
Algebraic stabilizations for scalar
convection-diffusion equations

Erika Gintautas

Master thesis

supervised by

Prof. Dr. Volker John
Dr. Alfonso Caiazzo

submitted to

Freie Universität Berlin
Fachbereich für Mathematik und Informatik

Berlin, Germany

on April 13, 2016

Contents

1 Introduction 1

2 Flux limiting for scalar equations 3
2.1 Model problem for the instationary convection-diffusion equation 3

2.1.1 Galerkin discretization . 4
2.1.2 Group finite element method . 7
2.1.3 Transport operator of nonlinear fluxes 9

2.2 Model problem for the stationary convection-diffusion equation 9
2.2.1 Galerkin discretization . 10

2.3 Design restrictions . 11
2.3.1 Mass lumping . 11
2.3.2 Mass conservation . 12

2.4 Positivity Constraints and Maximum Principles 14
2.4.1 Maximum principles for stationary elliptic problems 15
2.4.2 Maximum principles for instationary parabolic problems 15
2.4.3 Positivity constraints for discrete stationary equations 15
2.4.4 Positivity constraints for semidiscrete instationary equations 18
2.4.5 Local extremum diminishing LED . 19
2.4.6 Positivity constraints for fully discrete instationary equations 20

2.5 Time discretization . 21
2.5.1 θ -Scheme . 22
2.5.2 Runge-Kutta scheme . 23

2.6 Algebraic flux correction . 24
2.6.1 Design idea . 25

2.7 FEM-FCT schemes for stationary equations 29
2.7.1 Flux limiters for stationary equations 30

2.8 Nonlinear FEM-FCT schemes for instationary equations 30
2.8.1 Linearization of antidiffusive fluxes 32
2.8.2 Prelimiter . 34
2.8.3 Flux correction for time-dependent equations 34
2.8.4 Multidimensional Zalesak limiter . 34
2.8.5 Anderson acceleration . 35

2.9 Error estimation . 36

i

Contents

3 Numerical examples 41
3.1 Smooth Solution . 41
3.2 Transport of a step . 45
3.3 Traveling wave . 50
3.4 Two interior layers . 53

4 Summary 57
Bibliography . 58

ii

1 Introduction

Scalar convection-diffusion equations are of wide interest in numerous scientific fields as physics,
biology and chemistry. Various boundary value problems with incompressible flows are convection-
dominated and standard discretizations as SUPG may lead to spurious oscillations in regions
of steep gradients. The goal of algebraic flux stabilizations is to suppress these oscillations by
adding a specific amount of artificial diffusion in the neighborhood of steep gradients.

(a) ε = 10−8 (b) ε = 10−8

Figure 1.1: Traveling wave: Oscillations with SUPG

The flux-corrected transport algorithm (FCT) which was first introduced by Boris and Book
[BB73] in 1973 was the “[. . .] first scheme to ensure positivity/monotonicity even in the limit of
pure convection [. . .] “ [Kuz09, p.2517]. Later in 1979 a new algorithm for multidimensional
problems was introduced by Zalesak [Zal79]. Zalesak’s flux limiters will be discussed in Sec-
tion 2.8.4.
This thesis will provide an overview of advantages and drawbacks of algebraic flux stabiliza-
tions described by Dmitri Kuzmin [Kuz09], [Kuz07]. The intention is to create a basic under-
standing of the design idea of flux correction. We will derive the numerical operators (mass,
transport, diffusion, reaction, sources and sinks) with Galerkin discretization and introduce the
Group finite element method which is a new ansatz to discretize convection [Kuz10, p. 43]. Sta-
tionary and instationary equations will be considered separately. The use of the terms algebraic

1

1 Introduction

flux correction (AFC) and flux-corrected transport (FCT) is sometimes inconsistent and there-
fore confusing. AFC is mostly used for stationary problems and FCT for instationary problems.
The generic wording will be algebraic stabilization methods. Based on [Kuz10] we will de-
scribe four main design restrictions, which include mass lumping, mass conservation, the zero
row-sum property and positivity preservation. They imply that physical properties like density,
temperature and concentration will maintain physically meaningful values in the numerical sim-
ulations. Afterwards, positivity constraints and maximum principles for the stationary elliptic
problem and for the instationary parabolic problem are discussed. In this process the M-matrix
will be introduced.
After time and space discretization a high-order scheme is obtained, which may be implicit due
to the time-discretization. It will be shown that the matrix in the resulting algebraic equation is
an M-matrix under certain restrictions for the time step ∆t.
Artificial diffusion is designed such that it enforces the positivity constraints, e.g. no nonphys-
ical undershoots or overshoots are created. The main drawback of artificial diffusion is that
it creates a low-order scheme which flattens the solution. Peaks lose a little bit of height in
each iteration step. Therefore weighted antidiffusive fluxes must be added. The weights will be
called flux limiters α. These limiters depend on the solution and therefore lead to an implicit
scheme. In practice a linearization technique as described in [Kuz07] is applied. The resulting
algorithm is similar to a fixed-point iteration.
In Chapter 2.9 main results on error estimation for steady-state linear convection-diffusion-
reaction equations from [BJK16] are summarized. The paper is a pioneer on deriving error
estimates for these kind of algebraic stabilization methods. Finally four examples will be cal-
culated and discussed particularly with regard to the previous results.

I would like to thank my supervisor Prof. Dr. John, who supported me in numerous meet-
ings and took the time to answer all my questions. I am thankful for the code of algebraic flux
correction and flux corrected transport. Moreover, I would like to thank Dr. Caiazzo, who has
always been very patient explaining technical issues, as well as Ulrich Wilbrandt, who clarified
questions regarding the code and regarding the grid constructions.

2

2 Flux limiting for scalar equations

2.1 Model problem for the instationary
convection-diffusion equation

In many applications u represents the concentration of a material in a liquid substance, where
b(x) represents the direction of the flow and ε defines the amount of diffusion. This thesis will
focus on convection-dominated problems, where

0 < ε � ||b|| ,

−
1
2
∇ · b + c ≥ 0 , c ≥ 0 ,

and b(x) is a convection field. The function f on the right-hand side represents sinks and
sources of a concentration in the domain. We will consider the following type of the convection-
diffusion equation with standard Dirichlet and homogeneous Neumann boundary conditions

∂u
∂t
− ε∆u + b · ∇u + cu = f in Ω × [0,T] , (2.1)

u(x, t) = gD(x, t) ∀(x, t) ∈ ΓD × [0,T] , (2.2)
ε∇u(x, t) · η = 0 ∀(x, t) ∈ ΓN × [0,T] , (2.3)

u(x, 0) = u0(x) ∀x ∈ Ω × {0} . (2.4)

The boundaries Γ = ΓD∪ΓN are Lipschitz-continuous and the measure of the Dirichlet boundary
(ΓD) > 0 is positive. The described model problem is a special form of the convection-diffusion
equation

∂u
dt

+ ∇ · (bu −D∇u) + cu = f in Ω × [0,T] .

