi — hy + 0(vi — vg)) + gir(T) = {

For § € (0,dp] and small enough dg, (h + év,7) € V. Furthermore, from we see
fijo(h+dv,7) >0 and fijo(h —6v,7) <0, (5.121)
so from the definition of «;;, our assumption Case 1 and Lemma it follows that
ijo(h +6v,7) =1 and aijo(h — v, 7) = 0. (5.122)

Now we can show that f; is not directionally differentiable in direction of v at (h,7) because the
right-sided and left-sided limits disagree. To this end, set

K:={jeK(): fij(h,7) # 0} and L:={j€K(1): fij(h,7) =0} > jo. (5.123)

From f;;(h,7) > 0 it follows that P;", P;~ # 0 on a neighbourhood of (h, 7); likewise, for f;;(h,7) <0
it follows that P, Pj+ # 0 on a neighbourhood of (h, 7). Employing Lemma we see that o;
is locally constant around (h, ) for j € K and therefore the first sum in the decomposition

filh,1) = Z ij fij + Z ij fij (5.124)

JEK JEL
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is differentiable at (h, ) for smoothness of the f;;. We can thus focus on the second sum:

=1 for j=jo =fij(h,7)=0 for j#jo =0
N .
lim Y ai(h +0v,7) fig(h+0v,7) —ay(h,7) figlhim) _ 0o (T = vio) (5.125)
510 4 1) 510 )
jeL
but for the limit from the other side we obtain
=0 for j=jo =fij(h,7)=0 for j#jo =0
—
hm Oéij(h — 51), 7') fl](h — (51}, T) —Oéij(h, T) fij(h7 T) _ 0 (5126)
510 Y -

This finishes the proof, as we have shown that the negation of conditions (i) — (iii) for some jo € K (i)
precludes differentiability of f; at (h, 7). O

Corollary 5.35. Let V be the neighbourhood from Lemma and i € {1,...,N}. If f; is
differentiable at (h,T) € V, then for each j € K(i) such that cjjfij does not vanish identically on
RN it holds that cij is constant with a;j = 0 or ay; = 1 on a neighbourhood of (h, ). A

Proof. According to Lemma [5.34] for each j € K (i) one of three conditions stated there must hold,
the second of which implies that «;; f;; vanishes identically on RN+,

The first sufficient condition is f;;(h,7) # 0. If fi;(h,7) > 0 it follows that PZ-JF,P; # 0 on a
neighbourhood of (h, 7); likewise, for f;;(h,7) < 0 it follows that P, Pj+ # 0 on a neighbourhood
of (h,7). Employing Lemma we see that a; is locally constant around (h, 7).

In Lemma [5.33]it has been shown that the third sufficient condition implies a;; =1 on V. O

We are now in a position to show existence of a unique solution h(7) for small 7 > 0. Let us note
that F' can be decomposed into a smooth part g and f:

F(h,7):= (M —60rL)h — 7Lu" —f(h,T). (5.127)

=:g(h,T)

Proposition 5.36. 11,0F(0,0) is symmetric positive definite, in particular it is non-singular. /A

Proof. Firstly, let us note that V,g(0,0) = My, so that we need only investigate the structure of
the set I1,0£(0,0). Secondly, recall that I1,0f(0,0) is the convex hull of IT1,05f(0,0), the projec-
tion onto the left square part of the Bouligand subdifferential dp f(0,0), see Definition Since
convex combinations of symmetric positive definite matrices are again symmetric positive definite,
it is sufficient to show the claim for each H := I, H, where H € d5f(0,0).

To obtain an element H € d5f(0,0), let ((hn,7n))nen be an arbitrary sequence in Dp = Dy, the

set of differentiability points of F or f — which are the same set — such that (h,,7,) — (0,0) and
YV (hn,Tn) — H for some H € RV*(V+1)  Since we are only interested in the limit, we may assume
that (hy,7,) € V for all n € N, where V is the neighbourhood from Lemma Corollary
assures us that we can regard all oy for ¢ € {1,...,N},j € K(i) as locally constant around
(hn, ™), with the values attained lying in {0,1}. It is therefore easy to compute the Jacobian
H™ := V},f(hpn, ™) of the function f at (hy,7,) as it is affine on a neighbourhood of this point:
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ZjGK(i) a%czj(Tn) for k=1
= —a®cip() for k € K(i) (5.128)

0 else,

for oy € {0,1} and of; = o, for all i € {1,...,N},j € K(i). Considering that o; € {0,1} and
cij(tn) = ¢ij(0) = m;; > 0 foreachi € {1,...,N},j € K(i) asn — oo, convergence of the sequence
(H")nen requires that each sequence (aj})nen eventually become constant: o) = a;j € {0,1} for
n € N large enough. It follows that H" — H with

ZjEK(i) ozijmij for k=1
hir = § —aqipmig for k € K (i) (5.129)

0 else.

Hence, each G € II,0pF(0,0) is of the form Mj; — H for symmetric matrices H of the form
(5.129). Define P := My — Mc — H, where M¢ is the consistent (non-lumped) mass matrix, so
that My — H = Mc + P. More explicitly,

ZjEK(i)(l —ay;)mg;  for k=i
pir =\ Lk = Lmix for k € K (i) (5.130)

0 else,

which constitutes a symmetric matrix with zero row sums, non-negative diagonal elements and non-
positive off-diagonal elements. Then by Gershgorin’s theorem, P is positive semidefinite, rendering
G = My — H = Mg + P positive definite. O

Theorem 5.37. There exists some § > 0 such that for all T € (0,0) there exists a unique h(T)
with F(h(r),7) = 0. A

Proof. According to Corollary our function F is locally Lipschitz continuous on RY x R and
in particular Lipschitz continuous on a neighbourhood of the point (0,0) at which F(0,0) = 0
holds (see (5.73)). Proposition ensures that I1,0F(0,0) is non-singular, because all matrices
in this set are symmetric positive definite. Now from the implicit function theorem (Theorem
it follows that there exist neighbourhoods of U of h = 0 and V' of 7 = 0 such that for all 7 € V
there exists a unique h(7) such that F'(h(7),7) =0 for 7 € V. The function V' > 7 — h(7) is even
Lipschitz continuous. U

5.4.3.5 Non-Singularity Away from the Point (h,7) = (0,0)

So far, the analysis has been relying heavily on the fact that the a;; become locally constant at points
of differentiability for small enough (h, 7), which essentially turns the nonlinear function f into a lin-
ear one. The price for this is that the above existence and uniqueness result possibly holds only for
a very small time-step bound § > 0. In fact, the argument that a;; = 1 locally around (h, 7) = (0,0)
in the case 0 ¢ {Q;, Q;,Q;,Q;} only works assuming that |P;"| < |Q], |PJ_] < |Qj_|, 1P| <1Q; |
and \P]ﬂ < |Q;r|, which can be guaranteed only by assuming ||(h, 7)|| to be small enough. Obvi-
ously, the moduli of the quantities @ can be very small. Such a tiny neighbourhood of (h,7) = (0,0)
is then likely to be departed from by solutions to F'(h(7),T) at reasonable time-step choices for .
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Therefore, a result guaranteeing regularity of Vj(F(h,)) at arbitrary points (h,7) € RY x Ry
would be desirable.

