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Abstract

The accurate simulation of incompressible flow problems, particularly those
involving non-constant viscosity, depends on the ability to account the com-
plexities of this type of problems. This study focuses on a numerical study
of the Stokes equations with varying viscosity functions, employing the non-
conforming Crouzeix-Raviart (CR) finite element P nc

1 /P0. Our research starts
with the establishment of the general and continuous forms of the Stokes
equations, accompanied by the introduction of relevant properties and as-
sumptions crucial for subsequent analysis. Furthermore, a detailed errors
analysis is conducted for both conforming and non-conforming finite element
spaces examining how the method’s accuracy depends on the underlying
viscosity parameters. However, the finite element error estimates for this el-
ement remains incomplete due to challenges in proving the consistency error
estimate. The numerical studies for various examples and cases using the
CR element are presented in the fourth Section. These numerical studies
shed light on the convergence behavior of this method and reveal how the
considered errors are influenced by different values of viscosity parameters.

Keywords: Stokes equations, non-constant viscosity, Crouzeix-Raviart fi-
nite element, consistency error estimate, dependency on viscosity parameters.



Contents

Acknowledgments 3

Statutory Declaration 4

1 Introduction 5

2 The Stokes Equations with Variable Viscosity 6
2.1 The general form . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The continuous problem . . . . . . . . . . . . . . . . . . . . . 7

3 Finite Element Error Analysis 10
3.1 Conforming finite element spaces . . . . . . . . . . . . . . . . 10

3.1.1 The pair of finite element spaces with the property
V h
div ̸⊂ Vdiv. . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 The pair of finite element spaces with the property
V h
div ⊂ Vdiv. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Non-conforming finite element spaces. . . . . . . . . . . . . . . 20

4 Numerical Studies 30
4.1 Comparing the error results between the deformation tensor

and gradient formulation for the weak problem . . . . . . . . . 33
4.2 The error study for the different viscosity functions . . . . . . 35

4.2.1 The smoothly varying ν1 . . . . . . . . . . . . . . . . . 35
4.2.2 The viscosity with steep layers ν2 . . . . . . . . . . . . 38
4.2.3 The viscosity with steep layers ν3 . . . . . . . . . . . . 41

5 Summary and Outlook 44

A Functional Analysis 46

1



B Finite Element Analysis 47

References 48

2



Acknowledgments

I would like to express my sincere gratitude to all those who have con-
tributed to the completion of this master’s thesis. First and foremost, I am
deeply thankful to my thesis advisor, Univ.-Prof. Dr. Volker John, for his
unwavering guidance, invaluable insights, and unwavering support through-
out this research journey. His mentorship has been instrumental in shaping
the direction of this thesis. I would also like to extend my appreciation to
Dr. Ondréj Partl for his support with my numerical studies . Furthermore,
I want to acknowledge the resources and facilities provided by Freie Univer-
sität Berlin, which have been essential for conducting research and accessing
critical literature. Last but not least, I wish to express my heartfelt gratitude
to my family for their unwavering love, encouragement, and understanding.
Your support has been my greatest motivation. This thesis would not have
been possible without the collective efforts and support of all these individ-
uals and institutions. Thank you from the bottom of my heart.

3



Statutory Declaration

I, Hassan Karanbash, hereby declare that this work is entirely my own,
unless otherwise acknowledged. I certify that I have read and understood
the University’s policies on plagiarism. I have clearly referenced any and all
external sources used in the creation of this work. I also declare that I have
not previously submitted this work for any other course or assessment.

Signature: Date:

4



1 Introduction

Consider first the dimensionless Navier-Stokes equations given by

∂tu− 2ν∇ · D(u) + (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω,
(1.1)

where u is the velocity field, ν = Re−1 the dimensionless viscosity, D(u) =
(∇u +∇uT )/2 the velocity deformation tensor, p the pressure and f repre-
sents the exterior forces acting on the fluid.

The first equation of (1.1) can be rewritten in another form by refor-
mulating the viscous term with the help of the divergence constraint, the
definition of D(u), and the second equation of (1.1). One can have

∇ · (∇u) = ∆u, ∇ · (∇uT ) = ∇(∇ · u) = 0,

under the assumption that u is sufficiently smooth and using the Theorem
of Schwarz.

The first assumption involved in the formulation of Stokes equations is
that the flow is stationary, implying that ∂tu = 0. Moreover, the flow is
assumed to be very slow which means that the Reynolds number is very
small, and as a consequence the convective term can be neglected due to the
domination of the viscous term Re−1∆u on the convective term (u·∇)u. As a
result, after scaling the resulting equation along with defining a new pressure
and right-hand side, one gets the so-called Stokes equations as follows

−∆u+∇p = f in Ω,

∇ · u = 0 in Ω,
(1.2)

which is associated with appropriate boundary conditions, and in particular,
homogeneous Dirichlet boundary conditions u = 0 on Γ.
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2 The Stokes Equations with Vari-
able Viscosity

In this chapter, the idea of of the Stokes equations with variable kinetic
viscosity will be introduced, which is considered a special type of them and
of interest to study the finite element analysis of such equations. The pre-
sentation of this chapter and Section 3.1 follows [1].

2.1 The general form

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain associated with a Lipschitz
boundary ∂Ω. Assume that the kinetic viscosity is variable with ν(x) ≥
νmin > 0 almost everywhere in Ω, then the incompressible Stokes equations
become

−2∇ · (νD(u)) +∇p = f in Ω,

∇ · u = 0 in Ω.
(2.1)

For the analysis, these equations will be associated with homogeneous
Dirichlet boundary conditions

u = 0 on ∂Ω. (2.2)

It will be assumed that ν ∈ L∞(Ω) in the analysis of (2.1). Moreover,
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the viscous term can be reformulated as follows

−2∇ · (νD(u)) = −2ν∇ · D(u)− 2D(u)∇ν

= −ν∆u− 2D(u)∇ν,

under the assumption that ν ∈ H1(Ω).
This implies that an additional first order term of the velocity term ap-

pears in (2.1), namely 2D(u)∇ν, compared to (1.2).

2.2 The continuous problem

First of all, one has to define the standard velocity and pressure spaces
that will be used in the analysis of the Stokes equations. In the case of a
connected and bounded domain Ω ⊂ Rd, the velocity spaces will be defined
as follows

V = H1
0 (Ω) = {v : v ∈ H1(Ω) with v|Γ = 0},

where the restriction of u to the boundary is considered in the sense of traces
i.e, u has a vanishing trace. For the pressure space, it is defined as

Q = L2
0(Ω) = {q : q ∈ L2(Ω) with

∫
Ω

q(x)dx = 0},

that is q has a zero integral mean value.
The weak formulation of (2.1) and (2.2) can be obtained by using the

usual way with the help of the following steps: multiplying the equation by
the test functions, then integrating these equations on Ω, and finally applying
integration by parts to transfer the derivatives from the solution to the test
functions. Indeed, the problem reads as follows: find (u, p) ∈ (V,Q) such
that

2(νD(u),D(v))− (∇ · v, p) = ⟨f, v⟩V ′,V ∀v ∈ V,

−(∇ · u, q) = 0 ∀q ∈ Q,
(2.3)

with V ′ = (H−1)d denoting the dual space of V .

Definition 2.1 (Space of weakly divergence-free functions). Let b(v, q) =
(∇ · v, q). Define
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Vdiv = {v ∈ V : b(v, q) = 0 ∀q ∈ Q},

the space of weakly divergence-free functions.