If we assume that b is an incompressible velocity field ∇ · b = 0, we can transform the
convection-diffusion equation into our model problem

∇ · (bu) = b · ∇u + (∇ · b)u ,
⇒∇ · (bu) = b · ∇u ,

⇒
∂u
∂t

+ b · ∇u − ∇ · (D∇u) + cu = f .

3

2 Flux limiting for scalar equations

The diffusive part D∇u describes transport of mass or heat by molecular diffusion. This
happens for example in fluids, which contain different concentrations of a material or different
temperatures in some areas. Molecules start to move to equate the concentration or heat.

Numerical solvers for convection-dominated equations lead to highly nonphysical oscillations
if the related discretization is not chosen accordingly. The goal of this thesis is to describe a
new type of discretization proposed by Dmitri Kuzmin in [Kuz09], which includes an artificial
diffusion in order to minimize those oscillations.

2.1.1 Galerkin discretization

After space discretization we will obtain a semidiscrete system of algebraic equations with the
following form

MC
∂u
∂t

= −(C + L + R)u + S ,

where MC is the mass matrix, C is the discrete transport operator , L is the discrete diffusion
operator, R is the raection matrix and S represents sources and sinks.
We will assume that Ω ⊂ Rd is a bounded domain with a Lipschitz-continuous boundary Γ.
In order to find a weak solution, we have to introduce an appropriate solution and test space.
For simplification we will assume homogeneous Dirichlet and Neumann conditions

Lu = f in Ω × [0,T], (2.5)
u = 0 ∀(x, t) ∈ ΓD × [0,T], (2.6)

A∇u · η = 0 ∀(x, t) ∈ ΓN × [0,T], (2.7)
u(x, 0) = u0(x) ∀x ∈ Ω × {0} , (2.8)

with Lu B ∂u
∂t − ε∆u + b · ∇u + cu .

Definition 2.1 (Weak solution).
A function u ∈ H1

0(Ω) B {v ∈ H1(Ω) : v = 0 on ΓD} is called weak solution of the mixed
boundary value problem (2.5) - (2.7) if∫

Ω

(
∂u
∂t

+ b · ∇u + cu
)

v + ε∇u · ∇v dx −
∫

ΓN∪ΓD

ε(∇u · ν)v dS =

∫
Ω

f v dx

and

u(x, 0) = u0(x) ∀x ∈ Ω × {0}

holds for all v ∈ H1
0(Ω × [0,T]).

4

2.1 Model problem for the instationary convection-diffusion equation

Remark 2.1. In general we do not have homogeneous Dirichlet boundary conditions u = 0 on
ΓD. For the special case that ΓN = ∅ we can set ũ B u − gD. Now it holds that f̃ B f − LgD,
Lũ = f̃ in Ω and ũ = 0 on ΓD.

Theorem 2.1 (TracesTheorem).
Assume Ω is bounded and ∂Ω is Lipschitz-continuous, then there exists a bounded linear oper-
ator T : H1(Ω)→ L2(∂Ω) such that

Tu = u|∂Ω in u ∈ H1(Ω) ∩C(Ω̄).

Proof. See L.C. Evans: Partial Differential Equations [Eva98, p. 258] �

Remark 2.2. To guarantee the existence of a solution we have to satisfy some conditions.

• We will assume that f is in L2(0,T ; H−1(Ω)).

• The coefficients b and c are in L∞(0,T ; L∞(Ω)) ∀ i, j = 1, . . . , d.

• The coefficient c must be greater or equal than zero.

• The solution ũ = u − gD will be from H1
g(Ω × [0,T]), where u is in H1

g(Ω × [0,T]), with:

H1
g B

{
u ∈ H1 : Tu = g|ΓD

}
.

• Be aware that for mixed boundary value problems it is not trivial to show the uniqueness
of the solution. The proof will not be part of this thesis.

For further analysis we will assume homogeneous Dirichlet conditions, provided that the previ-
ous points hold.

The weak formulation requires a space of test functions. This test space equals the space of the
solution v ∈ H1

0(Ω). Multiplying our model problem with a test function v, integrating it and
applying partial integration we obtain the following form of the weak formulation

∫
Ω

∂u
∂t

v + b · ∇uv + cuv dx −
∫

ΓN∪D

ε
(
∇u · ~η

)
v dS +

∫
Ω

ε∇u · ∇v dx =

∫
Ω

f v dx . (2.9)

The boundary integral eliminates, because of the homogeneous Neumann condition and the fact
that v is zero on the Dirichlet boundary ΓD.

Now we can rewrite the variational form into L2-products. Below we will write (·, ·)L2 instead
of (·, ·)L2(Ω)(

∂u(t)
∂t

, v
)

L2

= − (b(t) · ∇u(t), v)L2 − (ε∇u(t),∇v)L2 + (f , v)L2 − (cu, v)L2 ∀v ∈ H1
0 (Ω) .

5

2 Flux limiting for scalar equations

Let N be the number of degrees of freedom, which corresponds to the number of vertices of
the finite element discretization. We will take a finite element subspace VN ⊂ H1

0 with its basis
B = {φ1, φ2, . . . , φN} to approximate uN

uN(x, t) =

N∑
j=1

u j(t)φ j(x) uN , φi ∈ VN ,

uN(x, 0) = uN0(x) .

In case of Galerkin discretization the test functions φn are from the same finite element space
like the basis functions. Replacing v in the first summand of (2.9) we get the mass matrix MC(

∂uN

∂t
(t), φi

)
L2

=

N∑
j=1

(
∂u j(t)
∂t

φ j, φi

)
L2

,

=

N∑
j=1

∂u j(t)
∂t

(φ j, φi)L2 ∀φi ∈ VN ,

=

(
MC

∂uN(t)
∂t

)
i
,

with (MC)i j = (φ j, φi)L2 = mi j. The expression
(
MC

∂uN (t)
∂t

)
i

is the i-th row of MC multiplied

with ∂uN (t)
∂t . The mass matrix MC is always sparse since only basis functions of neighboring

points generate nonzero entries. In order to calculate the transport operator C we have to
discretize (b · ∇u, ω)L2:

−(b(t) · ∇uN(t)φ j, φi)L2 = −

N∑
j=1

(b(t) · ∇u j(t)φ j, φi)L2 ,

= −

N∑
j=1

(b(t) · ∇φ j, φi)L2u j(t) ∀φi ∈ VN ,

= −(C(t) uN(t))i ,

with Ci j(t) = (b(t) · ∇φ j, φi)L2 .

The discretized diffusion-operator L is obtained in the following way

−ε(∇uN(t),∇φi)L2 = −ε

N∑
j=1

u j(t)(∇φ j,∇φi)L2 ,

= −ε(LuN(t))i ,

with Li j = ε(∇φ j,∇φi)L2 .
The reaction matrix R will need a special treatment. The straightforward way to calculate R is

6

2.1 Model problem for the instationary convection-diffusion equation

to set

(c(t)uN(t), φi)L2 =

N∑
j

(c(t)φ j, φi)L2u j(t) ,

= (R(t)uN)i .

