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Dear Applicant,  
 
The BMS Application Guidelines are designed to help you complete your application 
to the Berlin Mathematical School (BMS), but before you start your application we 
would like to offer you some encouragement and advice.  
 
We are pleased that you are considering the BMS for your graduate studies. The 
BMS presents exceptional opportunities, offering students the academic and intellec-
tual resources of three universities. However, before applying for admission, you 
should find out if the BMS program actually meets your interests and needs. Please 
make sure that our program has scholars working actively in the mathematical fields 
that you are interested in.  
 
Consult your professors or any contacts you may already have in Berlin. Browse our 
website where you will find important information about the BMS study program, cur-
rent seminars, and ongoing activities. Visit the websites of our faculty members and 
current students. It is in your interest, as well as ours, that the most highly qualified 
and motivated candidates find the best match for their research interests.  
 
Working towards a PhD is more than a continuation of your previous studies. During 
your graduate education you will develop the capacity for independent research by 
working closely with a scholar, or a small group of scholars, whose work can serve 
as a model for you. It is a transition period, by the end of which you will become a 
colleague to your professors. Achieving this requires more than completing courses, 
accumulating credits and passing prescribed examinations. Such a position is earned 
by commitment to the difficult, but fulfilling craft of independent research, through 
which you will demonstrate the ability to make an original contribution to knowledge. 
 
Meeting this challenge requires personal sacrifice of time, of leisure, of immediate 
rewards, but the achievement is well worth the cost in terms of intellectual satisfac-
tion and the opportunity to expand the boundaries of knowledge. 
 
Before resolving to set out on the path to a doctoral degree, please reflect on the 
commitment that will be required. If you think you have this commitment, sufficient to 
sustain you through several years of intense and concentrated work and study, we 
very much welcome your application. 
 
John M. Sullivan (Chair) 
Jürg Kramer (Deputy Chair) 
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1. Introduction

1. Introduction
"Kazakh mathematician may have solved $1 million puzzle."

On 22th January 2014, this is the headline of a New Scientist article [1] that reports
on Mukhtarbay Otelbayev’s claim to have proved the existence and the smoothness of
a solution for the Navier-Stokes equations in three dimensions.
Describing numerous physical phenomena like for example the breaking of a wave in the
ocean ([2]) as well as the air flow past an airplane wing ([3]) this system of equations
plays an fundamental role in modeling and solving problems of academic and economic
interest.
Albeit their wide range of applications the existence of a solution for the equations in
three dimensions has not been proven yet. In the year 2000, the Clay Mathematics In-
stitute ranked the problem among its seven Millennium Prize problems, promising one
million dollars for a correct proof. It is, however, questionable whether the proof by
Otelbayev, once translated into English, will withstand public scrutiny.
In most of the applications where the Navier-Stokes equations provide the mathematical
model, instead of finding an analytical solution one is satisfied with solving the equations
numerically and their solution on computers therefore has a long history dating back
several decades.
The methods presented in most of the work in this field consider homogeneous fluids
with spatially constant viscosity. The viscosity is one of the key determinants of the
flow properties of a fluid and one might ask whether the assumption of it to be constant
allows for a realistic simulation in all applications.
The simulation of processes in the Earth’s mantle with the aim to understand its dy-
namics, composition, and interaction with the Earth’s crust and core is one exemplary
application of fluid mechanics where a model with constant viscosity reaches its limits.
This is due to the fact that the viscosity of magma can be expected to depend strongly
on the different temperatures occurring in the Earth’s mantle ([4], [5]).
In this work, finite element methods for the incompressible Stokes problem with variable
viscosity will be examined. The existing theory and methods presented in [6] will be
extended to a setting with arbitrary viscosity function ν(x) ∈ L∞ and the results will
be interpreted with respect to the characteristics of this function.
In Section 2, a derivation of the Navier-Stokes equations can be found before Section
3 presents the functional analysis of an abstract problem with the same characteristic
properties as the Navier-Stokes equations.
The subsequent sections discuss the case of a slow fluid where the viscous transport
dominates the convection. The corresponding simplified equations, called Stokes equa-
tions are introduced in Section 4. Also the main result of the work, the finite element
error estimates are presented in this section.
In an attempt to verify the developed theory, an exemplary velocity and a pressure field
have been implemented and simulated for two dimensions. The results can be found in
Section 5.
The work concludes with a summary of the results and an outlook on promising direc-
tions for future research.

3



2. Derivation of the Navier-Stokes Equations

2. Derivation of the Navier-Stokes Equations
2.1. Conservation Laws
For deriving the Navier-Stokes equations there are numerous approaches. In the follow-
ing, the classical way of continuum mechanics will be chosen.
A fluid is described by a velocity field and a pressure field. These quantities generally
vary both in space and in time.
The flow variables
• ρ(t,x): density in [kg/m3],

• v(t,x) =



v1(t,x)
v2(t,x)
v3(t,x)


: velocity in [m/s],

• P (t,x): pressure in [N/m2]
are assumed to be sufficently smooth functions in [0, T ]× Ω ⊂ R3.

Remark 2.1. Conservation of mass.

(∂tρ+∇ · (ρv))(t,x) = 0 (2.1)

For incompressible fluids ρ is constant. Thus, the equation simplyfies to ∇ · v(t,x) = 0.

Remark 2.2. Conservation of linear momentum.
The acceleration can be approximated as follows

dv
dt

(t,x) ≈ (∂tv + (v · ∇)v)(t,x).

For the net force which is the product of mass and acceleration, this gives the approxi-
mation ∫

V
ρ(t,x)(∂tv + (v · ∇)v)(t,x)dx =

∫

V
F(t,x)dx

︸ ︷︷ ︸
ext. forces

+
∫

∂V
t(t, s)ds

︸ ︷︷ ︸
int. forces

.

With the help of the divergence theorem and the stress principle of Cauchy t = Sn, on
which fluid mechanics is based, this gives,

ρ(∂tv + (v · ∇)v) = ∇ · S + F, ∀t,x, (2.2)

where the divergence of a matrix is defined as ∇ · S =




(s11)x + (s12)y + (s13)z
(s21)x + (s22)y + (s23)z
(s31)x + (s32)y + (s33)z


 .

Furthermore, it is S = V−P I, where P describes the pressure field and V is the viscous
stress tensor

V = 2µD(v) + (ζ − 2µ/3)(∇ · v)I, (2.3)
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2. Derivation of the Navier-Stokes Equations

where the velocity deformation tensor

D(v) = ∇v + (∇v)T
2 = 1

2




2v1x v1y + v2x v1z + v3x
v1y + v2x 2v2y v3y + v2z
v1z + v3x v3y + v2z 2v3z


 ,

is the symmetric part of the gradient and ν, ζ are the viscosities of first and second order.
This linear equation is of course only an approximation of real fluids which in general
are described by non-linear equations. Fluids described by the linear relation are called
Newtonian fluids.
With (2.3) and the decomposition of S equation (2.2) becomes:

ρ(∂tv + (v · ∇)v)− 2∇ · (µD(v))
−∇ · ((ζ − 2µ/3)(∇ · v)I) +∇P = F, (0, T ]× Ω. (2.4)

Together with the equation for the conservation of mass,

(∂tρ+∇ · (ρv)) = 0, (0, T ]× Ω, (2.5)
this system of equations is called Navier-Stokes equations.

For incompressible fluids, i.e., ρ = ρ0, the equations simplify to

∂tv− 2∇ · (νD(v)) + (v · ∇)v +∇P
ρ0

= F
ρ0
, (0, T ]× Ω, (2.6)

∇ · v = 0, (0, T ]× Ω,
where ν(x) = µ(x)/ρ0. The viscous term can be rewritten as follows

−2∇ · (νD(v)) = −2∇ν · D(v)− 2ν∇ · D(v)
= −2∇ν · D(v)− ν∇ · ∇v− ν∇ · (∇v)T

= −2∇ν · D(v)− ν∆v. (2.7)
Note that

∇ · ∇v = ∇ ·



v1x v1y v1z
v2x v2y v2z
v3x v3y v3z


 =



v1xx + v1yy + v1zz
v2xx + v2yy + v2zz
v3xx + v3yy + v3zz


 = ∆v

and

∇ · (∇v)T = ∇ ·



v1x v2x v3x
v1y v2y v3y
v1z v2z v3z


 =



v1xx + v2xy + v3xz
v1yx + v2yy + v3yz
v1zx + v2zy + v3zz


 =




(∇ · v)x
(∇ · v)y
(∇ · v)z


 = 0.

Remark 2.3. Special case: ν is constant.
As already mentioned, in the literature the Navier-Stokes equations are usually consid-
ered for a constant viscosity ν. There, it is

−2∇ · (νD(v)) = −ν∆v.
Consequently, in this case one gets rid of the deformation tensor which appears in the
formulation of the Navier-Stokes equations for non-constant ν and will also enter the
analysis and the numerics considered in this work.
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2.2. Dimensionless Equations
For the analysis and the numerical simulation of the Navier-Stokes equation it is cove-
nient to consider dimensionless equations.
After introducing the characteristic scales
• L [m], characteristic length,
• U [m/s] characteristic velocity,
• T ∗ [s] characteristic timescale,
• N∗ [Ns/m2] characteristic viscosity
transforming x̃ = x/L, ṽ = v/U , t̃ = t/T ∗, ν̃ = ν/N∗ in (2.6) gives

F
ρ0

= ∂tv− 2∇ · (νD(v)) + (v · ∇)v +∇P
ρ0

⇐⇒ F
ρ0

= 1
T ∗
∂t̃(U ṽ)− 2 1

L
∇x̃ ·

(
N∗ν̃

1
L
Dx̃(U ṽ)

)
+
(
U ṽ · 1

L
∇x̃

)
U ṽ + 1

L
∇x̃

P

ρ0

⇐⇒ f = St ∂t̃ṽ−
2
Re
∇x̃ · (ν̃Dx̃(ṽ)) + (ṽ · ∇x̃) ṽ +∇x̃p, (2.8)

where Strouhal- and Reynoldsnumber are definded as

St = L

T ∗U
, Re = LU

N∗

and we indroduce the scaled pressure and right-hand side

f = L

U2ρ0
F, p = 1

U2ρ0
P.

The divergence-free condition for v does not change

0 = ∇ · v,

⇐⇒ 0 = 1
L
∇ · U ṽ

⇐⇒ 0 = ∇ · ṽ. (2.9)

For simplicity of notation the variables are renamed again. With x̃ = x, t̃ = t, ν̃ =
ν, ṽ = u one gets the dimensionless Navier-Stokes equations

St ∂tu−
2
Re
∇ · (νD(u)) + (u · ∇) u +∇p = f , (0, T ]× Ω, (2.10)

∇ · u = 0, (0, T ]× Ω.

In order to simplify further the equations one chooses the characteristic time to be
T ∗ = L/U = 1 s and UL/N∗ = 1 and gets

∂tu− 2∇ · (νD(u))︸ ︷︷ ︸
viscous term

+ (u · ∇) u︸ ︷︷ ︸
convection

+∇p = f , (0, T ]× Ω, (2.11)

∇ · u = 0, (0, T ]× Ω. (2.12)
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2. Derivation of the Navier-Stokes Equations

Remark 2.4. Reformulating the equations (2.10) and (2.11).
Making use of the manipulation in (2.7) the first equation in (2.10) becomes

St ∂tu−
1
Re

(2∇ν · D(u) + ν∆u) + (u · ∇) u +∇p = f , (0, T ]× Ω

and in (2.11) one finds

∂tu− 2∇ν · D(u) + ν∆u + (u · ∇)u +∇p = f , (0, T ]× Ω.

Remark 2.5. Intricacy of the Navier-Stokes equations.
From looking at the different versions of the derived Navier-Stokes equations one can
assume that the simulation as well as the analysis are rather intricate because of

1. the coupling of u and p,
2. the nonlinearity of the convective term,
3. the convective term is dominating the viscous term if ν is small.
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3. Functional Analysis for Linear Saddle Point Problems
For the purpose of tackling the first of the aforementioned problems (see Remark 2.5),
namely the coupling of velocity and pressure, one can interpret the continuity equation
(2.12) as a constraint for the velocity u in the momentum equation (2.11) and the
pressure p as a Lagrange multiplier.
Instead of the non-linear Navier-Stokes equations an abstract linear saddle point problem
is studied that is characterized by the same coupling behavior.
Note that the solution of a linear saddle point problem is of utmost interest also for the
nonlinear Navier-Stokes equations. After discretizing those with respect to time one has
to solve a nonlinear saddle point problem for each time step. This is done iteratively by
solving a linear saddle point problem for the velocity and the pressure in each iteration
step.
This section therefore deals with

1. a necessary and sufficient condition for the unique solvability of an abstract saddle
point problem,

2. appropriate function spaces for the continuous, incompressible flow problem and
3. choosing appropriate finite element spaces.

3.1. Abstract Linear Saddle Point Problem
In order to formulate an abstract linear saddle point problem, one needs to define ap-
propriate spaces together with their dual spaces, bilinear forms and the corresponding
linear operators. This framework will now be introduced.
Let V , Q be real Hilbert spaces and V ′, Q′ the corresponding dual spaces with dual
pairing 〈·, ·〉V ′,V and norm

‖φ‖V ′ := sup
v∈V,v 6=0

〈φ, v〉V ′,V
‖v‖V

.

One defines continuous bilinear forms: a(·, ·) : V × V → R and b(·, ·) : V ×Q→ R
with norms

‖a‖ = sup
v,w∈V,v,w 6=0

a(v, w)
‖v‖V ‖w‖V

and ‖b‖ = sup
v∈V,q∈Q,v,q 6=0

b(v, q)
‖v‖V ‖q‖Q

.

Now, the linear saddle point problem can be formulated.
It consists in finding (u, p) ∈ V ×Q for (f, r) ∈ V ′ ×Q′ such that

a(u, v) + b(v, p) = 〈f, v〉V ′,V , ∀v ∈ V, (3.1)
b(u, q) = 〈r, q〉Q′,Q, ∀q ∈ Q.

There is another way of formulating the saddle point problem using linear operators
instead of bilinear forms.
Let A ∈ L(V, V ′) and B ∈ L(V,Q′) be defined by

〈Au, v〉V ′,V = a(u, v), ∀u, v ∈ V resp. 〈Bu, q〉Q′,Q = b(u, q), ∀u ∈ V, ∀q ∈ Q.
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3. Functional Analysis for Linear Saddle Point Problems

For the norms one finds

‖A‖L(V,V ′) = sup
v∈V,v 6=0

‖Av‖V ′
‖v‖V ′

= sup
v,w∈V,v,w 6=0

|a(v, w)|
‖v‖V ′‖w‖V ′

= ‖a‖

and similarily, ‖B‖L(V,Q′) = ‖b‖.
Let B′ ∈ L(Q, V ′) be the dual operator of B defined by

〈B′q, v〉V ′,V = 〈Bv, q〉Q′,Q = b(v, q), ∀v ∈ V, ∀q ∈ Q.

One can now rewrite (3.1) in operator form:

Au+B′p = f ∈ V ′, (3.2)
Bu = r ∈ Q′.

The problem (3.2) is well-posed if Φ ∈ L(V ×Q, V ′×Q′) with Φ(v, q) = (Av+B′p,Bv)
is an isomorphism. Then a unique solution of (3.2) exists.
Define V (r) = {v ∈ V : Bv = r}, V0 = V (0) = ker(B). Note that V0 is a closed
subspace of V .
The space of functionals that vanish on V0 will also be of importance. One therefore
defines

Ṽ ′ = {φ ∈ V′ : 〈φ, v〉V ′,V = 0, ∀v ∈ V0} ⊂ V ′.

The problem (3.1) resp. (3.2) can be associated with a linear problem in the subspace
V0:
Find u ∈ V (r) such that

a(u, v) = 〈f, v〉V ′,V , ∀v ∈ V0. (3.3)

A solution of (3.1) resp. (3.2) is obviously also a solution of (3.3). The goal consists now
in finding a condition such that also the reverse is true, i.e., given a solution u ∈ V (r) of
(3.3) one can find p ∈ Q uniquely, such that (u, p) is the unique solution of (3.1) resp.
(3.2).

Lemma 3.1. The inf-sup condition.
The following three properties are equivalent
(i) ∃βis > 0 such that

inf
q∈Q

sup
v∈V

b(v, q)
‖v‖V ‖q‖Q

≥ βis. (3.4)

(ii) B′ : Q→ Ṽ ′ is an isomorphism and

‖B′q‖V ′ ≥ βis‖q‖Q, ∀q ∈ Q.

(iii) B : V ⊥0 → Q′ is an isomorphism and

‖Bv‖Q′ ≥ βis‖v‖V ∀v ∈ V ⊥0 .

9



3. Functional Analysis for Linear Saddle Point Problems

Proof. A proof can be found in [6] on pp. 26-28.

Remark 3.2. V(r) is not empty.
The inf-sup condition implies V (r) 6= ∅ since according to Lemma 3.1 iii) for r ∈ Q′

there is a v ∈ V ⊥0 with Bv = r.

