
A comparison of deep learning
methods for time series forecasting

with limited data

Master’s thesis
for the degree

M.Sc Mathematics
submitted by

Abinaya Jayaprakash (5391958)

Department of Mathematics and Computer Science
Freie Universität Berlin

WS 2022/23

Abstract

This thesis was written in cooperation with Elia. The goal was to develop a
forecaster that would predict the future output of photovolatic (PV) systems that
would be then used to optimize energy usage in households. Better knowledge
about renewable energy production would result in efficient usage of this energy
and reduced energy costs. The historic data used covered 6 months; January to
June 2022. Traditional time series forecasting techniques were compared with
developing machine learning approaches on their ability to predict future values
using the limited input data. The established time series forecasting technique used
as a baseline model was simple linear regression. The machine learning techniques
consisted of two main types of feed forward neural networks; LSTMs and CNNs.
The performance of all methods were measured and compared via a chosen set of
evaluation metrics. The best performance of all implemented methods resulted in
a CNN model with no hidden layers.

1

Acknowledgements

I would first like to thank my thesis supervisors; Professor Volker John and Rachel
Berryman for their time, support and vital feedback. My thanks also goes to Mason
Samuel for his help and guidance. I would also like to thank my friends and family
for motivating me throughout and mainly Subodh Singh Khangar for guiding me
when I first decided to explore the field of machine learning. Lastly I am also very
grateful to Elia for the opportunity, the access to data and coding facilities.

2

Table of Contents

1 1. Introduction 5
1.1 Motivation . 5
1.2 Related Work . 6
1.3 Outline . 6

2 2. Theoretical Background 8
2.1 Machine Learning . 8
2.2 Mathematical Background . 9

2.2.1 Artificial Neural Networks (ANNs) 9
2.2.2 Training FNNs . 10
2.2.3 Overfitting . 12
2.2.4 Vanishing/Exploding gradients 12

2.3 Types of ANNs . 13
2.3.1 RNNs . 13
2.3.2 CNNs . 14

2.4 Multivariate forecasting using LSTMs 16
2.5 Hyperparameters . 18
2.6 Software used . 19

3 3. Task and Data Analysis 20
3.1 Task Summary . 20
3.2 Data . 21

3.2.1 Household PV data . 21
3.2.2 Weather forecast data . 21
3.2.3 Regional solar energy forecast data 22

3.3 Preprocessing . 23
3.3.1 Weather forecast data . 23
3.3.2 Household PV data . 24

3.4 Machine learning techniques . 26
3.4.1 Feature engineering . 26

3

TABLE OF CONTENTS 4

3.4.2 Normalization . 28
3.5 Train and Test Data . 30

4 4. Results 31
4.1 Baseline model . 33
4.2 LSTM . 34
4.3 CNN . 35
4.4 CNN-LSTM . 35

5 5. Evaluation 45

6 6. Conclusion 47
6.1 Future Work . 47

1. Introduction

1.1 Motivation

Increasing developments in the area of machine learning have evidently outlined
the seamless attribution that machines have in producing greater values/outcomes
for businesses. Deep learning in specific is one of the most recognized sub areas
of machine learning, inspired by the human brain’s neural networks, and has set
exceptional records of accuracy in the recent years irrespective of the business
sector.

Consequently deep learning has strongly established a place for itself in the energy
sector too, and one of its main applications has been to maintain the balance
between energy supply and demand. According to Forbes [1], "As the world shifts
in the direction of personalized digitized services, the energy sector is lagging
behind" and this is mainly because this sector heavily depends on predictive
diagnostics and the cost of error in it is known to be particularly high.

In attempts to resolve the wastage of excess energy in households, the process of
working with renewable energy has proven to be quite challenging given that it
requires precise prognosis of its generation and necessity. With respect to solar
energy, the uncertainty associated with factors that affect its production such as
weather conditions which are constantly subject to change makes it tough. Another
hardship faced is gaining access to similar household data from the past with
similar geographical settings since installing PV panels in a household is a big-
budget and high involvement decision with many barriers that require substantial
maintenance, [2].

Achieving an equilibrium in households amidst these drawbacks would lead to
energy saving which will then result in reduced utility bills and personalized energy
usage/maintenance schemes. Energy providers would be able to dispatch their

5

1.2. RELATED WORK 6

resources better, anticipate demand in advance, provide customized services and
minimize costs whenever possible, [3].

Having understood the problems faced and the benefits, this thesis revolves around
finding the answer to Can deep learning (or combining best known methods)
yield accurate predictions regarding the PV output needed to main-
tain the balance between the production and usage of solar energy in
households with limited input?

1.2 Related Work

Time series forecasting can be classified as univariate if it involves predicting a single
variable varying over time or multivariate if it involves predicting multiple variables
varying over time. Various models have been tested, implemented and updated
for better prediction in both cases but this has been evidently challenging due to
the nature of the data samples and their components such as trend, seasonality
and correlation between features. Recent techniques in handling such data in the
energy sector have evolved from the increase in use of deep learning approaches, [3].
A myriad of works have already reviewed the existing machine learning and deep
learning methods, compared them and identified the most efficient, [4] [5].To
summarize, unlike classical machine learning models that were capable of modelling
linear relationships, deep learning models take into account the sequential nature
of time series data, thus allowing them to map complex non-linear relationships
too. Additionally, these models are known to be less sensitive to missing data,
easier to incorporate with multivariate time series and include automated feature
selection, [6]. Among all reviewed implementations, artificial neural networks
(ANNs) have proven to be among the best under many circumstances.

Ref. [4] evaluates the performance in terms of accuracy and efficiency of seven
popular ANNs: multilayer perceptron (MLP), Elman recurrent neural network
ERNN, long-short term memory (LSTM), gated recurrent unit (GRU), echo state
network (ESN), convolutional neural network (CNN) and temporal convolutional
network (TCN) and concludes that LSTMs and CNNs are the best choices, with
LSTMs yielding the most accurate forecasts and CNNs being more efficient and
consistent under different parameter configurations.

1.3 Outline

This thesis is further divided into chapters that elaborate on the different theories
and methods used in the thesis.

1.3. OUTLINE 7

Chapter 2 explains the concept behind neural networks, how they are trained, their
drawbacks and possible ways to counteract these. It also introduces the two main
types of neural networks the thesis focuses on and the software needed to develop
and train them. Chapter 3 describes the task and the data sets used in detail. It
also gives an overview of the different techniques used to process the raw data
and then further divide it for training and testing purposes. Chapters 4 and 5
present and evaluate the results obtained via the various approaches chosen. At
the end, chapter 6 lays out the outcome of the thesis and how this can be utilized
or improved for future use.

2. Theoretical Background

2.1 Machine Learning

The rapid increase in innovation and technological advancement across the globe
has resulted in artificial intelligence (AI) and machine learning playing a significant
role in transforming businesses, task automation and economic growth, [7]. Machine
learning, a subset of AI, entails teaching an algorithm/model to recognize patterns
and extract useful insights from data with minimal human intervention in order
to produce the desired outcome. These findings are then applied to new and
changing data which results in a repeating feedback loop allowing continuous
model enhancement to gain further insights with high accuracy. Based on how this
technique can be implemented it can be categorized as follows:

• Supervised learning,

• Unsupervised Learning.

Supervised learning refers to the process in which a model is being taught to learn
what its desired output should be using previous observations/similar examples.
The chosen algorithm is provided with a training data set that includes inputs and
the resulting outputs, and thereby it tries to model relationships/dependencies
between the target output and the input features. These findings are then used
to predict the output based on new input data (test data set), [8]. Unsupervised
learning works with data that only involves inputs and the algorithm inspects
this data, identifies hidden correlations and sometimes groups it based on a few
characteristics without any prior instruction or expected output, [9].

This thesis pays special attention to time series forecasting; one type of supervised
learning and I have chosen neural networks to be the learning algorithm.

8

2.2. MATHEMATICAL BACKGROUND 9

2.2 Mathematical Background

2.2.1 Artificial Neural Networks (ANNs)

To get an insight of what a neural network is, it is vital to begin with understanding
how the scaled-down, miniature building blocks of these neural networks; an
artificial neuron, functions.