Since c is nonnegative it follows that for P1- elements all entries of R are nonnegative. When
it comes to design restrictions for algebraic flux correction, we will see that this may harm
a very important restriction which requires that (C + L + R)i j ≤ 0 ∀i , j (see (2.27)). In
order to overcome this, the implementation uses a simple diagonal approximation as described
in [BJK16, p. 14]

(c(t)uN(t), φi)L2 ≈ (c(t), φi)L2 ui(t) . (2.10)

The resulting matrix is a diagonal matrix with positive entries. The error generated by this
approximation will be discussed in Chapter 2.9.

Sources and sinks are modeled by the right-hand side

(f , φi)L2 = S i.

2.1.2 Group finite element method

Suppose that b is time-dependent. This implies that the transport operator
Ci j(t) =

(
b(t) · ∇φ j, φi

)
has to be calculated in each time step. The calculation of the transport

operator requires numerical integration which is expensive. Therefore we need a different ap-
proach (see [Kuz10, p. 43]). The group finite element method’s underlying idea is the following
ansatz

(bu)N(x, t) =

N∑
j=1

(
b ju j

)
(t)φ j(x) b j ∈ R

d , (2.11)

where b j(t) is the value of b in point j. It is important to be aware that b is from Rd. We
can make use of this property. Inserting (2.11) into the L2-product, it can be rewritten in the

7

2 Flux limiting for scalar equations

following way

(∇ · (bu)(t), φi)L2 =

N∑
j=1

(
∇ ·

(
(b ju j)(t)φ j

)
, φi

)
L2
,

=

N∑
j=1

 d∑
k=1

(b ju j)k(t)∂kφ j, φi


L2

, (b ju j)(t)k ∈ R,

=

d∑
k=1

 N∑
j=1

(b ju j)k(t)(∂kφ j, φi)L2

 ,
⇒ Ci j(t) =

d∑
k=1

Ck · bk(t) ,

with (Ck)i j =
∑N

j=1(∂kφ j, φi)L2 .

The advantage of this method is that Ck can be assembled once before iterating through the
time steps. After that, d matrix-vector multiplications can be executed in each time step.

Remark 2.3. Consider the very simple quadrature formula on an element τ which belongs to a
regular family Jh of triangulations of Ω∫

τ

f (x)dx ≈
|τ|

N

N∑
l=1

f (xl)

and use it to calculate Ci j(t) for both presented methods.

• Standard method

(b(t) · ∇φ j, φi)L2(τ) =

∫
τ

b(x, t) · ∇φ j(x)φi(x)dx ,

≈
|τ|

N

N∑
l=1

b(xl, t) · ∇φ j(xl)φi(xl) ,

=
|τ|

N

N∑
l=1

d∑
k=1

bk(xl, t)∂kφ j(xl)φi(xl) .

• Group finite element method
d∑

k=1

(∂kφ j, φi)L2(τ)bk(t) =

d∑
k=1

∫
τ

∂kφ j(x)φi(x)bk(x, t)dx ,

≈
|τ|

N

d∑
k=1

N∑
l=1

∂kφ j(xl)φi(xl)bk(xl, t) .

It turns out that both methods generate exactly the same solution if the discretization elements
are from P1, but the group finite element method is preferable since the calculation costs are
cheaper.

8

2.2 Model problem for the stationary convection-diffusion equation

2.1.3 Transport operator of nonlinear fluxes

If our problem contains a nonlinear flux,
∂u
∂t

+ ∇ · g(u) = f in Ω × [0,T]

we have to discretize it in a special way. This section relates to [Kuz10, p. 53]. Instead of
discretizing

g(un(t))

which is dependent on the unknown solution, the idea is to interpolate the flux itself with the
same basis function as for u.

gn(x, t) =
∑

j

g j(t)φ j(x), g j(t) = g(u j(t)), u j(t) = u(x j, t).

Thus the variational form of it yields

(∇ · g(un), φi)L2 =

h∑
j=1

(
∇ · (g j(t)φ j(x)), φi(x)

)
L2
,

=

n∑
j=1

g j(t)
(
∇ · φ j, φi

)
L2
,

where (Ci j) = (∇ · φ j, φi)L2 = (ci j). Altogether we receive the following algebraic equation:

MC
∂u
∂t

= Cg(u) + S .

2.2 Model problem for the stationary convection-diffusion
equation

The stationary convection-diffusion equation is part of our numerical examples and analysis,
therefore it will be described separately in this chapter, although the discretization is similar to
the instationary case.
For the model problem to be well-defined we have to assume the following conditions

0 < ε,

−
1
2
∇ · b + c ≥ 0 .

Consider the following form of the convection-diffusion equation. For simplification reasons
we will assume homogeneous Neumann and Dirichlet boundary conditions

−ε∆u + b · ∇u + cu = f in Ω ⊂ Rd , (2.12)
u(x) = 0 ∀x ∈ ΓD , (2.13)

ε∇u(x) · η = 0 ∀x ∈ ΓN . (2.14)

9

2 Flux limiting for scalar equations

2.2.1 Galerkin discretization

After applying Galerkin discretization we will obtain the following algebraic problem

(C + L + R)u = S ,

where C is the discrete transport operator, L is the discrete diffusion operator, R is the reaction
matrix and S represents sources and sinks.

The weak formulation requires a space of test functions. This test space equals the space of
the solution v ∈ H1

0(Ω). Multiplying our model problem with a test function v, integrating it and
applying partial integration we obtain the following form of the weak formulation

∫
Ω

b · ∇uv + cuv dx −
∫

ΓN∪D

ε
(
∇u · ~η

)
v dS +

∫
Ω

ε∇u · ∇v dx =

∫
Ω

f v dx. (2.15)

The boundary integral eliminates, because of the homogeneous Neumann condition and the fact
that v is zero on the Dirichlet boundary ΓD.

Now we can rewrite the variational formulation into L2-products

(b · ∇u, v)L2 + (ε∇u,∇v)L2 + (cu, v)L2 = (f , v)L2 ∀v ∈ H1
g (Ω) .

We will take a finite element subspace VN ⊂ H1
0 with its basis B = {φ1, φ2, . . . , φN} to approxi-

mate u

uN(x) =

N∑
j=1

u jφ j(x) uN , φi ∈ VN .

The derivation of each discrete operator will be skipped here, since it is analogously to the
instationary case. Obviously there is no mass matrix for stationary problems.
The discrete operators for the stationary case are listed below

Ci j = (b · ∇φ j, φi)L2 ,

Li j = ε(∇φ j,∇φi)L2 ,

Ri j =

(c, φi)L2 i = j ,
0 i , j ,

S i = (f , φi)L2 .

10

2.3 Design restrictions

2.3 Design restrictions

Certain restrictions have to be imposed on the semidiscrete algebraic problem

MC
∂u
∂t

= −(C + L + R)u + S , (2.16)

in order to maintain physical properties of the original equation. The following subsections will
analyze and define those restrictions.