The proof of the uniqueness of (2.3) is clearly based on the application of
the classical theory for the linear saddle point problems due to the uniform
positivity and the boundedness of ν. To perform this analysis, one can simply
equip V with an appropriate norm with two possibilities, the first one is the
standard norm

|v|1 = ∥∇v∥L2(Ω),

and the second one is the induced norm for the bilinear form of the viscous
term, that is

∥ν∥ν = ∥ν1/2D(v)∥L2(Ω).

The following lemma shows that the above two norms are equivalent.

Lemma 2.2 (Norm equivalence). Let νmax = ∥ν∥L∞(Ω), the following in-
equality

ν−1/2
max ∥v∥ν ≤ ∥∇v∥L2(Ω) ≤ CKν

−1/2
min ∥v∥ν ∀v ∈ V, (2.4)

with CK is the constant from Korn’s inequality, holds.

Proof. Korn’s inequality (A.4) gives the estimate

∥∇v∥L2(Ω) ≤ CK∥D(v)∥L2(Ω).

We have

∥D(v)∥L2(Ω) ≤
1

2
(∥∇v∥L2(Ω) + ∥∇vT∥L2(Ω)) = ∥∇v∥L2(Ω).

The above estimates yields

∥v∥ν = ∥ν1/2D(v)∥L2(Ω) ≤ ν1/2
max∥D(v)∥L2(Ω)

≤ ν1/2
max∥∇v∥L2(Ω) ≤ CKν

1/2
max∥D(v)∥L2(Ω)

≤ Ckν
1/2
maxν

−1/2
min ∥ν1/2D(v)∥L2(Ω)

= Ckν
1/2
maxν

−1/2
min ∥v∥ν ,
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combining the underlined terms in one estimate and dividing it with ν
1/2
max

gives (2.4).
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3 Finite Element Error Analy-
sis

3.1 Conforming finite element spaces

In this section, the conforming discretization of (2.3) will be considered
where the discrete inf-sup condition is satisfied. In other words, it is V h ⊂ V ,
Qh ⊂ Q and

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

∥∇vh∥L2(Ω)∥qh∥L2(Ω)

≥ βis > 0. (3.1)

This inf-sup condition can be also written the form

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

∥vh∥ν∥qh∥L2(Ω)

≥ βis,ν > 0, (3.2)

since ∥vh∥ν and ∥∇vh∥L2(Ω) are equivalent in V h.
One gets from (2.4) and (3.1)

βis∥qh∥L2(Ω) ≤ sup
vh∈V h\{0}

b(vh, qh)

∥∇vh∥L2(Ω)

≤ 1

ν
−1/2
max

sup
vh∈V h\{0}

b(vh, qh)

∥vh∥ν
∀qh ∈ Qh,

which implies that
βis,ν = ν−1/2

max βis. (3.3)

Denote
V h
div = {vh ∈ V h : b(vh, qh) = 0 ∀qh ∈ Qh}
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the space of discretely divergence-free functions.
Throughout the finite element error analysis, an estimate of the best ap-

proximation error will be given. This will be possible for pairs of inf-sup sta-
ble finite element spaces by constructing a sequence of discretely divergence-
free functions which have the optimal order of convergence. However, this
could not be doable in some cases, and one needs to get an estimate with the
best approximation error in V h. This estimate reads as follows

inf
vh∈V h\{0}

∥∇(v − vh)∥L2(Ω) ≤
(
1 +

1

βis

)
inf

wh∈V h\{0}
∥∇(v − wh)∥L2(Ω). (3.4)

There is also a possibility to get an estimate for the ν-weighted norm by
using (2.4) and (3.4). The next lemma gives this estimate.

3.1.1 The pair of finite element spaces with the prop-
erty V h

div ̸⊂ Vdiv.

The majority of the pairs of inf-sup stable finite element spaces has this
property.

Lemma 3.1 (Estimate of the best approximation in V h
div in the ν-weighted

norm). Let v ∈ Vdiv be arbitrary, then it holds

inf
vh∈V h

div\{0}
∥v − vh∥ν ≤

(
1 +

CK

βis,νν
1/2
min

)
inf

wh∈V h\{0}
∥v − wh∥ν . (3.5)

Proof. Let the operator Bh ∈ L(V h, (Qh)′) be defined by

⟨Bhv, qh⟩(Qh)′,Qh = b(v, qh), ∀v ∈ V, ∀qh ∈ Qh.

The operator Bh is an isomorphism from (Vdiv)
⊥(with respect to inner prod-

uct in V ) onto (Qh)′ and ∥Bhzh∥(Qh)′ ≥ βis∥∇zh∥ for all zh ∈ (Vdiv)
⊥.

Let wh be an arbitrary element of V h. Since Bh(v − wh) ∈ (Qh)′, there
exists a unique zh ∈ (V h

div)
⊥ such that

Bhzh = Bh(v − wh). (3.6)
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Using the estimate of L2(Ω) norm of the divergence by the same norm of the
gradient, it reveals that

∥∇zh∥L2(Ω) ≤
1

βis

∥Bh(v − wh)∥(Qh)′ ≤
1

βis

∥∇(v − wh)∥L2(Ω).

Applying now the norm equivalence (2.4) and (3.3) gives

∥zh∥ν ≤ ν1/2
max∥∇zh∥L2(Ω)

≤ 1

βis,ν

∥∇(v − wh)∥L2(Ω)︸ ︷︷ ︸
by (3.3)

≤ 1

βis,ν

CKν
−1/2
min ∥v − wh∥ν︸ ︷︷ ︸

by (2.4)

.

Setting vh = zh + wh, one gets with (3.6) that

b(vh, qh) = b(v − wh, qh) + b(wh, qh) = b(v, qh) =︸︷︷︸
v∈Vdiv

0,

for all qh ∈ Qh, which implies that vh ∈ V h
div. The definition of vh, the

triangular inequality and (3.4) yield

∥v − vh∥ν ≤ ∥v − wh∥ν + ∥zh∥ν

≤
(
1 +

CK

βis,νν
1/2
min

)
∥v − wh∥ν .

The statement of the lemma is valid, as wh is arbitrarily chosen.

Consider now the Galerkin finite element formulation of (2.3) with the
given problem: find (uh, ph) ∈ V h ×Qh such that

2(νD(uh),D(vh))− (∇ · vh, ph) = ⟨f, vh⟩V ′,V ∀vh ∈ V h,

−(∇ · uh, qh) = 0 ∀qh ∈ Qh.
(3.7)

For the existence and uniqueness of a solution of (3.7), it can be obviously
proved by the general theory of linear saddle point problems, the uniform
positivity of ν and its boundedness.
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Theorem 3.2 (Finite element error estimate for the velocity in the ν-weighted
norm). Let Ω ∈ Rd be a bounded domain with polyhedral Lipschitz boundary
and let (u, p) ∈ V × Q be the unique solution of the Stokes problem (2.3).
Given a discretization with inf-sup stable conforming finite element spaces
V h×Qh and Let vh ∈ V h

div be the finite element solution for the velocity field.
Then the following error estimate holds:

∥u− uh∥ν ≤2

(
1 +

CK

βis,νν
1/2
min

)
inf

vh∈V h
∥u− vh∥ν

+
CK

2ν
1/2
min

inf
qh∈Qh

∥p− qh∥L2(Ω),

(3.8)

where βis,ν depends on νmax like in (3.3).