Since the implicit function theorem for Lipschitz functions (Theorem requires the regularity
of convex combinations of limits of Jacobians, it seems advisable and practical to seek not only
regularity of such Jacobians, but some notion of regularity that is preserved under convex com-
binations. Such classes are, for example, the class of strictly or irreducibly diagonally dominant
matrices (by rows or columns) with positive diagonal (see Lemma5.38 below) or the class of positive
definite matrices. To obtain such Jacobians, unfortunately, we will have to set § = 0 (explicit Euler
stepping) because the additional terms 7y;; in the definition of ¢;; in , which are positive
for i # j and negative for ¢ = j, may destroy the favourable symmetric positive definite or diagonal
dominance properties of the regarded matrices.

5.4.3.5.1 Some Facts about Matrix Classes of Interest. This paragraph is a collection of
simple lemmata used in the next paragraph.

Lemma 5.38 (Positive combinations of diagonally dominant matrices). Let A, B € R™"™ be
diagonally dominant (by rows or columns) with non-negative diagonal entries and C' := A + uB
for some A\, > 0. Then the following assertions hold:

(i) C is diagonally dominant.
(ii) If A or B is strictly diagonally dominant, so is C.

(i1i) If A and B have positive diagonals, A has non-negative and B has non-positive off-diagonal,
and in each row (column) there is some cancellation, i.e. for i =1,...,n there exists j # i
such that a;; > 0 and bj; <0, then C is strictly diagonally dominant.

(i) If A,B >0 and A or B is irreducibly diagonally dominant, so is C. A
Proof. We may restrict to diagonal dominance by rows; then we easily compute for ¢ = 1,...,n:
n n n
Aag; + ubii — Z|)\aij + ubij\ > AN ay; — Z|aij| + u bii — Z|bw’ > 0, (5.131)
j=1 j=1 j=1
i J#i J#i

and this inequality is strict for rows ¢ such that the corresponding inequality for A or B is strict
for row ¢. Let now A have non-negative and B have non-positive off-diagonal and let there be
cancellation in each row. Note that [Aa;; + pbij| < [Aasj| + |ubsj| for j # i and equality holds if and
only if 0 € {aij,bij}. Setting IC; := {j S {1, .. ,n} tag; > 0 and bij < O}, L;:= {1, .. ,n}\ICZU{Z}
and

A; = Z (‘)\ai]" + |Mbij’ — |)\a¢j + /Lbij|) > 0, (5.132)
JEK;
we see that
Aai; + pby; — Z]Aaij + Mbij’ = Aaj; + pbi; — Z (])\aij\ + ‘,U,bij‘) +A; >0 (5.133)
J#i J#i
>0
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in each row i because of cancellation. For the last assertion, let w.l.o.g. A be irreducibly diagonally
dominant. Then ¢;; > 0 for each pair (i, j) with a;; > 0, hence C' is irreducible. O

Lemma 5.39. Let A, B € R™" be such that A > 0 is diagonally dominant by columns. For
1=1,...,n set

AAA) = Qi — Zaj,- 2 0 (5134)
J#i
Si(B) = bji. (5.135)
j=1
If A+ B >0 and

then A+ B is diagonally dominant by columns. In particular, this holds if B has vanishing column
sums and non-negative diagonal elements. A

Proof. Fori=1,...,n we see that
aii + bis — > _(aji + bji) = Ai(A) + 2bi; — i(B) > 0. (5.137)

J#i

O

Proposition 5.40. Let A € R™ ™ be positive definite, Ay > 0 the minimal eigenvalue of its
symmetric part and E € R™*™ a perturbation. Then A+ E is positive definite if ||[E|ly, < Ai. A

Proof. For a matrix M € R™" denote by Msym = (M + MT)/2 its symmetric part and by
Mew = (M — MT) /2 its skew-symmetric part. We need to show that (A + E)sym = Asym + Esym
is symmetric positive definite. By our premise we have

E+ ET

<|IE|l, < A1 (5.138)
2

max {|u] : p € o(Bgym)} = | Byl = H

If 11 denotes the minimal eigenvalue of Fy.,, we therefore obtain 7 > —A;. For the minimal
eigenvalue of Agym + Egym we can now infer using Rayleigh quotients:

min{ : A € 0(Asym + Fsym)} = min :cT(Asym + Esym)T

> min xTAsymx + min xTEsymac =\ +pu1 > 0.
llzll;=1 zll,=1
O

Lemma 5.41. The mass matrix Mc is strictly diagonally dominant for d = 1, weakly diagonally
dominant for d = 2 and not diagonally dominant for d = 3. A

84



Proof. For d € {1,2,3}, let T = conv{ey,...,eq} be the standard simplex. It is known that
|T%| = 1/d! and elementary calculus shows

! 11,
/ 22 d\ = / g de = - = Z|TY| (5.140)
71 0 3 3
1 1—x 1 1 .
/ 22 d)\? = / / 2 dy de = — = ~|T? (5.141)
72 0 0 12 6

) 5 1 11—z l-z—y 5 1 1 . s
A\’ = dz dy dex = — = —|T 5.142
/Ts ! /0 /0 /0 o dedy dr =65 = 15T (5.142)

and
! 11,
/x(l—x) d)\lz/ (1 —z)de =~ = —-|T" (5.143)
T 0 6 6
1 11—z 1 1 .
d\? = dy do = — = —|T? 144
Loavav= [ [ ayayae= 5 = 5 (5144)
/ x dAS—/l/lx/Myx dz dy do = — — 2|79 (5.145)
P A Ay A e R T T L '

By affine transformations, the first and last term of each line are equal also for arbitrary d-simplices
T¢ = conv{p1,...,pg+1}y C R if x and 1 —z (d = 1) or = and y (d € {2,3}) are replaced by ¢,
and ¢y, respectively, for k # [, k,l € {1,...,d+ 1}, where g, is the linear standard basis function
on T% associated with node py.