1. “[. . .] no mass should be created or destroyed inside the domain by the discretized con-
vective and diffusive terms. " [Kuz10, p. 35]

2. “[. . .] if a continuous operator produces zero when applied to a constant, so should its
discrete counterpart." [Kuz10, p. 36]

3. “[. . .] if convection and diffusion are the only processes to be simulated, the nodal value
un+1

i should not decrease as result of increasing any other nodal value that appears in the
discretized equation for node i. Conversely, it should not increase if another nodal value
is decreased, all other things being fixed [. . .] ." [Kuz10, p. 36]

4. “[. . .] if the discretization of convective and diffusive terms is positivity-preserving, in-
clusion of a reactive part should not destroy this property." [Kuz10, p. 37]

It is a common technique to replace MC by its lumped counterpart ML.

2.3.1 Mass lumping

In many applications it is useful to have a diagonal mass matrix, since this allows an explicit
way of solving the semidiscrete algebraic equation. Using row-sum mass lumping results in the
diagonal matrix ML

ML = diag(mi), mi =

N∑
j

mi j ∀i ∈ {1, 2, · · · ,N} ,

mi
∂ui

∂t
= −

N∑
j

(ci j + li j + ri j)u j . (2.17)

The lumped mass matrix ML is a good approximation to MC for low order finite elements. It
conserves mass in the sense that

N∑
i

N∑
j

miu j =

N∑
i

N∑
j

mi ju j .

11

2 Flux limiting for scalar equations

2.3.2 Mass conservation

1. “[. . .] no mass should be created or destroyed inside the domain by the discretized
convective and diffusive terms . . . " [Kuz10, p. 35].

To describe mass conservation we need to understand that the mass m|i, which belongs to
node i is given by

m|i =

N∑
j

mi ju j .

Mass conservation means that mass does not change in time. Therefore the derivative in time
of the global mass must equal zero:

d
dt

N∑
i

N∑
j

mi ju j
!
= 0 .

Suppose that there are no sinks and sources, but a diffusion operator L in the discrete formulation

d
dt

N∑
i

N∑
j

mi ju j = −

N∑
j

N∑
i

(ci j + li j)u j . (2.18)

Setting the column sums of diffusion and convection operator to zero fulfills condition (2.18)
for all u

N∑
i

li j = 0 ,
N∑
i

ci j = 0 .

2. “[. . .] if a continuous operator produces zero when applied to a constant, so should its
discrete counterpart." [Kuz10, p. 36]

We have to assume that c equals zero, else the operator would not produce zero when applied
to a constant. In order to guarantee the second rule, the row sums of transport and diffusion
operators have to be zero:

N∑
j

ci j = 0,
N∑
j

li j = 0 .

Remark 2.4. As Kuzmin mentions in [Kuz10] all assumptions have to be treated with caution.
The row sums of C do not have to be zero if we have a compressible (not divergence-free)
velocity field. This means that ∇ · b , 0 and the expression

∇ · (bu) = (∇ · b)u + b · ∇u

cannot be reduced. We will only consider incompressible flows, therefore C must fulfill the zero
row-sum criterion for the presented examples .

12

2.3 Design restrictions

3. “[. . .] if convection and diffusion are the only processes to be simulated, the nodal value
un+1

i should not decrease as result of increasing any other nodal value that appears in the
discretized equation for node i. Conversely, it should not increase if another nodal value
is decreased, all other things being fixed [. . .] ." [Kuz10, p. 36]

For this rule we have to assume that there are no sources or sinks, which means that f equals
zero and therefore S equals zero. Reaction is not part of this process, therefore c is also zero.
The rule can be fulfilled by taking a look at the following useful equivalent formulation of
(2.16). By applying mass lumping and the zero row-sum property we receive

mi
∂ui

∂t
= −

N∑
j,i

(ci j + li j)(u j − ui) . (2.19)

When it comes to time-discretization we obtain an algebraic equation of the form

Aun+1 = Bun ,

where un+1
i is dependent on all other nodal values in the corresponding time step and all values

of the previous time-step

aiiun+1
i =

N∑
j

bi jun
j −

∑
j,i

ai jun+1
j .

Suppose that one of the nodal values un
j for j ∈ {1, 2, . . . ,N} or un+1

j for j , i increased. It would
be a bad behavior if un+1

i decreases thereupon. This means that the corresponding coefficient
(bi j) or (ai j respectively) has to be nonnegative. We get the following conditions for A and B

aii > 0, bii ≥ 0, ∀i ,
ai j ≤ 0, bi j ≥ 0 ∀ j , i ,

which guarantee the third of our required restrictions.

Remark 2.5 (positivity-preserving). A numerical scheme is positivity-preserving if

un ≥ 0 ⇒ un+1 ≥ 0 ∀n

holds. If A is a diagonal matrix this property is fulfilled. It will be discussed later that it is
sufficient that A is an M-matrix in order to preserve positivity.

4. “[. . .] if the discretization of convective and diffusive terms is positivity-preserving,

13

2 Flux limiting for scalar equations

inclusion of a reactive part should not destroy this property." [Kuz10, p. 37]
Due to the diagonal approximation from (2.10)

N∑
j

(
c(t)φ j, φi

)
L2

u j(t) ≈

c(t)
N∑
j

φ j︸︷︷︸
=1

, φi


L2

ui(t) = (c(t), φi)L2 ui(t) ,

⇒ R = diag
(
(c(t), φ1)L2 , . . . , (c(t), φN)L2

)
,

the reaction matrix R has only positive diagonal entries. Therefore it cannot generate positive
off-diagonal entries ai j > 0 for j , i or nonpositive diagonal entries aii.

2.4 Positivity Constraints and Maximum Principles

In this chapter we will analyze maximum principles and positivity constraints of the given
partial differential equation. The chapter bases on the book A Guide to Numerical Methods for
Transport Equations [Kuz10]. We will start with the continuous formulation of the maximum
principle and the positivity constraint and formulate them for the discrete elliptic equation and
the semidiscrete parabolic equation of our differential equation. All matrix/vector inequalities
in this section are meant to hold componentwise. In this chapter the term cu is contained in f
(f B f − cu). The most general form of our convection-diffusion equation Lu = f

∂u
∂t

+ ∇ · (bu −D∇u) = f in Ω × [0,T] , (2.20)

u(x, t) = gD(x, t) ∀(x, t) ∈ ΓD × [0,T] , (2.21)
u(x, 0) = u0(x) ∀(x, t) ∈ Ω × {0} , (2.22)

is of parabolic type. The related stationary problem

∇ · (bu −D∇u) = f (2.23)

is of elliptic type. Both types fulfill a set of maximum principles, which have to be taken into
consideration in order to maintain these properties for the discretized problem.

Remark 2.6. The following theorems assume that ΓD = ∂Ω . This implies that mixed boundary
value problems must not satisfy these theorems.

In our specific case we have a positive definite symmetric matrixD = diag(ε) and an incom-
pressible velocity field ∇ · b = 0 which reduces the differential equations to

∂u
∂t

+ b · ∇u − ε∆u = f

and

b∇ · u − ε∆u = f .