Proof. The proof follows the classical way. Taking vh ∈ V h
div as a test function

in (2.3) and (3.7), noticing that normally V h
div ̸⊂ Vdiv, subtracting these

equations and using (∇ · vh, qh) = 0 for all qh ∈ Qh gives

2(νD(u− uh),D(vh))− (∇ · vh, p− qh) = 0 ∀(vh, qh) ∈ V h
div ×Qh. (3.9)

The error is now split into an approximation error in V h
div and finite element

remainder
u− uh = (u− Ihu)− (uh − Ihu) = η − ϕh,

with Ihu ∈ V h
div is an interpolant of u in V h

div. Choosing ϕh ∈ V h
div as test

function in (3.9) leads to the estimate

∥ϕh∥2ν ≤ |(νD(ηh),D(ϕh))|+ 1

2
|(∇ · ϕh, p− qh)|.

The terms on the right-hand side of the last inequality can be estimated
using Cauchy-Schwarz inequality and for the second term also with norm
equivalence (2.4) to get

|(νD(η),D(ϕh))| ≤ ∥ν1/2D(η)∥L2(Ω)∥ν1/2D(ϕh)∥L2(Ω) = ∥η∥ν∥ϕh∥ν ,

and

|(∇ · ϕh, p− qh)| ≤ ∥∇ · ϕh∥L2(Ω)∥p− qh∥L2(Ω)

≤ ∥∇ϕh∥L2(Ω)∥p− qh∥L2(Ω)

≤ CKν
−1/2
min ∥ϕh∥ν∥p− qh∥L2(Ω).
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Then the estimate of ∥ϕh∥ν becomes

∥ϕh∥ν ≤ ∥η∥ν +
CK

2ν
1/2
min

∥p− qh∥L2(Ω).

Since these estimates hold for all Ihu and for all qh, one obtains with the
triangle inequality

∥u− uh∥ν = ∥η − ϕh∥ν
≤ ∥η∥ν + ∥ϕh∥ν
≤ 2∥η∥ν +

CK

2ν
1/2
min

∥p− qh∥L2(Ω)

≤ 2 inf
Ihu∈V h

div

∥u− Ihu∥ν +
CK

2ν
1/2
min

inf
qh∈Qh

∥p− qh∥L2(Ω).

Finally, applying the estimate (3.5) gives the desired estimate.

Using (2.4) and (3.3), it is obvious to have another formula of (3.8) in a
way that one can notice the dependency of the error bound on the viscosity.
Inequality (3.8) becomes

∥u− uh∥ν ≤2ν1/2
max

(
1 +

CK

βis

(
νmax

νmin

)1/2
)

inf
vh∈V h

∥∇(u− vh)∥L2(Ω)

+
CK

2ν
1/2
min

inf
qh∈Qh

∥p− qh∥L2(Ω),

and then one finds directly by (2.4) the estimate

∥∇(u− uh)∥L2(Ω)

≤2CK

(
νmax

νmin

)1/2
(
1 +

CK

βis

(
νmax

νmin

)1/2
)

inf
vh∈V h

∥∇(u− vh)∥L2(Ω)

+
C2

K

2νmin

inf
qh∈Qh

∥p− qh∥L2(Ω).

(3.10)

One can proceed analogously to the proof of Theorem 3.2 to get an error
estimate to ∥∇(u−uh)∥L2(Ω) directly. The only difference in the error bound
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appears in the factor of the best approximation error of the viscosity term,
which is (

1 + C2
K

νmax

νmin

)(
1 +

1

βis

)
.

Obviously, small values of νmin or a large value of the ratio νmax

νmin
would result

in a larger error bound of ∥∇(u− uh)∥L2(Ω).

Theorem 3.3 (Finite element error estimate for the pressure in the L2(Ω)
norm.). Let the assumptions of Theorem 3.2 hold, then it is

∥p− ph∥L2(Ω) ≤
(
1 +

2CK

βis

(
νmax

νmin

)1/2
)

inf
qh∈Qh

∥p− qh∥L2(Ω)

+
4νmax

βis

(
1 +

CK

βis

(
νmax

νmin

)1/2
)

inf
vh∈V ∥h

∇(u− vh)∥L2(Ω).

(3.11)

Proof. It is

∥p− ph∥L2(Ω) ≤ ∥p− qh∥L2(Ω) + ∥ph − qh∥L2(Ω),

where qh is arbitrary. The finite element problem (3.7) can be rewritten as
follows

b(vh, ph − qh) = ⟨f, vh⟩V ′,V − 2(νD(uh),D(vh))− b(vh, qh). (3.12)

Now, all vh can be used as test function in the continuous problem (3.9),
because conforming finite element spaces are used. One gets by replacing
⟨f, vh⟩V ′,V in (3.14) with the left-hand side of the continuous problem the
following

b(vh, ph−qh) = 2(ν(D(u)−D(uh)),D(vh))−b(vh, p−qh) ∀qh ∈ Qh, vh ∈ Qh.

With the discrete inf-sup condition (3.2), the Cauchy-Schwarz inequality, and
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the norm equivalence (2.4), one obtains

∥p− qh∥0 ≤
1

βis,ν

sup
vh∈V h\{0}

2(ν(D(u)− D(uh)),D(vh))− b(vh, p− qh)

∥vh∥ν

≤ 1

βis,ν

sup
vh∈V h\{0}

2∥u− uh∥ν∥vh∥ν + ∥∇vh∥L2(Ω)∥p− qh∥L2(Ω)

∥vh∥ν

≤ 1

βis,ν

sup
vh∈V h\{0}

2∥u− uh∥ν∥vh∥ν + CKν
−1/2
min ∥vh∥ν∥p− qh∥L2(Ω)

∥vh∥ν

≤ 1

βis,ν

(2∥u− uh∥ν∥+ CKν
−1/2
min ∥p− qh∥L2(Ω)).

The estimate now follows by inserting (3.8) and using (2.4) and (3.3).

It is clear that the error bound (3.11) becomes larger with large values of
νmax or large ratios νmax/νmin.

Now, the error L2(Ω) norm of the velocity will be explored. Consider the
dual Stokes problem: Find (ϕf̂ , ξf̂ ) ∈ V ×Q such that for given f̂ ∈ L2(Ω)

−2∇ · (νD(ϕf̂ )) + ϕf̂ = f̂ in Ω,

(−∇ · ϕf̂ ) = 0 in Ω,
(3.13)

with homogeneous Dirichlet boundary conditions and its weak form

2(νD(ϕf̂ ),D(v))− (∇ · v, ξf̂ ) = (f̂ , v) ∀v ∈ V,

−(∇ · ϕf̂ , q) = 0 ∀q ∈ Q.
(3.14)

The mapping (ϕf̂ , ξf̂ ) 7→ −2∇ · (νD(ϕf̂ )) +∇ξf̂ is assumed to be an isomor-

phism from (H2(Ω)d ∩ V )× (H1(Ω) ∩Q) to (L2(Ω))d. Therefore, (ϕf̂ , ξf̂ ) is
called a regular solution of (3.13).

Theorem 3.4 (Finite element error estimate for the velocity in the L2(Ω)
norm.). With the assumptions of Theorem 3.2 and (ϕf̂ , ξf̂ ) is a regular solu-

tion of (3.13), the following error estimate for the L2(Ω) norm of the velocity
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holds

∥u− uh∥L2(Ω)

≤
(
2∥∇(u− uh)∥L2(Ω) +

1

νmax

inf
qh∈Qh

∥p− qh∥L2(Ω)

)
× sup

f̂∈L2(Ω)\{0}

1

∥f̂∥L2(Ω)

[(
1 +

1

βis

)
νmax inf

ϕh∈V h
∥∇(ϕf̂ − ϕh)∥L2(Ω)

+
1

2
inf

rh∈Qh
∥ξf̂ − rh∥L2(Ω)

]
.