Figure 2.1: Artificial neuron, from [10]

As seen in Figure 2.1, a neuron comprises of four main components. The first being
the inputs, which could be information about the inputs in the training data set
such as features or the output from a preceding neuron. Second, each input (xi)
is multiplied by a weight (wi) that controls its level of significance in determining
the output (y). The larger the magnitude of the weight multiplied by the input,
the more influence it has on the output value. Third, all these weighted inputs
(wixi) are added to yield a weighted sum. This could also include a bias component
(b) in some instances, which is used to adjust the value of the output obtained,
thereby ensuring the model is a best fit for the input data. The final component is
the activation function (ϕ) which the weighted sum is passed through to output a
single number

y = ϕ

(
m∑
i=1

wixi + b

)
.

The purpose of these activation functions can differ based on their mathematical
properties such as linearity, continuity, range and order of differentiation, [11].

2.2. MATHEMATICAL BACKGROUND 10

Figure 2.2: Simple neural network

An ANN is a network formed by stacking one or more neurons together in two
or more layers. Figure 2.2 is an example of a 3-layer neural network (multi-layer
perceptron) with two hidden layers with 4 neurons each, that the input is fed into
and then continues to flow in the same direction towards the output layer (forward
propagation) that would then generate the expected result. Such ANN frameworks,
where information is passed through from the input to the output layer in the
forward direction, are called feed-forward neural networks (FNNs).

ANNs can be trained to learn from the input data via a powerful mechanism that
will be discussed in the next section.

2.2.2 Training FNNs

In order to train an ANN to study the input data, a technique called back propa-
gation is used.

As the last step of forward propagation, the network error is calculated by comparing
the actual output and the value generated by the network. Back propagation is
the method of traversing the network in reverse order to update the values of the
weights and biases used such that the network error is reduced. The objective
function/cost function chosen to calculate the error can vary depending on the
network’s use case. A learning rate is assigned to be in control of the speed at
which back propagation is performed, [12].

The extent to which the values of the weights and biases are altered depends on
how responsive the cost function is to a change in these values. Irrespective of the
type of the cost function, all cost functions can be represented as a function of all

2.2. MATHEMATICAL BACKGROUND 11

network outputs and also as an average of all cost functions for individual training
samples when there are many. Although the cost function also entails the actual
output, it is a fixed parameter and will not be affected by the changes made to the
weights/biases, [13].

An epoch refers to one cycle of forward propagation followed by back propaga-
tion, [14] . The updated internal parameters are then used for the next epoch. The
number of epochs is traditionally large permitting the learning algorithm to run
until the network error has reached an optimal minimum (satisfies certain criteria
or when the number of iterations exceed the allocated computational budget, [15]).

Figure 2.3: Minimizing the cost/error function, from [16]

Figure 2.3 gives us a visual overview of an example of how the one-dimensional
cost function, J(w) is minimized iteratively with respect to one of the weights w
depending on the magnitude of its gradient with respect to w over multiple epochs.
Given that the value of the gradient is positive, the update equation works as
follows;

w1 = w0 − α ∗ dJ(w)

dw
,

where α denotes the chosen learning rate. Suppose the value of the gradient is
positive, then

w1 = w0 + α ∗ dJ(w)

dw
.

This method referred to as gradient descent is fairly expensive since it requires the
computation of the gradient during every single iteration, especially when there are

2.2. MATHEMATICAL BACKGROUND 12

many training samples. A cheaper replacement works by calculating the gradient
with respect to a randomly chosen training point during each epoch instead of all
individual training points, and this is referred to as stochastic gradient descent, [15]
which will be the optimizer used during the training of the neural networks.

2.2.3 Overfitting

One common problem encountered when training FNNs is that the neural network
overfits (learns the training data set too well) and is unable to perform with unseen
data, [17]. This issue is particularly frequent for small training data sets like the
one used in this context. Several tecnhiques are used to encounter this.

One possibility is to add a regularization/penalty term to the error function (L2
regularization) of the form

λ

2
wTw,

where λ determines its impact. This additional term which is the sum of all
weights squared helps in minimizing the values of weights (weight decay) during
backpropagation and adds stability by making the model less sensitive to the
training data.

Another method we could use is dropout. This method ignores a set of neurons in
the neural network at random with set probability. This reduces interdependent
learning across the network, makes it simpler and results in better spread out
weights, [18].

2.2.4 Vanishing/Exploding gradients

Vanishing/exploding gradients are quite common in deep neural networks. The
updated gradient values as a result of backpropagation could keep reducing in value
that results in insignificant updates to the parameters (vanishing) or could keep
increasing in value resulting in sizeable updates to the parameters (exploding).
This could then either stall the learning process or make it unstable, [19]

Choosing an appropriate activation function and proper initialization of weights
during training can help overcome this along with normalizing the input data.
Based on Ref. [20], I decided to use the exponential linear unit (ELU) activation
function along with the He initialization. Normalization is further explained in
section 3.4.2 below.

The ELU activation function is a variant of the Rectified linear activation unit
(ReLU) activation function and is one of the most popular activation functions

2.3. TYPES OF ANNS 13

used. It outputs values as follows:

ELU(x) = x if x ≥ 0

ELU(x) = α(ex − 1) if x < 0

Negative entries are handled better by the ELU activation function with the help
α that controls the saturation of negative net inputs and therefore avoids the dying
ReLU problem and also since its mean output values are closer to zero, it also
tends to converge faster and has many other advantages over the ReLU function
overall, [20, 21]. The value of α was kept constant at the default value 1.0 for all
the models tested.

A well known approach for the initialization of weights along with the ELU activation
function is He initialization, known after the last name of its author. The weights
would be random number that follow a gaussian probability distribution with a
mean of 0 and a standard deviation of

√
2
n
, where n denotes the number of inputs

fed into the node, [22].

2.3 Types of ANNs

Figure 2.2 is an example of one of the simplest types of ANNs and is called the
multi-layer perceptron (MLP) or simply a deep FNN. This contains a series of
fully connected layers; all neurons in one layer are connected to all neurons in the
next layer. It has also been proven useful for various tasks but is subject to a few
limitations, [23].

One of these is the inability to process sequential data since each data element
is treated separately, whereas when processing sequential information, elements
can be interrelated. To overcome these obstacles and make neural networks more
applicable to scenarios that deal with sequential data such as time series forecasting
problems, recurrent neural networks (RNNs) and convolutional neural networks
(CNNs) were introduced.

2.3.1 RNNs

RNNs are specialized in processing a sequence of values of varying length.

As illustrated in Figure 2.4, RNNs are structured to learn dependencies in sequential
input data, by storing previous values in its memory/hidden state for a short period

2.3. TYPES OF ANNS 14

Figure 2.4: Main difference between MLP and RNN, from [24]

of time. The loop in the figure depicts how the output of the current layer would
depend on the current and previous inputs, which enables the network handle
sequential data well, [25].

2.3.2 CNNs

CNNs were originally designed to solve problems with image data but have also
produced impressive results when introduced to sequential data and this is mainly
due to the one dimensional convolutional layers it can contain.

Figures 2.5 and 2.6 give us an overview as to how a convolutional layer works as
opposed to a fully connected layer.

Figure 2.5: Fully connected layer, from [26]

The pictorial representation of a convolution in Figure 2.6 illustrates the significant
details that make it more efficient. Note that we have ignored the biases here
to make it simpler. The sliding dot product referring to the vector product of
input matrix values and the sliding kernel, ensures that not all inputs affect the

2.3. TYPES OF ANNS 15

Figure 2.6: Convolutional layer, from [26]

output generated which makes CNNs capable of handling high dimensional data
and picking up important features in the data.

The weight matrix in Figure 2.5 would have varying values in all columns of the
matrix, whereas the values of weights in the kernel/filter in Figure 2.6 do not change
as it slides horizontally and vertically through the input data. This minimizes the
number of parameters per layer and teaches the network to flexibly learn and detect
important features irrespective of where/how they appear in the input data, which
allows for better generalization when a CNN is exposed to new input data, [26].

Figure 2.7: 1D convolutional layer, from [27]

As mentioned above, Figure 2.7 shows how the kernel slides only horizontally in
a one dimensional convolutional layer used when dealing with time series data.
Ref. [28] contains further information on how the time series data was restructured
in order to be fed into the 1D convolutional layers.

Similarly, the pooling layers in a CNN also enhance its capability to identify vital
features and control the computational power needed to run it via dimension

2.4. MULTIVARIATE FORECASTING USING LSTMS 16

reduction.