14

2.4 Positivity Constraints and Maximum Principles

2.4.1 Maximum principles for stationary elliptic problems

Theorem 2.2 (Maximum principle for elliptic problems).
Let the diffusion tensorD be symmetric positive definite and ∇ · b = 0 in Ω . Then a solution of
problem (2.23) satisfies the maximum principle

f ≤ 0⇒ max
Ω̄

u = max
Γ

gD .

Theorem 2.3 (Positivity constraint).
Let the diffusion tensor D be symmetric positive definite in Ω . Then a solution of problem
(2.23) with arbitrary b satisfies the positivity constraint

f ≥ 0, gD ≥ 0⇒ u ≥ 0.

Here and above, inequalities are meant to hold in the whole range of function values.

Proof. For both proofs see [Kuz10, p. 97]. �

2.4.2 Maximum principles for instationary parabolic problems

The solution of parabolic unsteady problems is highly dependent on the initial values u0(x) and
gD(x).

Theorem 2.4 (Maximum principle for parabolic problems).
Let the diffusion tensorD be symmetric positive definite in Ω. Then a solution of problem (2.20)
- (2.22) with ∇ · b = 0 satisfies

f ≤ 0⇒ max
Ω̄

u = max
Γ×[0,T]

gD or max
Ω̄

u = max
Ω

u0 .

Theorem 2.5 (Positivity constraint).
Let the diffusion tensorD be symmetric positive definite in Ω. Then a solution of problem (2.20)
- (2.22) with arbitrary b satisfies

f ≥ 0, gD ≥ 0, u0 ≥ 0⇒ u ≥ 0 .

Proof. For both proofs see [Kuz10, p.104]. �

2.4.3 Positivity constraints for discrete stationary equations

Since it is important to guarantee physically logic density, temperature and concentration, we
want the numerical scheme also to preserve positivity. Discretizing may harm this positivity
preserving properties which is why we have to define several constraints for the matrix A in the
discretized case

Au = b . (2.24)

15

2 Flux limiting for scalar equations

“Let the first NΩ nodes be associated with the unknown degrees of freedom, and the rest with
the Dirichlet boundary values. This numbering convention implies that the discrete operator A
and the vector of nodal values u can be partitioned as follows [. . .] “ [Kuz10, p. 107]:

Ā =

[
AΩΩ AΩΓ

0 1

]
∈ R(NΩ+NΓ)×(NΩ+NΓ), b =

[
bΩ

gD

]
, (2.25)

where NΩ = {1, . . . ,N} and NΓ = {N + 1, . . . N̄}.

In order to prove and set up discrete positivity constraints we will need some special matrix
properties.

Definition 2.2 (Monotone matrix).
A matrix A is called monotone if

A−1 exists with (A−1 ≥ 0) .

Monotonicity is important, because it inherits positivity in the sense that

Aun+1 ≥ 0⇒ un+1 ≥ 0 .

This will be of interest when it comes to the positivity constraint property for instationary
parabolic equations, where we must show that if the initial condition u0 is greater than zero
then all following solutions un must also be greater than zero.
To guarantee the existence of the inverse of A, we consider a subset of monotone matrices with
the following properties:

Definition 2.3 (M-Matrix).
A matrix A = (ai j) ∈ Rn×n is called M-matrix if:

1. ai j ≤ 0 for i , j .

2. A−1 exists with (A−1 ≥ 0) . (monotone matrix)

"The M-matrix property is widely used to prove discrete maximum principles (DMP) for finite
element discretizations of elliptic and parabolic problems." [Kuz08, p. 2520]
In real applications it is too expensive to check if A has an inverse. Especially when it comes to
time-dependent problems this check must be done in each time step. Therefore, there exists a
subset of M-matrices with the following properties.

Definition 2.4 (Nonnegative-type matrix).
A matrix A = (ai j) is said to be of nonnegative-type if

aii > 0, ∀i , (2.26)
ai j ≤ 0, ∀ j , i , (2.27)

N∑
j

ai j ≥ 0, ∀i . (2.28)

16

2.4 Positivity Constraints and Maximum Principles

Remark 2.7. “A nonnegative-type matrix A is an M-matrix if inequality (2.28) is strict or A is
irreducible and (2.28) is strict for at least one row." [Kuz10, p. 110]
The proof is skipped here and can be looked up in [Kuz10, p. 110-111].

It is interesting that conditions (2.26)-(2.27) are already given by the third rule of our design
restrictions in Chapter 2.3. Part three (2.28) is the zero row-sum property from the second
design restriction.
We will now define the discrete equivalent of the maximum principle for elliptic problems (2.2).

Theorem 2.6 (Global discrete maximum principle).
If the matrix Ā is given by (2.25), AΩΩ is monotone, AΩΓ ≤ 0, and

N̄∑
j

ai j = 0 ∀i ∈ NΩ , (2.29)

holds, then the solution of (2.24) satisfies the global discrete maximum principle

bΩ ≤ 0⇒ max
i

ui = max
j

gD j . (2.30)

Proof. See [Kuz10, p. 111]. We will show that wΩ ≤ 0 with w = u − µ and µ = max j gD j.
Using the zero row-sum property (2.29) for Ā we obtain

N∑
j=1

ai jw j =

N∑
j=1

ai ju j − µ

N∑
j=1

ai j = bΩ ≤ 0 .

With the matrix formulation in (2.25) this yields

AΩΩwΩ + AΩΓwΓ = bΩ ≤ 0 ,

⇒ wΩ = A−1
ΩΩ[bΩ − AΩΓwΓ] .

Because (wΓ)i = gi − max j g j ≤ 0 it follows that AΩΓwΓ ≥ 0. Because of the monotonicity of
AΩΩ this implies that wΩ ≤ 0.

�

As mentioned before it is not practical to calculate A−1. Therefore a weaker discrete maximum
principle for stationary problems can be formulated by using the nonnegativity of Ā.

Theorem 2.7 (Local discrete maximum principle).
If the matrix Ā is of nonnegative-type and

N̄∑
j

ai j = 0, ∀i ∈ NΩ

holds, then the solution of (2.24) satisfies the local discrete maximum principle

bi ≤ 0 ⇒ ui ≤ max
j∈Ni

u j ∀i ∈ NΩ ,

where Ni B { j , i|ai j , 0} is the set of neighbors that form the stencil of node i.

17

2 Flux limiting for scalar equations

Proof. The proof will be skipped here. The interested reader is referred to [Kuz10, p. 111]. �

Remark 2.8. If A is obtained by a finite element discretization it is in general possible to prove
the global discrete maximum principle by its local counterpart.

Theorem 2.8 (Discrete positivity constraint for stationary elliptic problems).
If the matrix Ā is given by (2.25), where AΩΩ is monotone and AΩΓ ≤ 0, then the discretization
(2.24) is positivity-preserving that is,

b ≥ 0 ⇒ u ≥ 0 .

Proof. The proof can be found in [Kuz10, p. 112]. The inverse of Ā is

Ā−1 =

[
A−1

ΩΩ
−A−1

ΩΩ
AΩΓ

0 1

]
∈ R(NΩ+NΓ)×(NΩ+NΓ) .

All components are nonnegative therefore

b ≥ 0 ⇒ Ā−1b = u ≥ 0 .