(3.15)

Proof. To begin with, the L2(Ω) norm is defined as follows

∥u− uh∥L2(Ω) = sup
f̂∈L2(Ω)\{0}

(f̂ , u− uh)

∥f̂∥L2(Ω)

. (3.16)

Setting v = u− uh in (3.12) yields

(f̂ , u− uh) = 2(νD(ϕf̂ ),D(u− uh))− (∇ · (u− uh), ξf̂ ). (3.17)

Using the weak form of the Stokes problem (2.3) and the corresponding finite
element problem (3.7), one finds for ϕh ∈ V h

div ⊂ V and qh ∈ Qh arbitrary

2(νD(ϕh),D(u− uh)) = (∇ · ϕh, p) = (∇ · ϕh, p− qh).

Inserting this identity into (3.17) and adding some zero terms to (3.17) gives

(f̂ , u− uh) =2(νD(ϕf̂ − ϕh),D(u− uh))− (∇ · (u− uh), ξf̂ )

+ (∇ · (ϕh − ϕf̂ ), p− qh)

for all ϕh ∈ V h
div and qh, rh ∈ Qh. Applying now the Cauchy-Schwarz in-

equality, the estimate of the norm of the divergence by the the norm of the
gradient, and the norm equivalence (2.4) leads to

|(f̂ , u− uh)|
≤∥ϕf̂ − ϕh∥ν∥u− uh∥ν + ∥∇(u− uh)∥L2(Ω)∥ξf̂ − rh∥L2(Ω)

+ ∥∇(ϕh − ϕf̂ )∥L2(Ω)∥p− qh∥L2(Ω)

≤
(
2∥∇(u− uh)∥L2(Ω) +

1

νmax

∥p− qh∥L2(Ω)

)(
νmax∥∇(ϕh − ϕf̂ )∥L2(Ω)

+
1

2
∥ξf̂ − rh∥L2(Ω)

)
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for all ϕh ∈ V h
div and qh, rh ∈ Qh. Estimate (3.15) is obtained obviously by

inserting this estimate into (3.16).

The velocity error estimates obtained depends on the pressure term, which
means that they are not pressure-robust estimates. However, the case where
V h
div ⊂ Vdiv reveals a vanishing pressure term of the left-hand side of (3.9),

(3.10) and (3.15), see Section 3.1.2.
The studying of the dependency of the error bound on the right-hand

of (3.15) on the viscosity is of interest only if all the norms depend on the
viscosity. It was supposed that (u, p) is independent of the viscosity as shown
in the results of Theorems 3.2 and 3.3, implying that only f depends on the
viscosity, but f doesn’t appear in the estimates. Thus, one of the norms
∥f̂∥L2(Ω),∥∇(ϕf̂ −ϕh)∥L2(Ω) and ∥ξf̂ −rh∥L2(Ω) has to depend on the viscosity.

In this case, one can assume that f̂ is independent of the viscosity. One can
have

∥∇ϕf̂∥L2(Ω) ≤
C

νmin

∥f̂∥L2(Ω)

using ϕf̂ as a test function in (3.14) and then applying Cauchy-Schwarz
inequality, Poincaré inequality, and the norm equivalence (2.4) which means
that the term ∥∇(ϕf̂ −ϕh)∥L2(Ω) can be estimated to a scale of ν−1

min. Now, f̂

can be decomposed using Helmholtz decomposition into f̂ = w +∇r where
w is divergence-free and ∇r is orthogonal to w with respect to the L2(Ω)
inner product. Inserting this decomposition in (3.13) yields

−2∇ · (νD(ϕf̂ )) +∇ξf̂ = w +∇r.

Therefore, ξf̂ is independent of ν as it is balanced by r and f̂ is assumed
to be independent of ν. One deduces that the only term depending on the
viscosity is ∥∇(ϕf̂ − ϕh)∥L2(Ω), and the term in (3.15) with the dual velocity
can be scaled like νmax/νmin.

3.1.2 The pair of finite element spaces with the prop-
erty V h

div ⊂ Vdiv.

In the previous section, the study of the finite element error analysis was
investigated for inf-sup stable pairs of FE spaces with the condition that
V h
div ̸⊂ Vdiv. The aim of this section is to consider inf-sup stable FE pairs

with V h
div ⊂ Vdiv and discover how the error estimates will change in this
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case. One will find that some terms will disappear from the error estimates
compared to those in the Section 3.1.1, and there will also be no dependency
anymore of the error estimate for the velocity on the best approximation
errors of the pressure finite element space. A well-known example of such
pairs is the Scott-Vogelius pairs of the finite element spaces Pk/P

disc
k−1 , k ≥ d,

on special grids, in particular barycentric-refined meshes. It is shown that
these pairs satisfy the inf-sup condition, see [2] for k ∈ {2, 3} and [3] for
k ≥ 3.

Corollary 3.5 (Finite element error estimate for the velocity in the ν-weighted
norm for inf-sup stable pairs of FE spaces with V h

div ⊂ Vdiv.). Let the assump-
tions of Theorem 3.2 hold and consider an inf-sup stable pair of finite element
spaces with V h

div ⊂ Vdiv. Then, the following estimate holds

∥u− uh∥ν ≤ 2

(
1 +

CK

βis,νν
1/2
min

)
inf

vh∈V h
∥u− vh∥ν . (3.18)

Proof. The proof of (3.18) follows the same steps in the proof of Theorem
3.2. However, the fact that V h

div ⊂ Vdiv results in vanishing of the term
−(∇ · vh, p− qh) in (3.9).

One can proceed analogously to the part on obtaining the estimate (3.10)
in Section 3.1.1 to obtain the estimate

∥∇(u− uh)∥L2(Ω)

≤2CK

(
νmax

νmin

)1/2
(
1 +

CK

βis

(
νmax

νmin

)1/2
)

inf
vh∈V h

∥∇(u− vh)∥L2(Ω),
(3.19)

from the estimate (3.18).

Corollary 3.6 (Finite element error estimate for the velocity in the L2(Ω)
norm for inf-sup stable pairs of FE spaces with V h

div ⊂ Vdiv.). Let the assump-
tions of Theorem 3.4 be satisfied and consider an inf-sup stable pair of finite
element spaces with V h

div ⊂ Vdiv. Then the following estimate holds

∥u− uh∥L2(Ω) ≤ 2∥∇(u− uh)∥L2(Ω)

× sup
f̂∈L2(Ω)\{0}

1

∥f̂∥L2(Ω)

[(
1 +

1

βis

)
νmax inf

ϕh∈V h
∥∇(ϕf̂ − ϕh)∥L2(Ω)

]
.

(3.20)
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Proof. The proof is the same as the proof of Theorem 3.4. One should notice
that ∇ · (u− uh) = 0 and ∇ · (ϕh − ϕf̂ ) = 0 in the weak sense.

The finite element error estimates for the velocity (3.18), (3.19) and
(3.20) do not depend on the pressure term, which reveals that these esti-
mates are pressure-robust estimates in-contrast to the estimates obtained in
Section 3.1.1. Pressure-robustness is very important and essential in numer-
ous practical problems of the Navier-Stokes equations. Some results show
that pressure-robustness could avoid high velocity errors in some cases, see
[4, 5].