Let now p be a node of 7 with basis function . The assertion follows from the fact that, per
element 1" € T containing p, the term de ©? dx contributes to the diagonal of M¢ only once but
terms of the form [, ¢t dz (¢ being the basis function of another node of T') contribute d times
to the off-diagonal entries of the row of My associated with p. O

5.4.3.5.2 Investigation of Generalised Jacobians Away from (h,7) = (0,0). The goal of
this paragraph is to find out whether non-singularity of II,0F (h, T) can be guaranteed at arbitrary
(h,T) € RY xRs. The computation and analysis of Jacobians at points in Dp = D? is complicated
now by multiple issues:

If convergence 7, — 0 does not hold, then ¢;;(7,) # m;; unless § = 0.

The terms «;; can no longer be argued to be constant around differentiability points (h, ) €
Dr NRY x Ryg. Therefore they have to be differentiated, too.

From differentiability of the components f, = Zje k(i) %ij fij at some point (h,7) € Dp,
differentiability of the individual summands does not follow.

From differentiability of the product «;f;; at some point, differentiability of the first factor
(at least in some direction) is not immediate either.

The objective is thus to find arguments that allow for sum and product rules in order to break
down the problem of determining the Jacobians. The following proposition is a crucial ingredient:
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Proposition 5.42 (Invariance of generalised Jacobian under removal of null sets, |[FP87]). Let
r >0, By(x) C R"™ the open r-ball around x € R™, f : B.(x) — R™ locally Lipschitz continuous
and S C B,(x) a set of Lebesgue measure zero. Then with the redefined Bouligand subdifferential

I%f(x) :={G €R™™ : 3 (zp)nen C Dy \ S with x,, — = and VF(z,) — G} (5.146)
it still holds that 0° f(x) := conv(93 f(x)) = Of (). A

A null set we certainly want to remove from D+ is the set of points such that one of the terms
ijfij,i € {1,...,N},j € K(i) is not differentiable. This way, differentiability of the summands
defining the components of f is guaranteed and a sum rule for differentiation can be applied. Hence,
set

Nij = {(h,7) € RN : a;; f;; is not differentiable at (h,7)} (5.147)
and
M= ] Ny (5.148)
e{1,...,N}
JEK(D)

The sets Nj; (and thus N;) are null sets according to Rademacher’s theorem since the «y; fi; are
locally Lipschitz continuous on RY*!. The second null set should be the set

Noi= ) HjcRY xRy, (5.149)
i€{1,....N}
JEK ()
where
Hjy = {(h,7) € RN xRsq : fij(h,7) = 0}. (5.150)

Lemma 5.43. Foric {l,...,N}, j € K(i) the set H?j C RN xRy is a set of Lebesque measure
Z€ero. A

Proof. For arbitrary fixed 7 € Rs, the set HZ-Oj’T :={h € RV : f(h,7) = 0} is an affine hyperplane
of RN x {7}, i.e. an (N — 1)-dimensional affine subspace:

fij(h,’r) =0 <— Cz'j(T)(hi — hj) = —gij(’i‘) < hz' — hj = —gij(T)/Cij(T). (5.151)
~—~—

>0

It follows that H?j’T is a set of vanishing N-dimensional Lebesgue measure in RY x {7} for each
7 > 0 and from Fubini’s theorem we obtain the assertion by integrating the characteristic function
of Hin’T as follows:

ANTLHD) :/ Xuo, d\NFL :/ / Xpo.r dhdr = 0. (5.152)
RN xR 0 RN x{r} W
O

Discarding the set Ny offers the advantage that the existence of an explicit formula for the deriva-
tives of a;; along coordinate directions ey, ...,en (for fixed 79) and a product rule can be shown:

Lemma 5.44. Let N1 and No be the null sets defined in (5.148|) and (5.149)), respectively.
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(i) For any (ho,70) € RN x Rsg\ No, i,m € {1,...,N}, j € K(i), the function a;; has well-
defined one-sided directional derivatives at (hg, 7o) in both coordinate directions e, and —ey,.

(ii) If in addition (hg, 7o) € RN x Rsg\ (N1 UN3), then these two one-sided derivatives agree and
the following product rule holds:

0

—— (i fij) (ho, 70) = (8%(%770)) fij(ho, m0) + cij(ho, 7o)

oh oh, (ho,70), (5.153)

0
O
where the partial derivatives of a;; can be computed explicitly:

e Case 1: fi;j(hg, 1) > 0.
(a) Ifaij(ho,T()) = Q;_/P;—(ho,ﬂ)), then

Oaj —-QF opr*
h t t_(h 154
i 070 & {0 i 7 0 1)

with
> ' cik(0) form =i
P+ keK (i)
aiz(hoﬁo) =  Jlho.mo)>0 (5.155)
Ohm, —cim(70) for fim(ho,70) >0
0 else.

(b) [faij(ho,T()) = QJ'_/Pj_(h(),T[)), then

60é'j _Q‘_ oP;~
Y (hgy, 1) € 40, J I (ho, 5.156
ahm( 0 TO) { ]D]'_(h‘ov'rO)2 ahm( 0 TO) ( )
with
>, ckl(m) form=j
oP- keK(j)
7‘7(110’ 7-0) — fjk(h0170)<0 (5157)
ahm —ij(To) fOT fjm(ho,To) <0
0 else.
(c) If QF /P (ho,m0), Q5 /P; (ho,70) > 1, then
0
ahmaij(ho,m) =0 form=1,...,N. (5.158)

e Case 2: fij(ho,To) < 0.
(a) If aij(ho, o) = Q; /P (ho, 7o), then

60(@-]» —Qi 8P-7
? 2 ‘1
O (ho, 10) € {0’ P (ho, 70)2 O (ho,To)} (5.159)
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with
> cik(m0) form =1

_ keK (i)
oP; (ho, 7o) = ik (ho,70)<0
ahm —Cim(T()) fO’f' fim(hO, 7'0) <0
0 else.

(b) If aij(h0770) = Qj_/PjJr(hOaTO)7 then

g —0ot apt
%(hoﬁo) € {0 <, 2 (hojTo)}

8hm ’ ]Dj—i_(ho,ﬁ))2 6hm
with
>, ckl(m) form=j
keK(j
or; ) im0
BT(hO’TO) =47
m —Cjm(70) for fim(ho,m9) >0
0 else.
(c) If Qi /P (ho, 1), QF /P; (ho,m0) > 1, then
0
8Taij(h0,7'0):0 form=1,...,N.

Proof. W.lo.g. we can assume case 1: f;;(ho,70) > 0, so that a;; = min(R;", R;) with

+ N
R’ = min @i 1 and R, = min Q—J_, 1
Z Pi+ J Pj

on a neighbourhood of (hg, 7).