Figure 2.8: Types of pooling and their respective outputs from [29]

As illustrated in Figure 2.8, there are two main types of pooling and their names
describe how their functionalities and outputs are different. In Figure 2.8 a
window size of 2 and a stride (number of columns/rows to skip when moving
horizontally/vertically) value of 2 have been used and these hyperparameters also
play a vital role in determining how efficient the pooling layers are. Along with
these the type of padding used also matters, [29].

2.4 Multivariate forecasting using LSTMs

Long short term memory (LSTM) is an improved version of a RNN that was
developed as a solution to handle a few drawbacks with respect to using RNNs.
The special neurons/memory cells in an LSTM help overcome the problem of
vanishing/exploding gradients, are capable of storing previous values for a longer
period of time and have finer control over which parts of the information is carried
forward and how much from the past needs to be forgotten which overall make the
LSTM an ideal choice for time series forecasting.

Figures 2.9 and 2.10 provide an insight of how information is passed through each
memory cell in an LSTM from left to right. Figure 2.9 illustrates the three gates
the memory cell is composed of and their respective functions, while Figure 2.10
shows us what takes place in each gate in order for it to perform its function.

Please refer to Figure 2.10 that contains the terms used in the explanation below.
The sigmoid and tanh activation functions are denoted by σ and tanh respectively.
Given the new inputs, xt corresponding to the current timestamp, the LSTM would
function as follows, [32];

2.4. MULTIVARIATE FORECASTING USING LSTMS 17

Figure 2.9: Memory cell in an LSTM, from [30]

Figure 2.10: Detailed overview of a memory cell, extracted from [31] and edited

• Forget Gate(1) - Outputs a value ft between 0 and 1 which decides what
percentage of past data has to be forgotten with respect to the output from
the previous timestamp, ht−1 (previous hidden state that signifies short term
memory) and the current inputs, xt

ft = σ(Wf · [ht−1, xt] + bf).

• Input Gate(2) - Updates the new cell state (signifies long term memory)
for the current timestamp Ct which would be a combination of a percentage
(it) of processed input data C̄t along with the information from the previous

2.5. HYPERPARAMETERS 18

cell state Ct−1 that needs to be remembered

it = σ(Wi · [ht−1, xt] + bi),

C̄t = tanh(Wc · [ht−1, xt] + bc),

Ct = ft ∗ Ct−1 + it ∗ C̄t.

• Output Gate(3) - Decides what percentage (ot) of the new cell state Ct

need to be stored short term and carried forward to the next timestamp, also
referred to as the new hidden state, ht

ot = σ(Wo · [ht−1, xt] + bo),

ht = ot ∗ tanh(Ct).

The cell state enables information flow through the entire chain of cells, with
a few linear interactions that determine which parts of it are stored long term.
Constantly updated cell state values help control the gradient values, and thereby
avoid vanishing/exploding gradients, [33].

2.5 Hyperparameters

• Number of hidden layers and neurons - The number of hidden layers
and neurons in each of these layers depends on the use case, input data and
largely impact the complexity of the model, [34]. Considering the limited
amount of data available, I chose to test with 1 and 2 hidden layers along
with the number of neurons within the range of 10 to 50.

• Dropout probability - I chose to test with dropout probabilities between
20 to 40% on my hidden layers, [35].

• Learning rate - I tested with learning rates ranging from 10−3 to 10−6 for
the chosen optimizer, [36] .

• Batch size - I chose to test batch sizes ranging from 32 to 128, [37].

• Number of epochs - The number of epochs used for testing varied from 50
to 300.

2.6. SOFTWARE USED 19

• Number and size of convolutional filters - The number and size of
filters/kernels used in the 1D convolutional layers of the CNN massively
contribute towards its ability of feature detection [38], and so I decided to test
with 16 and/or 32 filters of equal height and width of sizes 1x1 and 2x2, [39].
I chose to maintain the default stride (the number of steps skipped when the
kernel slides across the input data) value of 1 in all the convolutional layers.

• Type of pooling, window size and type of padding - I chose to test
with max pooling with a window size of 2, the default stride value of 1 and
valid padding, [29, 40].

2.6 Software used

Given below is an overview of the programming language and software used.

• Python - An easy to use programming language [41], that is interoperable
with a wide range of other libraries and packages such as Numpy [42], and
Pandas [43] that were ideal choices for all numeric computations performed.

• Scikit-Learn - An open source machine learning library in python [44], with
simple tools for all stages of the training and testing pipeline.

• TensorFlow - Its high level and open source programming interface Keras [45],
made building and training neural networks a lot quicker.

• Plotly - An open source graphing library for python [46], that allows creating
various interactive types of graphs and charts to plot, analyze and compare
results.

3. Task and Data Analysis

3.1 Task Summary

In order to efficiently optimize overall energy usage in a household, an accurate
forecast of how much energy is produced by all energy sources is an important
requirement.

Figure 3.1: Overview of a household

As seen in Figure 3.1, the optimizer designed by Elia, a belgian electricity system
operator as part of a research project, focuses on optimizing the energy usage/
minimizing the overall energy costs for all devices agreed upon and controlled by a
battery in each household. Some households additionally have solar PV systems
installed in them too.
One of the main purposes of the optimizer in this scenario would be to make
efficient use of the energy converted to electricity by the PV. In order to carry
this out, an accurate forecast of how much electricity is generated in this form
throughout different times of the day is absolutely crucial and this thesis contributes
to this project by reviewing and analyzing a few approaches that can be used to

20

3.2. DATA 21

forecast this data for a specified period in the future using deep neural networks.
Precise predictions would lead to less wastage of the excess solar energy converted
to electricity and reduced energy imports from the grid, thereby reducing overall
household energy costs.
The following sections would include a more detailed focus on how this was done
for one of the households with a PV in the Limburg region in Belgium. A simple
linear regression model would be used as the baseline model and act as a reference
to compare and evaluate the performance of the chosen methods.

3.2 Data

The models were tested on data over a span of 6 months; January to June 2022.

3.2.1 Household PV data

The data from the household, as seen in Figure 3.2 with 15 minute resolution
contained the amount of energy converted to electricity in watts per hour. This
would be the target variable which the models would have to predict future values
for the next 24 hours.

Figure 3.2: Snippet of the pre-processed household PV data

3.2.2 Weather forecast data

Weather is one of the main factors that can influence the output of a PV, [47].
Since the model needs to be trained to predict the electricity generated by the PV
in the future for which we wouldn’t know how the weather would turn out to be,
training the model to predict based on weather forecast data is essential.

The weather forecast dataset used, [48] as seen in Figure 3.3 was extracted from
Rebase Energy’s database and used as input when training the models. This
included values for various weather based variables with hourly resolution for the
Limburg region and was also updated every six hours on a daily basis.

3.2. DATA 22

Figure 3.3: Snippet of the pre-processed weather forecast data

The variables that were taken into consideration are as seen in Figure 3.3. The
names of the columns are abbreviations of these variables listed below;

• HCC : High Cloud Cover

• LCC : Low Cloud Cover

• MCC : Medium Cloud Cover

• Pressure : PressureReducedMSL

• RH : Relative Humidity

• SDR : Solar Downward Radiation

• Temp : Temperature

• TCC : Total Cloud Cover

• TP : Total Precipitation

• WD : Wind Direction

• WS : Wind Speed

Ref. [49] contains a detailed insight of what these variables mean and how this
data is collected.

3.2.3 Regional solar energy forecast data

This additional data accessed from the Elia open data portal, [50] as seen in Figure
3.4 was also used as an input feature during the training of models. This data
contained the values for the total amount of solar energy generated by all facilities
in the Limburg region in which the household is situated in, [51].

3.3. PREPROCESSING 23

Figure 3.4: Snippet of the pre-processed regional forecast data

3.3 Preprocessing

Raw data, or in other terms unformatted real-world data can undoubtedly contain
inconsistent values, errors, outliers and sometimes missing entries. Preprocessing
is essential in order to address these problems and make the data more consis-
tent, [52].The code used for data analysis and preprocessing can be found at https:
//github.com/Abinaya-J/ThesisFiles/blob/main/HHDataAnalysis.ipynb.

The regional solar forecast data did not have any inconsistent data entries, but
however the household PV and the weather forecast datasets did need some
preprocessing.