3.2 Non-conforming finite element spaces.

The finite element error analysis for non-conforming FE pairs of spaces
will be considered in this section, in particular Crouzeix-Raviart finite el-
ement pairs P nc

k /Pk−1, k = 1. First of all, such pairs satisfy the discrete
inf-sup condition (3.1), see [6, Section 3.6.5] for k = 1 and [7] for k = 2, 3, 4
and k ≥ 5, k odd. However, they have the property that V h ̸⊂ V , strictly
speaking the properties of V are not transferred to V h. As a consequence, a
so-called consistency error needs to be estimated. In the framework of this
section, the CR finite element pair of piecewise linear velocity functions P nc

1

and piecewise constant pressure functions P0 will be typically used.
For the analysis of the non-conforming FE space, the finite element prob-

lem will be formulated using mesh cell by mesh cell definitions of the bi-
linear forms. In other words, the problem reads: given f ∈ L2(Ω), find
(uh, ph) ∈ V h ×Qh = P nc

1 × P0 such that

ahν(u
h, vh) + bh(vh, ph) = (f, vh) ∀vh ∈ V h,

bh(uh, qh) = 0 ∀qh ∈ Qh,
(3.21)

with the bilinear forms

ahν(u
h, vh) =

∑
K∈T h

(ν∇uh,∇vh)K , b
h(vh, qh) = −

∑
K∈T h

(∇ · vh, qh)K . (3.22)

The above formulation (3.21) is not equivalent to the deformation tensor
representation (3.7) in Section 3.1.1 in the case of non-constant viscosity.
For the Crouzeix-Raviart finite element pair, there is no direct simplification
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for the viscous term in terms of the rate of deformation tensor, see Remark
1 below.

One can define the ν-norm in this way

∥vh∥V h,ν = (ahν(v
h, vh))1/2 =

(∑
K∈T h

(ν∇vh,∇vh)K

)1/2

or, equivalently

∥vh∥V h,ν =

(∑
K∈T h

∥ν1/2∇vh∥2L2(K)

)1/2

.

Remark 1 (On the satisfaction of Korn’s inequality for the Crouzeix-Raviart
element). For the non-conforming finite element methods, Korn’s inequality
doesn’t hold because the necassary continuity for the gradiant field is not
ensured for the CR finite element, see [8]. Thus, the consideration of the
deformation tensor is ignored for such method.

Corollary 3.7 (Uniqueness of the solution of (3.21)). The solution (uh, ph) ∈
V h ×Qh of the finite element problem (3.21) is unique.

Proof. See [6, Corollary 4.47].

The finite element problem (3.18) will be reduced for the sake of error
analysis by considering functions from discretely divergence-free space V h

div.
Then the problem becomes: find uh ∈ V h = P nc

1 such that

ahν(u
h, vh) = (f, vh) ∀vh ∈ V h

div. (3.23)

Let {T h} be a family of regular simplicial triangulations and consider vh ∈
V h, then a Poincaré inequality

∥vh∥L2(Ω) ≤ C∥vh∥V h (3.24)

with

∥vh∥V h =

(∑
K∈T h

∥∇vh∥2L2(K)

)1/2

holds.
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Clearly, the spaces V h and Qh must satisfy the discrete inf-sup condition
of the form

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

bh(vh, qh)

∥vh∥V h,ν∥qh∥Qh

≥ βh
is,ν > 0, (3.25)

where bh : V h × Qh → R is the bilinear form defined in (3.22), and βis,ν

defined (3.3). In other words, there is a βh
is,ν > 0 such that

sup
vh∈V h\{0}

bh(vh, qh)

∥vh∥V h,ν

≥ βh
is,ν∥qh∥Qh ∀qh ∈ Qh. (3.26)

Remark 2 (On the discrete inf-sup condition for the P nc
1 /P0 pair). For the

Crouzeix-Raviart pair of finite elements spaces P nc
1 /P0, it holds that β

h
is = βis,

where βh
is, βis denote the discrete, continuous inf-sup condition, respectively.

For more details, see [6, Theorem 3.151].

For the norm equivalence (2.4), this form will be formulated in this case
as follows

ν−1/2
max ∥vh∥V h,ν ≤ ∥vh∥V h ≤ ν

−1/2
min ∥vh∥V h,ν , (3.27)

where ∥vh∥V h,ν and ∥vh∥V h are defined above.

Lemma 3.8 (Stability of the finite element solution). Assume that f ∈
L2(Ω). Then, the following estimates for the solution of (3.21)

∥uh∥V h,ν ≤ Cν
−1/2
min ∥f∥L2(Ω), ∥ph∥L2(Ω) ≤ C

(
1 + ν

−1/2
min

βh
is,ν

)
∥f∥L2(Ω),

where C is the constant from Poincaré inequality (3.24), hold.

Proof. For the velocity, let us consider first the solution of (3.23) as a test
function and then use the Cauchy-Schwarz inequality (A.2), the Poincaré
inequality (3.24) and (3.27) to get

∥uh∥2V h,ν = ahν(u
h, uh) = (f, uh)

≤ ∥f∥L2(Ω)∥uh∥L2(Ω)

≤ C∥f∥L2(Ω)∥uh∥V h

≤ Cν
−1/2
min ∥f∥L2(Ω)∥uh∥V h,ν .
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In addition, the estimate for the pressure could be found using the discrete
inf-sup condition (3.26), (3.21), the Cauchy-Schwarz inequality (A.2), the
Poincaré inequality (3.24), and the stability estimate for the velocity

∥ph∥L2(Ω) ≤
1

βh
is,ν

sup
vh∈V h\{0}

bh(vh, qh)

∥vh∥V h,ν

=
1

βh
is,ν

sup
vh∈V h\{0}

(f, vh)− ahν(u
h, vh)

∥vh∥V h,ν

≤ 1

βh
is,ν

sup
vh∈V h\{0}

C∥f∥L2(Ω)∥vh∥V h,ν + ∥uh∥V h,ν∥vh∥V h,ν

∥vh∥V h,ν

≤ 1

βh
is,ν

(C∥f∥L2(Ω) + ∥uh∥V h,ν)

≤ C

(
1 + ν

−1/2
min

βh
is,ν

)
∥f∥L2(Ω).

Lemma 3.9 (Abstract error estimate). Let u ∈ V be the solution of (2.3)
and uh ∈ V h be the solution of (3.23). Then, the following error estimate

∥u− uh∥V h,ν ≤2 inf
vh∈V h

div

∥u− vh∥V h,ν

+ inf
vh∈V h

div ,∥vh∥V h,ν
=1

|ahν(u, vh)− (f, vh)| (3.28)

holds.

Proof. Consider first vh ∈ V h
div arbitrary and rewrite u− uh as follows

u− uh = u− vh − (uh − vh) = u− vh − ϕh

with ϕh ∈ V h
div. Then, one gets, using (3.23) and the Cauchy-Schwarz in-

equality

∥ϕh∥2V h,ν = ahν(ϕ
h, ϕh) = ahν(u

h − vh, ϕh)

= ahν(u− vh, ϕh) + ahν(u
h, ϕh)− ahν(u, ϕ

h)

= ahν(u− vh, ϕh) + (f, ϕh)− ahν(u, ϕ
h)

≤ ∥u− uh∥V h,ν∥ϕh∥V h,ν + |(f, ϕh)− ahν(u, ϕ
h)|.
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Dividing the obtained estimate with ∥ϕh∥V h,ν , using the triangle inequality

∥u− uh∥V h,ν ≤ ∥u− vh∥V h,ν + ∥uh − vh∥V h,ν

and noticing that vh and ϕh are arbitrarily chosen, yields the estimate (3.27).
If ∥ϕh∥V h,ν = 0, estimate (3.27) could be obtained directly from the decom-
position of the error.

Lemma 3.10 (Best approximation error estimate in V h
div). Let {T h} be a

quasi-uniform family of triangulations and let u ∈ H2(Ω). Then, the estimate
of the best approximation error of u in V h

div has the following form

inf
vh∈V h

div

∥u− vh∥V h,ν ≤ Ch|u|H2(Ω). (3.29)

Proof. see [6, Lemma 4.53]. The proof is exactly the same for the norm
∥ · ∥V h,ν .