(5.160)

(5.161)

(5.162)

(5.163)

(5.164)

1) If QF /Pt (ho,m0), Q; /P; (ho,70) > 1, we have ay;(h,79) = 1 on a neighbourhood of hy and
7 7 J J J

(5.158]) follows.
(2) If 0 € {Q], @; }, then a;;(-,70) = 0 and (5.154) or (5.156) holds trivially.

3) If R ho,0) < R (ho,T0), then «;;(-, 79 :Q—»"_/Pﬂ_(h,ﬂ)) with
7 ] J 7 7

P (h, ) = Z cik(70)(hi — hi) + gir(70)
keK (i)
fir(hosm0)>0

on a neighbourhood of hg, so that a;;(-,79) is differentiable on this neighbourhood and

are given by (5.154)) and ([5.155|).
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(4) The case R} (ho,0) < R} (ho, 7o) is treated analogously.

+ Q. _
(5)jn()<43j(hm7b)::gg(hm7b)zzﬁg(hm7b)::ﬁg(ho,m),deﬁne

7

JT(h):={j € K(i): fij(h,m0) > 0} (5.167)
T (k) = {k € K(j) : fu(h, o) < 0} (5.168)
and let V C R¥ be a neighbourhood of hg such that J*(h) = J*(hg) for all h € V. Furthermore,

define -
HOH = {h e RN : Q) Py (h,m0) — Q5 B (hym0) > 0}- (5.169)

Then clearly hg € HONV and since the map QZTFP]-_(-, T)— Q]-_P;r(-, 7) is affine on V' we have that
H° NV is the intersection of V with a hyperplane and H* NV are the intersections of V and the
adjoining half-spaces.

Two subcases need to be considered:
(a) R (ho,m0) = R (ho,70) < 1. Then (possibly after shrinking V') we have Rf = Qf /Pt and
R; =Q;/P; onV and

aij(-m0) = QF /Pt (1) on (HOUH)NV (5.170)
aij(-,70) = Q5 /P (v70) on (HOUH )NV, (5.171)

so that %aij(ho, 70) can be computed by (5.154) — (5.155) if ho £ de,, € (HOUHT)NV and
by (5.156) — (5.157)) if ho £ de,, € (HOU H™) NV for small § > 0.
(b) R} (ho,70) = R} (ho,9) = 1. Then hg € HYNH! N HJQ NV, where we define

HO+ = {h eRV:Qf > Pj(h,ro)} (5.172)

(2

0)+7_ .
H; :

{h eRV:Q; > Pj_(h,m)} . (5.173)

Now if ho + de, € (H,” UH) N (H; UH?) NV for small § > 0, we have -Zrai;(-,m0) = 0,

otherwise we can argue as in case (a).
It remains to show that, if (hg, 7o) € RY x Rsq \ (N1 U Ny), then

0 0

ﬁaij(ho, T()) = %aij(ho, 7'0). (5.174)
The one-sided derivatives can only differ in case (5). In case (5)(a), (5.174)) holds by construction
of HY if hg + dem, ho — dem € V N HO for small § > 0. Otherwise we have hg £ de,,, € VN HT or
ho £ de,, € VN HT and hence

) —QF op*
ii h , — 2 t (h , 5.175
onz, ialhos ) P (o, 70)2 an,, To:70) (5.175)
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or

0 —QF opP'
s (houmo) = i L (o, 5.176
8haa”( 0,70) P (ho,70)? 8hm( 0:70) (5.176)

and the product rule for %azj fij(ho, o) in conjunction with fi;(ho,70) # 0 and differentiability
of fi; gives

B 0 0  —Qf opf
%au(ho,m) = %aw(ho,m) = %aw(ho,m) = Pi+(h0770)2 o (ho, T0)- (5.177)

In case (5)(b) we can argue the same way to find that the left- and right-handed directional
derivatives in coordinate directions must agree, but now %aij(ho, 7o) = 0 is possible. O

Lemma justifies using the following product rule at points (h,7) € RY x Rsq \ (N7 U Ny):

a}infi<h,7')_ Z aij(h,T)a}infij(h,T)—k Z (a}?aij<h,7)> fij(h,T) (5.178)

FEK(I) FEK(I) m

and thus the decomposition Vj f(h,7) = N + O with

N ik (h, T)e () for m =1 0
N, :{Z%m@k( Jeir(r)  fo am::EI(ml%ﬂmﬂ>mmﬁy(awm

— i (hy T) i (T) for m # i’ oK) m
Remark 5.45. Recall that ¢;;(7) = m;; + 07y;; = m;; for § = 0 independently of 7. A

Remark 5.46. The matrix O can be regarded as a perturbation of positive definiteness, since it is
still true (for § = 0) that My — N is positive definite. The matrix O cannot in general be expected
to be symmetric, but My — N — O might still be positive definite, which one could attempt to
show by the positive definiteness perturbation result of Proposition [5.40 Bounds for the minimal
eigenvalues of the mass matrix M¢c can be computed as shown in [Fri72]. A

Assumption 5.47. Let us now focus on the case 8 = 0 and d = 2. A

Then we know from Lemma that M¢ is weakly diagonally dominant. We hope to use
this property in order to show some non-singularity implying diagonal dominance property of
the generalised Jacobian of V,F(h,7) at (h,7) € RY x Ryg \ (N1 U No) that is preserved as
(h,7) = (ho, 7o) € RN xR<g. Let us decompose O = O'+0? at a point (h, 7) € RY xR\ (N1UN>)
with:

0 K (m Lam- fm; form =i
oL = { ) O = ZfK( ) (o) - (5.180)
XbeKu»hn}(EE;aw>fﬁ (5E;QMO‘ﬁml{meKun for m # 1,
where
1 if the statement is true
]]-{statement} = (5181)
0 else.

Lemma 5.48. Let Assumption hold. Then VpF(h,T) is weakly diagonally dominant by
columns at (h,7) € RN x Ry \ (N1 U Ny). A
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Proof. We will make use of Lemma with A := Mg and B := —O! to first show that Mo —O" is
weakly diagonally dominant and then prove the same for My — N — O and finally for V,F(h,7) =
My, —-N -0.

(1) A> 0 and A is weakly diagonally dominant since we assume d = 2.