3.3.1 Weather forecast data

The weather forecast data was upsampled as shown in Figure 3.3 from a hourly
resolution to a quarter-hourly resolution since the predictions were required to be
at 15 minute intervals.

In order to avoid the problem of multicollinearity which can have a negative impact
on the results obtained it is also important to check if any of the weather variables
are highly correlated with one another, [53, 54].

Figure 3.5 clearly shows that the variable TCC is highly correlated with more
than one other variable, and also since the variables HCC,MCC and LCC provide
information about cloud cover I chose to remove it completely. Although Temp and
SDR were also highly correlated with each other, I chose to keep them since both
of them can have a significant impact on the output of the PV when compared
with other features.

https://github.com/Abinaya-J/ThesisFiles/blob/main/HHDataAnalysis.ipynb
https://github.com/Abinaya-J/ThesisFiles/blob/main/HHDataAnalysis.ipynb

3.3. PREPROCESSING 24

Figure 3.5: Heatmap indicating correlation between weather variables

Figure 3.6: Snippet of a few missing values present in the household data

3.3.2 Household PV data

As seen in Figure 3.6 the household data contained about 17% of ’NaN’ entries
or missing values and as shown by Figure 3.7 the data contained about 1.7% of
negative entries as a result of errors that occurred during data collection. In order
to decide on how to deal with these entries, it is important to know when and how
frequently they appear in the data.

One common observation that can be made by looking closely at Figures 3.8 and
3.9 is that most of these entries occur during the early mornings and evenings;
times when there is no sunlight and there is no PV output. This is also clearly seen
in Figure 3.10 where the gaps in the data (indicated using red arrows) correspond
to these times of the day, but there are still a few that are present during the other
times of the day, too.

In order to fill in the missing values and the negative values, I decided to use
Ref. [55] in order to obtain the sunrise and sunset times for each day in the data
set. I then used this information to replace all missing and negative entries with
0 if they occurred at times before sunrise or after sunset, and otherwise replaced

3.3. PREPROCESSING 25

Figure 3.7: Snippet of a few negative values present in the household data

Figure 3.8: Number of negative entries grouped by the hour

them with the mean of the observed values for the same hour over the month of
occurrence, [56].

There were also a few occurrences of inconsistent values during the late hours on
some days as shown by Figure 3.11 due to errors that didn’t correspond to the
general pattern observed. Again Ref. [55] was used to cross check the sunrise and
sunset times on these days and these inconsistent values were then replaced with
zeroes if they occurred after sunset or before sunrise.

Another important thing to check in time series data is if trend and seasonality is
present in the data. [57]. Doing this is necessary in order to see what effect these
have on the target variable if present, and removing these components would reveal
other interesting facts about the data. Since it was quite hard to decide on this
just by observing Figure 3.10, I used the Augmented Dickey Fuller (ADF) test for
further verification, [58].

The p-value (probability of not rejecting the null hypothesis which states that
the data is non-stationary or in other words contains the trend and seasonality
components) as observed in Figure 3.12 is very small and the test statistic is less
than all critical values at all confidence levels, so the data used is stationary and
no further preprocessing steps are needed.

3.4. MACHINE LEARNING TECHNIQUES 26

Figure 3.9: Number of missing entries grouped by the hour

Figure 3.10: Snippet of the household data line graph without negative entries

3.4 Machine learning techniques

3.4.1 Feature engineering

A few additional features that contained information extracted from the raw data
were added considering the importance of features in predictive modelling. Better
features would enable the model understand the underlying problem quicker and
output finer results, [59].

• Date Time Variables - Components corresponding to each timestamp such
as the hour of the day or month of the year.

• Lagged Variables - Values recorded at one or more timestamps before the
current timestamp.

• Rolling window statistics - The mean over a period of time (window)
before the current timestamp, for example the mean of values recorded during
the same time over the last week.

3.4. MACHINE LEARNING TECHNIQUES 27

Figure 3.11: Inconsistent values due to errors

Figure 3.12: ADF test results

• Binary indicator - The information obtained about the sunrise and sunset
times for each day in the data set from Ref. [55] was used to add in a binary
indicator variable where 1 represented all timestamps in between the sunrise
and sunset times and 0 otherwise.

When predicting values for 24 hours in the future, it is not possible to have the
actual observed value for timestamps over the last 24 hours with respect to the
target timestamp, therefore based on Figures 3.13 and 3.14, the lagged variables
and the rolling window statistics were chosen from a period of 4 days before (first
few spikes with high auto correlation values) with respect to each timestamp, [60].

Figure 3.13 clearly shows us that the highly correlated values with the target
timestamp from any chosen day are the values that correspond to the target
timestamp (96th lag), one timestamp before (95th lag) and after this (97th lag) on

3.4. MACHINE LEARNING TECHNIQUES 28

Figure 3.13: Autocorrelation plot obtained for values of the target variable with
102 previous timestamps

the previous day. The mean of these values corresponded to the rolling window
statistics that were included.

3.4.2 Normalization

Since the range of values for each feature in our data set varied, normalization was
essential in order to prevent features with larger values having a bigger influence
on the final output, [61].

Each feature and the target variable were standardized as shown below so that it
follows a normal distribution with zero mean and unit variance. Each variables
mean value is denoted by x̄ and σ denotes its standard deviation

x′ =
x− x̄

σ
.

No dominating variables meant no dominating weights during training that can
cause bias, and faster back propagation. Ref. [62] explains this in further detail.

3.4. MACHINE LEARNING TECHNIQUES 29

F
ig

ur
e

3.
14

:
A

ut
oc

or
re

la
ti

on
pl

ot
ob

ta
in

ed
fo

r
va

lu
es

of
th

e
ta

rg
et

va
ri

ab
le

w
it

h
ti

m
es

ta
m

ps
ov

er
2

w
ee

ks
be

fo
re

3.5. TRAIN AND TEST DATA 30

3.5 Train and Test Data

The last two weeks of data out of the six months (January to June) were used as
test data. The idea of k-fold cross validation was implemented as follows, [63].

Figure 3.15: k-fold cross validation, from [63]

As illustrated in Figure 3.15, the test data included inputs for 24 hours in the
future each time but two major differences in our use case were that:

• Test data sets overlapped since the model was run every 15 minutes during
the day and predicted values for 24 hours ahead.

• The train data set was fixed since retraining the model with just one more
entry every 15 minutes needed more computational time and is not feasible
in 15 minutes.

Model performance on the test data was used to choose the best combination of
hyperparameters for each model. Each model along with this combination was
then fitted on all 6 months of data (January to June) and was then made to predict
for the first two weeks of July (unseen data) and the results obtained were used to
compare the suitability of different models.

4. Results

The following four error metrics, [64, 65, 66] were used to assess and compare the
performance of the chosen models.

In all of the formulas below, yi denotes the actual value, ŷi denotes the forecasted
value, n denotes the number of timesteps to predict for in the future, ȳ denotes
the mean actual value over the n timestamps and k denotes the number of input
features.

• Root mean squared error (RMSE) - A quadratic scoring rule that
measures the average magnitude of the error.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

• Mean absolute percentage error (MAPE) - A measure of the prediction
accuracy of the model or in simple terms a measure of how relatively large
the errors are when compared to the actual values. This was specifically
calculated only for all timestamps for which the actual solar forecast value
recorded was non zero.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ .
• R2 score - This score also called the coefficient of determination is a measure

of how well all the model inputs predict the required output.

R2score = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
.

31

32

• Adjusted R2 score - A special form of the R2 score. The R2 score can
tend to depend on the number of features/inputs and might be high due to a
high number of features used, whereas the adjusted R2 score will decrease if
insignificant features are present.

adjustedR2 = 1− (1−R2score)(n− 1)

(n− k − 1)
.

Adjusted R2 scores were used when testing with the baseline model in order to
choose the best subset of input features and then the rest of the models were tested
on the same subset but with varying combinations of hyperparameter values via
the following method.

To begin with each model was tested with a subset of hyperparameters that resulted
in a not too simple nor complex model in order to avoid undefitting or overfitting
given that we were dealing with small amounts of data. The top 20 combinations of
hyperparameters were then filtered based on the lowest MAPE value in the results
obtained based on the models prediction for the test data set. This information
was then used to test with simpler and complex models with the same test data
set in order to see if they perform better, and the best model was chosen to be the
model that produced the lowest MAPE value overall.