In order to state the theorem on existence and uniqueness of a solution to the saddle
point problem, one defines the embedding operator P0 ∈ L(V ′, V ′0) as

〈P0φ, v〉V ′,V = 〈φ, v〉V ′,V , ∀φ ∈ V ′,∀v ∈ V0,

and it is ‖P0φ‖V ′0 = ‖φ‖V ′ .

Theorem 3.3. Existence and uniqueness of a solution of (3.2).
The saddle point problem (3.2) has a unique solution if and only if
(i) P0 ◦ A : V0 → V ′0 is an isomorphism.
(ii) b(·, ·) satisfies the inf-sup condition (3.4).

Proof. The proof will be omitted here and can be found in [6] on pp. 30-32.

Lemma 3.4. Sufficient condition on a(·, ·) for existence of a unique solution of
(3.2).
Assume ∃α > 0 such that

a(v, v) ≥ α‖v‖2
V , ∀v ∈ V0, (3.5)

(a(·, ·) is V0-elliptic or coercive) then there is a unique solution for (3.2) if and only if
b(·, ·) satisfies the inf-sup condition (3.4).

Proof. A proof can be found in [6] on pp. 32.

3.2. Appropriate Function Spaces for Continuous Incompressible
Flow Problems with Variable Viscosity

The abstract theory developed in Section 3.1 will now be applied to incompressible flow
problems. First of all, a velocity and a pressure space are defined.

Remark 3.5. The spaces H1
0 (Ω) and L2

0(Ω).
For a connected and bounded domain Ω ⊂ Rd the velocity space is defined as

V = H1
0 (Ω) = {v : v ∈ H1(Ω) with v |Γ= 0}.

Only problems with homogeneous Dirichlet boundary conditions, which enter the defi-
nition of V as essential boundary conditions, are considered in the analysis. Note that
the restriction of v on the boundary has to be understood in the sense of traces.
The pressure space is defined as

Q = L2
0(Ω) = {q : q ∈ L2(Ω) with

∫

Ω
q(x) dx = 0}.
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3. Functional Analysis for Linear Saddle Point Problems

Since the boundary conditions are chosen to be of Dirichlet type the pressure is unique
only up to an additive constant and thus, one needs a further condition in order to
determine this constant. Here, one requires that the mean integral value of the pressure
vanishes.
The Hilbert space Q is equipped with the standard inner product

(q, r) =
∫

Ω
(qr)(x) dx, (3.6)

and induced norm ‖q‖Q = ‖q‖L2(Ω).
In the following, we will use the notation ‖ · ‖0 := ‖ · ‖L2(Ω).
For the velocity space V we will distinguish two choices of inner products. First, in order
to develop a ν-independent theory, the velocity space V will be equipped with the inner
product

(∇v,∇w) =
∫

Ω
(∇v · ∇w) (x) dx, (3.7)

which defines the H1
0 -seminorm |v|H1

0 (Ω) = ‖∇v‖0.
The H1

0 -seminorm will be denoted by |·|1 := |·|H1
0 (Ω) in the following.

Later, we will consider the Hilbert space V together with the ν-dependent inner product1

(νD(v),D(w)) =
∫

Ω
(νD(v) · D(w)) (x) dx, (3.8)

where
D(v) = ∇v + (∇v)T

2
is the deformation tensor (i.e., the symmetric part of the gradient) and induced norm
‖v‖ν = ‖ν1/2D(v)‖0.
One can show with the Poincaré inequality that the choices (3.7) and (3.8) define indeed
norms |·|1 resp. ‖ · ‖ν where one assumes the viscosity ν to be positive in the latter case.
Furthermore, those norms are equivalent.
Lemma 3.6. Equivalence of the ν-norm and the H1

0 (Ω)-seminorm.
Let ν(x) > 0 ∈ L∞, ν(x) ≥ νmin > 0 a.e. in Ω and νmax = ‖ν‖L∞(Ω).
The norms ‖v‖ν = ‖ν1/2D(v)‖0 and |v|1 = ‖∇v‖0 are equivalent, i.e.,

ν−1/2
max ‖v‖ν ≤ |v|1 ≤ CKν

−1/2
min ‖v‖ν , (3.9)

C−1
K ν

1/2
min |v|1 ≤‖v‖ν ≤ ν1/2

max |v|1 , (3.10)

where CK is the constant from the Korn inequality, Theorem A.1 in the appendix.
Proof. In order to prove the estimates one has to find estimates for the norm of the
deformation tensor D(v). Obviously, one can estimate the norm of the deformation
tensor by the norm of the gradient, i.e.,

‖D(v)‖ ≤ 1
2
(
‖∇v‖+ ‖(∇v)T‖

)
= ‖∇v‖. (3.11)

1A motivation for this choice can be found at the beginning of Section 4.1 where the weak form of the
Stokes problem suggests a definition of the bilinear form a(·, ·) matching that inner product.
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3. Functional Analysis for Linear Saddle Point Problems

This is true for any norm ‖ · ‖, in particular for the choice ‖ · ‖ = ‖ · ‖0.
For functions in H1

0 (Ω), Korn’s inequality (A.2) says

‖∇v‖0 ≤ CK‖D(u)‖0, (3.12)

since the seminorm mentioned in the Theorem is defined here as the trace of the function
v on the boundary which vanishes for v ∈ H1

0 (Ω).
Now, both estimates can be derived from the following chain of inequalities:

‖v‖ν = ‖ν1/2D(v)‖0 ≤ ν1/2
max‖D(v)‖0

≤ ν1/2
max ‖∇v‖0︸ ︷︷ ︸

|v|1

(3.12)
≤ CKν

1/2
max‖D(v)‖0

≤ CKν
1/2
maxν

−1/2
min ‖ν1/2D(v)‖0 = CKν

1/2
maxν

−1/2
min ‖v‖ν ,

where one has to divide by ν1/2
max in order to get (3.9) and by CKν1/2

maxν
−1/2
min for the first

inequality in (3.10).

Lemma 3.7. Estimating the L2-norm of the divergence by the L2-norm of the
gradient for H1-functions.
Let Ω ⊂ Rd and v ∈ H1(Ω), then it is

‖∇ · v‖0 ≤
√
d‖∇v‖0, ∀v ∈ H1(Ω) (3.13)

and this estimate is sharp.

Remark 3.8. An estimate for H1
0 (Ω)-functions.

One can even show that

‖∇ · v‖0 ≤ ‖∇v‖0, ∀v ∈ H1
0 (Ω). (3.14)

The proof in [6], p. 105 ff., is based on the fact that for functions from H1
0 (Ω) it holds

‖∇ · v‖2
0 = ‖∇v‖2

0 + ‖∇ × v‖2
0, (3.15)

where ∇× v denotes the rotation resp. the curl of the vector field v.
To see that the estimate (3.14) is sharp one needs to find a function in H1

0 (Ω) which is
irrotational but not divergence-free.
For Ω = [0, 2π]2 the vector field

v(x, y) =
(

sin(x)(cos(y)− 1)
sin(y)(cos(x)− 1)

)

is such a function since

∇× v = ∂xv2 − ∂yv1 = − sin(y) sin(x) + sin(x) sin(y) = 0,

12



3. Functional Analysis for Linear Saddle Point Problems

and

∇ · v = ∂xv1 + ∂yv2 = cos(x)(cos(y)− 1) + cos(y)(cos(x)− 1)
= 2 cos(x) cos(y)− cos(x)− cos(y) 6= 0.

Thus, the estimate (3.14) is sharp.

Lemma 3.9. Estimating the weighted L2-norm of the divergence by the
ν-norm for H1-functions.
Let Ω ⊂ Rd and v ∈ H1(Ω), then it is

‖ν1/2∇ · v‖0 ≤
√
d‖ν1/2 D(v)‖0. (3.16)

Proof. It is

‖ν1/2∇ · v‖2
0 =

∫

Ω

(
ν1/2(x)

(
d∑

i=1
vixi(x)

))2

dx

≤
∫

Ω
ν(x)

(
d∑

i=1
12
)(

d∑

i=1
v2
ixi

(x)
)
dx

≤ d
∫

Ω
ν(x)




d∑

i,j=1

(
vixj(x) + vjxi(x)

2

)2

 dx

= d
∫

Ω

d∑

i,j=1

(
ν(x)1/2

(
vixj(x) + vjxi(x)

2

))2

dx

= d‖ν1/2 D(v)‖2
0.

Now that those spaces are determined, one can define the bilinear form b(·, ·) that
couples velocity and pressure in the inf-sup condition (3.4). By looking at the weak
formulation of the Navier-Stokes equations this definition comes naturally. For the
continuity equation in (2.11) one gets

∫

Ω
(∇ · u) q dx = (∇ · u, q) = 0, ∀q ∈ Q

and for the pressure term in the momentum equation one applies integration by parts
which yields

∫

Ω
∇p · v dx = −

∫

Ω
(∇ · v) p dx = −(∇ · v, p), ∀v ∈ V.

One therefore defines the bilinear form to be

b(v, q) = −
∫

Ω
(∇ · v) q dx = −(∇ · v, q), ∀v ∈ V, q ∈ Q. (3.17)

13



3. Functional Analysis for Linear Saddle Point Problems

Note that with v ∈ V it is, independent of the norm of V ,

‖∇v‖0 <∞.

This is clear if V is equipped with |·|1 by definition of the H1
0 (Ω)-seminorm and for the

ν-norm one has, making use of the norm equivalence (3.9),

‖∇v‖0 ≤ CKν
−1/2
min ‖v‖ν <∞.

Therefore, it is ∇v ∈ L2(Ω) which, according to Lemma 3.7, implies ∇ · v ∈ L2(Ω) such
that the bilinear form is well-defined for functions from V and Q.

Lemma 3.10. Properties of b(·, ·).
The bilinear form b(·, ·) from (3.17) is bounded by

|b(v, q)| ≤ |v|1 ‖q‖Q, (3.18)
|b(v, q)| ≤ CKν

−1/2
min ‖v‖ν‖q‖Q, (3.19)

and therefore continuous for both, the ν-dependent and the H1
0 -seminorm.

Proof. Using the Cauchy-Schwarz inequality and (3.9) one gets

|b(v, q)| =
∣∣∣∣−
∫

Ω
(∇ · v) q dx

∣∣∣∣ ≤ ‖∇ · v‖0‖q‖0

≤ ‖∇v‖0︸ ︷︷ ︸
|v|1

‖q‖0 ≤ CKν
−1/2
min ‖v‖ν‖q‖Q. (3.20)

Remark 3.11. Norm of b(·, ·).
For the H1

0 -seminorm of b(·, ·) it holds

|b|1 = 1

since
|b|1 = sup

v∈V, q∈Q,v,q 6=0

b(v, q)
|v|1 ‖q‖Q

≤ |v|1 ‖q‖Q|v|1 ‖q‖Q
= 1 (3.21)

and the estimate in Remark 3.8 is sharp.
For the ν-norm of b(·, ·) one finds, using the definition and (3.20),

‖b‖ν = sup
v∈V, q∈Q,v,q 6=0

b(v, q)
‖v‖ν‖q‖Q

≤ CKν
−1/2
min . (3.22)

Remark 3.12. ‖b‖ν for the special case of constant ν.
For the special case that ν is constant, one finds

‖b‖ν = sup
v∈V, q∈Q,v,q 6=0

b(v, q)
ν1/2‖D(v)‖0‖q‖Q

≤ CK
ν1/2 sup

v∈V, q∈Q,v,q 6=0

b(v, q)
‖∇v‖0‖q‖Q

.

14



3. Functional Analysis for Linear Saddle Point Problems

Since Remark 3.11 just proved

sup
v∈V, q∈Q,v,q 6=0

b(v, q)
‖∇v‖0‖q‖Q

= 1

the supremum in (3.22) is achieved if the constant CK is chosen such that Korn’s in-
equality (3.12) is sharp. Thus, for the special case ν = νmin = const. one finds

‖b‖ν = CK
ν1/2 .

In any other case, it is not to be expected that this upper bound for the norm of b(·, ·)
is achieved since in the proof the norm equivalence was used.2

The aim consists now in finding the operators B ∈ L(V,Q′) and B′ ∈ L(Q, V ′) from
the foregoing Section 3.1 that correspond to the bilinear form b(·, ·) for the particular
choice of V and Q.

Remark 3.13. The divergence operator.
We define the divergence operator as

div : V → rg(div), v 7→ ∇ · v.

As mentioned above, for v ∈ V it is, regardless of the chosen norm,

∇ · v ∈ L2(Ω).

Furthermore, it is
∫

Ω
(∇ · v)(x) dx =

∫

∂Ω
(v · n)(x) ds−

∫

Ω
(v · ∇1)(x) dx = 0.

Consequently, rg(div) ⊂ Q = Q′ and one can even show rg(div) = Q = Q′.
The negative divergence operator is therefore identified with the operator B ∈ L(V,Q′)
from Section 3.1.

Remark 3.14. The gradient operator.
The gradient operator is defined as

grad : Q→ rg(grad), q 7→ ∇q.

It is rg(grad) ⊂ V ′. Furthermore, it is

〈−div(v), q〉Q′,Q = 〈grad(q),v〉V ′,V .

Thus, −div and grad are dual operators, i.e., grad = B′ ∈ L(Q, V ′).
2One would need to construct a function with a gradient equal to one where ν = νmin and otherwise
zero. There are choices of ν for which this is not possible.
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3. Functional Analysis for Linear Saddle Point Problems

The kernel of the operator B is the space of weakly divergence-free functions

V0 = Vdiv = {v ∈ V : (∇ · v, q) = 0 ⇐⇒ Bv = 0, ∀q ∈ Q}. (3.23)

Lemma 3.15. Vdiv is a closed subspace of V .
The subspace of weakly divergence-free functions Vdiv is closed in V independently of
the chosen norm.

Proof. The proof can be found in [6], p. 38.

Lemma 3.16. Isomorphism of the gradient operator.
For every f ∈ V ′ with

〈f ,v〉V ′,V = 0 v ∈ Vdiv

there exists a unique q ∈ Q such that

f = grad(q) = ∇q,

i.e., rg(grad) = Ṽ ′ = {f ∈ V ′ : 〈f ,v〉V ′,V = 0, ∀v ∈ Vdiv} and the gradient operator is an
isomorphism from Q onto Ṽ ′.

Proof. The proof in [6], p. 39, does not change for variable ν and new inner product
(3.8).

Remark 3.17. Decomposition of V .
Assume now that the velocity space V is equipped with the H1

0 -seminorm induced by
(3.7). Then, it can be decomposed in Vdiv and its orthogonal complement

V = Vdiv ⊕ V ⊥div.

Of course, this can also be done when V is equipped with the norm defined by the inner
product (3.8) but in this case the orthogonality and thus, the space V ⊥div depends on the
viscosity ν.

Lemma 3.18. Isomorphism of the divergence operator.
Let V be equipped with the H1

0 -seminorm.
The divergence operator is an isomorphism from V ⊥div onto Q.

Proof. The proof given in [6], on p. 40, does not change for variable ν and new inner
product (3.8).

Corollary 3.19. Each pressure is the divergence of a velocity field.
For each pressure q ∈ Q, it exists a unique velocity field v ∈ V ⊥div ⊂ V such that

∇ · v = q and ‖q‖Q ≤ CKν
−1/2
min ‖v‖ν , ‖v‖ν ≤ Cν‖q‖Q,

where Cν is independent of v, q but depends on ν.

16
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Proof. The isomorphy of the divergence operator, see Lemma 3.18, guarantees the ex-
istence of a unique v ∈ V ⊥div with ∇ · v = q for all q ∈ Q. Using (3.14) and the norm
equivalence (3.9), one gets

‖q‖Q = ‖∇ · v‖0 ≤ ‖∇v‖0 ≤ CKν
−1/2
min ‖v‖ν .

The inverse map is an isomorphism, too and it is bounded (Theorem of Banach on the
inverse operator). Thus, one finds

‖∇v‖0 = ‖∇(div−1q)‖0 =
∣∣∣div−1q

∣∣∣
1
≤ C‖q‖Q, ∀q ∈ Q, v ∈ V ⊥div. (3.24)

Now, one makes use of the norm equivalence (3.9) again to find
ν−1/2

max ‖v‖ν ≤ ‖∇v‖0

and thus,
‖v‖ν ≤ ν1/2

maxC︸ ︷︷ ︸
Cν

‖q‖Q. (3.25)

Remark 3.20. On Corollary 3.19.
The proof of Corollary 3.19 yields also the corresponding estimates for the H1

0 -seminorm,
‖q‖Q ≤ ‖∇v‖0, (3.26)
‖∇v‖0 ≤ C‖q‖Q, (3.27)

where C does not depend on v, q and ν.
Theorem 3.21. The inf-sup condition for V and Q.
The Hilbert spaces V = H1

0 (Ω) and Q = L2
0(Ω) equipped with the inner products (3.6)

and (3.8) satisfy the inf-sup condition (3.4), i.e., ∃ βis,ν > 0 such that

inf
q∈Q

sup
v∈V

(∇ · v, q)
‖v‖ν‖q‖Q

≥ βis,ν . (3.28)

Proof. From Corollary 3.19 one knows that for an arbitrary q ∈ Q there is a unique
v ∈ V ⊥div such that

∇ · v = q, ‖v‖ν ≤ ν1/2
maxC‖q‖Q.