(2) B has a vanishing diagonal by definition. Now we show that B has zero column sums. Note
that

J € K(Z) = 1€ K(]) and Qi = Qjj, fij = —fji. (5.182)

With this it follows immediately from the definition that ©? has zero column sums, so that it
suffices to show that O has zero column sums. But it follows, again from (5.182)), that

;jg{:ﬁ) ( ~j> fii = 0. (5.183)

(3) Let us now prove that A+ B > 0. aj; + b = a;; = my; > 0, so it remains to consider i # m.
We omit the argument (h, 7). For m € K (i) we have

o o *
Qi + Dim = Mimn — > _ <8h%) fii = Mim — Y [<8h ‘j) fij] - (5.184)

m

JeK(@)\{m} JEK()\{m}
According to Lemma [5.44] we may assume that
— + _
Qf @ ¢ @
Q5 € T = Dt p— (5185)
PEERE,
for each summand of the summation sign in the previous equation; otherwise %alj = 0 for
m=1,...,N. We can then distinguish between four cases:
e Case 1: f;; >0, _ e and m # i. Then (=2—a;; f—ﬁm 1 fii >0
- Jig (Y P : Oy, 00 ) Ji5 T (py2 M {fim>o}Jij = Y-
Q; ) Q;

e Case 2: fij > 0, Q5 = é and m 7& 7] Then (%O&w’) fij = ﬁmjm]‘{f]’m<o}fiﬁ < 0.

o Case 3: f;; <0, a5 = gi and m # i. Then (8%@@'0 fij = (E E mzm]l{fmw}fzJ > 0.

Q+ QF
o Case 4: f;; <0, oyj = P+ and m # j. Then ( 5 azj> fij = (Pﬁ)2 mjmﬂ{fjm>0}fij <0.
J J

We see that we can ignore terms in ((5.184)) associated to the cases 2 and 4 (due to their sign). It
now follows for fip,(h,7) > 0 and fim,(h,7) < 0 from

QF QF
Py Yo £ < S Mim < M, (5.186)
: JeK( N\ {m} ¢
Q+/P+
Q; Qi
sz‘m Z fij < B Mim < M, (5.187)
! JEK (i)\{m} k
ij=Q; /P
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respectively, that @i, + by > 0 for m € K(i). Now we check the case m # i, m ¢ K(i). Then
Gim = Mym = 0 and %aij is non-vanishing only if

+ —
a;j € {C;Jr,g} and m € K(j). (5.188)
J

Since m ¢ K (i), it holds m # j for all 7 € K(i) and therefore

bim = — Z (820@7) fij > 0 (5.189)

JEK () "

by cases 2 and 4 above. This concludes the proof that A 4+ B > 0.

(4) Lemma yields that A + B = Mo — O! is weakly diagonally dominant. To demonstrate
that Mj, — N — O! is diagonally dominant, we note that

My, —N—-0'=Ms—-0O'"+P with P=M,—Mc—N. (5.190)

P is a matrix with zero column sums, non-negative diagonal and non-positive off-diagonal and thus
diagonally dominant. Lemma m gives that Mo — O 4 P is (weakly) diagonally dominant by
columns as the sum of two diagonally dominant matrices with non-negative diagonals.

(5) In this final step, we show that M, — N — O = M — N — O! — O? is diagonally dominant by
repeating the same argument used in the previous step, with P replaced by —O2. It was already
shown above that O? has zero column sums. To obtain that (2 has non-positive diagonal and
non-negative off-diagonal elements, we need only ensure that

(82 ajm> fim >0 for je K(m). (5.191)

Once again, four cases must be considered:

—Qt

QFf
e Case 1: fjm, > 0 and ajp, = BF Then (ah Ajm | fjm = ﬁ(—mjm)fjm > 0.
J

Prn

(ZkeK mmk) fim = 0.

fmk<0

Q -Q;
e Case 3: fj, <0 and ajm, = P Then ( o Cm fim = P 5 (=mjm) fjm > 0.
J

)
e Case 2: fj;, > 0 and ajn, = 9n . Then (8h a]m) fim =
)

+
e Case 4: fj;, <0 and ajm, = ?D—T Then ( Th ajm> fim = (P+ (ZkzeK mmk> fim > 0.
" fm >0

Hence we have that —O? is diagonally dominant by columns, being a matrix with zero column
sums, non-negative diagonal and non-positive off-diagonal. The proof is thus complete. O
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Unfortunately, the above proof gives only weak diagonal dominance and thus no criterion for non-
singularity. A rather crude but easy fix to this would be to define more strictly the cut-off in the
functions «;;. Namely, instead of § =1 let 8 € [0,1) and redefine

oo fn(RE R for fiyz 00 L in (%.8) for Py #0
J mm(Rz_, R;r) for fl] <0 for P]:; =0

(5.192)

for k € {i,j} and * € {+,—}. Then all the properties shown thus far for a;; and a;;f;; involv-
ing piecewise smoothness, local Lipschitz continuity and formulae for directional derivatives hold
analogously, but the occurrence of cancellation in the sum Mg — O + P yields strict diagonal
dominance:

Lemma 5.49. Let Assumption hold. With 8 € [0,1) and the redefined functions o from
(5.192) it holds that G := V,F(h,T) is strictly diagonally dominant by columns for (h,7) € RN x
R<o \ (N1 U Nag). Specifically, for each column m =1,..., N of this matrixz there exists a constant
em(B) > 0 independent of (h,T) such that

|G| = > _|gim| > em > 0. (5.193)
A

Proof. We can copy the proof of Lemma verbatim up to equations ([5.186)) and ([5.187]), which
can be strengthened due to the redefinition of the ay;:

Qr QF
ﬁmim > fiy < Piimzm < Bmim, (5.194)
: JEK @\ m) i
ay=Q} /P’
(gi)Zmim S < %'_mim < B, (5.195)
i JEK(i)\{m} ‘
aij=Q; /P,
so that
@i + bim > (1 = B)mjy, for m e K(3). (5.196)

The matrix A + B = Mg — O' > 0 is still non-negative with positive diagonal elements and
both matrices A + B and —0? are still weakly diagonally dominant by columns with non-negative
diagonal. What is new is that A+ B+ P = My, — N — O! with P := M}, — Mo — N is now strictly
diagonally dominant by columns. Since

Dim = {ZjeK(i)(l - aij)mij form=1 (5.197)

(Cim — 1)Mim, for m # 1,

we have that P has positive diagonal and non-positive off-diagonal elements. When adding Z := A+
B and P, cancellation occurs due to the fact that z;, > (1 — 8)mj, > 0 and pi, < (8—1)mim <0

for m € K(i). Specifically, we set for m = 1,..., N the m-th “column dominance”
Ay = Z ([zim| + [Pim| — |2im + Piml) (5.198)
1€K(m)
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which allows the estimate and the (h,7) independent definition

Ap >2(1=8) > Mim = cm. (5.199)
1€K(m)

As in the proof Lemma [5.38] (iii) we see that

Zmm + Pmm — O _|Zim + Pim| = Apy > ¢ > 0 (5.200)
and this carries over to G := V,F(h,7) = Z + P — O%. O

Proposition 5.50. Under the condition 0 = 0, d = 2 and with the functions o;; redefined as
in (5.192)) with some 5 € [0,1), the generalised Jacobian I1,0F (h,T) is non-singular for arbitrary
(h,7) € RN x Ry. A

Proof. Each element of I1;,0F(h,T) can be obtained as the limit of a sequence V,F(hy,7,) in
RN x Rog \ (N1 U Na) with (hy, ) — (h,7) as n — oco. All of these matrices were proven in
Lemma to be strictly diagonally dominant by columns with a “column dominance” at least
cm > 0 for each row m =1,..., N. The same must hold in the limit. ]

5.4.3.5.3 Building In the Homogeneous Dirichlet Boundary Conditions. So far in Sec-
tion[5.4] we have been ignoring the boundary conditions by basing our entire analysis on a non-linear
blend of the high order and low order problems in . Thereby we have implicitly been solving
the problem with Neumann rather than Dirichlet boundary conditions. Let us now show that the
results obtained so far also hold when attention is paid to the boundary conditions.