Now, one proceeds to find the consistency error estimate as in the con-
stant viscosity case, see [6, Lemma 4.55]. However, it will turn out that one
encounters technical difficulties that could not be overcome in the considered
case. These difficulties will be explained below.

Initially, we assume that (u, p) solves the Stokes equation (2.3) with u ∈
C1(Ω) ∩ V and p ∈ C(Ω) ∩ Q, and ν is continuous and sufficiently smooth
with ν ∈ H1(Ω). Moreover, a family of quasi-uniform triangulations will be
considered.

Let v ∈ Vdiv ⊕ V h
div be arbitrary. Using the momentum equation of the

Stokes problem (2.3), one gets

ahν(u, v)− (f, v) =
∑
K∈T h

(ν∇u,∇v)K − (f, v)K

=
∑
K∈T h

(ν∇u,∇v)K − (−ν∆u+∇p, v)K .
(3.30)

Velocity term. Applying integration by parts, mesh cell by mesh cell, gives∑
K∈T h

(ν∇u,∇v)K + (ν∆u, v)K

=
∑
E∈Eh

∫
E

ν[|(∇unE) · v|]E ds+
∑

E∈Eh\Eh

∫
E

ν(∇unE) · v ds
(3.31)
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where nE are the unit normals of E ∈ E chosen arbitrarily but fixed and the
normals for E ∈ Eh \ Eh are the outward pointing unit normals. One should
notice that changing the normal for an interior face changes the both, the
sign of the normal and the sign of the jump, such that one obtains the same
result as with the other normal. Two cases will be considered now depending
on how one would define the integral mean of v on E (either defined with
the appearance of ν in front of the integral or without).

Case 1: Let

vE =
1

|E|

∫
E

v(s) ds, E ∈ Eh,

the integral mean of v on E. Note that the integral mean value is well defined
for functions on V h, since it is the nodal functional for defining the space
P nc
1 and this functional has to be continuous. Then, one has∫

E

(v − vE)(s) ds = 0. (3.32)

Moreover, let Ih : V ∩ H2(Ω) → P1 ⊂ V h be the Lagrangian interpola-
tion operator to the space of continuous, piecewise linear functions. Then,
(∇Ihu)nE is constant for each mesh cell and each face E of the mesh cell.
The analog to the constant viscosity case would be that the left-hand side of
(3.31) is equivalent to∑

K∈T h

(ν∇u,∇v)K + (ν∆u, v)K

=
∑
E∈Eh

∫
E

ν[|(∇(u− Ihu)nE) · (v − vE)|]E(s) ds

+
∑

E∈Eh\Eh

∫
E

ν(∇(u− Ihu)nE) · (v − vE)(s) ds.

(3.33)

However, this equality doesn’t hold for the non-constant viscosity case, since
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for the integral on the boundary faces, one can get using vE = 0∫
E

ν(∇(u− Ihu)nE) · (v − vE)(s) ds

=

∫
E

ν(∇unE) · v(s) ds−
∫
E

ν(∇unE) · vE(s) ds

−∇(Ihu)nE ·
∫
E

ν(v − vE)(s) ds

=

∫
E

ν(∇unE) · v(s) ds−∇(Ihu)nE ·
∫
E

ν(v − vE)(s) ds.

One can also get for the interior edges∫
E

ν[|(∇(u− Ihu)nE) · (v − vE)|]E(s) ds

=

∫
E

ν[|(∇unE) · v|]E(s) ds−
∫
E

ν[|(∇unE) · vE|]E(s) ds

−
∫
E

ν[|(∇(Ihu)nE) · (v − vE)|]E(s) ds

=

∫
E

ν[|(∇unE) · v|]E(s) ds−
∫
E

ν[|(∇(Ihu)nE) · (v − vE)|]E(s) ds.

The second term vanishes, since the jump is zero almost everywhere due to
the continuity of the jump function and the viscosity function ν.

One can notice that we get an extra term for the boundary faces and
for the interior faces. In this case, one could not proceed as in the case of
constant viscosity and it is even very difficult to estimate (3.31).

Case 2: Let

vE =
1

|E|

∫
E

νv(s) ds, E ∈ Eh,

the integral mean of v on E. Note that the integral mean value is well defined
for functions on V h, since it is the nodal functional for defining the space
P nc
1 and this functional has to be continuous. Then, one has∫

E

(νv − vE)(s) ds = 0. (3.34)

Moreover, let Ih : V ∩ H2(Ω) → P1 ⊂ V h be the Lagrangian interpola-
tion operator to the space of continuous, piecewise linear functions. Then,
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(∇Ihu)nE is constant for each mesh cell and each face E of the mesh cell.
One can get for equation (3.31)∑

K∈T h

(ν∇u,∇v)K + (ν∆u, v)K

=
∑
E∈Eh

∫
E

ν[|(∇(u− Ihu)nE) · (v −
vE
ν
)|]E(s) ds

+
∑

E∈Eh\Eh

[∫
E

ν(∇(u− Ihu)nE) · (v −
vE
ν
)(s) ds

+

∫
E

(∇unE) · vE(s) ds
]
,

(3.35)

since for the integral on the boundary faces, one can get using (3.34)∫
E

ν(∇(u− Ihu)nE) · (v −
vE
ν
)(s) ds

=

∫
E

ν(∇unE) · v(s) ds−
∫
E

ν(∇unE) ·
vE
ν
(s) ds

−∇(Ihu)nE ·
∫
E

ν(v − vE
ν
)(s) ds

=

∫
E

ν(∇unE) · v(s) ds−
∫
E

(∇unE) · vE(s) ds.

One can also get for the interior edges∫
E

ν[|(∇(u− Ihu)nE) · (v −
vE
ν
|]E(s) ds

=

∫
E

ν[|(∇unE) · v|]E(s) ds−
∫
E

ν[|(∇unE) ·
vE
ν
|]E(s) ds

−
∫
E

ν[|(∇(Ihu)nE) · (v −
vE
ν
)|]E(s) ds

=

∫
E

ν[|(∇unE) · v|]E(s) ds−
∫
E

ν[|(∇unE) ·
vE
ν
|]E(s) ds

−∇(Ihu)nE|K1

∫
E

ν(v − vE
ν
)(s) ds+∇(Ihu)nE|K2

∫
E

ν(v − vE
ν
)(s) ds

=

∫
E

ν[|(∇unE) · v|]E(s) ds.
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As before, the second term vanishes, since the jump is zero almost everywhere
due to the continuity of the jump function and the viscosity function ν. The
vanishing of the last two terms is due to (3.34).
There are two difficulties in this case:

• We need to estimate the jump terms mentioned in (3.35), which depend
on viscosity. The estimation of these terms for the constant viscosity
case, where ν is not shown, has been demonstrated in [6, Lemma 4.58].
We can proceed in a similar manner to the proof presented there. How-
ever, the primary challenge lies in estimating these terms in the pres-
ence of non-constant viscosity.

• The second difficulty reveals in estimating the term for edges at the
boundary ∫

E

(∇unE) · vE(s) ds,

where vE(s) doesn’t vanish in the considered case.

Pressure term. For the last term in the right-hand side of (3.31). One
can obtain using integration by parts∑

K∈T h

(∇p, v)K =
∑
E∈Eh

∫
E

[|pv · nE|]E ds+
∑

E∈Eh\Eh

∫
E

pv · nE ds

−
∑
K∈T h

(∇ · v, p)K .
(3.36)

Let P h
L2 : Q → Qh be the L2(Ω) projection of pressure functions to the piece-

wise constant finite element pressure. Using an analogous way for estimating
the integrals for the velocity, one finds∑

E∈Eh

∫
E

[|pv · nE|]E ds+
∑

E∈Eh\Eh

∫
E

pv · nE ds

=
∑
E∈Eh

∫
E

[|(p− P h
L2p)(v − vE) · nE|]E ds

+
∑

E∈Eh\Eh

∫
E

(p− P h
L2p)(v − vE) · nE ds

≤Ch∥∇p∥L2(Ω)∥v∥V h .