Although two other metrics were also used to assess model performance, MAPE
was chosen to be the deciding metric based on the following factors, [67]:

• The fact that it returns the error as a percentage when multiplied by 100
makes it easier to interpret the model’s ability to predict and compare its
performance across a range of hyperparameter values.

• MAPE is calculated in this scenario by taking only instances where the actual
value was non-zero and these are the crucial times of the day when we expect
the predictions made by the model to be as accurate as possible. Given that
there are fewer data points of this nature overall, it is important that the
model learns these equally well and is able to identify the pattern/correlation
between the feature and output values corresponding to these data points
and MAPE gives us a good idea of how well the model can do this.

• MAPE is not relative to the magnitude of the observed and predicted values
which is also another advantage especially given that the PV output can
largely vary across the months of the year. This makes it an ideal metric to
assess and compare model performance across months/seasons or when more
data is used for training in the future.

4.1. BASELINE MODEL 33

The loss/error function I chose to use when training the neural networks was mean
squared error (MSE), the squared version of RMSE, [68]. The code used for the
training and testing of models can be found at https://github.com/Abinaya-J/
ThesisFiles/blob/main/ModelTraining.ipynb

4.1 Baseline model

I chose a simple Linear Regression model to be my baseline model [69], since it is
relatively easy to implement, to work with and also helps in identifying insignificant
features through the interpretation of the regression coefficients.

Figure 4.1: Regression coefficients with respect to each feature

In order to see if removing the less significant features improved the adjusted R2
scores, I first chose to drop the features whose regression coefficient value was less
than |0.01|. As per Figure 4.1, the features HCC, MCC, TCC, TP, WS, hour,

https://github.com/Abinaya-J/ThesisFiles/blob/main/ModelTraining.ipynb
https://github.com/Abinaya-J/ThesisFiles/blob/main/ModelTraining.ipynb

4.2. LSTM 34

Figure 4.2: Test results with all input features

minute and prev4 were dropped and Figure 4.3 contains the error metrics obtained
as a result.

Figure 4.3: Test results after the first set of features were dropped

When comparing the results in Figures 4.2 and 4.3 it is clear that removing features
did result in slight improvement of the adjusted R2, RMSE and MAPE scores.
Therefore I then also tried to refine the subset even more by removing the features
Pressure, SDR, dayofmonth and prev2mean whose regression coefficient value was
less than |0.02| but, as seen in Figure 4.4 this did not improve the results overall
and therefore the first subset of features were used to test the rest of the models.

Figure 4.4: Test results after the second set of features were dropped

An overview of the results obtained using the baseline model (linear regression
model fitted to the chosen subset of features) in order to predict for two weeks of
unseen data can be observed in Figures 4.5 and 4.16.

The predicted values plotted in the final prediction plot corresponding to each model
refer to the latest predictions made by the respective model for each corresponding
timestamp.

4.2 LSTM

Initially, a simple LSTM with one hidden layer with 25 and 10 neurons in its
first and second layers respectively was tested with a range of values for other
hyperparameters.

4.3. CNN 35

Figure 4.5: Final prediction error metrics using the linear regression model

Figure 4.6 was referred to when choosing a suitable subset of values to test further
with for each hyperparameter for LSTMs with no hidden layers (Figure 4.7) and
two hidden layers (Figure 4.8) and as a result, dropout probabilities of 0.3 and 0.4
were chosen along with learning rates of 0.01 and 0.001, a batch size of 32 and the
number of epochs tested for only included 300. I also additionally did test with
models that contained 50 neurons in its first LSTM layer.

Having compared all the results obtained, the best result achieved via a LSTM
when compared to that of the baseline model corresponded to the first row in
Figure 4.8. This model was then used to predict for the two weeks of unseen data
and produced the results shown by Figures 4.9 and 4.17.

4.3 CNN

To begin with, a simple CNN with one hidden layer with 32 and 16 filters in its
first and second layers respectively was tested with the default kernel size of 1 and
a range of values for other hyperparameters.

Figure 4.10 was referred to when choosing a suitable subset of values to test further
with for each hyperparameter for CNNs with no hidden layers (Figure 4.11) and
two hidden layers (Figure 4.12) and as a result, dropout probabilities of 0.3 and
0.4 were chosen along with learning rates of 0.01 and 0.001, kernel sizes of 1 and 2,
a batch size of 32 and the number of epochs tested for only included 300.

Having compared all the results obtained, the best result obtained via a CNN when
compared to that of the baseline model corresponded to the first row in Figure
4.11. This model was then used to predict for the two weeks of unseen data and
produced the results shown by Figures 4.13 and 4.18.

4.4 CNN-LSTM

As a first step, a simple CNN-LSTM model that consisted of one CNN layer with
16 filters and the default kernel size of 1 and one LSTM layer with 10 neurons was
tested with a range of values for other hyperparameters.

4.4. CNN-LSTM 36

Figure 4.6: The top 20 entries corresponding to the lowest MAPE scores for the
LSTM with one hidden layer

Having compared all the results obtained, the best result obtained via a CNN-
LSTM when compared to that of the baseline model corresponded to the first row
in Figure 4.14. This model was used to predict for the two weeks of unseen data
and produced the results shown by Figures 4.15 and 4.19.

4.4. CNN-LSTM 37

Figure 4.7: Results obtained using a LSTM with no hidden layer and the chosen
subset of hyperparameters

Figure 4.8: Results obtained using a LSTM with two hidden layers and the chosen
subset of hyperparameters

Figure 4.9: Final prediction error metrics using the LSTM model

4.4. CNN-LSTM 38

Figure 4.10: The top 20 entries corresponding to the lowest MAPE scores for the
CNN with one hidden layer

4.4. CNN-LSTM 39

Figure 4.11: Results obtained using a CNN with no hidden layer and the chosen
subset of hyperparameters

Figure 4.12: Results obtained using a CNN with two hidden layers and the chosen
subset of hyperparameters

4.4. CNN-LSTM 40

Figure 4.13: Final prediction error metrics using the CNN model

Figure 4.14: The top 20 entries corresponding to the lowest MAPE scores for the
CNN-LSTM with one CNN layer and one LSTM layer

Figure 4.15: Final prediction error metrics using the CNN-LSTM model

4.4. CNN-LSTM 41

F
ig

ur
e

4.
16

:
F
in

al
pr

ed
ic

ti
on

pl
ot

fo
r

th
e

ba
se

lin
e

m
od

el

4.4. CNN-LSTM 42

F
ig

ur
e

4.
17

:
F
in

al
pr

ed
ic

ti
on

pl
ot

fo
r

th
e

LS
T

M
m

od
el

4.4. CNN-LSTM 43

F
ig

ur
e

4.
18

:
F
in

al
pr

ed
ic

ti
on

pl
ot

fo
r

th
e

C
N

N
m

od
el

4.4. CNN-LSTM 44

F
ig

ur
e

4.
19

:
F
in

al
pr

ed
ic

ti
on

pl
ot

fo
r

th
e

C
N

N
-L

ST
M

m
od

el

5. Evaluation

To start off, lets analyze the suitability of the various models chosen for this task
based on how well they could predict for unseen data.

Figure 5.1: Final error metric scores obtained using each model during prediction

Figure 5.1 clearly shows us that the CNN achieved the lowest MAPE and RMSE
scores and also the highest R2 score, thereby proving to be the best model. Both
the LSTM and the CNN-LSTM did not perform in favour of choosing them over
the baseline model. Although the LSTM did achieve a better MAPE score when
compared to the baseline model, this was not observed in the other two error
metrics.

In order to get an in-depth picture of how the different models performed when
compared with one another during both testing and prediction, we will also take a
look at the final test and pred MAPE values (since this metric was used to choose
the final model used for prediction), the optimal hyperparameter values and the
final plots obtained using each of them.

When comparing the final MAPE scores obtained when testing (column 1 in Figure
5.2), the CNN-LSTM evidently outperformed the baseline model itself, while both
the LSTM and CNN models did not. In contradiction to this, looking closely at
the MAPE values obtained when using these models to predict for unseen data
(column 2 in Figure 5.2), both the LSTM and CNN models outperform the baseline

45

46

Figure 5.2: Final MAPE scores obtained using each model during testing and
prediction

whereas the CNN-LSTM does not. This is one clear example of the CNN-LSTM
model being too complex for limited data which has in turn resulted in overfitting
and therefore this model fails to generalize when exposed to new data, whereas the
LSTM and CNN models seem to generalize well.