Possibly after renumbering the nodes, we can assume that Z := {1,..., M} C {1,..., N} for some
M < N is the set of interior node indices. Set

D:={1,...,N}\T, (5.201)

the set of (Dirichlet) boundary nodes. A straightforward way to ensure that u"*! vanishes at
boundary nodes is to only solve for the interior node values u%“ and to fix u%“ = 0 a priori. Since
we then solve for the difference h° := (u"*! — u™)z, this amounts to finding a unique h° = h°(7) €

RM for 7 > 0 such that

F(h°,7) = (M, — 0rL)°h° — rL°u% — f(h°,7) =0, (5.202)

where, as in the previous chapter, A° := A7z for a matrix A € RV*N and

f=mofou (5.203)

with
RN 5 RM n(z) =27 (5.204)
i RM x Rog — RY x Rug, o(h°,7) = ([}6] ,T> : (5.205)
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Slightly abusing notation, we set oy;(h®,7) = (ayj o ¢)(h°,7) and fi;(h°,7) = (fij o ¢)(h°,T)
and see immediately that «;;f;; € PC>®(RM x R+) and is locally Lipschitz continuous for each
i € Z,j € K(i). Furthermore, for i,,m € Z and j € K(i) (j € D is allowed!), the derivatives
%aij(hg, 7p) and % fij(hg, o) can still be computed according to the rules of Lemma as

long as (hg, 70) € RM x R5q \ (N1 U Np), where the null sets N; and Ny are now defined by

Ny = U Nij with Ny = {(h°,t) € RM T o fi; is not differentiable at (h°,7)}, (5.206)
7&K
Ny:= | J Hj with Hjy={(h°,7) € RM xR : fi;(h°,7) = 0}. (5.207)
0
Then at (h§, 70) € RM x Ro¢ \ (V1 U Ny) we can decompose analogously as before
Vhe f(h°,7) = A+ B=A+B"+ B (5.208)

with A, B, B!, B2 € RM*M defined by

Aim =

{ZkeK(i) ag(h®, T)eir(r)  for m =1 (5.209)

—im (h®, T)im () for m # i

Bim =Y (620%.@0’70 fii(h°,7) (5.210)

JEK (i) m

and

0 CK(m ioam- fmi form=1
Bilm ‘:{ Z]eK( )(8hm J) J (5.211)

B, =
F) ) im .
ZjEK(i)\{m} (3h$n aij) fij afgm aim) fzmﬂ{mGK(z)} for m # 4.

Again, let Assumption hold, i.e. d =2 and 6 = 0. We now need to show four things to ensure

diagonal dominance by columns of VE(h°, 1) = M — Vjo f(h°,7):
(i) Mg —B'>0
(i) Ty (—BY) < A (MR) for m =1,..., M, with the notation of Lemmam
(iii) —B? is diagonally dominant by columns with non-negative diagonal elements.
(iv) P := M} — Mg — A is diagonally dominant by columns with non-negative diagonal elements.
Then (i) and (ii) in conjunction with Lemma imply that Mg — B! is diagonally dominant

by columns and, together with (iii) and (iv), that M} — Ve f(h°,7) is diagonally dominant by
columns.

Ad (i). This was already proven in Lemma Note that (Mg)im = (Mc)im and (BYim = (OYim
for i,m € Z.
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Ad (ii). Since M¢ > 0 has weakly diagonally dominant columns, we have for m =1,..., M

Ap(M2)= > mjm >0, (5.212)
jeK(m)ND

On the other hand, by the same symmetry argument used in the proof of Lemma to show that

—O! has zero column sums, we obtain for m = 1,..., M that
0 R .
Z Z Ohe Oélj(h’ 77—) fl](h‘ 77_>' (5213)
1€1 jEK (3) m

We omit the argument (h°,7) and estimate

o _
1
<=3 3 [(giges) i
1€ jeK(1)ND
Q; -QF
= Z Z <( ) flj Mim + Z Z 7(P ]) fl] Mjim
iel ]eK(z ﬂ'D iel jEK )ﬂD J
Q5= Q /P_ Q= Q+/P+
fjm<0 fjm>0
= 2 mmpy 2 fat XL mmpiy 2, i
JEK (m)ND J €T JEK(m)ND J €T
fim<0 JEK@) Fim>0 JGKJr(l) .
C%Z'j:Qv /Pj aij:Q]' /Pj
Q; Q5 .
< DL mmpEd D mmpE S D0 mm = An(ME),
jEK(m)ﬂD J JjEK(m)ND J JjEK(m)ND
fjm<0 f]m>0

where we have used the calculations of the first Cases 1 — 4 in the proof of Lemma [5.48| for the first
equality sign.

Ad (iii). Using what we have proven for —©0? in Lemma we see that Z := —B2 is diagonally
dominant by columns with

|| — Z|ij‘| = - Z (9]21 > 0. (5.215)

J#i JjEK(i)NED

Ad (iv). The elements of P for i,m € {1,..., M} are given by

(5.216)

D, 2 kek (m) Mmk(l — ame) 20 form =i
im = (im — V)M <0 for m # 1,

so that form=1,..., M

> Pim= > (L~ k)i > 0. (5.217)

i€Z k€K (m)ND
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Again, we are only able to show weak diagonal dominance and an argument to either show strict
dominance in every column or irreducibility and strictness in one column may be possible but would
have to be attained by a more careful analysis.