Consequently,
(∇ · v, q)
‖v‖ν

= (q, q)
‖v‖ν

=
‖q‖2

Q

‖v‖ν
≥ 1
ν

1/2
maxC

‖q‖Q.

This estimate holds of course if we replace v by the supremum

sup
v∈V

(∇ · v, q)
‖v‖ν

≥ 1
ν

1/2
maxC

‖q‖Q.

Since this holds for an arbitrary q one can conclude

inf
q∈Q

sup
v∈V

(∇ · v, q)
‖v‖ν‖q‖Q

≥ 1
ν

1/2
maxC

=: βis,ν . (3.29)
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Remark 3.22. βis,ν depends on the viscosity.
From the proof of Theorem 3.21 it is clear that the inf-sup constant βis,ν depends on
the maximal value of the viscosity νmax, i.e., for large values of the viscosity the inf-sup
constant tends to zero. As the next section will reveal this can lead to problems since
in the error estimates the factor β−1

is,ν will appear.

Lemma 3.23. Estimating the gradient by the divergence for V ⊥div-functions.
For v ∈ V ⊥div it is

‖v‖ν ≤
1
βis,ν
‖∇ · v‖0, (3.30)

compare with Lemma 3.1 (iii).

Proof. In Lemma 3.19 the estimate

‖v‖ν ≤ Cν‖q‖0

is proved, where q = ∇ · v. The proof of Theorem 3.21 reveals that one can choose
Cν = ν1/2

maxC = 1/βis,ν .

Remark 3.24. Two different inf-sup conditions.
Note that the inf-sup condition where V is equipped with the ν-norm holds if and only if
it holds when V is equipped with the H1

0 -seminorm. This is due to the norm equivalence.
The ν-independent inf-sup condition can be proved also seperately (see [6] p. 41).
Thus, there is an βis independent of ν such that

inf
q∈Q

sup
v∈V

(∇ · v, q)
|v|1 ‖q‖Q

≥ βis. (3.31)

3.3. Finite Element Discretization: Function Spaces
When finite element methods are used, the infinite dimensional spaces V and Q are
replaced by finite dimensional spaces V h and Qh such that the Galerkin Method can be
applied.
In the following, the pair of velocity-pressure finite element spaces will be denoted by
V h/Qh, where it should be clear that the elements in V h are vector-valued.
The theory developed so far will now be applied to the Hilbert spaces V h and Qh.
To ensure the existence of a unique solution of the finite element discretization, the
spaces V h and Qh have to fulfill a discrete inf-sup condition

inf
qh∈Qh

sup
vh∈V h

b(vh, qh)
‖vh‖V ‖qh‖0

≥ βhis,ν > 0, (3.32)

where the norm of V h is either

‖vh‖V = ‖vh‖ν or ‖vh‖V =
∣∣∣vh

∣∣∣
1
.

18



3. Functional Analysis for Linear Saddle Point Problems

Note that for general finite element spaces one would need to consider a discrete bilinear
form bh : V h ×Qh → R defined as

bh(vh, qh) := −
∑

K∈T h
(∇ · vh, qh)K , (3.33)

and discrete norms ‖vh‖V,h with either

‖vh‖ν,h =

 ∑

K∈T h
(νD(vh),D(vh))K




1/2

(3.34)

or

‖vh‖1,h =

 ∑

K∈T h
(∇vh,∇vh)K




1/2

, (3.35)

and

‖qh‖0,h =

 ∑

K∈T h
(qh, qh)K




1/2

, (3.36)

where T h is a triangulation of the domain Ω and K ∈ T h are the corresponding mesh
cells.
For conforming finite element spaces (V h ⊂ V,Qh ⊂ Q) it is vh ∈ V, qh ∈ Q and
therefore,

‖vh‖ν,h = ‖vh‖ν , ‖vh‖ν,1 =
∣∣∣vh

∣∣∣
1

and ‖qh‖0,h = ‖qh‖0.

Since in this work we will consider only conforming finite element spaces, we can use the
norms from the original spaces V and Q for the ease of notation. The same is true for
the bilinear form where we can omit the index h, i.e.,

bh(vh, qh) = b(vh, qh), ∀ (vh, qh) ∈ (V h ×Qh) ⊂ (V ×Q).

Again a linear operator Bh = B is associated with b(·, ·),

B : V h → (Qh)′, 〈Bvh, qh〉(Qh)′,Qh = b(vh, qh).

The kernel of B is the space of discretely divergence-free functions,

V h
div = {vh ∈ V h : b(vh, qh) = 0, ∀ qh ∈ Qh}.

The dual operator

BT : Qh → (V h)′, 〈BT qh,vh〉(V h)′,V h = b(vh, qh)

is denoted by gradh.
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Remark 3.25. Discrete analogues of Corollary 3.19 and Lemma 3.23.
The discrete inf-sup condition yields discrete analogues to Corollary 3.19 and Lemma
3.23.
For each pressure qh ∈ Qh there is a unique vh ∈ (V h

div)⊥ with ∇ · vh = qh and

‖vh‖ν ≤
1
βhis,ν
‖∇ · vh‖0, (3.37)

where like in the continuous case (compare with (3.29)) it is

βhis,ν = C−1ν−1/2
max . (3.38)

Lemma 3.26. Best approximation estimate for V h
div and ν-Norm.

For the conforming velocity space V h ⊂ V and v ∈ Vdiv, let the discrete inf-sup condition
(3.32) with ‖ · ‖V = ‖ · ‖ν hold. Then, the following estimate holds

inf
vh∈V hdiv

‖v− vh‖ν ≤

1 + CK

βhis,νν
1/2
min


 inf

wh∈V h
‖v−wh‖ν . (3.39)

Proof. The discrete inf-sup condition (3.32) ensures that the space V h
div is not empty.

Hilbert space theory yields that an arbitrary wh ∈ V h can be decomposed like

wh = vh − zh, where vh ∈ V h
div and − zh ∈ (V h

div)⊥.

Again, the decomposition according to the |·|1-orthogonality is considered, such that zh
does not depend on ν.
For qh ∈ Qh it is b(vh, qh) = 0 as vh ∈ V h

div.
In addition, one finds b(v, qh) = 0 since

v ∈ Vdiv → b(v, q) = 0, ∀q ∈ Q

and qh ∈ Qh ⊂ Q. Thus,

b(zh, qh) = b(vh −wh, qh) = b(v−wh, qh), ∀qh ∈ Qh. (3.40)

According to Remark 3.25, the discrete inf-sup condition yields a discrete analogue to
Corollary 3.19. Consequently, there is a qh = ∇·zh ∈ Qh. Inserting this into (3.40) gives

| b(zh,∇ · zh) | =| b(v−wh,∇ · zh) |
=| −(∇ · (v−wh),∇ · zh) |
≤ ‖∇ · (v−wh)‖0‖∇ · zh‖0

≤ ‖∇(v−wh)‖0‖∇ · zh‖0.

Since | b(zh,∇ · zh) |= ‖∇ · zh‖2
0 it follows

‖∇ · zh‖0 ≤ ‖∇(v−wh)‖0. (3.41)
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Using the estimate (3.37), the discrete analogue of (3.30), one finds

‖zh‖ν ≤
1
βhis,ν
‖∇ · zh‖0 ≤

1
βhis,ν
‖∇(v−wh)‖0 ≤

1
βhis,ν

CKν
−1/2
min ‖v−wh‖ν .

This estimate yields, together with the triangle inequality,

‖v− vh‖ν ≤ ‖v−wh‖ν + ‖zh‖ν (3.42)

≤

1 + CK

βhis,νν
1/2
min


 ‖v−wh‖ν . (3.43)

Since there is for every wh a vh such that this equation holds, it is true also for the
infimum,

inf
vh∈V hdiv

‖v− vh‖ν ≤

1 + CK

βhis,νν
1/2
min


 inf

wh∈V h
‖v−wh‖ν .

For the sake of completeness this section concludes with the best approximation esti-
mate for the ν-independent H1

0 -seminorm.

Lemma 3.27. Best approximation estimate for V h
div and H1

0 -seminorm.
For the conforming velocity space V h ⊂ V and v ∈ Vdiv, let the discrete inf-sup condition
(3.32) with ‖ · ‖V = |·|1 hold. Then, the following estimate holds

inf
vh∈V hdiv

∣∣∣v− vh
∣∣∣
1
≤
(

1 + 1
βhis

)
inf

wh∈V h

∣∣∣v−wh
∣∣∣
1
. (3.44)

Proof. A proof can be found in [6], pp. 46.

3.4. Examples of Inf-Sup Stable Finite Element Spaces
Due to their comparatively easy implementation the inf-sup stable Taylor-Hood finite
element spaces are very popular for the discretization of incompressible flow problems.
On triangular and tetrahedral grids they are given by Pk/Pk−1, k ≥ 2 and on quadrilat-
eral and hexahedral grids by Qk/Qk−1, where Pk and Qk denote the polynomial spaces
(see B.1 and B.2).
The proof that the Taylor-Hood finite element pair Q2/Q1 fulfills the discrete inf-sup
condition (3.32) as well as references to the proofs for other Taylor-Hood pairs and for
the similar pair Q2/P

disc
1 can be found in [6].

Another interesting pair of finite element spaces that can easily be implemented is the
Scott-Vogelius element Pk/P disc

k−1, where P disc
k−1 is the space of functions from Pk−1 that are

discontinuous.
This pair of finite element spaces has the desirable property V h

div ⊂ Vdiv, i.e., discretely
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divergence-free functions are divergence-free also in the weak sense. This is due to the
fact that for vh ∈ V h

div ⊂ Pk it is ∇ · vh ∈ P disc
k−1 = Qh. From vh ∈ V h

div it follows

b(vh, qh) = 0, ∀qh ∈ Qh,

and thus
0 = b(vh,∇ · vh) = ‖∇ · vh‖0.

However, it has to be remarked that the Scott-Vogelius element is inf-sup stable only on
special types of grids, e.g., on barycentric grids. For a description of the initial grid see
Section 5.2.
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4. The Stokes Equations

4. The Stokes Equations
4.1. The Continuous Stokes Equations
In a steady flow (∂tu = 0) the viscous transport dominates the convection which can
then be neglected if the fluid moves sufficiently slowly. The momentum equation of the
general Navier-Stokes equations (2.11)

∂tu− 2∇ · (νD(u))︸ ︷︷ ︸
viscous term

+ (u · ∇) u︸ ︷︷ ︸
convection

+∇p = f , (0, T ]× Ω

becomes a linear equation and the resulting system,

−2∇ · (νD(u)) +∇p = f in Ω, (4.1)
∇ · u = 0 in Ω

is called Stokes equations.
One can derive a weak formulation in the usual way by multiplying a test function v
from H1

0 (Ω) and integrating over the domain Ω before integration by parts is applied:
∫

Ω
−2∇ · (νD(u)) · v +

∫

Ω
∇p · v =

∫

Ω
f · v,

2
∫

Ω
νD(u)∇v−

∫

Ω
p∇ · v =

∫

Ω
f · v,

2(νD(u),∇v)− (∇ · v, p) = 〈f ,v〉H−1(Ω),H1
0 (Ω).

Note that with v ∈ H1
0 (Ω) the integral over the boundary, ∂Ω, vanishes when integration

by parts is applied.
Thus, a weak solution (u, p) ∈ H1

0 (Ω)× L2
0(Ω) solves

2 (νD(u),∇v)︸ ︷︷ ︸
ãν(u,v)

−(∇ · v, p)︸ ︷︷ ︸
b(v,p)

= 〈f ,v〉H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω), (4.2)

−(∇ · u, q)︸ ︷︷ ︸
b(u,q)

= 0, ∀q ∈ L2
0(Ω).

Remark 4.1. Manipulation of the bilinear form ãν(·, ·).
The weak formulation of the Stokes problem yields a natural choice for the bilinear form
a(·, ·) that appears in the formulation of the abstract saddle point problem in Section
3.1, namely ãν(u,v) = (νD(u),∇v).
However, to emphasize the symmetry of the viscous term, the equivalent bilinear form
aν(u,v) := (νD(u),D(v)) is used in the analysis.
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The equivalence can be seen easily

(νD(u),D(v)) =
∑

ij

∫

Ω
ν

(
1
2
∂ui
∂xj

+ 1
2
∂uj
∂xi

)(
1
2
∂vi
∂xj

+ 1
2
∂vj
∂xi

)
dx

=1
4
∑

ij

∫

Ω
ν

(
∂ui
∂xj

∂vi
∂xj

+ ∂uj
∂xi

∂vi
∂xj

+ ∂ui
∂xj

∂vj
∂xi

+ ∂uj
∂xi

∂vj
∂xi

)
dx

=1
4


∑

ij

∫

Ω
ν
∂ui
∂xj

∂vi
∂xj

dx +
∑

ij

∫

Ω
ν
∂uj
∂xi

∂vi
∂xj

dx

+
∑

ij

∫

Ω
ν
∂uj
∂xi

∂vi
∂xj

dx +
∑

ij

∫

Ω
ν
∂ui
∂xj

∂vi
∂xj

dx



=1
2
∑

ij

∫

Ω
ν

(
∂ui
∂xj

+ ∂uj
∂xi

)
∂vi
∂xj

dx = (νD(u),∇v).

From now on, we will use the following formulation of the weak Stokes problem:
Find (u, p) ∈ H1

0 (Ω)× L2
0(Ω) such that

2 (νD(u),D(v))︸ ︷︷ ︸
aν(u,v)

−(∇ · v, p)︸ ︷︷ ︸
b(v,p)

= 〈f ,v〉H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω), (4.3)

−(∇ · u, q)︸ ︷︷ ︸
b(u,q)

= 0, ∀q ∈ L2
0(Ω).

Let now V = H1
0 (Ω) denote the velocity space and Q = L2

0(Ω) the pressure space with
inner products ‖ · ‖ν and ‖ · ‖0, as introduced in Section 3.2.
An equivalent formulation of the weak problem is

2aν(u,v) + b(v, p)− b(u, q) = 〈f ,v〉V ′,V , ∀(v, q) ∈ V ×Q. (4.4)

This equivalence can be seen by choosing the test functions (v, 0) and (0, q).
Let Vdiv be the space of weakly divergence-free functions. The problem that is associated
to (4.1) (see (3.3)) is:
Find u ∈ Vdiv such that

2(νD(u),D(v)) = 〈f ,v〉V ′,V , ∀v ∈ Vdiv. (4.5)

Lemma 4.2. Norm of the bilinear form aν(·, ·).
For the bilinear form aν(·, ·) defined as in (4.3) it is ‖aν‖ = 1.
Proof. Applying the Cauchy-Schwarz inequality one gets

‖aν‖ = sup
v,w∈V,v,w 6=0

aν(v,w)
‖v‖ν ‖w‖ν

= sup
v,w∈V,v,w 6=0

(ν D(v),D(w))L2(Ω)

‖ν1/2D(v)‖0 ‖ν1/2D(w)‖0

≤ sup
v,w∈V,v,w 6=0

‖ν1/2D(v)‖0 ‖ν1/2D(w)‖0
‖ν1/2D(v)‖0 ‖ν1/2D(w)‖0

= 1.
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4. The Stokes Equations

Choosing now w = v shows that the supremum 1 is achieved:

aν(v,v)
‖v‖2

ν

= (νD(v),D(v))
‖v‖2

ν

= ‖v‖
2
ν

‖v‖2
ν

= 1.

Remark 4.3. Vdiv-ellipticity.
Obviously, the bilinear form aν(·, ·) is Vdiv-elliptic, i.e.,

aν(v,v) = ‖v‖ν , ∀v ∈ V ⊃ Vdiv, (4.6)

such that (3.5) is fulfilled with α = 1.

Theorem 4.4. Existence and uniqueness of a solution of the Stokes equations.
Let Ω be a bounded domain in Rd with Lipschitz boundary Γ and let f ∈ H−1(Ω). There
is a unique solution (u, p) ∈ H1

0 (Ω)× L2
0(Ω) of the weak formulation (4.3) of the Stokes

equations.

Proof. The bilinear form b(·, ·) satisfies the inf-sup condition (3.28) as proved in Theorem
3.21 and aν(·, ·) is Vdiv-elliptic (see Remark 4.3).
The existence of a unique solution follows from Lemma 3.4.