Another important fact to note is that the best performing LSTM model needed
two hidden layers whereas the CNN needed no hidden layer which means complexity
does have an impact on the performance depending on the model. The optimal
hyperparameter values for the ones that were common to all models were identical
for the LSTM and CNN models (dropout probability of 0.3, learning rate of 0.01,
a batch size of 32 and 300 epochs) but mostly varied for the CNN-LSTM model
(dropout probability of 0.3, learning rate of 0.0001, a batch size of 64 and 100
epochs).

Closely observing the final plots obtained, Figures 4.16, 4.17, 4.18 and 4.19, they
match the results mentioned above. Figure 4.18 clearly establishes how the CNN
model outperforms the baseline model and predicts both at the peaks and troughs
better then both the LSTM and CNN-LSTM models. As shown in Figure 4.17,
although the LSTM performed better then the CNN-LSTM model, it still does
not manage to predict well at all peaks and at most troughs. Lastly, Figure 4.19
reveals how the CNN-LSTM fails to predict well at almost all peaks and troughs.

6. Conclusion

In an attempt to find an answer to the question Can deep learning (or combining
best known methods) yield accurate predictions regarding the PV output
needed to maintain the balance between the production and usage of
solar energy in households with limited input? by mainly referring to the
findings in Ref. [4] the LSTM model, the CNN model and a combination of the two,
the CNN-LSTM model were tested for their ability to predict future values when
provided with limited data to learn from and were compared against a simple linear
regression model that was used as a baseline model. The CNN model performed the
best when compared to the other two models used but this can definitely change
depending on the features and hyperparameters chosen to work with. Recent
advancements in machine learning based techniques, particularly deep learning
algorithms, have caused these methods to gain popularity among researchers for
time series forecasting and have also proved to be quite effective and accurate as
traditional methods which I think was quite evident from the findings presented in
this thesis. However, in order to deploy these models over simple models like the
baseline model a lot more testing is required with new data in order to see if it
constantly outperforms the baseline model and not just by a minor difference in
the error metrics mainly due to the extra time and resources needed to train and
update these models.

6.1 Future Work

The tested methods and hyperparameters used can act as a starting point when
we have less data even for other use cases that require time series forecasting and
later customised according to how they perform just like how it was done in this
thesis. Regarding the approach used in this thesis, the models, training methods
and parameters could be changed or adjusted further to rerun the experiments with
or without additional up to date data which might result in better performance.

47

6.1. FUTURE WORK 48

The subset of features chosen to test models with could also be varied in order to
check if this would have an impact on the models ability to predict future values.
The models could also be made to predict for shorter periods in the future, for
example 6 hours instead of 24 which could also improve accuracy.

References

[1] Olesia Martynova. “Opportunities and Challenges of Artificial Intelligence
in the Energy Sector”. In: (Feb. 2020). url: https://intellias.com/
opportunities- and- challenges- of- artificial- intelligence- in-
the-energy-sector/.

[2] Jenny Palm. “Household installation of solar panels – Motives and barriers
in a 10-year perspective”. In: Energy Policy 113 (Feb. 2018), pp. 1–8. doi:
10.1016/j.enpol.2017.10.047.

[3] Diogo M. F. Izidio et al. “Evolutionary Hybrid System for Energy Con-
sumption Forecasting for Smart Meters”. In: Energies 14.7 (Mar. 2021). doi:
10.3390/en14071794.

[4] Pedro Lara-Benítez, Manuel Carranza-García, and José C. Riquelme. “An
Experimental Review on Deep Learning Architectures for Time Series Fore-
casting”. In: International Journal of Neural Systems 31.03 (Feb. 2021). doi:
10.1142/s0129065721300011.

[5] Francisco Martínez-Álvarez et al. “A Survey on Data Mining Techniques
Applied to Electricity-Related Time Series Forecasting”. In: Energies 8.11
(Nov. 2015). issn: 1996-1073. doi: 10.3390/en81112361. url: http://dx.
doi.org/10.3390/en81112361.

[6] Yang Lyla. “A Quick Deep Learning Recipe: Time Series Forecasting with
Keras in Python”. Apr. 2020. url: https://towardsdatascience.com/a-
quick-deep-learning-recipe-time-series-forecasting-with-keras-
in-python-f759923ba64.

[7] Taehee Jeong et al. BUILDING A SMART PARTNERSHIP FOR THE
FOURTH INDUSTRIAL REVOLUTION. Tech. rep. Atlantic Council, 2018,
pp. 15–21. url: http://www.jstor.org/stable/resrep20947.5.

[8] David Fumo. “Types of Machine Learning Algorithms You Should Know”.
June 2017. url: https://towardsdatascience.com/types-of-machine-
learning-algorithms-you-should-know-953a08248861.

49

https://intellias.com/opportunities-and-challenges-of-artificial-intelligence-in-the-energy-sector/
https://intellias.com/opportunities-and-challenges-of-artificial-intelligence-in-the-energy-sector/
https://intellias.com/opportunities-and-challenges-of-artificial-intelligence-in-the-energy-sector/
https://doi.org/10.1016/j.enpol.2017.10.047
https://doi.org/10.3390/en14071794
https://doi.org/10.1142/s0129065721300011
https://doi.org/10.3390/en81112361
http://dx.doi.org/10.3390/en81112361
http://dx.doi.org/10.3390/en81112361
https://towardsdatascience.com/a-quick-deep-learning-recipe-time-series-forecasting-with-keras-in-python-f759923ba64
https://towardsdatascience.com/a-quick-deep-learning-recipe-time-series-forecasting-with-keras-in-python-f759923ba64
https://towardsdatascience.com/a-quick-deep-learning-recipe-time-series-forecasting-with-keras-in-python-f759923ba64
http://www.jstor.org/stable/resrep20947.5
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861

REFERENCES 50

[9] Katrina Wakefield. “A guide to machine learning algorithms and their ap-
plications”. 2019. url: https://www.sas.com/en_gb/insights/articles/
analytics/machine-learning-algorithms.html.

[10] Emma Juliana Gachancipa Castelblanco. How to choose an activation func-
tion? May 2020. url: https://www.linkedin.com/pulse/how-choose-
activation-function-emma-juliana-gachancipa-castelblanco.

[11] Warren E. Agin. “A Simple Guide to Machine Learning”. In: Business Law
Today (2017), pp. 1–5. issn: 10599436, 23758112. url: https://www.jstor.
org/stable/90003559.

[12] Simeon Kostadinov. “Understanding Backpropagation Algorithm”. Aug. 2019.
url: https://towardsdatascience.com/understanding-backpropagation-
algorithm-7bb3aa2f95fd.

[13] Michael A Nielsen. “Neural Networks and Deep Learning”. Dec. 2019. url:
http://neuralnetworksanddeeplearning.com/chap2.html.

[14] SAGAR SHARMA. Epoch vs Batch Size vs Iterations. Sept. 2017. url:
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-
size-4dfb9c7ce9c9.

[15] Catherine F. Higham and Desmond J. Higham. “Deep Learning: An Intro-
duction for Applied Mathematicians”. In: SIAM Review 61.3 (Jan. 2019),
pp. 860–891. doi: 10.1137/18m1165748. url: https://arxiv.org/pdf/
1801.05894.pdf.

[16] datahacker.rs. “Gradient Descent”. Oct. 2018. url: https://datahacker.
rs/gradient-descent/.

[17] Jason Brownlee. How to Avoid Overfitting in Deep Learning Neural Networks.
Dec. 2018. url: https://machinelearningmastery.com/introduction-
to-regularization-to-reduce-overfitting-and-improve-generalization-
error/?source=post_page-----e05e64f9f07----------------------.

[18] Artem Oppermann. Regularization in Deep Learning — L1, L2, and Dropout.
Aug. 2020. url: https://towardsdatascience.com/regularization-in-
deep-learning-l1-l2-and-dropout-377e75acc036.

[19] Yash Bohra. “Vanishing and Exploding Gradients in Deep Neural Networks”.
June 2021. url: https://www.analyticsvidhya.com/blog/2021/06/the-
challenge - of - vanishing - exploding - gradients - in - deep - neural -
networks/.