If the a;; are redefined to be cut off at values 8 € [0,1) instead of 5 = 1 as , then the addition
of Mg — B! and P introduces cancellation such that VF (h°,7) is strictly diagonally dominant by
columns with uniform positive strictness in RM x R-q \ (N7 U Na) and we obtain

Proposition 5.51. Under the condition 8 = 0, d = 2 and with the functions a;; redefined as in
(5.192) with some 8 € [0,1), the generalized Jacobian I, 0F (h°,T) is non-singular for arbitrary
(h°,7) € RM x Ryg. A
5.4.4 Semi-smooth Newton Method

We now take some material from [Ulb02, Chapter 2] to show that our F' := F(-,7) defined in
(5.72) is semi-smooth for all 7 > 0. This property is needed to prove convergence of the following
algorithm:

Algorithm 5.52 (Semi-smooth Newton Method). Let f : R™ — R"™ be locally Lipschitz, xo € R™.
Set k := 0.

(1) Unless a stopping criterion is met, solve
G(zy)dy = —f(z) (5.218)
for di, where G(zy) € Of (xx).

(2) Set xpy1 := 2k +di and k =k + 1 and go to step (1). A

Definition 5.53 (Semi-smoothness, higher order semi-smoothness). Let V' C R™ be open, f :
V->R"and x € V.

(i) f is called semi-smooth at x if it is locally Lipschitz around z and one of the three equivalent
conditions holds:

(a) The limit

lim  Gd (5.219)
Gedf(z+td)
d—d, t10

exists for all all d € R™.
(b) All one-sided directional derivatives f'(z;d) (d € R™) at x exist and

sup ||f(x+d)— f(z) — Gd|| = o(||d]]) asd—0. (5.220)
Gedf(a+d)

(c) All one-sided directional derivatives f/(z;d) (d € R™) at x exist and

sup  ||Gd — f'(z;d)|| = o(||d]]) as d— 0. (5.221)
Gedf(z+d)

(ii) f is called a-order semi-smooth at z for a € (0,1] if it is locally Lipschitz around z, f'(x;-)
exists and one of the two equivalent conditions holds:
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sup  ||f(z+d) — flz) —Gd| = O(|d|'T™) asd— 0. (5.222)
Gedf(z+d)
(b)
sup  ||Gd — f/(z:d)|| = O(|d||'T*) asd — 0. (5.223)
Gedf(z+d)
A

Remark 5.54. The equivalences of the above definition are the subject of Propositions 2.7 and
2.14 of [Ulb02]. A

Theorem 5.55 (Local convergence of semi-smooth Newton method). Let f: R™ — R"™ be locally
Lipschitz continuous and semi-smooth at *, f(x*) = 0 and Of(z*) non-singular. Then there exists
e > 0 such that for all initial xo € B.(z*) the sequence (xi)ren generated by Algorithm is
well-defined, converges to z* and satisfies

lzps1 — ¥ = o(||lag — 2*||)  for k — oc. (5.224)

If in addition f is a-order semi-smooth at x* for some o € (0, 1] then the convergence rate improves:
|zps1 — 2*|| = O(|lzgk — 2*||*T*)  for k — oo. (5.225)

AN

Proof. We note, as is proven in [Hin10, Theorem 2.8.], that upper semicontinuity of df implies the

existence of C,§ > 0 such that G is invertible with |G| < C for all G € 8f(x), x € Bs(z*). The
rest of this proof is taken from [Ulb02, Propositions 2.12 and 2.18].

(1) Set e := xp — z* and let Gy € df(zx) be the choice made in Algorithm m Then Gid;, =
—f(zx) and
Grerr1 = Gr(dy, +ex) = —f(ar) + Grer, = —(f (2™ +ex) — f(2") — Grex). (5.226)

Setting £ = 0 and employing (5.220) we see that we can choose xg € Bs(z*) such that Goe; <
(2C)~leg|. Then

_ 1
lex]l < 1G5 Il Goenll < §H€0H, (5.227)
from which g-linear convergence e; — 0, k — oo follows by induction.

(2) Having proved convergence, we can use (5.226)) and ((5.220)) once again to obtain g-superlinear
convergence:
[Grertrll = o([lexl]) as [lex] — 0. (5.228)

(3) Now consider the case that f is a-order semi-smooth for some « € (0,1]. From (5.226]) and

(5.222)) follows
IGersall = Ollexl|'™) as [|ex]| — 0. (5.229)

As before, g-linear convergence follows by induction for ||z* — x|| small enough and this time we
obtain the improved rate

lewsall < 1GH | I Grersall = Olexl ). (5.230)
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O

Proposition 5.56 ([UIb02, Proposition 2.26]). Let V. C R™. If f € PCY(V,R™), then f is
semi-smooth on V. If f € PC?*(V,R™), then f is even 1-order semi-smooth on V. AN

Corollary 5.57. For any fivzed T > 0, the function F(h) := F(h,7) = (Mp, — 07L)h — f(h,T) —
TLu™ is 1-order semi-smooth on RN . In particular, if h* is such that F(h*) = 0 and OF (h*) is non-

singular, then the semi-smooth Newton method from Algorithm [5.59 converges locally at quadratic
rate. A

Proof. Combine Lemma Proposition [5.56] and Theorem [5.55) O
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6. Conclusion

In this thesis we have examined transient convection-diffusion equations with dominant convection
and homogeneous Dirichlet boundary conditions on triangulated bounded domains Q C R¢ for
d > 1 both from a theoretical and numerical analysis point of view.

On the purely theoretical side, we have shown uniform converge of regular solutions on certain
subdomains of C? domains (2 to the solution of the reduced problem as € | 0.

In the case d = 1, with the parabolic maximum principle and Proposition about the decreasing
nature of total variation of classical solutions we have seen that the oscillations observed in the V!
finite element discretisations are indeed unphysical as they lead to values exceeding the range of the
initial boundary conditions and to an increase in total variation. The criterion given by Harten’s
lemma (Proposition has allowed us to show that the physically plausible manipulation of up-
winding the convective C' part of the stiffness matrix C'+ eD makes the mass-lumped explicit Euler
scheme TVD and thus free of oscillations under merely a CFL-like condition on the time step size
7. Later we have seen that, as a linear LED scheme, it cannot be of consistency order greater than
1, which is often called Godunov’s order barrier and manifests itself in strongly smeared solutions.

For d = 2 it was then proved that, for elementwise constant divergence-free fields b, the mass-lumped
semi-discrete method can be interpreted as a finite volume scheme over the barycentric dual mesh
with a central flux approximation for the convective flux and that performing an upwinding of this
finite volume scheme amounts to the addition of a discrete diffusion/upwinding matrix Y just large
enough to cancel all non-negative off-diagonal entries of —C. We have thus elucidated somewhat
this purely algebraic step. Projecting a general b € W1 () onto the lowest order Raviart-Thomas
space R7Ty, we have argued that the method resulting from such an upwinding belongs to the class
of upwind finite element methods of Baba and Tabata.