Theorem 4.5. Stability of the solution.
Let the assumptions of Theorem 4.4 hold. The weak solution of the Stokes equations
(4.3) depends continuously on the right-hand side f ,

‖u‖ν ≤
1
2‖f‖H−1(Ω), (4.7)

‖p‖0 ≤
2
βis,ν
‖f‖H−1(Ω). (4.8)

Proof. The weak solution u is in Vdiv and can therefore be inserted as test function in
(4.5) and using (4.6) one finds

2‖u‖2
ν = 2aν(u,u) = 〈f ,u〉V ′,V .

The right-hand side can be estimated by

〈f ,u〉V ′,V ≤ ‖f‖H−1(Ω)‖u‖ν (4.9)

and consequently,
‖u‖2

ν ≤
1
2‖f‖H−1(Ω)‖u‖ν .

For the trivial case ‖u‖ν = 0 this inequality is satisfied. In any other case one divides
by ‖u‖ν to get an estimate for the velocity.
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4. The Stokes Equations

For the pressure field p one makes use of the inf-sup condition (3.28) and (4.3). This
yields

‖p‖0
(3.28)
≤ 1

βis,ν
sup
v∈V

b(v, p)
‖v‖ν

(4.3)= 1
βis,ν

sup
v∈V

〈f ,v〉V ′,V − 2(νD(u),D(v))
‖v‖ν

≤ 1
βis,ν

sup
v∈V

‖f‖H−1(Ω)‖v‖ν + 2‖u‖ν‖v‖ν
‖v‖ν

= 1
βis,ν

(
‖f‖H−1(Ω) + 2‖u‖ν

)
.

Inserting the estimate for ‖u‖ν one gets

‖p‖0 ≤
1
βis,ν

(
‖f‖H−1(Ω) + ‖f‖H−1(Ω)

)
≤ 2
βis,ν
‖f‖H−1(Ω).

Remark 4.6. Norm of the dual space H−1(Ω).
Note that in the foregoing theorem, the space V is equipped with the ν-norm, such that
the estimate (4.9) holds.
However, the consequence is that the norm of the dual space V ′ = H−1(Ω) depends on
ν. It is a reasonable objection that the norm of the dual space should be ν-independent
since now it is not clear how to interpret the estimate (4.7).
If V is equipped with the H1

0 (Ω)-seminorm, |·|1, estimate (4.9) becomes, using the norm
equivalence (3.9),

〈f ,u〉V ′,V ≤ ‖f‖H−1(Ω) |u|1 ≤ ‖f‖H−1(Ω)Ck ν
−1/2
min ‖v‖ν , (4.10)

where the norm ‖ · ‖H−1 is independent of ν.
This yields the stability estimate

‖u‖ν ≤
Ck

2√νmin
‖f‖H−1(Ω). (4.11)

Note that when applying the inf-sup constant in order to get an estimate for the pressure
one gets

‖p‖0 ≤
1
βis

sup
v∈V

b(v, p)
|v|1

,

since (3.31) has to be applied.
It is then

‖p‖0 ≤
1
βis

sup
v∈V

〈f ,v〉V ′,V − 2(νD(u),D(v))
|v|1

≤ 1
βis

sup
v∈V

‖f‖H−1(Ω) |v|1 + 2‖u‖νν1/2
max |v|1

|v|1
= 1
βis

(
‖f‖H−1(Ω) + 2 ν1/2

max‖u‖ν
)
.

26



4. The Stokes Equations

Again, one can insert the estimate for ‖u‖ν and finds

‖p‖0 ≤
1
βis

(
1 + CK

√
νmax

νmin

)
‖f‖H−1(Ω), (4.12)

for (4.8), where this time the inf-sup constant βis does not depend on ν.

4.2. The Finite Element Problem
The finite element problem is: Find (uh, ph) ∈ V h ×Qh such that

2aν(uh,vh) + b(vh, ph) = 〈f ,vh〉V ′,V , ∀vh ∈ V h, (4.13)
b(uh, qh) = 0, ∀qh ∈ Qh.

Remark 4.7. Notation for conforming finite element spaces.
Note that usually for the finite element problem one would write ahν(·, ·) and bh(·, ·)
instead of aν(·, ·) and b(·, ·), where

ahν(vh,wh) =
∑

K∈T h
(νD(vh),D(wh))K , bh(vh, qh) = −

∑

K∈T h
(∇ · vh, qh)K .

As already mentioned in Section 3.3, we are considering the case of conforming finite
element spaces only and thus it holds ahν(vh,uh) = aν(vh,uh) for all vh,uh ∈ V h since
the conformity yields vh,uh ∈ V.
In addition, as shown in Section 3.3, it is bh(·, ·) = b(·, ·).
The notation used in (4.13) is therefore correct and will be used from now on.
If not explicitly mentioned otherwise the velocity space can be assumed to be equipped
with the ν-norm ‖·‖V,h = ‖·‖V = ‖·‖ν and "inf-sup stable" then means that the discrete
inf-sup condition (3.32) with that norm is fulfilled.

Theorem 4.8. Unique Solvability of the FE Problem.
Let V h and Qh be inf-sup stable, conforming finite element spaces.
Then there is a unique and stable solution to the finite element problem (4.13).

Proof. The proof is analogous to those of Theorems 4.4 and 4.5.

According to (4.5) there is an equivalent formulation of (4.13):
Find uh ∈ V h

div such that

2(νD(uh),D(vh)) = 〈f ,vh〉V ′,V , ∀vh ∈ V h
div. (4.14)

4.3. Finite Element Error Analysis
Remark 4.9. Estimates for different norms.
This section deals with the problem of getting information on the order of convergence
of the finite element solution to the solution of the weak problem. Pairs of finite element
spaces corresponding to families of triangulations {T h} will be considered.
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4. The Stokes Equations

First of all, estimates for the finite element errors in the different norms will be presented.
As already mentioned, the ν-norm is the natural choice for the velocity space. However,
the ν-dependence comes at a price: comparing finite element errors of problems with
different viscosity is hardly possible in this norm. The reason is that the norm is weighted
by the viscosity and consequently the error will appear larger if the viscosity takes large
values.
Furthermore, in order to compute the orders of convergence we need the estimates to be
ν-independent, as one will see later in this section, in Corollary 4.32.
Therefore different estimates will be presented. For every estimate where the ν-norm
appears an alternative estimate depending only on the H1

0 -seminorm will be given.

Theorem 4.10. Finite element error estimate for ‖u− uh‖ν.
Let Ω ⊂ Rd be a bounded domain with polyhedral Lipschitz boundary and let (u, p) ∈
V × Q be the unique solution of the Stokes problem (4.3). Given a discretization with
inf-sup stable conforming finite element spaces V h × Qh, let uh ∈ V h

div be the solution
for the velocity field.
Then the following error estimate holds:

‖u− uh‖ν ≤ 2
(

1 + CK
βhis,ν
√
νmin

)
inf

vh∈V h
‖u− vh‖ν + CK

2√νmin
inf

qh∈Qh
‖p− qh‖0, (4.15)

where βhis,ν depends on νmax like in (3.38).

Proof. First of all, the so-called error equation has to be formulated. As the finite
element spaces are conforming one has V h

div ⊂ V and thus, functions from V h
div can be

chosen as test functions in the continuous Stokes problem (4.4) .
Consider the difference of (4.4) and (4.14)

2(νD(u− uh),D(vh))− (∇ · vh, p) + (∇ · u, qh)︸ ︷︷ ︸
=0

= 0, ∀(vh, qh) ∈ V h
div ×Qh. (4.16)

Here, it was used that the solution u is in V h
div since

u ∈ Vdiv ⇐⇒ (∇ · u, q) = 0, ∀q ∈ Q −→ (∇ · u, qh) = 0, ∀qh ∈ Qh ⊂ Q.

The pressure term does not necessarily vanish because in general p /∈ Qh since Qh ⊂ Q
and not vice versa. Consequently it is V h

div 6⊂ Vdiv.
With (∇ · vh, qh) = 0, ∀qh ∈ Qh one gets

2(νD(u− uh),D(vh))− (∇ · vh, p− qh) = 0, ∀(vh, qh) ∈ V h
div ×Qh. (4.17)

We will now split the error as follows

u− uh = (u− Ihu)− (uh − Ihu) = η − φh. (4.18)

Here Ihu is the interpolant of u in V h
div. Consequently, η is the interpolation error which

depends only on V h
div.
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4. The Stokes Equations

The goal consists now in estimating φh ∈ V h
div by the interpolation error as well.

In order to do so, one combines (4.18) and (4.17) and chooses φh ∈ V h
div ⊂ V h as test

function:

2
(
νD(η − φh),D(φh)

)
−
(
∇ · φh, p− qh

)
= 0, ∀qh ∈ Qh

⇐⇒ 2
(
νD(φh),D(φh)

)

︸ ︷︷ ︸
aν(φh,φh)

= 2
(
νD(η),D(φh)

)
−
(
∇ · φh, p− qh

)
, ∀qh ∈ Qh.

Using that aν(·, ·) corresponds with the inner product of V (see also Remark 4.3) one
finds

‖φh‖2
ν = aν(φh,φh) ≤

∣∣∣(νD(η),D(φh))
∣∣∣+ 1

2
∣∣∣
(
∇ · φh, p− qh

)∣∣∣ . (4.19)

Now, the terms on the right-hand side will be estimated by the Cauchy-Schwarz inequal-
ity ∣∣∣(νD(η),D(φh))

∣∣∣ ≤ ‖ν1/2D(η)‖0‖ν1/2D(φh)‖0 = ‖η‖ν‖φh‖ν .
With ‖∇ ·v‖0 ≤ ‖∇v‖0 for v ∈ H1

0 (Ω) (see Remark 3.8) and the norm equivalence (3.9)
one finds for the second term

∣∣∣(∇ · φh, p− qh)
∣∣∣ ≤ ‖∇ · φh‖0‖p− qh‖0

≤ ‖∇φh‖0‖p− qh‖0

≤ CKν
−1/2
min ‖φh‖ν‖p− qh‖0. (4.20)

These estimates can be applied in (4.19) and division by ‖φh‖ν 6= 0 yields

‖φh‖ν ≤ ‖η‖ν + 1
2CKν

−1/2
min ‖p− qh‖0.

Trivially, this estimate still holds if ‖φh‖ν = 0.
Applying the triangle inequality gives for all Ihu ∈ V h

div, q
h ∈ Qh

‖u− uh‖ν ≤ ‖η‖ν + ‖φh‖ν
≤ 2‖η‖ν + 1

2CKν
−1/2
min ‖p− qh‖0

and in particular,

≤ 2 inf
Ihu∈V hdiv

‖η‖ν + 1
2CKν

−1/2
min inf

qh∈Qh
‖p− qh‖0.

Furthermore,

inf
Ihu∈V hdiv

‖η‖ν = inf
Ihu∈V hdiv

‖u− Ihu‖ν

Lemma 3.26
≤


1 + CK

βhis,νν
1/2
min


 inf

vh∈V h
‖u− vh‖ν .
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We have proved the statement of the Theorem

‖u− uh‖ν ≤ 2
(

1 + CK
βhis,ν
√
νmin

)
inf

vh∈V h
‖u− vh‖ν + CK

2√νmin
inf

qh∈Qh
‖p− qh‖0.

Remark 4.11. On the estimate (4.15).
The finite element error of the velocity in the ν-norm is estimated by best approximation
errors for both, the pressure and the velocity, where the factors depend on the discrete
inf-sup constant βhis,ν and on the maximal and minimal values of the viscosity function
ν(x). All of the estimates in the remainder of this section will be of that form. Note that
the shape of the viscosity function does not influence the estimate at all, i.e., viscosities
with steep gradients like highly-oscillating ones do not lead to larger error estimates.

Remark 4.12. Estimate for ‖u− uh‖ν with ν-independent norms.
In order to compare the order of convergence for examples with different viscosities we
also need an estimate for ‖u − uh‖ν where the right-hand side is ν-independent. This
means one has to estimate the ν-norm on the right-hand side of (4.15) by the H1

0 -
seminorm.
Using the norm equivalence (3.10) one gets

‖u− uh‖ν ≤ 2√νmax

(
1 + CK

βhis,ν
√
νmin

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ CK
2√νmin

inf
qh∈Qh

‖p− qh‖0.

(4.21)

Remark 4.13. Special Case: Estimates (4.15) and (4.21) for constant ν.
Assume that the viscosity ν is constant on the whole domain Ω, i.e.,

ν(x) = νmin = νmax = ν, ∀x ∈ Ω.

Then, in (4.15) one can write the constant in front of the norms. Using the knowl-
edge from (3.38) on the ν-dependence of the inf-sup constant, βhis,ν = ν−1/2

max C
−1, and

‖D(v)‖0 ≤ ‖∇v‖0 yields

√
ν‖D(u− uh)‖0 ≤2

(
1 + CK

βhis,ν
√
ν

)
inf

vh∈V h
√
ν‖D(u− vh)‖0

+ CK
2
√
ν

inf
qh∈Qh

‖p− qh‖0

⇐⇒ ‖D(u− uh)‖0 ≤2 (1 + CKC) inf
vh∈V h

∣∣∣u− vh
∣∣∣
1

+ CK
2ν inf

qh∈Qh
‖p− qh‖0. (4.22)

One derives exactly the same estimate for (4.21).

Remark 4.14. Estimate for H1
0 -seminorm.

For a constant viscosity we have just derived an estimate for the finite element error in
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a norm that does not depend on ν any longer.
As mentioned before, to ensure comparability of problems with different viscosities such
an estimate is needed also for non-constant ν(x).
We use the norm equivalence (3.9) again to find

∣∣∣u− uh
∣∣∣
1
≤ CK√

νmin
‖u− uh‖ν

≤ CK√
νmin


2√νmax

(
1 + CK

βhis,ν
√
νmin

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ CK
2√νmin

inf
qh∈Qh

‖p− qh‖0




≤2CK
√
νmax

νmin

(
1 + CK

βhis,ν
√
νmin

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ C2
K

2 νmin
inf

qh∈Qh
‖p− qh‖0.

Theorem 4.15. Finite element error estimate for
∣∣∣u− uh

∣∣∣
1
, I.

Let the assumptions of Theorem 4.10 be fulfilled. For the H1
0 (Ω)-seminorm of the error

the following estimate holds.
∣∣∣u− uh

∣∣∣
1
≤2CK

√
νmax

νmin

(
1 + CK√

νminβhis,ν

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ C2
K

2 νmin
inf

qh∈Qh
‖p− qh‖0, (4.23)

where βhis,ν depends on νmax like in (3.38).

Proof. See Remark 4.14.

For the sake of completeness we prove a similar estimate based only on the theory
with ν-independent norms, i.e., instead of using the norm equivalence on the result of
Theorem 4.10, the proof of this theorem is revisited and modified.

Theorem 4.16. Finite Element error estimate
∣∣∣u− uh

∣∣∣
1
, II.

Let the assumptions of Theorem 4.10 be fulfilled and let in addition the discrete inf-sup
condition (3.32) hold for V equipped with the ν-independent H1

0 -seminorm ‖ · ‖V = |·|1.
For the H1

0 -seminorm of the error the following estimate holds:
∣∣∣u− uh

∣∣∣
1
≤
(

1 + C2
Kνmax

νmin

)(
1 + 1

βhis

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ C2
K

2 νmin
inf

qh∈Qh
‖p− qh‖0. (4.24)

Note that here βhis is independent of ν (see Remark 4.17 for a discussion).
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Proof. Analogously to the proof of Theorem 4.10 the error equation (4.17) is derived
and one gets (4.19) by splitting the error again into the terms η and φh.
Using now ‖∇φh‖2

0 ≤ C2
Kν
−1
min‖φh‖2

ν yields

‖∇φh‖2
0 ≤ C2

Kν
−1
min

(∣∣∣
(
νD(η),∇φh

)∣∣∣+ 1
2
∣∣∣
(
∇ · φh, p− qh

)∣∣∣
)
. (4.25)

Now, the terms on the left-hand side have to be estimated again, this time by
∣∣∣
(
νD(η),∇φh

)∣∣∣ ≤ ‖νD(η)‖0‖∇φh‖0 ≤ ‖ν∇η‖0‖∇φh‖0. (4.26)

With Remark 3.8 it is
∣∣∣(∇ · φh, p− qh)

∣∣∣ ≤ ‖∇ · φh‖0‖p− qh‖0 ≤ ‖∇φh‖0‖p− qh‖0.

Thus, one finds

‖∇φh‖0 ≤ C2
Kν
−1
min

(
‖ν∇η‖0 + 1

2‖p− q
h‖0

)

≤ C2
Kν
−1
min

(
νmax‖∇η‖0 + 1

2‖p− q
h‖0

)
,

which again also holds for ‖∇φh‖0 = 0. Proceeding like in the proof of Theorem 4.10
one finds

‖∇(u− uh)‖0 ≤ ‖∇η‖0 + ‖∇φh‖0

≤
(

1 + C2
Kνmax

νmin

)
inf

Ihu∈V hdiv

‖∇η‖0 + C2
K

2νmin
inf

qh∈Qh
‖p− qh‖0.