�

2.4.4 Positivity constraints for semidiscrete instationary equations

Similar to the analysis of the elliptic instationary discrete formulation we want to formulate
discrete maximum principles for the semi discrete algebraic equation

MC
∂u
∂t

= −(C + L + R)u + S . (2.31)

It shall be mentioned here that Kuzmin writes down all following theorems only for problems
without the discrete diffusion operator L and the reactive term R is hidden in S . Since it is part
of our parabolic problem, all these statements are expanded by L and adjusted such that Riui is
a stand-alone term. For all further observations it is assumed that M = ML is diagonal and the
zero row-sum property is used to rewrite the semidiscrete formulation into

mi
∂ui

∂t
= −

∑
j,i

(ci j + li j)(u j − ui) + S i − Riui . (2.32)

Theorem 2.9 (Local semidiscrete maximum principle for instationary problems).
If mi > 0 for all i, ci j + li j ≤ 0 for all j , i then the local semidiscrete maximum principles

ui ≥ u j, ∀ j ∈ Ni ⇒
∂ui

∂t
≤ 0 for S i − Riui ≤ 0 ,

ui ≤ u j, ∀ j ∈ Ni ⇒
∂ui

∂t
≥ 0 for S i − Riui ≥ 0 ,

hold for (2.32).

18

2.4 Positivity Constraints and Maximum Principles

Proof. It is

∂ui

∂t
= −

1
mi

∑
j∈Ni

(ci j + li j) (u j − ui)︸ ︷︷ ︸
≤0

+
S i

mi
−

Riui

mi︸ ︷︷ ︸
≤0

,

⇒
∂ui

∂t
≤ 0 .

The proof of the second inequality is performed analogously. [Kuz10, p. 116] �

Theorem 2.10 (Positivity constraint for semidiscrete equations).
Given the following properties

mi > 0, S i − Riui ≥ 0 ∀i, ci j + li j ≤ 0 ∀ j , i, (2.33)

then a semidiscrete equation is called positivity preserving in the sense that the following esti-
mate holds for the solution vector ui

u j(0) ≥ 0 ∀ j ⇒ ui(t) ≥ 0 ∀i,∀t > 0 . (2.34)

Proof. See [Kuz10, p.117-118]. The proof is similar to the previous proof. The time derivative
of ui is greater or equal than zero and therefore ui can only increase in time. �

Remark 2.9. “[. . .] the numerical solution is not forced to be positive if ∃ i , j such that
u j(0) < 0. Positivity preservation means that the numerical scheme cannot produce nonphysical
negative values." [Kuz09, p. 2519]

2.4.5 Local extremum diminishing LED

A very useful property is the Local Extremum Diminishing property LED.

Theorem 2.11 (LED).
Suppose that

mi > 0 ∀i , S i − Riui = 0 and cii + lii = −
∑
j,i

(ci j + li j) ,

then it follows from the local semidiscrete maximum principle that

ui ≥ u j ∀ j , i ⇒ ci j(u j − ui) ≤ 0 ⇒
∂ui

∂t
≤ 0 and (2.35)

ui ≤ u j ∀ j , i ⇒ ci j(u j − ui) ≥ 0 ⇒
∂ui

∂t
≥ 0. (2.36)

Proof. The proof is analogously to the proof of Theorem 2.9 �

Thus a local maximum (minimum) can only diminish (grow).

19

2 Flux limiting for scalar equations

Remark 2.10.
If f and cu are nonzero it is very unlikely that the LED property holds. One example (traveling
wave) will be discussed in Chapter 3.

• “In one space dimension, the LED property guarantees that the total variation of the
discrete solution is a nonincreasing function of time. Thus, one-dimensional LED schemes
are total variation diminishing (TVD). “ [Kuz09, p. 2520]

• “By the Godunov theorem [. . .], a linear positivity-preserving/LED discretization of a
hyperbolic transport equation can be at most first-order accurate“ [KLT05, p. 149] .

• The LED property is only of interest if the continuos solution also does not develop max-
ima or minima.

2.4.6 Positivity constraints for fully discrete instationary equations

The fully discrete formulation of the parabolic model problem has the following form[
An+1

ΩΩ
An+1

ΩΓ

0 1

] [
un+1

Ω

un+1
Γ

]
=

[
Bn

ΩΩ
Bn

ΩΓ

0 1

] [
un

Ω

un
Γ

]
+

[
S n

Ω

S n
Γ

]
. (2.37)

The superscript indicates the time-level and u0
i equals ui(0) for all i. It is important to have in

mind that this algebraic equation does not have to be explicit. We will see in Chapter 2.5 that
the matrix A may be dependent on the future time step un+1 if the flux g(u) is of nonlinear type.
We will neglect the superscripts of (2.37) in the following analysis if there is no confusion
possible.

Theorem 2.12 (Global maximum principle for fully discrete instationary equations).
Let the first NΩ row-sums of A and B be equal, i.e.,

N̄∑
j=1

ai j =

N̄∑
j=1

bi j ∀i ∈ NΩ ,

and let the block AΩΩ be regular. Then the solution un+1
Ω

of problem (2.37) satisfies the global
discrete maximum principle

S Ω ≤ 0 ⇒ un+1
i ≤ max

j
g j, ∀i ∈ NΩ ,

under the following sign conditions

A−1
ΩΩ ≥ 0, AΩΓ ≤ 0, BΩΩ ≥ 0, BΩΓ ≥ 0 .

20

2.5 Time discretization

Proof. The proof is very similar to the proof of the global discrete maximum principle for
discrete stationary equations (2.30). It has to be shown that w = un+1 − µ with µ = max j g j is
nonpositive. It is skipped here and the interested reader is referred to [Kuz10, p.119]. �

Theorem 2.13 (Local maximum principle for fully discrete instationary equations).
The solution of (2.37) satisfies the local maximum principle for fully discrete instationary equa-
tions

S i ≤ 0 ⇒ ui ≤ µi ∀i ∈ NΩ ,

where µi denotes the maximum taken over {u j|ai j , 0, j , i} and {g j|bi j , 0}, if the row-sum
constraint holds and if the conditions of the third basic rule from Section 2.3, i.e.,

aii > 0, bii ≥ 0, ∀i , (2.38)
ai j ≤ 0, bi j ≥ 0, ∀ j , i (2.39)

hold.

Proof. See [Kuz10, p. 119]. �

Theorem 2.14 (Positivity constraint for fully discrete instationary equations).
If the coefficients of (2.37) satisfy conditions (2.38) - (2.39) and

N̄∑
j=1

ai j > 0, ∀i ∈ NΩ , (2.40)

then such a discretization is guaranteed to be positivity-preserving that is,

S Ω ≥ 0, un ≥ 0 ⇒ un+1
Ω ≥ 0 .