Furthermore, we have seen that the resulting scheme is local extremum diminishing (LED) for d = 2
if 7 is a Delaunay triangulation, since in this case the diffusive part —eD has non-negative off-
diagonal elements. Unfortunately, the concept of total variation for functions from VOI(T) loses its
meaning in two dimensions, so that even characterising what “being oscillatory” means for a scheme
becomes less obvious than in 1D. Upwinding on an irregular triangular mesh still permits spurious
oscillations when the directions of advection and a gradient in the discrete solution are transverse,
which was demonstrated in Remark[4.32] However, the LED property of the semi-discrete upwinded
scheme ensures that a discrete version of the weak maximum principle is respected.
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The remainder of the work was dedicated to the non-linear variant of FCT suggested in [Kuzl10]
which aims at restoring the high order finite element scheme to the greatest extent while suppress-
ing the emergence and enhancement of oscillations. By reformulating the problem in the form
F(h(7),7) = 0 and showing that F' is piecewise smooth and thus locally Lipschitz continuous, the
application of an implicit function theorem for Lipschitz continuous functions was possible.

The required regularity of the generalised Jacobian IT,0F at points (hg, ) with F'(hg,79) = 0 at
which one wishes to extend this equation to 7 from some interval |7y, 79 + 0] was successful for
(ho,m0) = (0,0), since the nonlinear function F(-,0) becomes affine on a neighbourhood of hy = 0.
Hence we have shown that for some positive time-step bound § > 0 there exists a unique solution
h(7) to this non-linear problem for time steps 7 < 6.

The attempt undertaken for the explicit Euler method (@ = 0) to extend this result and show that
the generalised Jacobians II,0F (h,T) are non-singular for any (h,7) with 7 > 0 was complicated
by the fact that the mass matrix M¢ is strictly diagonally dominant only for d = 1. Therefore
we have only been able to show weak diagonal dominance, but no strict or irreducible diagonal
dominance. It seems that this desired result is either formulated too strongly or that, at least for
d =3 or # > 0, a different kind of non-singularity of II,0F (h,7) has to be proved, e.g. positive
definiteness.

If a h(7) satisfying F'(h(7),7) = 0 exists and II,0F (h(7),7) is non-singular, however, then the
semi-smoothness of F(-,7) implied by its piecewise smoothness guarantees locally quadratic con-
vergence of the semi-smooth Newton method.

Apart from solvability, other questions regarding the analysis of the non-linear FCT method still

need to be addressed properly, most fundamentally whether or under which time-step restrictions
it diminishes local extrema and what its rate of convergence in terms of powers of h is.
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A. Tools from the Theory of Finite El-
ements

Theorem A.1 (Trace inequality). Let Q C R? be a domain with Lipschitz boundary and p €
[1,00]. Then

1 1
10l ooy < CO N0l @y VIR gy for allv € WHP(Q).

Proof. See [BSO0§|, Theorem 1.6.6.

Corollary A.2 (Scaled L' trace inequality for simplices). Let T C R be a d-simplex and S one
of its sides. Then for v € WHL(T) it holds that

[l r2asy < Cd,or)(hzt [0l pagry + 1YV ) (A.1)

A

Proof. This follows from by transformation onto the standard simplex T, the trace inequality in
Theorem and transformation back onto T'. O

Lemma A.3 (InAterpolation error on simplices). Let T C R? be a d-simplez, T the standard d-
simplex and F : T — T, F(&) = AZ 4+ 7 an affine bijection. Let k,m € Ny and p,q € [1,00] be such
that the continuous embedding

WkJrl,p( ) o WM q( )

by inclusion exists and let I € L(W*HL2(T), W™4(T)) be a bounded linear operator with
Tlpe oy = idpe )

(an interpolation operator). Then for the interpolation operator I € L(WHk+L2(T), W™4(T)) given
by Iuo F = I(uo F) the error estimate

m—dmin{0,1 -1 k+1-m+d
”U, — I’U,‘Wm,q(T) S CJ(T) d {O’q P}hT ( )

||y, 2(T) (A.2)
holds for each u € Wk+1’p(T), and C' = C(k,m,p, Q7T7 Hfll) A

Proof. See [Dzil0, Satz 3.31].
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B. Tools from the Theory of Ordinary
Differential Equations

Theorem B.1 (Gronwall’s inequality in integral form, [Joh16, Lemma A.53]). Let T € (0, o0],
f,9 € L=((0,T),R) and A € L'((0,T),R>q). If the implict estimate

f() <g(t)+ /Ot A(s)f(s) ds for a.e. t €[0,T] (B.1)
holds, then so does explicit estimate
f) <g(t)+ /Ot exp </t A(T) d7'> A(8)g(s) ds  for a.e. t €]0,T]. (B.2)
If g is continuous and montonically increasing, then
F(1) < exp ( /O A d7> o(b). (B.3)
AN

Theorem B.2 (Gronwall’s inequality in differential form, [EvalO, Appendix B.2 j|). Let f €
C([0,T],Rxp) be absolutely continuous and g, A € L'([0,T],R>0) such that

') <A fE)+gt) forae tel0,T). (B.4)

Then . .
f(t) <exp (/0 A(s) ds> <f(0) -l-/o g(s) ds) for all t € [0,T]. (B.5)
A

Theorem B.3 (Carathéodory’s local existence and uniqueness theorem). Let tg € R, yo € R",
b,T >0, Qy := By(yo) and Qp := (to,to +T) x Q. Consider a function f : Qp — R" meeting the
following Carathéodory conditions:

(a) For each fized y € Qy the function t — f(t,y) is measurable.

(b) For each fixed t € (to,to+ T) the function y — f(t,y) is continuous.
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(¢c) There exists a function F € L*((to, to+T),R>0) such that ||f(t,y)|| < F(t) for any (t,y) € Qr.
Then the following statements hold true:

(i) There exists some a € (0,T] and an absolutely continuous function y : [to,to + a] — R
solution to the integral form of the initial value problem y'(t) = f(t,y(t)) and y(0) = yo, i.e.

y(t) = yo +/O f(s,y(s)) ds  for allt € [to,to + a. (B.6)

(ii) At each t € [to,to + a] such that the integrand is continuous at t, the strong form

y'(t) = f(t,y(t)) (B.7)
of the ordinary differential equation holds at t.

(i5i) If in addition to the above Carathédory conditions the Lipschitz condition

1f(ty1) = f(Ey)ll < G(E) [y — vzl (B.8)
holds on Qr for some G € L*((to,to+T),R>0), then the solution on [to,to+a] is unique. /\

Proof. References to proofs can be found in [Joh16, Theorem A.50]. O
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