We now use the best approximation property for the case that V is equipped with the
H1

0 (Ω)-seminorm formulated in Lemma 3.27, which gives

inf
Ihu∈V hdiv

‖∇η‖0 = inf
Ihu∈V hdiv

‖∇(u− Ihu)‖0

≤
(

1 + 1
βhis

)
inf

vh∈V h
‖∇(u− vh)‖0.

The resulting estimate, where all norms do not depend on the viscosity, is

‖∇(u− uh)‖0 ≤
(

1 + C2
Kνmax

νmin

)(
1 + 1

βhis

)
inf

vh∈V h
‖∇(u− vh)‖0

+ C2
K

2 νmin
inf

qh∈Qh
‖p− qh‖0.
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Remark 4.17. The estimates in Theorems 4.15 and 4.16.
The two estimates from Theorems 4.15 and 4.16 differ in the factor in front of the best
approximation error in the velocity space infvh∈V h

∣∣∣u− vh
∣∣∣
1
.

In (4.23) it is

2CK
√
νmax

νmin

(
1 + CK√

νminβhis,ν

)
= 2CK

√
νmax

νmin
+ 2C2

K

√
νmax

νminβhis,ν

whereas in (4.24) one has
(

1 + C2
Kνmax

νmin

)(
1 + 1

βhis

)
= 1 + C2

Kνmax

νmin
+ 1
βhis

+ C2
Kνmax

νminβhis
.

The main difference is that νmax seems to appear under the square root in the leading
term of (4.23),

2C2
K

√
νmax

νminβhis,ν
.

However, one has to keep in mind that the inf-sup constant βhis,ν depends on νmax like
βhis,ν = ν−1/2

max C
−1 (see (3.38)). Thus, for the leading term in (4.23) one gets

2C2
K

√
νmax

νminβhis,ν
= 2C2

KCνmax

νmin

and consequently there is no qualitative difference between both estimates. In this work
the estimate from Theorem 4.15 will be used.

Remark 4.18. Special case: Estimate (4.23) for constant ν.
Consider again the case of a constant viscosity ν(x) = νmin = νmax = ν, ∀x ∈ Ω.
For the estimate in Theorem 4.15 one finds

∣∣∣u− uh
∣∣∣
1
≤C̃ inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ ν−1 C
2
K

2 inf
qh∈Qh

‖p− qh‖0, (4.27)

where again the ν-dependence of the inf-sup constant like in (3.38) has been used and
C̃ = 2CK (1 + CKC) has been introduced for the sake of readability.
Note that this estimate differs from (4.22) only in the operator ∇ resp. D(·) used in the
norm and the constant CK . Thus, the theory developed so far is consistent.

Corollary 4.19. Finite element error estimate for ‖∇ · uh‖0.
With the assumptions of Theorem 4.10 it is

‖∇ · uh‖0 ≤2CK
√
νmax

νmin

(
1 + CK√

νminβhis,ν

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ C2
K

2 νmin
inf

qh∈Qh
‖p− qh‖0. (4.28)
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Proof. The solution u is divergence-free, i.e., ∇ · u = 0. With ‖∇ · v‖0 ≤ ‖∇v‖0 for
v ∈ H1

0 (Ω) (see Remark 3.8) one gets

‖∇ · uh‖0 = ‖∇ · (u− uh)‖0 ≤ ‖∇(u− uh)‖0.

Applying the estimate in Theorem 4.15 proves (4.28).

Remark 4.20. Special case: Estimate (4.28) for constant ν.
Proceeding as in Remark 4.18 one derives for estimate (4.28), in case of a constant
viscosity,

‖∇ · uh‖0 ≤C̃ inf
vh∈V h

∣∣∣u− vh
∣∣∣
1

+ ν−1C
2
K

2 inf
qh∈Qh

‖p− qh‖0. (4.29)

Remark 4.21. Scott-Vogelius space.
As mentioned in Section 3.4 there are pairs of spaces (e.g., the Scott-Voglius spaces)
where in addition to conformity V h ⊂ V also the stronger condition V h

div ⊂ Vdiv is
fulfilled. If this is the case one can make use of the fact that ∇ · φh = 0 for φh ∈ V h

div
which means that the second term in (4.19) vanishes. Thus, the estimates in Theorems
4.10 and 4.15 simplify as follows

‖u− uh‖ν ≤ 2
(

1 + CK
βhis,ν
√
νmin

)
inf

vh∈V h
‖u− vh‖ν , (4.30)

∣∣∣u− uh
∣∣∣
1
≤2CK

√
νmax

νmin

(
1 + CK√

νminβhis,ν

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1
. (4.31)

Furthermore, one observes that here a constant viscosity ν would not appear in the
estimates any longer and leads to two estimates that are qualitatively the same and
differ only in the deformation tensor:

‖D(u− uh)‖0 ≤ 2 (1 + CKC) inf
vh∈V h

‖D(u− vh)‖0, (4.32)

‖∇(u− uh)‖0 ≤2CK (1 + CKC) inf
vh∈V h

‖∇(u− vh)‖0. (4.33)

Theorem 4.22. Finite elemente error estimate for ‖p− ph‖0 .
Let the assumptions of Theorem 4.10 hold. The finite element error for the pressure p
can be estimated by

‖p− ph‖0 ≤
(

1 + 2CK
βhis,ν
√
νmin

)
inf

qh∈Qh
‖p− qh‖0 + 4

βhis,ν

(
1 + CK

βhis,ν
√
νmin

)
inf

vh∈V h
‖u− vh‖ν .

(4.34)

Proof. It is
‖p− ph‖0 ≤ ‖p− qh‖0 + ‖ph − qh‖0,

where qh ∈ Qh is arbitrary.
The finite element problem (4.13) can be rewritten as follows

b(vh, ph − qh) = 〈f ,vh〉V ′,V − 2aν(uh,vh)− b(vh, qh). (4.35)
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The conformity of the finite element spaces guarantees that the continuous problem (4.3)
is in particular fulfilled for all vh ∈ V h, i.e.,

2aν(u,vh) + b(vh, p) = 〈f ,vh〉V ′,V . (4.36)

One can now insert the left-hand side of (4.36) in (4.35)

b(vh, ph − qh) = 2aν(u,vh) + b(vh, p)− aν(uh,vh)− b(vh, qh)
= 2aν(u− uh,vh) + b(vh, p− qh), ∀qh ∈ Qh,vh ∈ V h.

With the discrete inf-sup condition (3.32) with ‖ · ‖V = ‖ · ‖ν and (3.14) one gets

‖ph − qh‖0 ≤
1
βhis,ν

sup
vh∈V h

b(vh, ph − qh)
‖vh‖ν

= 1
βhis,ν

sup
vh∈V h

2aν(u− uh,vh) + bh(vh, p− qh)
‖vh‖ν

≤ 1
βhis,ν

sup
vh∈V h

2‖u− uh‖ν‖vh‖ν + ‖∇vh‖0‖p− qh‖0
‖vh‖ν

≤ 1
βhis,ν

sup
vh∈V h

2‖u− uh‖ν‖vh‖ν + CKν
−1/2
min ‖vh‖ν‖p− qh‖0

‖vh‖ν
≤ 1
βhis,ν

(
2‖u− uh‖ν + CKν

−1/2
min ‖p− qh‖0

)
.

Applying the estimate from Theorem 4.10 yields

‖p− ph‖0 ≤ inf
qh∈Qh

(
‖p− qh‖0 + ‖ph − qh‖0

)

≤ inf
qh∈Qh

(
‖p− qh‖0 + 1

βhis,ν

(
2‖u− uh‖ν + CKν

−1/2
min ‖p− qh‖0

))

=

1 + CK

βhis,νν
1/2
min


 inf
qh∈Qh

‖p− qh‖0 + 2
βhis,ν
‖u− uh‖ν

≤

1 + CK

βhis,νν
1/2
min


 inf
qh∈Qh

‖p− qh‖0

+ 2
βhis,ν


2

1 + CK

βhis,νν
1/2
min


 inf

vh∈V h
‖u− vh‖ν + 1

2CKν
−1/2
min inf

qh∈Qh
‖p− qh‖0




=

1 + 2CK

βhis,νν
1/2
min


 inf
qh∈Qh

‖p− qh‖0 + 4
βhis,ν


1 + CK

βhis,νν
1/2
min


 inf

vh∈V h
‖u− vh‖ν .
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Remark 4.23. Estimate for ‖p− ph‖0 with ν-independent norms.
Again, for the sake of comparability one needs the norms on the right-hand side of the
estimate (4.34) to be independent of ν. Applying the norm equivalence (3.10) one gets

‖p− ph‖0 ≤
(

1 + 2CK
βhis,ν
√
νmin

)
inf

qh∈Qh
‖p− qh‖0

+ 4√νmax

βhis,ν

(
1 + CK

βhis,ν
√
νmin

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1
. (4.37)

Remark 4.24. Scott-Vogelius space.
Considering spaces with V h

div ⊂ Vdiv, the estimate for the finite element error of the
pressure does not change qualitatively. It is

‖p− ph‖0 ≤
(

1 + CK
βhis,ν
√
νmin

)(
inf

qh∈Qh
‖p− qh‖0 + 4

βhis,ν
inf

vh∈V h
‖u− vh‖ν

)
(4.38)

or respectively with ν-independent right-hand side

‖p− ph‖0 ≤
(

1 + CK
βhis,ν
√
νmin

)(
inf

qh∈Qh
‖p− qh‖0 + 4√νmax

βhis,ν
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

)
. (4.39)

The only change one observes, compared to the original estimates, is a factor in front of
the Korn constant CK .
Remark 4.25. Special case: Estimates (4.34), (4.37), (4.38) and (4.39) for con-
stant ν.
For a constant viscosity ν(x) = ν the estimates (4.34), (4.37), (4.38) and (4.39) become

‖p− ph‖0 ≤C1 inf
qh∈Qh

‖p− qh‖0 + ν C2 inf
vh∈V h

‖∇(u− vh)‖0, (4.40)

where C2 = 4C (1 + CCK) and C1 = (1 + 2CKC) in general, i.e., for the estimates
(4.34) and (4.37), and C1 = (1 + CkC) for Scott-Vogelius, i.e., the estimates (4.38) and
(4.39).
Note that all estimates are qualitatively the same in the case of a constant viscosity.
If the best approximation error of the velocity is not zero, large values of ν result in
large pressure error estimates which then scale linearly with ν as we will see later in the
simulations in Section 5.
Remark 4.26. The dual Stokes problem.
We want to obtain an estimate for the error of the velocity field in the L2-norm.
Of course, a simple estimate could be derived, e.g., from (4.23) with the Poincaré in-
equaltity,

‖u− uh‖0 ≤ C
∣∣∣u− uh

∣∣∣
1
.

However, this estimate is not optimal. Therefore we consider the dual Stokes problem.
Find (φf̂ , ξf̂ ) ∈ V ×Q such that for given f̂ ∈ L2(Ω)

−2∇ · (νD(φf̂ )) +∇ξf̂ = f̂ in Ω,
∇ · φf̂ = 0 in Ω, (4.41)
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with its weak form

2(νD(φf̂ ),D(v))− (∇ · v, ξf̂ ) = (f̂ ,v), ∀v ∈ V,
(∇ · φf̂ , q) = 0, ∀q ∈ Q. (4.42)

For the problem to be regular we need the mapping

(φf̂ , ξf̂ ) 7→ −2∇ · (νD(φf̂ )) +∇ξf̂

to be an isomorphism from H2(Ω) ∩ V ×H1(Ω) ∩Q to L2(Ω).

Theorem 4.27. Finite error estimate for ‖u− uh‖0.
With the assumptions of Theorem 4.10 and (φf̂ , ξf̂ ) being the regular solution of (4.41)
the following error estimate for the L2 norm of the finite element error holds

‖u− uh‖0 ≤
(

2 ‖u− uh‖ν + CK√
νmin

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂∈L2(Ω)

1
‖f̂‖0

[(
1 + CK√

νminβhis,ν

)
inf

φh∈V h
‖φf̂ − φh‖ν

+ CK√
νmin

inf
rh∈Qh

‖ξf̂ − rh‖0

]
. (4.43)

Proof. First of all, we make use of the definition of the L2-norm

‖u− uh‖0 = sup
f̂∈L2(Ω)

(f̂ ,u− uh)
‖f̂‖0

. (4.44)

For the weak formulation of the regular Stokes problem (4.42) we can choose v = u−uh
as test function and get

(f̂ ,u− uh) = 2
(
νD(φf̂ ),D(u− uh)

)
−
(
∇ · (u− uh), ξf̂

)
. (4.45)

Using the weak form of the Stokes problem (4.3) and the corresponding finite element
problem formulation (4.13) one finds for φh ∈ V h

div ⊂ V and qh ∈ Qh arbitrary

2
(
νD(φh),D(u− uh)

)
=2

(
νD(u),D(φh)

)
− 2

(
νD(uh),D(φh)

)

= (∇ · φh, p)︸ ︷︷ ︸
6=0, φh /∈Vdiv

+(f ,φh)− (∇ · φh, ph)︸ ︷︷ ︸
=0, φh∈V hdiv

−(f ,φh)

=(∇ · φh, p) = (∇ · φh, p− qh). (4.46)

Furthermore, it is
(∇ · φf̂︸ ︷︷ ︸

=0

, p− qh) = 0, ∀ qh ∈ Qh (4.47)

and
(∇ · (u− uh), rh) = 0, ∀ rh ∈ Qh ⊂ Q. (4.48)
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Extending now (4.45) by the help of those terms leads to

(f̂ ,u− uh) (4.46)= 2
(
νD(φf̂ ),D(u− uh)

)
−
(
∇ · (u− uh), ξf̂

)

−2
(
νD(φh),D(u− uh)

)
+ (∇ · φh, p− qh)

= 2
(
νD(φf̂ − φh),D(u− uh)

)
−
(
∇ · (u− uh), ξf̂

)

+(∇ · φh, p− qh)
(4.47),(4.48)= 2

(
νD(φf̂ − φh),D(u− uh)

)
−
(
∇ · (u− uh), ξf̂ − rh

)

+(∇ · (φh − φf̂ ), p− qh), (4.49)

for φh ∈ V h
div and qh, rh ∈ Qh. We now want to estimate this expression by the Cauchy-

Schwarz inequality, (3.11), (3.14), and the norm equivalence (3.9)
∣∣∣(f̂ ,u− uh)

∣∣∣ ≤2‖φf̂ − φh‖ν‖u− uh‖ν
+ ‖∇(u− uh)‖0‖ξf̂ − rh‖0 + ‖∇(φh − φf̂ )‖0‖p− qh‖0

≤2‖φf̂ − φh‖ν‖u− uh‖ν
+ CK√

νmin
‖u− uh‖ν‖ξf̂ − rh‖0 + CK√

νmin
‖φf̂ − φh‖ν‖p− qh‖0

≤
(

2‖u− uh‖ν + CK√
νmin
‖p− qh‖0

)
×
(
‖φf̂ − φh‖ν + CK√

νmin
‖ξf̂ − rh‖0

)
.

Note that in order to apply (3.14) we need the functions to be in H1
0 (Ω) which is the

case since φh ∈ V h
div ⊂ V, φf̂ ∈ H2 ∩ V, u ∈ V, uh ∈ V h ⊂ V and V = H1

0 (Ω).
The inequality in the last line holds since multiplying the brackets yields the non-negative
extra term

C2
K

νmin
‖p− qh‖0‖ξf̂ − rh‖0.

Now, the L2-norm of the velocity can be estimated as follows

‖u− uh‖0 ≤ sup
f̂∈L2(Ω)

1
‖f̂‖0

(
2‖u− uh‖ν + CK√

νmin
‖p− qh‖0

)

×
(
‖φf̂ − φh‖ν + CK√

νmin
‖ξf̂ − rh‖0

)
.

Since qh,φh and rh were chosen arbitrarily, this yields in particular

‖u− uh‖0 ≤
(

2‖u− uh‖ν + CK√
νmin

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂∈L2(Ω)

1
‖f̂‖0

(
inf

φh∈V hdiv

‖φf̂ − φh‖ν + CK√
νmin

inf
rh∈Qh

‖ξf̂ − rh‖0

)
.
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Using Lemma 3.26, i.e.,

inf
φh∈V hdiv

‖φf̂ − φh‖ν ≤
(

1 + CK√
νminβhis,ν

)
inf

φh∈V h
‖φf̂ − φh‖ν ,

one finally gets

‖u− uh‖0 ≤
(

2‖u− uh‖ν + CK√
νmin

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂∈L2(Ω)

1
‖f̂‖0

[(
1 + CK√

νminβhis,ν

)
inf

φh∈V h
‖φf̂ − φh‖ν

+ CK√
νmin

inf
rh∈Qh

‖ξf̂ − rh‖0

]
.