(3.37)
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The last term on the right-hand side of (3.34) would disappear, if v ∈ Vdiv.
Then, let v ∈ V h

div, one gets using the definition of V h
div, the Cauchy-Schwarz

inequality (A.2), the Cauchy-Schwarz inequality for sums , estimate (B.1),
and the estimate for the L2(Ω) projection (B.2)∑

K∈T h

(∇ · v, p)K =
∑
K∈T h

(∇ · v, p− P h
L2p)K

≤
∑
K∈T h

∥∇ · v∥L2(K)∥p− P h
L2p∥L2(K)

≤ ∥p− P h
L2p∥L2(Ω)

(∑
K∈T h

∥∇ · v∥L2(K)

)1/2

≤ Ch∥∇p∥L2(Ω)∥v∥V h .

(3.38)

The proof of the pressure remains the same as in the case of constant viscosity
since it is independent of viscosity.
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4 Numerical Studies

The numerical studies aim at the discovering if the errors depend on the
maximum and minimum values of viscosity. It should be noted that the
error estimates are the worst case, but there might be some cases where the
behavior would be better.

The example used for the numerical studies was introduced in [1]. The
analytical solutions for both velocity and pressure fields don’t depend on the
viscosity. Let Ω = (0, 1)2 and

ϕ(x, y) = 1000x2(1− x)4y3(1− y)2,

therefore the velocity solution is given by

u = (∂yϕ,−∂xϕ)
T .

Indeed,
∇ · u = ∂x(∂yϕ) + ∂y(−∂xϕ) = ∂xyϕ− ∂yxϕ = 0,

thus u is divergence-free. It also satisfies homogeneous Dirichlet boundary
conditions. The pressure is define as follows:

p(x, y) = π2(xy2 cos(2πx2y)− x2y sin(2πxy)) +
1

8
.

Three different functions for the viscosity were considered:

ν1(x, y) = νmin + (νmax − νmin)x
2(1− x)y2(1− y) · 721

16
,

ν2(x, y) = νmin + (νmax − νmin) exp(−1013((x− 0.5)10 + (y − 0.5))10)

ν3(x, y) = νmin + (νmax − νmin)(1− exp(−1013((x− 0.5)10 + (y − 0.5)10)).
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Figure 4.1: The 3D graphs of the functions of viscosity ν1, ν2 and ν3 with
νmin = 0.1 and νmax = 1.
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The viscosity ν1 is smoothly varying between the maximum and minimum
value of the viscosity. However, ν2 and ν3 contain steep layers between νmax

and νmin, as shown in Figure 4.1. Furthermore, ν2 attains most of its values
at νmin, and ν3 attains most of its values at νmax.

We will start our study by performing simulations for one case of viscosity
using two different formulations for the weak problem: the deformation tensor
and the gradient. The example will be also studied for the above three
viscosity functions along with the consideration of two cases for the values of
νmin and νmax for each function. The first case is based on fixing the value
νmin and varying the value of νmax, and the other case is based on fixing the
value νmax and varying the value of νmin.

The simulations were carried out with the Crouzeix-Raviart pair of finite
element spaces P nc

1 /P0 on uniform triangular grids depicted in Figure 4.2.
The level of refinement ranges between 1 and 8. The degrees of freedom for
each level of refinement for computing the velocity and pressure fields are
shown in Table 4.1 below.

Table 4.1: The degrees of freedom for the Crouzeix-Raviart finite element
pair P nc

1 /P0.

Level d.o.f. velocity d.o.f. pressure
1 32 8
2 112 32
3 416 128
4 1600 512
5 6272 2048
6 24832 8192
7 98816 32768
8 394240 131072
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Figure 4.2: Uniform triangular mesh (level 2).

The linear system of equations were solved using the direct solver UMF-
PACK. All simulations were performed with the code ParMooN [9].

4.1 Comparing the error results between the

deformation tensor and gradient formu-

lation for the weak problem

In this section, we will compare between the numerical results for the two
different weak formulations for the Crouzeix-Raviart element, see equations
(3.7) and (3.21). The simulations were performed for the case with viscosity
parameters νmin = νmax = 1. This indicates that the considered viscosity
functions are all constant with value 1. Different levels of grid refinements
were considered. The results of different measured errors are presented in
Figure 4.3.

For the deformation tensor formulation, we notice that the velocity and
the pressure errors don’t show any aspect of convergence. In the case of
L2(Ω)-norm of the gradient of the velocity error (equivalentlyH1(Ω)-seminorm
of the velocity error), the value of the error has an increasing behavior on
finer grids.

In contrast, the gradient formulation has very logical and acceptable re-
sults. We can observe that the L2(Ω)-norm of the gradient of the velocity
error and of the pressure error have a decreasing behavior of order of con-
vergence 1. Similarly for the L2(Ω)-norm of the velocity error, we obtain a
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second order of convergence for the velocity solution.
As a result, the use of the deformation tensor formulation for the Crouzeix-

Raviart elements P nc
1 /P0 gives very weird results for the numerical simula-

tions. There is clearly an absence of convergence of the velocity and the
pressure errors in the different norms used. As a consequence, the simula-
tions using the gradient formulation will be performed for the rest of the
cases of viscosity.
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Figure 4.3: Different error plots for constant viscosity ν = 1 for the weak
formulations of CR element using the deformation tensor (upper) and the
gradient (lower) of the viscous term.
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4.2 The error study for the different viscosity

functions

This section will investigate the dependency of the error on the values of
viscosity for the three given types of viscosity ν1, ν2 and ν3. The L

2(Ω)-norm
of the error for the velocity and pressure is calculated for several levels of
refinement, mainly from 1 to 8. The simulations are performed using two
cases for the viscosity parameters νmin and νmax. In the first case, we fix
the value of νmax into 1 and vary the value of νmin in a decreasing manner
between 1 and 10−6 following a second order of magnitude. In the other case,
we set νmin = 1 and vary the values of νmax in an increasing manner between
1 and 106 again with an order of magnitude of 2. As we discussed in Section
4.1, setting νmin = νmax = 1 implies the case of constant viscosity.

4.2.1 The smoothly varying ν1

The results of the simulations are depicted in the Figures 4.4 and 4.5.
For the first case (varying νmin), one can observe that there is a first order
of convergence for the L2(Ω)-norm of the gradient of the velocity and of the
pressure. However, it can be noticed that the errors are getting higher values
as we decrease the value of νmin for the former norm. It is also not clear
if the convergence would be consistent for the values 10−4 and 10−6 as we
refine the mesh. Moreover, there is no observable effect on the pressure error
for this case. It was not possible to use finer grids for the considered solver
because this was interrupted by memory issues.

For the case of varying νmax, we get the same order of convergence as the
previous case for the velocity error. However, there is a significant increase
in the error norm of the velocity as the values of νmax become higher, but
not as much as in the former case. Regarding the pressure error, we can
notice that the value of the error increases by a second order of magnitude
between νmax = 102 and νmax = 106. The advantage reveals in finding out
that νmax has notable effect on the pressure for the chosen values of viscosity
parameters.