Proof. Because of (2.38)- (2.39) AΩΩ is of nonnegative-type and because of (2.40) it is even an
M-matrix. Therefore

un+1
Ω = A−1

ΩΩ(BΩΩun
Ω + BΩΓun

Γ − AΩΓun
Γ − AΩΓ + S Ω) ≥ 0 ,

holds, see [Kuz10, p. 119]. �

2.5 Time discretization

After discretization in time one obtains an algebraic system of the form[
An+1

ΩΩ
An+1

ΩΓ

0 1

] [
un+1

Ω

un+1
Γ

]
=

[
Bn

ΩΩ
Bn

ΩΓ

0 1

] [
un

Ω

un
Γ

]
+

[
S n

Ω

S n
Γ

]
.

After the previous analysis we can summarize that the following conditions must be fulfilled in
order to preserve positivity:

21

2 Flux limiting for scalar equations

1. AΩΩ is an M-matrix and AΩΓ ≤ 0

aii > 0 ∀i ∈ NΩ ,

ai j ≤ 0 ∀ j , i , i ∈ N̄ ,

N̄∑
j

ai j > 0 ∀i ∈ NΩ .

2. BΩΩ and BΩΓ are nonnegative (≥ 0). This ensures the third rule of the design restrictions.

If additionally the row-sums of A and B are equal for all i in NΩ

N̄∑
j=1

ai j =

N̄∑
j=1

bi j ∀i ∈ NΩ ,

even the global maximum principle holds.

Remark 2.11. It shall be noticed that the full discretization can only be positivity preserving if
the semidiscrete form is also positivity preserving.

2.5.1 θ -Scheme

It will be assumed for all following studies that S is time and solution independent. One possible
approach is the two-level θ-scheme. With the implicitness parameter 0 ≤ θ ≤ 1 we obtain from

MC
∂ui

∂t
= −(C + L + R)u + S ,

the following scheme

MC
un+1 − un

∆t
= −

(
θ(Cn+1 + Ln+1 + Rn+1)un+1 + (1 − θ)(Cn + Ln + Rn)un

)
+ S .

With θ = 0/1 we receive first order forward/backward Euler-schemes. Choosing θ = 1
2 (Crank-

Nicolson) the system turns out to be implicit and of second order. The matrices of the algebraic
system have the following forms

A = MC + ∆tθ(Cn+1 + Ln+1 + Rn+1) and B = MC − ∆t(1 − θ)(Cn + Ln + Rn) .

When it comes to time discretization “[. . .] an upper bound may need to be imposed on the
time step ∆t = tn+1 − tn . This bound can be derived using the concept of monotone matrices.“
[Kuz09, p. 2520]. This will be analyzed in the following theorem. It bases on [Kuz10, p.
121-122].

22

2.5 Time discretization

Theorem 2.15 (Positivity constraint for the θ-scheme).
A θ-scheme is positivity preserving if the space discretization fulfills

(ci j + li j) ≤ 0 ∀ j , i , and (cii + lii + Ri) > 0 ,

and if the time step ∆t is in the following range

∆t ≥ −
mi j

θ(ci j + li j)
= ∆tmin

∆t < min

−
∑N̄

j=1 mi j

θ
∑N̄

j=1(ci j + li j)
,

mii

(1 − θ)(cii + lii + Ri)

 = ∆tmax .

Proof.
We will analyze each restriction arising from positivity preservation separatly

ai j ≤ 0 ⇒ ∆t ≥
−mi j

θ(ci j + li j)
> 0 ∀i , j , i ∈ N̄ ,

aii > 0 ⇒ ∆t >
−mii

θ(cii + lii + Ri)
< 0 ∀i ∈ NΩ ,

N̄∑
j=1

ai j > 0 ⇒ ∆t < −

∑N̄
j=1 mi j

θ
∑N̄

j=1(ci j + li j) + θRi

> 0 ∀i ∈ NΩ , (2.41)

bi j ≥ 0 ⇒ ∆t ≥
mi j

(1 − θ)(ci j + li j)
< 0 ∀i , j ,

bii ≥ 0 ⇒ ∆t ≤
mii

(1 − θ)(cii + lii + Ri)
> 0 ∀i , j .

There are no restrictions for ∆t coming from aii and bi j, because they only require ∆t to be
positive, which is given. In order to satisfy (2.41) we have to assume that θ

∑N̄
j=1(ci j + li j) + θRi

is negative. �

Remark 2.12. If we assume that M is a diagonal matrix, this is in particular the case if ML is
the lumped mass matrix, then there is no lower bound for ∆t.

2.5.2 Runge-Kutta scheme

Another approach for solving

MCu̇ = −(C + L + R)u + S

is by using an explicit Runge-Kutta method, where

y′(t) = f (t, y(t))

yn+1 = yn + ∆t
s∑

j=1

b jk j

k j = f

tn + ∆tc j, yn + ∆t
s∑

l=1

a jlkl

 .

23

2 Flux limiting for scalar equations

We can rewrite the k′s and yn according to our problem

k j = −(C(j) + L(j) + R(j))u(j) + S , j = 1 . . . s ,

MCun+1 = MCun + ∆t
s∑

l=1

b jk j , j = 1 . . . s ,

C(j) = C(tn + ∆tc j), Cn = C(1), MCu(j) = MCun + ∆t
j−1∑
l=1

a jlk j ,

L(j) = L(tn + ∆tc j), Ln = L(1) ,

R(j) = R(tn + ∆tc j), Rn = R(1) .

The diffusion operator is time-independent, therefore it holds that L(j) = L.

Example 2.5.1 (Heun-Scheme).
The Heun-scheme is a second order explicit Runge-Kutta scheme with the following Butcher
tableau

0
1 1

1
2

1
2 .

“The optimal (in terms of the time step restriction and computational cost) strong stability-
preserving Runge-Kutta scheme of second order is the well-known Heun method." [Kuz10,
p.123]

MCun+1 = MCun + ∆t
1
2

[−(Cn + Ln + Rn)MCun + S]

− ∆t
1
2

[
(Cn+1 + Ln+1 + Rn+1)(MCun − ∆t(Cn + Ln + Rn)MCun + ∆tS)

]
2.6 Algebraic flux correction

“The basic idea is very simple: if a given discretization fails to satisfy the sufficient conditions
of the discrete maximum principle, they can be enforced by adding a discrete diffusion operator
that adjusts itself adaptively to the local solution behavior.“ [Kuz10, p. 126]

We will devise a (semi) discrete diffusive equation which is of low (first) order but guarantees
all maximum principles and positivity restrictions called good part

(Ĉ + L̂ + R)u = S (stationary discrete elliptic equation) ,

ML
∂u
∂t

= −(Ĉ + L̂ + R)u + S (instationary semidiscrete parabolic equation) ,

24

2.6 Algebraic flux correction

by adding a so-called artificial diffusion. The difference between the general (semi-) discrete
equation and the good part is called bad or antidiffusive part f

f = (C − Ĉ + L − L̂)u (stationary) ,

f = (ML − MC)
∂u
∂t
− (C − Ĉ + L − L̂)u (instationary) .

We obtain the original high order equation by adding the antidiffusive fluxes to the good part

(Ĉ + L̂ + R)u = S + f (stationary) .