Remark 4.28. The appearance of the right-hand side ‖f̂‖0 of the dual problem.
When interpreting the estimate (4.43) it is of utmost importance to note that here the
norm of the right-hand side f̂ of the dual problem appears.
All previous estimates were independent of the right-hand side f of the Stokes problem,
i.e. f never appeared in the estimates.
This is important since the right-hand side f̂ depends on ν. A detailed discussion and
the analysis for the case that ν is constant can be found in Remark 4.31.

Remark 4.29. Estimate for ‖u− uh‖0 with ν-independent norms.
Using the norm equivalence (3.9), we can again derive an estimate where the norms on
the right-hand side do not depend on the viscosity ν

‖u− uh‖0 ≤
(

2√νmax
∣∣∣u− uh

∣∣∣
1

+ CK√
νmin

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂∈L2(Ω)

1
‖f̂‖0

[(
1 + CK√

νminβhis,ν

)
√
νmax inf

φh∈V h

∣∣∣φf̂ − φh
∣∣∣
1

+ CK√
νmin

inf
rh∈Qh

‖ξf̂ − rh‖0

]
. (4.50)

However, also here ‖f̂‖0 is not independent of ν.

Remark 4.30. Scott-Vogelius space.
Considering again the Scott-Vogelius finite element space one obtains the estimates

‖u− uh‖0 ≤2 ‖u− uh‖ν

× sup
f̂∈L2(Ω)

1
‖f̂‖0

[(
1 + CK√

νminβhis,ν

)
inf

φh∈V h
‖φf̂ − φh‖ν

]
(4.51)

39



4. The Stokes Equations

and

‖u− uh‖0 ≤2√νmax
∣∣∣u− uh

∣∣∣
1

× sup
f̂∈L2(Ω)

1
‖f̂‖0

[(
1 + CK√

νminβhis,ν

)
√
νmax inf

φh∈V h

∣∣∣φf̂ − φh
∣∣∣
1

]
. (4.52)

To prove these estimates one performs the proof of Theorem 4.27 and uses in (4.49) that
∇ ·

(
φh − φf̂

)
= 0 and ∇ ·

(
u− uh

)
= 0.

Remark 4.31. Special case: Estimates (4.43), (4.50), (4.51) and (4.52) for con-
stant viscosity and the role of ‖f̂‖0.
As mentioned already in Remark 4.28, the fact that the right-hand side ‖f̂‖0 of the dual
problem (4.41) appears in the estimates has to be considered carefully.
The crucial point here is to understand how the right-hand of the dual problem f̂ , its
solution φf̂ and the viscosity ν are connected.
Looking at the first equation in (4.41), there are two equivalent approaches to think
about varying ν.
1. Assume the right-hand side f̂ is fixed. If ν is varied, this leads to different solutions

φf̂ ,ν and ξf̂ ,ν that depend on ν.
2. Assume a solution φ is prescribed. If ν is varied, this must lead to a new right-hand

side f̂ν (and possibly also to a new pressure ξf̂ ,ν).
This becomes clear if one considers the problem with a constant viscosity

ν(x) = νmin = νmax = ν.

Let’s consider the second case, i.e., there is a prescribed solution φ, that solves (4.41)
for arbitrary values of ν, in particular for ν = 1.

−2∇ · (D(φ)) +∇ξf̂ ,1 = f̂1 in Ω. (4.53)

For an arbitrary ν, the same φ solves

−2∇ · (νD(φ)) +∇ξf̂ ,ν = f̂ν in Ω, (4.54)

and since ν is constant, this is equivalent to

−2∇ · (D(φ)) +∇
(
ν−1ξf̂ ,ν

)
= ν−1f̂ν in Ω. (4.55)

Comparing (4.53) and (4.55), this yields f̂ν = ν f̂1 and ξf̂ ,ν = ν ξf̂ ,1.
Consequently, the right-hand side f̂ν of the dual Stokes problem as well as the solution
for the pressure ξf̂ ,ν scale with ν.
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Using this knowledge for the estimates (4.50) and (4.52), one finds

‖u− uh‖0 ≤
(

2√νmax
∣∣∣u− uh

∣∣∣
1

+ CK√
νmin

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂ν∈L2(Ω)

1
‖f̂ν‖0

[(
1 + CK√

νminβhis,ν

)
√
νmax inf

φh∈V h

∣∣∣φ− φh
∣∣∣
1

+ CK√
νmin

inf
rh∈Qh

‖ξf̂ ,ν − rh‖0

]

=
(

2
√
ν
∣∣∣u− uh

∣∣∣
1

+ CK√
ν

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂1∈L2(Ω)

1
‖ν f̂1‖0

[
C1
√
ν inf

φh∈V h

∣∣∣φ− φh
∣∣∣
1

+ CK√
ν

inf
rh∈Qh

‖νξf̂ ,1 − rh‖0

]

=
(

2
∣∣∣u− uh

∣∣∣
1

+ ν−1CK inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂∈L2(Ω)

1
‖f̂‖0

[
C1 inf

φh∈V h

∣∣∣φ− φh
∣∣∣
1

+ CK inf
rh∈Qh

‖ξf̂ − rh‖0

]
. (4.56)

where C1 = (1 + CCK) . Note that the second factor does not depend on ν.
The estimate for the Scott-Vogelius finite element space simplifies to

‖u− uh‖0 ≤2
√
ν
∣∣∣u− uh

∣∣∣
1
× sup

f̂1∈L2(Ω)

1
‖ν f̂1‖0

[
C1
√
ν inf

φh∈V h

∣∣∣φf̂ − φh
∣∣∣
1

]

=2
∣∣∣u− uh

∣∣∣
1
× sup

f̂∈L2(Ω)

1
‖f̂‖0

[
C1 inf

φh∈V h

∣∣∣φf̂ − φh
∣∣∣
1

]
. (4.57)

Thus, there is no ν-dependence of the error for the Scott-Vogelius element.
However, if the viscosity is not constant it is not clear how the right-hand side f̂ behaves.
The above considerations give only an idea of what can be expected.
In the following, we will use the notations

1
‖f̂‖0

= C

ζ1(ν) and ‖ξf̂‖H1(Ω) = ζ2(ν)‖ξf̂ ,1‖H1(Ω),

in order to account for the fact that, in general, ‖f̂‖0 and ξf̂ grow in ν in a non-linear
manner.

Corollary 4.32. Orders of Convergence for Certain Spaces.
With the estimates derived so far the orders of convergence for certain pairs of finite
element spaces can be derived. Let Ω ⊂ Rd be a bounded domain with polyhedral and
Lipschitz boundary provided with a regular and quasi-uniform family of triangulations
{T h}. If (u, p) ∈ Hk+1(Ω) ∩ V ×Hk(Ω) ∩Q is the solution of the Stokes problem (4.3)

41



4. The Stokes Equations

then for the inf-sup-stable pairs of Taylor-Hood element Pk/Pk−1, Qk/Qk−1, k ≥ 2 intro-
duced in Section 3.4 and the pairs finite element spaces Qk/P

disc
k−1, k ≥ 2, the following

estimates hold3:

‖u− uh‖ν ≤ Chk
(
νmax√
νmin
‖u‖Hk+1(Ω) + 1√

νmin
‖p‖Hk(Ω)

)
, (4.58)

∣∣∣u− uh
∣∣∣
1
≤ Chk

(
νmax

νmin
‖u‖Hk+1(Ω) + 1

νmin
‖p‖Hk(Ω)

)
, (4.59)

‖∇ · uh‖0 ≤ Chk
(
νmax

νmin
‖u‖Hk+1(Ω) + 1

νmin
‖p‖Hk(Ω)

)
, (4.60)

‖p− ph‖0 ≤ Chk
(
νmax

√
νmax

νmin
‖u‖Hk+1(Ω) +

√
νmax

νmin
‖p‖Hk(Ω)

)
. (4.61)

For the Scott-Vogelius finite element space Pk/P disc
k−1, k ≥ d, the orders of convergence

are the same but the terms in brackets change and of course, the divergence of uh is
zero since uh ∈ V h

div ⊂ Vdiv . One gets

‖u− uh‖ν ≤ Chk
(
νmax√
νmin
‖u‖Hk+1(Ω)

)
, (4.62)

∣∣∣u− uh
∣∣∣
1
≤ Chk

(
νmax

νmin
‖u‖Hk+1(Ω)

)
, (4.63)

‖∇ · uh‖0 = 0. (4.64)
The estimate for the finite element error of the pressure is exactly the same as (4.61).
Proof. In order to derive the estimates (4.58) - (4.61) one has to estimate the best
approximation errors occurring in the estimates of Remark 4.12, Theorem 4.15, Corollary
4.19, and Remark 4.23. Taking into account that the interpolation error cannot be better
than the best approximation error, one can apply the interpolation error estimates for
the finite element spaces Pk, Pk−1, Qk, Qk−1 see Theorem B.4 in the appendix.4
Starting with estimate (4.21), this yields for the finite element error in the ν-norm

‖u− uh‖ν ≤2 ν1/2
max


1 + CK

βhis,νν
1/2
min


 inf

vh∈V h
‖∇(u− vh)‖0 + 1

2CKν
−1/2
min inf

qh∈Qh
‖p− qh‖0

≤C1ν
1/2
max

(
1 + C2

√
νmax

νmin

)
‖D1(u− IKu)‖0 + C3

1√
νmin
‖D0(p− IKp)‖0

B.4
≤Chk

(
ν1/2

max

(
1 + C2

√
νmax

νmin

)
‖u‖Hk+1(Ω) + 1√

νmin
‖p‖Hk(Ω)

)

≤Chk
(
νmax√
νmin
‖u‖Hk+1(Ω) + 1√

νmin
‖p‖Hk(Ω)

)
.

3The estimates do also hold for the finite element spaces P bubble
k /Pk, k = 1 and P bubble

k /P disc
k−1 defined

in [6] on p. 55 and p. 74, that will not be introduced in this work.
4For the pair Qk/P

disc
k−1 proving the optimal interpolation error is not straightforward, see [6], pp. 88 for

a discussion. In this work, only such grids will be considered that the optimality can be guaranteed.
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Note that terms of lower order have been neglected, i.e., one uses the estimate

ν1/2
max

(
1 + C2

√
νmax

νmin

)
‖u‖Hk+1(Ω) ≤ C

νmax√
νmin
‖u‖Hk+1(Ω)

which holds asymptotically for large values of νmax.
The other estimates (4.59) - (4.63) are derived in an analogous way.

Corollary 4.33. Order of convergence for the L2-norm of the velocity.
For determining the order of convergence for the L2-error of the velocity, the considera-
tions from Remark 4.31 have to be taken into account again.
If the dual Stokes problem (4.41) has a unique solution

(
φ, ξf̂ ,ν

)
it is

‖u− uh‖0 ≤Chk+1 1
ζ1(ν)

√
νmax

νmin

(
νmax

νmin
‖u‖Hk+1 + 1

νmin
‖p‖Hk(Ω)

)

×
(
νmax‖φ‖H2(Ω) + ζ2(ν)‖ξf̂ ,1‖H1(Ω)

)
, (4.65)

for the Taylor-Hood element Q2/Q1 and the finite element pair Q2/P
disc
1 and

‖u− uh‖0 ≤ Chk+1 1
ζ1(ν)

(
νmax

νmin

)3/2
νmax‖u‖Hk+1 × ‖φ‖H2(Ω), (4.66)

for the Scott-Vogelius element.

Proof. Let’s write (4.50) again with explicit ν-dependence.

‖u− uh‖0 ≤
(

2√νmax
∣∣∣u− uh

∣∣∣
1

+ CK√
νmin

inf
qh∈Qh

‖p− qh‖0

)

× sup
f̂ν∈L2(Ω)

1
‖f̂ν‖0

[(
1 + CK√

νminβhis,ν

)
√
νmax inf

φh∈V h

∣∣∣φ− φh
∣∣∣
1

+ CK√
νmin

inf
rh∈Qh

‖ξf̂ ,ν − rh‖0

]
. (4.67)

For the second factor in (4.67) interpolation error estimates can be applied for the best
approximation errors of φ and ξf̂ ,ν .
Note that for the dual problem one requires φ to be in H2(Ω) and ξf̂ ,ν to be in H1(Ω)
such that

inf
φh∈V h

‖φ− φh‖ν ≤ ‖D1(φ− IKφf̂ )‖0 ≤ C̃h2−1‖φ‖H2(Ω) ≤ Ch‖φ‖H2(Ω)

and

inf
rh∈Qh

‖ξf̂ ,ν − rh‖ ≤ ‖D0(ξf̂ ,ν − IKξf̂ ,ν)‖0 ≤ C̃h1−0‖ξf̂ ,ν‖H1(Ω) ≤ Ch‖ξf̂ ,ν‖H1(Ω).
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This results in the additional power of h in estimate (4.65) as the following transforma-
tions of (4.67) show:

‖u− uh‖0 ≤
(

2√νmax
∣∣∣u− uh

∣∣∣
1

+ 1√
νmin

Chk‖p‖Hk(Ω)

)

× C

ζ1(ν)

[(
1 + C

√
νmax

νmin

)
√
νmaxCh‖φ‖H2(Ω) + 1√

νmin
Ch‖ξf̂ ,ν‖H1(Ω)

]

≤
(

2√νmax

(
Chk

(
νmax

νmin
‖u‖Hk+1(Ω) + 1

νmin
‖p‖Hk(Ω)

))
+ Chk

1√
νmin
‖p‖Hk(Ω)

)

× C

ζ1(ν)

[
Ch

(
1 + C

√
νmax

νmin

)
√
νmax‖φ‖H2(Ω) + Ch

ζ2(ν)√
νmin
‖ξf̂ ,1‖H1(Ω)

]

≤Chk+1 1
ζ1(ν)

(
√
νmax

νmax

νmin
‖u‖Hk+1 +

√
νmax

νmin
‖p‖Hk(Ω)

)

×
(
νmax√
νmin
‖φ‖H2(Ω) + ζ2(ν)√

νmin
‖ξf̂ ,1‖H1(Ω)

)

=Chk+1 1
ζ1(ν)

√
νmax

νmin

(
νmax

νmin
‖u‖Hk+1 + 1

νmin
‖p‖Hk(Ω)

)

×
(
νmax‖φ‖H2(Ω) + ζ2(ν)‖ξf̂ ,1‖H1(Ω)

)
.

Note that terms of lower order have been neglected again and it was made use of the
notations

1
‖f̂‖0

= C

ζ1(ν) and ‖ξf̂‖H1(Ω) = ζ2(ν)‖ξf̂ ,1‖H1(Ω).

Remark 4.34. On the estimates (4.65) and (4.66).
It is hardly possible to draw conclusions from the estimates (4.65) and (4.66) on how
the error ‖u − uh‖0 depends on different viscosity functions since the functions ζ1 and
ζ2 are unknown.
However, for constant ν this is possible and gives an idea on the behavior for non-
constant viscosities. With ζ1 = ζ2 = νmin = νmax = ν, one has for the Talyor-Hood
element and Q2/P

disc
1

‖u− uh‖0 ≤Chk+1
(
‖u‖Hk+1 + 1

ν
‖p‖Hk(Ω)

)
×
(
‖φf̂‖H2(Ω) + ‖ξf̂ ,1‖H1(Ω)

)
, (4.68)

and for the Scott-Vogelius element,

‖u− uh‖0 ≤ Chk+1‖u‖Hk+1 × ‖φf̂‖H2(Ω). (4.69)

Remark 4.35. ν-dependence of the solution (u, p) in estimates (4.58) - (4.66)
and (4.68) - (4.69).
In general, in the estimates (4.58) - (4.66) and (4.68) - (4.69) there is an additional
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implicit ν-dependence hidden in the solution (u, p) which, of course, is not independent
of ν in general. However, in the simulations presented in this work, this can be ignored as
the solution was prescribed and only the right-hand side changed for different viscosity
functions (see Section 5.1 and Remark 4.31).
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5. Numerical Studies
5.1. Implemented Examples
The theory of the Stokes problem with variable viscosity is tested with a steady-state
example where the solution is prescribed in the unit square (0, 1)2 and homogeneous
Dirichlet boundary conditions are imposed.
As the velocity field has to be divergence-free one defines it as

u =
(
u1
u2

)
=
(
∂yψ
−∂xψ

)
, (5.1)

where ψ is the stream function

ψ(x, y) = 100x2(1− x)2y2(1− y)2. (5.2)

Thus, it is

u(x, y) = 200
(
x2(1− x)2y(1− y)(1− 2y)
−x(1− x)(1− 2x)y2(1− y)2

)
, (5.3)

and as required
∇ · u = ∂xu1 + ∂yu2 = ∂xyψ − ∂yxψ = 0,

by the Theorem of Schwarz. The equations are equipped with homogeneous Dirichlet
boundary conditions, i.e., u = g = 0 on Γ such that the compatibility condition

0 =
∫

Ω
∇ · u(x) dx =

∫

Γ
(u · n)(s) ds =

∫

Γ
(g · n)(s) ds, (5.4)

is fulfilled. Figure 1 shows the velocity field u(x, y) of the example.