The behavior of the velocity and pressure errors is almost identical for
both the conforming (mainly Taylor-Hood pair P2/P1) and non-conforming
case for varying νmin case of this example, see [1, Figure 3] . We also have
the same results for the pressure error for varying νmax. However, this is not
true for the velocity errors, as one can notice some impact of the value of
νmax for the non-conforming case unlike the conforming case.
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Figure 4.4: Different error plots for smoothly varying viscosity ν1 with νmax =
1 and different values of νmin.
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Figure 4.5: Different error plots for smoothly varying viscosity ν1 with νmin =
1 and different values of νmax.
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4.2.2 The viscosity with steep layers ν2

Figures 4.6 and 4.7 illustrate the obtained error results for the viscosity
with steep layers ν2.

We will first discuss the case of varying νmin. The velocity error norms
∥∇(u− uh)∥L2(Ω) and ∥u− uh∥L2(Ω) tend to increase with varying the values
of νmin. However, these errors exhibit consistent convergence across all the
tested νmin values, unlike the behavior observed in the previous example.
The pressure error shows also not to have any effect in this case.

The velocity errors have totally different behavior for the case of varying
νmax. For coarser level of grid refinements (level < 4), the error indicates an
increase for νmax = 104 and νmax = 106. Then it starts to decrease again
as the mesh becomes finer demonstrating consistent convergence regardless
of the νmax values. The reason behind this aspect is the effect of using the
quadrature rule to solve the finite element problem. The pressure error has
the same way of behaving (increasing) as in the example of ν1.

For the conforming case, even though the errors are large on coarser grids,
they behave on finer grids independently of νmax and νmin, see [1, Figure 4].
This is not the case for the CR element where the behavior of the errors
appears to be independent of the grids as shown in Figure 4.6.
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Figure 4.6: Different error plots for viscosity function ν2 with νmax = 1 and
different values of νmin.
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Figure 4.7: Different error plots for viscosity function ν2 with νmin = 1 and
different values of νmax.
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4.2.3 The viscosity with steep layers ν3

The results are shown in Figures 4.8 and 4.9 for this example. When
examining the graphs for the varying νmin case, we observe an opposite be-
havior of the velocity errors compared to ν2. The errors do not attain any
change in their values for the coarser level of grid refinements. At level 5,
the errors exhibit a sudden increase (a jump) and then decrease as the grid
becomes finer for νmin = 10−4 and νmin = 10−6. However, νmin = 10−2 does
not have a significant impact on these errors. The dependency of the pressure
error on νmax closely resembles that seen in the cases of ν1 and ν2.

On the other hand, the velocity errors are not influenced for large values
of νmax for ν3. The dependency of the pressure error on νmax is almost the
same as the examples of ν1 and ν2.

For this example, the impact of νmin for fixed νmax on the errors is
smaller on finer grids for the conforming finite element and bigger for the
non-conforming one (for νmin = 10−4 and νmin = 10−6) , see Figure 4.8 and
[1, Figure 5 (left)]. However, we notice nearly the same results for both con-
forming and non-conforming finite element for fixed νmin, compare Figure
4.9 and [1, Figure 5 (right)].
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Figure 4.8: Different error plots for viscosity function with steep layer ν3
with νmax = 1 and different values of νmin.
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Figure 4.9: Different error plots for viscosity function with steep layer ν3
with νmin = 1 and different values of νmax.

43



5 Summary and Outlook

This research delves into finite element methods for the Stokes equations
with non-constant viscosity, mainly Crouzeix-Raviart finite element P nc

1 /P0.
During the error analysis of this element, we encountered challenges in pro-
viding a comprehensive consistency error estimate for the Crouzeix-Raviart
element and, more importantly, in establishing the necessary error bounds
for our numerical investigations. Additionally, we identified certain limita-
tions of this finite element when compared to others in terms of its weak
formulation.

The numerical studies show that the gradient formulation should be cho-
sen for further simulations due to shortcoming of the deformation tensor
formulation, as detailed in Section 4.1. This observation could be consid-
ered a drawback of using the Crouzeix-Raviart finite element for addressing
the associated problem. Furthermore, we also notice the dependency of the
error bounds on the viscosity parameters in some cases. The behavior of
pressure error remains similar for both conforming and non-conforming fi-
nite elements, offering insights into how the pressure error estimate might
appear. However, for velocity error, the situation is markedly different. In
the non-conforming case, the errors exhibit poor behavior with respect to
mesh refinement, showing a similar order of magnitude increase across all
levels of refinement, including finer grids, as illustrated in Figure 4.5. In con-
trast, the velocity error curves for the conforming case, representing various
values of the viscosity parameter, tend to converge as we refine the mesh, as
depicted in [1, Figure 4].

Moving forward, we deduce that the Crouzeix-Raviart finite element
method is not the best choice for solving Stokes equations with non-constant
viscosity. This result opens paths for further exploration and improvement
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in the field of finite element methods for solving this type of problems. Ad-
dressing the challenges we encountered in consistency error estimation and
error bounds estimation for the corresponding finite element will be crucial
for enhancing the reliability and accuracy of numerical studies. Addition-
ally, investigating alternative finite elements may help mitigate the observed
limitations, especially in cases where non-constant viscosity plays a signifi-
cant role. Moreover, gaining a deeper understanding of the dependence of
error bounds on viscosity parameters will facilitate more informed choices in
numerical simulations. Finally, one could consider alternatives for CR finite
element:

• Non-conforming finite element methods with higher order (e.g, k = 2).

• Conforming finite element methods, which show better results (e.g,
Taylor-Hood finite element pair) compared to non-conforming case.

These two suggestions warrant further investigation if they align with the
specific requirements and goals of our problem.
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A Functional Analysis

Theorem A.1 (Cauchy-Schwarz inequality and Hölder’s inequality). Let
f ∈ Lp(Ω) and g ∈ Lq(Ω), with p, q ∈ [1,∞] and 1/p + 1/q = 1. Then it is
fg ∈ L1(Ω) and the Hölder’s inequality hold

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω). (A.1)

For the case where p = q = 2, one gets the so-called Cauchy-Schwarz in-
equality

∥fg∥L1(Ω) ≤ ∥f∥L2(Ω)∥g∥L2(Ω). (A.2)

Theorem A.2 (Korn’s inequality). Let D(u) be the deformation tensor of u
and p ∈ (1,∞). Then, there is a constant CK such that

∥u∥pW 1,p(Ω) ≤ Ck(∥u∥pLp(Ω) + ∥D(u)∥pLp(Ω)), ∀u ∈ W 1,p(Ω). (A.3)

Denote by | · | a seminorm on Lp(Ω). Then it is

∥u∥Lp(Ω) ≤ Ck(|u|Lp(Ω) + ∥D(u)∥pLp(Ω)), ∀u ∈ W 1,p(Ω). (A.4)

Proof. See [10].
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B Finite Element Analysis

Lemma B.1 (Estimating the L2(Ω) norm of the divergence by the L2(Ω)
norm of the gradient for functions from H1(Ω)). Let Ω ⊂ Rd, d ∈ {2, 3}, and
let v ∈ H1(Ω), then it holds

∥∇ · v∥L2(Ω) ≤
√
d∥∇v∥L2(Ω) ∀v ∈ H1(Ω). (B.1)

This estimate is sharp.

Proof. See [6, Lemma 3.34].

Theorem B.2 (Estimate for the L2(Ω) projection). Consider the finite ele-
ment spaces V h = Pk or V h = Qk. Let k ≥ 0 and 0 ≤ l ≤ k, then there is a
constant C, independent of h such that

∥v − P h
L2v∥L2(Ω) ≤ Chl+1|v|Hl+1(Ω) ∀ v ∈ H l+1(Ω), ∀h. (B.2)
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