[20] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow
concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
Inc., Sept. 2019. isbn: 9781492032649. url: https://www.knowledgeisle.
com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-
Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-

https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html
https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html
https://www.linkedin.com/pulse/how-choose-activation-function-emma-juliana-gachancipa-castelblanco
https://www.linkedin.com/pulse/how-choose-activation-function-emma-juliana-gachancipa-castelblanco
https://www.jstor.org/stable/90003559
https://www.jstor.org/stable/90003559
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
http://neuralnetworksanddeeplearning.com/chap2.html
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://doi.org/10.1137/18m1165748
https://arxiv.org/pdf/1801.05894.pdf
https://arxiv.org/pdf/1801.05894.pdf
https://datahacker.rs/gradient-descent/
https://datahacker.rs/gradient-descent/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/?source=post_page-----e05e64f9f07----------------------
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/?source=post_page-----e05e64f9f07----------------------
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/?source=post_page-----e05e64f9f07----------------------
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf

REFERENCES 51

Concepts- Tools- and- Techniques- to- Build- Intelligent- Systems-
O%E2%80%99Reilly-Media-2019.pdf.

[21] Domas Bitvinskas. ELU Activation Function. July 2020. url: https://
closeheat.com/blog/elu-activation-function.

[22] Jason Brownlee. Weight Initialization for Deep Learning Neural Networks. Feb.
2021. url: https://machinelearningmastery.com/weight-initialization-
for-deep-learning-neural-networks/.

[23] Aravindpai. CNN vs. RNN vs. ANN - Analyzing 3 Types of Neural Networks.
Feb. 2020. url: https://www.analyticsvidhya.com/blog/2020/02/cnn-
vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-
learning/.

[24] Priyal Walpita. Recurrent Neural Networks in Deep Learning — Part 1.
Mar. 2020. url: https://medium.datadriveninvestor.com/recurrent-
neural-networks-in-deep-learning-part-1-df3c8c9198ba.

[25] Will Koehrsen. “Recurrent Neural Networks by Example in Python”. Nov.
2018. url: https://towardsdatascience.com/recurrent-neural-networks-
by-example-in-python-ffd204f99470.

[26] Diego Unzueta. “Convolutional Layers vs Fully Connected Layers”. Nov. 2021.
url: https://towardsdatascience.com/convolutional- layers- vs-
fully-connected-layers-364f05ab460b.

[27] Macnica’s ARIH (AI Research InnovationHub). “Convolutional Neural Net-
work (CNN) for Time Series Classification”. Oct. 2020. url: https://www.
macnica.co.jp/business/ai_iot/columns/135112/.

[28] Jason Brownlee. How to Develop Convolutional Neural Network Models for
Time Series Forecasting. Nov. 2018. url: https://machinelearningmastery.
com/how- to- develop-convolutional- neural-network- models- for-
time-series-forecasting/.

[29] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks—the
ELI5 way. Dec. 2018. url: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[30] Shipra Saxena. LSTM | Introduction to LSTM | Long Short Term Memor.
Mar. 2021. url: https://www.analyticsvidhya.com/blog/2021/03/
introduction-to-long-short-term-memory-lstm/.

[31] Rian Dolphin. LSTM Networks | A Detailed Explanation. Mar. 2021. url:
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-
8fae6aefc7f9.

[32] H.D. Nguyen et al. “Forecasting and Anomaly Detection approaches using
LSTM and LSTM Autoencoder techniques with the applications in supply
chain management”. In: International Journal of Information Management
57 (Apr. 2021), p. 102282. doi: 10.1016/j.ijinfomgt.2020.102282.

https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://closeheat.com/blog/elu-activation-function
https://closeheat.com/blog/elu-activation-function
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
https://medium.datadriveninvestor.com/recurrent-neural-networks-in-deep-learning-part-1-df3c8c9198ba
https://medium.datadriveninvestor.com/recurrent-neural-networks-in-deep-learning-part-1-df3c8c9198ba
https://towardsdatascience.com/recurrent-neural-networks-by-example-in-python-ffd204f99470
https://towardsdatascience.com/recurrent-neural-networks-by-example-in-python-ffd204f99470
https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b
https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b
https://www.macnica.co.jp/business/ai_iot/columns/135112/
https://www.macnica.co.jp/business/ai_iot/columns/135112/
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://doi.org/10.1016/j.ijinfomgt.2020.102282

REFERENCES 52

[33] Nir Arbel. How LSTM networks solve the problem of vanishing gradients.
May 2020. url: https://medium.datadriveninvestor.com/how-do-lstm-
networks-solve-the-problem-of-vanishing-gradients-a6784971a577.

[34] Harpreet Singh Sachdev. Choosing number of Hidden Layers and number
of hidden neurons in Neural Networks. Jan. 2020. url: https : / / www .
linkedin . com / pulse / choosing - number - hidden - layers - neurons -
neural-networks-sachdev#:~:text=1%20Well%20if%20the%20data%
20is%20linearly%20separable.

[35] Jason Brownlee. Dropout Regularization in Deep Learning Models With
Keras. June 2016. url: https://machinelearningmastery.com/dropout-
regularization-deep-learning-models-keras/.

[36] Saulo Barreto. Choosing a Learning Rate | Baeldung on Computer Science.
Nov. 2021. url: https://www.baeldung.com/cs/ml-learning-rate.

[37] Enes Zvornicanin. Relation Between Learning Rate and Batch Size | Baeldung
on Computer Science. Jan. 2022. url: https://www.baeldung.com/cs/
learning-rate-batch-size.

[38] Renu Khandelwal. Convolutional Neural Network(CNN) Simplified. Oct.
2018. url: https://medium.datadriveninvestor.com/convolutional-
neural-network-cnn-simplified-ecafd4ee52c5.

[39] Swarnima Pandey. How to choose the size of the convolution filter or Kernel
size for CNN? July 2020. url: https://medium.com/analytics-vidhya/
how-to-choose-the-size-of-the-convolution-filter-or-kernel-
size-for-cnn-86a55a1e2d15.

[40] Krisha Samir Mehta. Weights Biases. Feb. 2022. url: https://wandb.
ai/krishamehta/seo/reports/Difference-Between-SAME-and-VALID-
Padding-in-TensorFlow--VmlldzoxODkwMzE.

[41] Python. Welcome to Python.org. May 2019. url: https://www.python.org/.
[42] Numpy. NumPy. 2009. url: https://numpy.org/.
[43] Pandas. Python Data Analysis Library — pandas: Python Data Analysis

Library. 2018. url: https://pandas.pydata.org/.
[44] Scikit-Learn. User guide: contents — scikit-learn 0.22.1 documentation. 2019.

url: https://scikit-learn.org/stable/user_guide.html.
[45] TensorFlow. Effective TensorFlow 2 | TensorFlow Core. url: https://www.

tensorflow.org/guide/effective_tf2.
[46] Plotly. Plotly Python Graphing Library. url: https : / / plotly . com /

python/.
[47] Vidhyashankar Venkatachalaperumal and Afshin Bakhtiari. “How Photo-

voltaic modules operate in different weather”. June 2021. url: https://ae-
solar.com/solar-panels-in-different-weather/.

https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev#:~:text=1%20Well%20if%20the%20data%20is%20linearly%20separable
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev#:~:text=1%20Well%20if%20the%20data%20is%20linearly%20separable
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev#:~:text=1%20Well%20if%20the%20data%20is%20linearly%20separable
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev#:~:text=1%20Well%20if%20the%20data%20is%20linearly%20separable
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://www.baeldung.com/cs/ml-learning-rate
https://www.baeldung.com/cs/learning-rate-batch-size
https://www.baeldung.com/cs/learning-rate-batch-size
https://medium.datadriveninvestor.com/convolutional-neural-network-cnn-simplified-ecafd4ee52c5
https://medium.datadriveninvestor.com/convolutional-neural-network-cnn-simplified-ecafd4ee52c5
https://medium.com/analytics-vidhya/how-to-choose-the-size-of-the-convolution-filter-or-kernel-size-for-cnn-86a55a1e2d15
https://medium.com/analytics-vidhya/how-to-choose-the-size-of-the-convolution-filter-or-kernel-size-for-cnn-86a55a1e2d15
https://medium.com/analytics-vidhya/how-to-choose-the-size-of-the-convolution-filter-or-kernel-size-for-cnn-86a55a1e2d15
https://wandb.ai/krishamehta/seo/reports/Difference-Between-SAME-and-VALID-Padding-in-TensorFlow--VmlldzoxODkwMzE
https://wandb.ai/krishamehta/seo/reports/Difference-Between-SAME-and-VALID-Padding-in-TensorFlow--VmlldzoxODkwMzE
https://wandb.ai/krishamehta/seo/reports/Difference-Between-SAME-and-VALID-Padding-in-TensorFlow--VmlldzoxODkwMzE
https://www.python.org/
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/user_guide.html
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://plotly.com/python/
https://plotly.com/python/
https://ae-solar.com/solar-panels-in-different-weather/
https://ae-solar.com/solar-panels-in-different-weather/

REFERENCES 53

[48] url: https://api.rebase.energy/weather/docs/v2/#hirlam- fmi-
identifier-fmi_hirlam.