0 0.2 0.4 0.6 0.8 1
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0.4
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0.8
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Figure 1: Velocity field u(x, y) on the unit square (0, 1)2.

Since the boundary conditions are chosen to be of Dirichlet type the pressure is unique
only up to an additive constant and one, thus, needs a further condition in order to
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determine this constant. Here, one requires that the mean integral value of the pressure
vanishes, ∫

Ω
p(x) dx = 0,

i.e., the pressure is from L2
0(Ω). In the present example it is chosen to be

p(x, y) = 10
((
x− 1

2

)3
y2 + (1− x)3

(
y − 1

2

)3)
. (5.5)

A surface and a contour plot of the pressure field are shown in Figure 2.
In the simulations, the solution does not depend on the viscosity, i.e., u and p are
prescribed and if ν is varied this leads to a new right-hand side f . (This aspect was
discussed in Remark 4.31.)

Figure 2: Pressure field.

In order to analyze the influence of the viscosity function ν(x) on the finite element
solution of the Stokes problem (4.13), different viscosity functions will be considered in
the following.
All functions are parametrized by two values, νmin and νmax. The simplest one is a
function that is linear in both arguments x and y and reaches its minimal value νmin in
(0, 0) and νmax in (1, 1). It is given by

ν1(x, y) = νmin + (νmax − νmin)xy (5.6)

and we will refer to it as linear.
Three more function types are defined which describe a fluid where the highest viscosity
νmax is reached in the middle, i.e., at (0.5, 0.5), and the lowest viscosity values can be
found on the boundary of the unit square (see Figure 3). These viscosity functions are
given by

ν2(x, y) =νmin + (νmax − νmin)16x(1− x)y(1− y), (5.7)
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referred to as quadratic. Another function type is given by

ν3,4(x, y) =νmin + (νmax − νmin)16x(x− 1)y(y − 1)×

×
(

0.5 + arctan
(
κ (r − (x− 0.5)2 − (y − 0.5)2)

π

))
, (5.8)

where we set r = 0.1 for ν3 (atan) and r = 0.01 for ν4 (atan(steep)) and the scaling
factor κ = 2000 resp. 200 for the function to take values in the range [νmin, νmax].5
The last viscosity that decays exponentially is defined as

ν5(x, y) =νmin + (νmax − νmin) exp
(
−1013

(
(x− 0.5)10 + (y − 0.5)10

))
, (5.9)

and referred to as exp.

5Note that the value νmax is taken only approximatively.
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Figure 3: Surface plots (top) and contour plots (bottom) of the linear and mountain-
shaped viscosity functions with νmin = 0.1 and νmax = 1.
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5.2. The Error Estimates
In order to check the error estimates (4.58) - (4.65) derived in Section 4.3 one solves the
finite element problem for the prescribed solution defined in Section 5.1 on a sequence
of subsequently refined grids and measures the errors of those finite element solutions to
the prescribed one. This is done for two different pairs of finite element spaces, namely
1. the element6 Q2/P

disc
1 and

2. the Scott-Vogelius element P2/P
disc
1 ,

mentioned already in Section 3.4.
When implementing7 those two types of finite element spaces one has to pay attention
to the shape of the initial grid and the type of refinement that determines the number
of degrees of freedom for different levels of grid refinement.
The table in Figure 4 gives an idea of the exponential growth of the degrees of freedom.
For Q2/P

disc
1 the initial grid is the unit square. One regular refinement yields a 2 × 2

grid, depicted in Figure 5 (left), with 25 degrees of freedom for the two components of
the finite element velocity uh, i.e, 50 degrees of freedom in total (compare to the leftmost
column in the table in 4 ). The initial grid for P2/P

disc
1 , depicted in Figure 5 (right), is

the unit square devided into two triangles that have then been refined barycentrically
into six triangles.

Q2/P disc
1 P2/P disc

1

Level d.o.f. velocity d.o.f. pressure d.o.f. velocity d.o.f. pressure

1 50 12 114 72
2 162 48 418 288
3 578 192 1 602 1 152
4 2 178 768 6 274 4 608
5 8 450 3 072 24 834 18 432
6 33 282 12 288 98 818 73 728
7 132 098 49 152 394 242 294 912
8 526 338 196 608 1 574 914 1 179 648
9 2 101 250 786 432 6 295 554 4 718 592
10 8 396 802 3 145 728 25 174 018 18 874 368

Figure 4: Degrees of freedom for two different pairs of finite element spaces Q2/P
disc
1

(left) and P2/P
disc
1 (right).

6This element is similar to the popular Taylor-Hood element as far as exactness is concerned and the
discontinuous pressure is advantageous for the implemented multgrid solver.

7Here, the implementation Mathematics and object oriented Numerics in Magdeburg (MooNMD) by
Prof. V. John is used.
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Figure 5: Initial grids for Q2/P
disc
1 (left) and P2/P

disc
1 (right).

5.3. Influence of Different Viscosity Functions on the Error
‖u− uh‖1

As already mentioned, looking at the error estimates derived in Section 4.3 one does not
expect the error to depend on the shape of the viscosity function, i.e., the gradient or
higher derivatives of ν. This is also what can be observed in the simulations, as Figure 6
shows for

∣∣∣uh − u
∣∣∣
1
and Level 7. Here, νmin is set to 0.1 and νmax = 1 and the problem

is solved for Q2/P
disc
1 .

The errors differ only by 10−7.
However, one observes that the errors for problems where the viscosity functions behave
rather roughly (atan (steep)) are slightly larger than those of problems with mildly
varying viscosities like linear, in accordance with the intuition.
More functions have been tested, e.g.,one where νmax is reached not in the center of
the square but at (0.8, 0.8) or one where the maximum is reached on the boundary and
the minimum at (0.5, 0.5). However, no significant consequences for the finite element
errors could be observed in any of the norms. Therefore, only the five viscosity functions
introduced in Section 5.1 will be considered in the remainder of this work.
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Figure 6: Finite element error in Level 7 of the velocity in the H1
0 (Ω)-seminorm

∣∣∣u− uh
∣∣∣
1

in finite element spaces Q2/P
disc
1 for νmin = 0.1 and νmax = 1.
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5.4. Order of Convergence: ‖u− uh‖ν
As explained several times before, comparing the finite element error of the velocity field
in the ν-norm for different viscosities does not make sense, since the norm of the error
grows with the values ν(x) takes.
However, one can plot the errors to see the order of convergence given in (4.58), which
is 2 since the used pair of finite element spaces is Q2/P

disc
1 , i.e., k = 2.

In Figure 7, the error in the ν-norm is depicted for different values of νmax and νmin
in ν3(x, y) (atan), while the corresponding other value has been set to νmax = 1 resp.
νmin = 0.1.8
As expected the error takes large values when νmax is increased, it grows by the factor√
νmax.
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Figure 7: Order of convergence for the finite element error of the velocity in the ν-norm
‖u−uh‖ν in finite element spaces Q2/P

disc
1 for varying νmin (left) and varying

νmax (right) in ν3(x, y) (atan).

5.5. Order of Convergence:
∣∣∣u− uh

∣∣∣1
Figures 8 and 9 show the correct order of convergence for the error in the H1

0 (Ω)-
seminorm for the problem with the linear viscosity ν1(x, y).
One cannot observe significant differences between the different finite element spaces
Q2/P

disc
1 and Scott-Vogelius.

Furthermore, the dependence on νmax and νmin predicted in (4.59) cannot directly be
observed. One can see however, that the variation of νmin has a larger influence on
the solution in the spaces Q2/P

disc
1 than for the Scott-Vogelius space (right column in

the Tables in Figures 8 and 9) which is consistent with the theory, i.e., the additional
νmin-dependence in (4.59) compared to (4.63).
This is illustrated also in the checkerboard plots in Figures 23 and 26, see Section 5.9.

8If not explicitly said otherwise, the values of νmin and νmax are always set to those values if fixed.
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Level 10 growth
i νmin erri =

∣∣∣u − uh
∣∣∣
1

erri+1/erri

1 10−1 6.7968 · 10−6

2 10−3 6.7984 · 10−6 1.0002
3 10−5 6.9821 · 10−6 1.0270
4 10−7 8.5557 · 10−6 1.2254
5 10−9 8.8498 · 10−6 1.0344

Figure 8: Order of convergence for the finite element error of the velocity in the H1
0 -

seminorm
∣∣∣u− uh

∣∣∣
1
in finite element spaces Q2/P

disc
1 for different values νmin

in the linear viscosity function ν1(x, y) and νmax = 1. The table on the right
reveals a small growth in the errors for decreasing νmin and the corresponding
error growth.
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Level 10 growth
i νmin erri =

∣∣∣u − uh
∣∣∣
1

erri+1/erri

1 10−1 4.4465 · 10−5

2 10−3 4.4487 · 10−5 1.0005
3 10−5 4.4561 · 10−5 1.0017
4 10−7 4.4574 · 10−5 1.0003
5 10−9 4.4575 · 10−5 1.0000

Figure 9: Order of convergence for the finite element error of the velocity in the H1
0 -

seminorm
∣∣∣u− uh

∣∣∣
1
for Scott-Vogelius finite element space for different values

νmin in the linear viscosity function ν1(x, y) and νmax = 1. The table on
the right reveals a small growth in the errors for decreasing νmin and the
corresponding error growth.

That νmin has a stronger influence than νmax on the evolution of the error in Q2/P
disc
1

is illustrated in Figure 10 for the problem with exponential viscosity ν5(x, y).
While changing νmax has only a small impact on the error

∣∣∣u− uh
∣∣∣
1
, (see table in Figure

10,) it increases visibly with decreasing νmin. However it can be expected that the errors
become rather independent of νmin for higher levels of grid refinement, such that one
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observes a similar behavior as for varying νmax.
It was not possible to do the simulations for finer grids since the computing capac-
ity needed for those simulations was not available. Iterative solvers used for atan,
quadratic and linear could not be used here, due to the difficulties they had with the
rough shape of the function.
For a discussion of this issue it is referred to Section 6.1. However,
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Level 7 growth
i νmax erri =

∣∣∣u − uh
∣∣∣
1

erri+1/erri

1 1 4.3508 · 10−4

2 10 4.3528 · 10−4 1.0005
3 102 4.3621 · 10−4 1.0021
4 103 4.3715 · 10−4 1.0022
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Level 7 growth
i νmin erri =

∣∣∣u − uh
∣∣∣
1

erri+1/erri

1 10−1 4.3508 · 10−4

2 10−2 4.3689 · 10−4 1.0042
3 10−3 5.7581 · 10−4 1.3180
4 10−4 3.7842 · 10−3 6.5719

Figure 10: Order of convergence for the finite element error of the velocity in the H1
0 -

seminorm
∣∣∣u− uh

∣∣∣
1
in finite element spaces Q2/P

disc
1 for the exponential vis-

cosity function ν5(x) with parameters νmin = 0.1 and variable νmax (top) and
νmax = 1 and variable νmin (bottom). The table in the top reveals that for
the highest level there is a small growth also for increasing νmax whereas the
error growth for decreasing νmin is visible already from the bottom left figure.

For the same problem with the Scott-Vogelius finite element space one can see in
Figure 11 that the finite element errors

∣∣∣u− uh
∣∣∣
1
grow linearly in ν−1

min resp. νmax, as
predicted in (4.63).
However, one can also observe a higher order of convergence 3 and not the predicted
optimal order 2. This problem will be discussed in Section 6.1.
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Figure 11: Order of convergence for the finite element error of the velocity in the H1
0 -

seminorm
∣∣∣u− uh

∣∣∣
1
in Scott-Vogelius finite element space for the exponential

viscosity function ν5(x, y) defined in (5.9) and increasing νmax with νmin =
10−4 (left) and decreasing νmin with νmax = 103 (right).

For a constant viscosity and the finite element spaces Q2/P
disc
1 the error grows linearly

in ν−1 like stated in (4.27) and (4.59) with νmin = νmax. For values ν > 1 no effect can
be observed which makes sense since then the first term in (4.27) determines the size of
the error.
The left plot in Figure 12 as well as Figure 13 show these findings.
However, also in this case the optimal order of convergence cannot be seen but a higher
one, like the gray dashed line illustrates in Figure 12 (left).
For the Scott-Vogelius space all errors converge with the optimal order 2 and no influence
of ν is visible. This is consistent with the estimates (4.33) and (4.63).
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Figure 12: Order of convergence for the finite element error of the velocity in the H1
0 -

seminorm
∣∣∣u− uh

∣∣∣
1
for the special case of a constant viscosity ν in finite

element spaces Q2/P
disc
1 (left) and for the Scott-Vogelius finite element space

(right).
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Figure 13: Error
∣∣∣u− uh

∣∣∣
1
for level 10 and constant ν. The blue line shows how the

error depends on ν in the spaces Q2/P
disc
1 . For comparison the light green

line with slope ν−1 has been plotted.
The dark green line shows the ν-independence of the error for the Scott-
Vogelius space.

5.6. Order of Convergence: ‖∇ · uh‖0

As expected, the L2(Ω)-norm of the divergence of the velocity for Q2/Q1, behaves like∣∣∣u− uh
∣∣∣
1
. For the problem with linear viscosity ν1(x), Figure 14 shows the optimal

order of convergence 2 and a slight increase of the error when νmin is decreased.
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Level 10 growth
i νmin erri = ‖∇ · uh‖0 erri+1/erri

1 10−1 4.8060 · 10−6

2 10−3 4.8071 · 10−6 1.0002
3 10−5 4.9244 · 10−6 1.0244
4 10−7 5.8542 · 10−6 1.1888
5 10−9 6.0173 · 10−6 1.0279

Figure 14: Order of convergence for the divergence of the finite element solution in the
L2(Ω)-norm ‖∇ · uh‖0 in finite element spaces Q2/P

disc
1 (left) for different

values of νmin in the linear viscosity function ν1(x, y) defined in (5.6). The
table reveals a small growth in the errors for decreasing νmin.
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5.7. Order of Convergence: ‖p− ph‖0

Looking at estimate (4.61), one expects the finite error estimate of the pressure field to
grow when νmax is increased. In Figure 15 the finite element errors of the pressure field
for a Stokes problem with linear viscosity ν1(x) are shown. For νmax = 1 one obtains
the same νmin-independent errors (left) whereas different values of νmax for νmin = 0.1
(right) show that the error grows by the same factor as νmax.
The optimal error of convergence 2 can be observed only for νmax = 1 (left) while for
large values of νmax a higher order of error reduction, 3, occurs again.
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Figure 15: Order of convergence for the finite element error of the pressure field in the
L2(Ω)-norm ‖p− ph‖0 in finite element spaces Q2/P

disc
1 for varying νmin (left)

and varying νmax (right) in the linear viscosity function ν1(x, y) defined in
(5.6).

In Figure 16 the growth of the error ‖p − ph‖0 for different values of the parameters
νmax and νmin of the quadratic viscosity function ν2(x) is shown. As expected the error
grows only for large values of νmax. Furthermore, in the plot one cannot see a νmin-
dependence of the error which could be expected from (4.61), albeit not as strong as the
dependence on νmax.
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Figure 16: Error ‖p−ph‖0 for level 10 in Q2/P
disc
1 and varying values of νmin and νmax in

the quadratic viscosity function ν2(x, y) defined in (5.7). The blue line shows
how the error depends on νmin when νmax = 1 and the red one indicates the
dependence on νmax for fixed νmin = 0.1.

In Figures 17 and 18 similar behavior of the finite element error of the pressure field
is illustrated for the problem with constant viscosity ν(x) = ν.
The plots show that the error grows linearly in ν for ν > 1 for Q2/P

disc
1 (Figure 17) as

well as for the Scott-Vogelius element (Figure 18), as stated in in estimates (4.40) and
(4.61) for νmin = νmax = ν.
This linear growth in ν is illustrated also in the plot on the right in Figure 17 forQ2/P

disc
1 .
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Figure 17: Order of convergence for the finite element error of the pressure field in the
L2(Ω)-norm ‖p − ph‖0 for the special case of a constant viscosity ν in finite
element spaces Q2/P

disc
1 (left) and growth of the error for level 10 with respect

to the constant viscosity ν (left). The green line shows that the error grows
linearly in ν for ν > 1.

For ν > 1, the left plot in Figure 17 indicates a higher order of error reduction than
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the proved order of convergence 2 for Q2/P
disc
1 whereas the plot as well as the table in

Figure 18 show the optimal order of convergence for the Scott-Vogelius element. Again,
we refer to Section 6.1 for a discussion of this phenomenon.
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errLevel = ‖p− ph‖0 order p

ν Level 8 Level 9 ln(err9/err8)
ln(2)

10−8 3.86 · 10−6 9.65 · 10−7 1.99998
10−4 3.87 · 10−6 9.67 · 10−7 1.99995
100 2.52 · 10−3 6.30 · 10−4 1.99890
104 2.52 · 101 6.30 · 100 1.99890
106 2.52 · 103 6.30 · 102 1.99890

Figure 18: Order of convergence for the finite element error of the pressure field in the
L2(Ω)-norm ‖p − ph‖0 for the special case of a constant viscosity ν for the
Scott-Vogelius finite element space (right).