[49] url: https://api.rebase.energy/weather/docs/v2/#variables-3.
[50] url: https://www.elia.be/en/grid-data/power-generation/solar-

pv-power-generation-data.
[51] url: https://www.elia.be/en/grid-data/power-generation.
[52] Neha Seth. What Is Data Preprocessing in Machine Learning, and Its Im-

portance? Nov. 2021. url: https://www.analytixlabs.co.in/blog/data-
preprocessing-in-machine-learning/.

[53] Will Badr. Why Feature Correlation Matters A Lot! Jan. 2019. url:
https://towardsdatascience.com/why-feature-correlation-matters-
a-lot-847e8ba439c4.

[54] Aishwarya V. Srinivasan. Why exclude highly correlated features when build-
ing regression model ?? Sept. 2019. url: https://towardsdatascience.
com / why - exclude - highly - correlated - features - when - building -
regression-model-34d77a90ea8e.

[55] url: https://sunrise-sunset.org/api.
[56] Akshita Chugh. How to deal with missing values in data set ? Jan. 2021. url:

https://medium.com/analytics-vidhya/how-to-deal-with-missing-
values-in-data-set-8e8f70ecf155#:~:text=%20How%20to%20deal%
20with%20missing%20values%20in.

[57] Shay Palachy. Detecting stationarity in time series data. Nov. 2019. url:
https://towardsdatascience.com/detecting-stationarity-in-time-
series-data-d29e0a21e638.

[58] Selva Prabhakaran. Augmented Dickey Fuller Test (ADF Test) – Must Read
Guide. Nov. 2019. url: https://www.machinelearningplus.com/time-
series/augmented-dickey-fuller-test/.

[59] Jason Brownlee. Basic Feature Engineering With Time Series Data in Python.
Dec. 2016. url: https://machinelearningmastery.com/basic-feature-
engineering-time-series-data-python/.

[60] Alan Anderson and David Semmelroth. Autocorrelation Plots: Graphical
Technique for Statistical Data. Mar. 2016. url: https://www.dummies.
com/article/technology/information-technology/data-science/big-
data/autocorrelation-plots-graphical-technique-for-statistical-
data-141241/.

[61] Urvashi Jaitley. Why Data Normalization is necessary for Machine Learning
models. Oct. 2018. url: https://medium.com/@urvashilluniya/why-
data-normalization-is-necessary-for-machine-learning-models-
681b65a05029.

https://api.rebase.energy/weather/docs/v2/#hirlam-fmi-identifier-fmi_hirlam
https://api.rebase.energy/weather/docs/v2/#hirlam-fmi-identifier-fmi_hirlam
https://api.rebase.energy/weather/docs/v2/#variables-3
https://www.elia.be/en/grid-data/power-generation/solar-pv-power-generation-data
https://www.elia.be/en/grid-data/power-generation/solar-pv-power-generation-data
https://www.elia.be/en/grid-data/power-generation
https://www.analytixlabs.co.in/blog/data-preprocessing-in-machine-learning/
https://www.analytixlabs.co.in/blog/data-preprocessing-in-machine-learning/
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e
https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e
https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e
https://sunrise-sunset.org/api
https://medium.com/analytics-vidhya/how-to-deal-with-missing-values-in-data-set-8e8f70ecf155#:~:text=%20How%20to%20deal%20with%20missing%20values%20in
https://medium.com/analytics-vidhya/how-to-deal-with-missing-values-in-data-set-8e8f70ecf155#:~:text=%20How%20to%20deal%20with%20missing%20values%20in
https://medium.com/analytics-vidhya/how-to-deal-with-missing-values-in-data-set-8e8f70ecf155#:~:text=%20How%20to%20deal%20with%20missing%20values%20in
https://towardsdatascience.com/detecting-stationarity-in-time-series-data-d29e0a21e638
https://towardsdatascience.com/detecting-stationarity-in-time-series-data-d29e0a21e638
https://www.machinelearningplus.com/time-series/augmented-dickey-fuller-test/
https://www.machinelearningplus.com/time-series/augmented-dickey-fuller-test/
https://machinelearningmastery.com/basic-feature-engineering-time-series-data-python/
https://machinelearningmastery.com/basic-feature-engineering-time-series-data-python/
https://www.dummies.com/article/technology/information-technology/data-science/big-data/autocorrelation-plots-graphical-technique-for-statistical-data-141241/
https://www.dummies.com/article/technology/information-technology/data-science/big-data/autocorrelation-plots-graphical-technique-for-statistical-data-141241/
https://www.dummies.com/article/technology/information-technology/data-science/big-data/autocorrelation-plots-graphical-technique-for-statistical-data-141241/
https://www.dummies.com/article/technology/information-technology/data-science/big-data/autocorrelation-plots-graphical-technique-for-statistical-data-141241/
https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029
https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029
https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029

REFERENCES 54

[62] Sergey Ioffe. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. 2015. url: https://arxiv.org/pdf/
1502.03167.pdf.

[63] Soumya Shrivastava. Cross Validation in Time Series. Jan. 2020. url: https:
//medium.com/@soumyachess1496/cross-validation-in-time-series-
566ae4981ce4.

[64] Shwetha Acharya. What are RMSE and MAE? June 2021. url: https:
//towardsdatascience.com/what-are-rmse-and-mae-e405ce230383.

[65] Zach. How to Interpret Adjusted R-Squared (With Examples). Mar. 2022. url:
https://www.statology.org/adjusted-r-squared-interpretation/.

[66] Konstantin Rink. Time Series Forecast Error Metrics you should know. Nov.
2021. url: https://towardsdatascience.com/time-series-forecast-
error-metrics-you-should-know-cc88b8c67f27.

[67] Stephen Allwright. RMSE vs MAPE, which is the best regression metric?
July 2022. url: https://stephenallwright.com/rmse-vs-mape/.

[68] Jason Brownlee. Loss and Loss Functions for Training Deep Learning Neu-
ral Networks. May 2019. url: https://machinelearningmastery.com/
loss- and- loss- functions- for- training- deep- learning- neural-
networks/.

[69] Aashish Nair. Baseline Models: Your Guide For Model Building. Apr. 2022.
url: https://towardsdatascience.com/baseline-models-your-guide-
for-model-building-1ec3aa244b8d.

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://towardsdatascience.com/what-are-rmse-and-mae-e405ce230383
https://towardsdatascience.com/what-are-rmse-and-mae-e405ce230383
https://www.statology.org/adjusted-r-squared-interpretation/
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://stephenallwright.com/rmse-vs-mape/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://towardsdatascience.com/baseline-models-your-guide-for-model-building-1ec3aa244b8d
https://towardsdatascience.com/baseline-models-your-guide-for-model-building-1ec3aa244b8d

	1. Introduction
	Motivation
	Related Work
	Outline

	2. Theoretical Background
	Machine Learning
	Mathematical Background
	Artificial Neural Networks (ANNs)
	Training FNNs
	Overfitting
	Vanishing/Exploding gradients

	Types of ANNs
	RNNs
	CNNs

	Multivariate forecasting using LSTMs
	Hyperparameters
	Software used

	3. Task and Data Analysis
	Task Summary
	Data
	Household PV data
	Weather forecast data
	Regional solar energy forecast data

	Preprocessing
	Weather forecast data
	Household PV data

	Machine learning techniques
	Feature engineering
	Normalization

	Train and Test Data

	4. Results
	Baseline model
	LSTM
	CNN
	CNN-LSTM

	5. Evaluation
	6. Conclusion
	Future Work