5.8. Order of Convergence: ‖u− uh‖0

For ν(x) = ν2(x), Figure 19 confirms the order of convergence9 3 for ‖u−uh‖0 that was
stated in estimate (4.65) for Q2/P

disc
1 .

The variation of the values of νmin and νmax has little influence on the size of the errors.
The dependence of the estimate (4.65) on the viscosity therefore seems not to be sharp.
In Figure 20, one can see how the error ‖u− uh‖0 changes with different values of νmin
(blue) and νmax (red). Note that the influence of νmin on the error is stronger than
that of νmax. However, the influence of both parameters is, as mentioned already, much
smaller than expected.
A detailed discussion can be found in Section 6.1.

9It is k = 2.
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Level 10 growth
i νmin erri = ‖u− uh‖0 erri+1/erri

1 10−1 1.0245 · 10−9

2 10−3 1.0989 · 10−9 1.0727
3 10−5 1.4843 · 10−9 1.3507
4 10−7 1.4986 · 10−9 1.0096

Figure 19: Order of convergence for the finite element error of the velocity field in the
L2(Ω)-norm ‖u−uh‖0 in finite element spaces Q2/P

disc
1 for varying νmin in the

quadratic viscosity function ν2(x, y) defined in (5.7) (left). The table reveals
a small growth in the errors for decreasing νmin.

1e00 1e01 1e02 1e03 1e04 1e05  
1

1.1

1.2

1.3

1.4

1.5

1.6 x 10−9

νmax

Le
ve

l 1
0,

 ||
 u
−u

h || 0

 

 
|| u−uh||0, νmax= 1e00

|| u−uh||0, νmin= 1e−01

1e−02 1e−03 1e−04 1e−05 1e−06  νmin

Student Version of MATLAB

Figure 20: Error ‖u−uh‖0 for level 10 in Q2/P
disc
1 and varying values of νmin and νmax in

the quadratic viscosity function ν2(x, y) defined in (5.7) . The blue line shows
how the error depends on νmin while the red one indicates the dependence on
νmax.

In contrast, for the exp viscosity function ν5(x, y), defined in (5.9), the influence of
the values chosen for νmin and νmax seems to be of importance on coarse grids, i.e., for
the levels 1 to 5.
On fine grids, one cannot see the influence of varying νmax any longer, whereas different
νmin lead to different errors also for levels 6 and 7.
However for higher levels, one could also expect the errors to converge like those of
νmin = 10−1 and νmin = 10−3 or those of different values for νmax.
For the Scott-Vogelius space similar behavior can be found. The corresponding plots
are omitted for the sake of brevity.
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Figure 21: Order of convergence for the finite element error of the velocity field in the
L2(Ω)-norm ‖u−uh‖0 in finite element spaces Q2/P

disc
1 for varying νmin (left)

and νmax (right) in the exp viscosity function ν5(x, y) defined in (5.9).

For the special case of a constant viscosity function ν(x) = ν estimate (4.65) becomes
(4.68),

‖u− uh‖0 ≤Chk+1
(
‖u‖Hk+1 + 1

ν
‖p‖Hk(Ω)

)
×
(
‖φf̂‖H2(Ω) + ‖ξf̂ ,1‖H1(Ω)

)
,

as was discussed in Remark 4.34. In Figure 22, one sees how the error grows for small
values of ν and scales linearly with ν−1.
As expected, varying ν > 1 has no effect on the error since this leads only to ν−1‖p‖Hk(Ω)
being dominated by the other terms in estimate (4.68).
For the Scott-Vogelius element, estimate (4.66) simplifies to (4.69),

‖u− uh‖0 ≤ Chk+1‖u‖Hk+1 × ‖φf̂‖H2(Ω). (5.10)

According to the estimate one can observe the ν-independence of the error ‖u−uh‖0 in
Figure 22 (right).
This effect is illustrated also by the plot in Figure 13 for

∣∣∣u− uh
∣∣∣
1
. It confirms the

findings in the corresponding estimates (4.59) and (4.63), where we set νmin = νmax = ν.
However, it stays unclear why the ν-dependence for the Taylor-Hood element can be
observed only in combination with a higher order of error reduction (left plot in Figure
22 ). (See Section 6.1 for a discussion.)
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Figure 22: Order of convergence for the finite element error of the pressure field in the
L2(Ω)-norm ‖u− uh‖0 for the special case of a constant viscosity ν in finite
element spaces Q2P

disc
1 (left) and for the Scott-Vogelius finite element space

(right).

5.9. Scale Invariance of the H1
0(Ω)-seminorm of the Finite Element

Error of the Velocity for the Scott-Vogelius Element
For the Scott-Vogelius space, the error

∣∣∣u− uh
∣∣∣
1
depends only on the ratio νmax

νmin
rather

than on the specific choices for νmin and νmax which can be seen in estimate (4.31) that
becomes ∣∣∣u− uh

∣∣∣
1
≤ 2CK

√
νmax

νmin

(
1 + CCK

√
νmax

νmin

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1
, (5.11)

and in estimate (4.63).
In order to demonstrate this effect, the errors

∣∣∣u− uh
∣∣∣
1
have been plotted for different

combinations of νmin and νmax in a checkerboard plot (left plot in Figure 23), where
the errors are the same on fields with the same color. As expected, all fields with the
same ratio of νmax/νmin have the same color, e.g., 100/10−3 and 102/10−1, where both
combinations yield

∣∣∣u− uh
∣∣∣
1

= 4.455 · 10−5.
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Figure 23: Error
∣∣∣u− uh

∣∣∣
1
for level 10 and varying values for νmin and νmax. Each field

shows the error for the quadratic viscosity function ν2(x, y) parametrized by
νmin and νmax.
Left: Scott-Vogelius finite element space.
Right: Q2/P

disc
1 , the influence of ν−1

min dominates that of the factor νmax/νmin.

For comparison, if one uses the Taylor-Hood pair of finite element spaces Q2/Q1 an
additional dependence on νmin is expected since (4.23) gives

∣∣∣u− uh
∣∣∣
1
≤2CK

√
νmax

νmin

(
1 + CCK

√
νmax

νmin

)
inf

vh∈V h

∣∣∣u− vh
∣∣∣
1

+ C2
K

νmin
inf

qh∈Qh
‖p− qh‖0. (5.12)

This influence of νmin is illustrated in Figure 24 by the blue line, whereas the negligible
growth of the error due to an increase in νmax is depicted by the red line.
This effect can also be found in the right checkerboard plot in Figure 23, where one can
see the error increase with smaller values of νmin for a fixed νmax = 1.
One notices another rather unexpected effect when looking carefully at the right plot
in Figure 23, namely that the errors decrease for increasing values of νmax, e.g.,for
νmin = 10−7. This contradicts the theory developed so far. In particular, from esti-
mate (5.12) one would expect increasing errors for increasing νmax.
The observed differences are of order 10−8, i.e., very small and could be due to round-off
errors that appear when the solver encounters an ill-conditioned problem which is the
case for viscosities with extreme maximal and minimal values, like νmin = 10−7.
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Figure 24: Error
∣∣∣u− uh

∣∣∣
1
for level 10 and varying values for νmin and νmax in the

quadratic viscosity function ν2(x, y) defined in (5.7). The blue line shows
the error for decreasing νmin while νmax is set to one and the red line shows
the error for increasing νmax while νmin = 0.1.

However, what is more plausible, is that the observed effect is due to the fact that
for large values of νmax the function is stretched such that the critical small value for
νmin is taken only at the boundary whereas away from the boundary the function grows
very fast. In most of the domain, the viscosity is larger than one, i.e., the harming effect
expected for large values for νmax is compensated by rather mild values larger than νmin
in most of the domain, (see Figure 25,) such that one observes a decreasing error for
increasing νmax.
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Figure 25: Effect of changing νmax for the values in the whole domain. For νmax = 100
the viscosity takes values ν(x, y)� νmin = 10−4 in most of the domain than
for νmax = 1.
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A natural choice for a viscosity function that avoids this effect is an exponentially
shaped one like ν5(x) defined in (5.9). The representative checkerboard plots can be
found in Figure 26. Here one can clearly see the scale invariance stated in (5.11) for the
Scott-Vogelius element on the left and the dominance of

ν−1
minC inf

qh∈Qh
‖p− qh‖0

for Q2/P
disc
1 finite element spaces on the right.
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Figure 26: Error
∣∣∣u− uh

∣∣∣
1
for level 7 and varying values for νmin and νmax. Each field

shows the error (multiplied by 103) for the exponential viscosity function
ν5(x, y) defined in (5.9) parametrized by νmin and νmax.
Left: Scott-Vogelius finite element space.
Right: Q2/P

disc
1 , the influence of ν−1

min dominates that of the factor νmax/νmin.

Looking again at estimate (5.12) for the pair of finite element spaces Q2/P
disc
1 , one

notices that scale invariance could be achieved also for this pair of finite element spaces
if the latter term vanishes, i.e., if the prescribed solution for the pressure p lies in
the ansatz space P disc

1 such that the best approximation error is zero. Clearly, for the
function p(x) = 0, ∀x ∈ Ω this is the case. Figure 27 confirms the scale invariance for
that choice for p.
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Figure 27: Error
∣∣∣u− uh

∣∣∣
1
for level 7 and Q2/P

disc
1 and varying values for νmin and

νmax when the pressure solution is zero. Each field shows the error (mul-
tiplied by 104) for the exponential viscosity function ν5(x, y) defined in (5.9)
parametrized by νmin and νmax.
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6. Conclusion and Outlook
6.1. Open Questions
Remark 6.1. Superconvergence?
As noted several times before, in many of the examples a higher order of error reduction
on coarse grids than the proved order of convergence in the estimates (4.58)-(4.66) is
observed, e.g., for the H1

0 (Ω)-seminorm in Figure 11 for the Scott-Vogelius space and
in Figure 12 for a constant viscosity for Q2/P

disc
1 . As this behavior appears for both

types of finite element spaces, one might conclude that it is not a problem of the chosen
element.
It rather seems like the higher order of error reduction occurs whenever the (expected) ν-
dependence can be observed10. Comparing Figures 11 and 10 one finds the νmax-dependence
in Q2/P

disc
1 (Fig. 10, top left) only until the optimal order of convergence is reached in

level 5.
The same phenomenon appears for the convergence of the finite element error of the
pressure ‖p − ph‖0, illustrated in Figure 15. Again a higher order of error reduction is
observed together with linear growth of the error in ν.
In Figures 17 and 18, the higher order of convergence occurs only in Q2/P

disc
1 whereas

for the Scott-Vogelius element the error decays according to the optimal order of con-
vergence 2. The theory developed in this work cannot explain this behavior. One could
guess that the errors in Q2/P

disc
1 converge all to a ν-independent one and decay then at

optimal order like observed for the velocity in Figure 10.
Obviously, there is a considerable need for future research on that phenomenon.

Remark 6.2. ν-independence of ‖u− uh‖0 .
In Figure 19, one can hardly make out the influence of the different values of νmin and νmax
on the error ‖u − uh‖0 that one might expect from estimate (4.65). This corroborates
the belief that the dependence on the viscosity predicted in this estimate is not sharp.
The fact that the influence of νmin on the error is stronger than that of νmax suggests
that the terms νmax/ζ1(ν) and ζ2(ν)/ζ1(ν) are of order 1, as shown for the constant case
in Remark 4.34.
Understanding what ζ1(ν) and ζ2(ν) look like for variable ν can be an interesting and
fundamentally important goal of future analysis and simulations.
A question that suggests itself is whether the estimates are not sharp with respect to
their predictions on the ν-dependence or whether the problem lies in the simplicity of
the considered example which
• has a polynomial solution,
• is defined for a simple domain and
• and has been solved only on structured uniform meshes.

Remark 6.3. Iterative Solvers.
Some of the above mentioned open questions might be answered if it was possible to

10Only exception is Figure 18
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solve the finite element problems on finer grids, i.e., for levels > 10.
As already mentioned, computing even ten levels was hardly possible for some of the
viscosity functions presented in Section 5.1.
The used direct solver cannot go further than until Level 7. For finer grids one needs
different direct solvers or iterative solvers which work fine for some of the viscosity
functions (e.g.,the linear and the quadratic one, ν1(x) and ν2(x)) but did not converge
at all or only after countless iterations for the rougher viscosities, i.e., those with steep
gradients (e.g., atan(steep), ν4(x) and exp, ν5(x).
It is beyond question that there is a lot of room for improvement in simulating non-
constant viscosities as well. Furthermore new ideas and approaches like using different
finite element spaces, testing different viscosity functions, prescribing different solutions,
should be pursued.

6.2. Conclusion
In spite of the aforementioned unanswered questions, we can come to the pleasant con-
clusion that this work presents a theory for the incompressible Stokes equations with
non-constant viscosity that is able to explain the behavior of a finite element method
for a Stokes problem with non-constant viscosity. None of the described observations
contradicts this theory.
Furthermore, this theory is consistent with the theory for the case of a constant viscosity
in the corresponding spaces as was discussed for example in Remarks 4.17 and 4.18.
Many expectations could be confirmed like for example the dependence of the stability
estimates like described in Remark 4.6 and on the bigger part of the finite error estimates
on the viscosity ν.
Rather positively surprising was the fact that the finite element error analysis is seem-
ingly independent of the shape of the viscosity function since the gradient or higher
derivatives of ν do not appear in the error estimates. (This, however could change for
more complicated examples.)
Another pleasant discovery was the scale invariance of the error in some cases described
in Section 5.9, i.e., the independence of the error estimates only on the ration νmax/νmin
and not of the concrete choices for those values.

Summing up, one can conclude that the problem of simulating and numerically solving
the Navier-Stokes equations, albeit studied for many years already, still offers numerous
interesting questions that ask to be answered.
Also in the future, researchers will work on those questions - presumably without know-
ing whether a proof for the existence of an analytical solution to the Navier-Stokes
equations even exists.
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A. Functional Analysis
Theorem A.1. Korn’s inequality.
Let D(v) denote the deformation tensor of v. For p ∈ (1,∞) there is a constant CK > 0
such that

‖v‖pW 1,p(Ω) ≤ CK
(
‖v‖pLp(Ω) + ‖D(v)‖pLp(Ω)

)
, ∀v ∈ W 1,p(Ω). (A.1)

Let | · | denote a seminorm on Lp(Ω). Then it is

‖v‖Lp(Ω) ≤ CK
(
|v|+ ‖D(v)‖pLp(Ω)

)
, ∀v ∈ W 1,p(Ω). (A.2)

For a detailed discussion of Korn’s inequalities we refer to [7].

B. Finite Element Theory
Let K̂ ⊂ Rd, d ∈ {2, 3}, be the reference mesh cell, a compact polyhedron and K be
an arbitrary mesh cell with diameter hK .
The polynomial space of dimension N is denoted by P̂ (K̂) and is assumed to be unisol-
vent with respect to the continuous linear functionals

φ̂1, . . . , φ̂N : Cs(K̂)→ R.

Definition B.1. The polynomial space Pk.
Let x = (x1, . . . , xd), k ∈ N ∪ {0}, and denote by α = (α1, . . . , αd) a multi-index. Then,
the polynomial space Pk is given by

Pk = span
{

d∏

i=1
xαii = xα : αi ∈ N ∪ {0} for i = 1 . . . d,

d∑

i=1
αi ≤ k

}
.

Definition B.2. The polynomial space Qk.
Let x = (x1, . . . , xd), k ∈ N ∪ {0}, and α = (α1, . . . , αd). Then, the polynomial space
Qk is given by

Qk = span
{

d∏

i=1
xαii = xα : 0 ≤ αi ≤ k for i = 1 . . . d

}
.

Theorem B.3. Interpolation error estimate on a reference mesh cell.
Let Pm(K̂) ⊂ P̂ (K̂) and p ∈ [1,∞) with (m + 1 − s)p > d and let the interpolant of
v̂ ∈ Cs(K̂) be denoted by IK̂ v̂ ∈ P̂ (K̂).
Then, it is for all v̂ from the Sobolev space Wm+1,p(K̂)

‖v̂ − IK̂ v̂‖Wm+1,p(K̂) ≤ C‖Dm+1v̂‖Lp(K̂), (B.1)

where the constant C is independent of v̂(x̂).
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Theorem B.4. Local interpolation estimate.
For an affine family of finite elements with reference cell K̂, functionals φ̂i and a space of
polynomials P̂ (K̂) let all assumptions of Theorem B.3 be fulfilled and let IKv ∈ P (K)
denote the interpolant of v.
Then, for all v ∈ Wm+1,p(K) with p ∈ [1,∞) it is

‖Dk(v − IKv)‖Lp(K) ≤ Chm+1−k
K ‖Dm+1v‖Lp(K), k ≤ m+ 1, (B.2)

where the constant C is independent of v.
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