MC
∂u
∂t

= −(Ĉ + L̂ + R)u + S + f (instationary) . (2.42)

2.6.1 Design idea

The following chapter is based on [KM05]. In contrast to the underlying paper, where the
discrete transport operator is named K, we will stick to our previous notation C. Since high
order finite element methods of numerical solutions to convection-dominated flow problems
result in non-physical oscillations in the vicinity of steep gradients, we want to introduce the
flux-corrected transport (FCT) algorithm of Boris and Book and flux-limiters.

• The first approach is to introduce an artificial diffusion operator D = {di j}, which sup-
presses oscillations and enforces the positivity constraint restrictions. The new modeled
discrete transport operator is of the form Ĉ = {ĉi j} = ci j + di j.
“In addition, we require D to be a symmetric matrix with zero row and column sums.
These properties provide consistency and mass conservation." [Kuz09, p. 2522]

• Physical diffusion L has to be split into a positive part L+ = {l+i j} and the remainder
L̂ B L − L+.

• To correct this artificially inserted diffusion we use antidiffusive fluxes fi. These fluxes
shall have the following properties:

1. No new maxima or minima must be generated (see definition LED 2.11).

2. Existing extrema cannot grow.

• “Approximate M by its lumped counterpart ML.“ [Kuz09, p. 2522]

“Roughly speaking, the high-order method is used in regions where the solution is sufficiently
smooth and the low-order method elsewhere" [Kuz08, p. 3]. This means that especially at lay-
ers we will need more artificial diffusion to suppress spurious oscillations.

The antidiffusive fluxes shall maintain specific properties of the known analytical solution
as positivity, monotonicity and nonincreasing total variation. Therefore certain restraints are
imposed on the antidiffusive fluxes. This FCT algorithm is presented by Zalesak [Zal79].
The antidiffusive fluxes will depend on the unknown solution, which involves using an iterative
solution scheme.

25

2 Flux limiting for scalar equations

Definition 2.5 (Artificial Diffusion operator D).
An artificial diffusion operator D is symmetric and has zero row and column sums

di j = d ji,
∑
j=1

di j = 0,
∑
i=1

di j = 0 .

We will define D in the following way:

di j = −max{ci j, 0, c ji} = d ji ∀ j , i ,

dii B −
∑
j,i

di j . (2.43)

The physical diffusion will be split as follows

L̂ B L − L+ ,

l+i j = max{0, li j} ∀ j , i ,

l+ii = −
∑
j,i

l+i j . (2.44)

Remark 2.13. The new operators Ĉ = C + D and L̂ = L − L+ are positivity preserving and
fulfill the maximum principles for elliptic and parabolic problems, because

• ĉi j B min{0, ci j, ci j − c ji} is nonpositive for all i , j,

• if
∑

j ci j = 0 it follows that
∑

j ĉi j = 0,

• l̂i j B min{li j, 0} is nonpositive for all i , j,

• if
∑

j li j = 0 it follows that
∑

j l̂i j = 0.

The described definition of artificial diffusion can be found in [KM05, p. 150]. In the al-
gorithm used to calculated the examples in Chapter 3, artificial diffusion is not split into a
convective and a diffusive part but defined as follows (see [BJK16, p. 4]):

di j = −max{ci j + li j, 0, c ji + l ji} = d ji ∀ j , i ,

dii B −
∑
j,i

di j .

In order to calculate the new discrete operators Ĉ B C + D and L̂ it is possible to calculate C
and L successively instead of assembling C, D and L, L+ directly by setting:

Ĉ B C ,

ĉii B cii + di j ĉi j B ci j + di j i , j ,
ĉ ji B c ji + d ji ĉ j j B c j j + d ji j , i ,

26

2.6 Algebraic flux correction

and

L̂ B L ,

l̂ii B lii + l+i j l̂i j B li j − l+i j i , j ,

l̂ ji B l ji − l+i j l̂ j j B l j j + l+i j j , i .

With this approach we construct two different equations. The first one is the original higher
order equation, which causes nonphysical oscillations and contains physical diffusion. The
second one replaces the mass matrix MC by its lumped counterpart ML, adds artificial diffusion
D to C and subtracts positive values of L.
We define the residuals as follows

rL = (Ĉ + L̂ + R)u − S , (stationary equation)
rC = (C + L + R)u − S ,

rL = ML
∂u
∂t

+ (Ĉ + L̂ + R)u − S , (instationary equation)

rC = MC
∂u
∂t

+ (C + L + R)u − S .

Subtracting rC and rL we obtain

rL − rC = Du − L+u (stationary equation) ,

rL − rC = (ML − MC)
∂u
∂t

+ Du − L+u (instationary equation).

Due to (2.43), (2.44) and mass lumping we can write

[Du]i =

N∑
j

di ju j =

n∑
j,i

di ju j −

n∑
j,i

di jui =

n∑
j,i

di j(u j − ui) ,

[L+u]i =

N∑
j

l+i ju j =

n∑
j,i

l+i ju j −

n∑
j,i

l+i jui =

n∑
j,i

l+i j(u j − ui) ,

[MLu − MCu]i = miui −

N∑
j

mi ju j =

n∑
j,i

mi j(ui − u j) .

Example 2.6.1 (Convection-diffusion equation in 1-D).
In [Kuz08, p. 80] one can find an example which shows that artificial diffusion turns a second
order discretization into a first order upwind scheme. The P1-Galerkin discretization of the
following one dimensional convection-diffusion equation

v
∂u
∂x
− ε

∂2

∂2x
= 0, v > 0, ε > 0 ,

27

2 Flux limiting for scalar equations

yields

v
2∆x



. . .

−1 0 1
−1 0 1

−1 0 1
. . .

︸ ︷︷ ︸
C

u +
ε

∆x2



. . .

−1 2 −1
−1 2 −1

−1 2 −1
. . .

︸ ︷︷ ︸
L

u = 0 .

Since the physical diffusion operator L has nonpositive off-diagonals and its row-sums are zero
it follows that L equals L̂. The artificial diffusion D is

D =
v

2∆x



. . .

−1 2 −1
−1 2 −1

−1 2 −1
. . .


. (2.45)

Therefore the new low order equation sums up to

v
2∆x



. . .

−2 2 0
−2 2 0

−2 2 0
. . .

︸ ︷︷ ︸
Ĉ

u +
ε

∆x2



. . .

−1 2 −1
−1 2 −1

−1 2 −1
. . .

︸ ︷︷ ︸
L̂

u = 0 ,

which is equivalent to the first order upwind-scheme.

Definition 2.6 (Algebraic fluxes).
Under the previously described conditions the correction fluxes fi are given by

fi j = [di j − l+i j](u j − ui) , (stationary)

fi j = [mi j
∂u
∂t
− di j + l+i j](ui − u j) , (instationary)

fi =

n∑
j,i

fi j , f ji = − fi j .

They can be interpreted as raw antidiffusive fluxes from node j into node i (see [KM05, p.13]).

Remark 2.14. Because of the skew-symmetric property of fi j and f ji every contribution of one
node is reversed by its negative counterpart. This preserves mass conservation.

28

2.7 FEM-FCT schemes for stationary equations

In fact, form (2.42) is just another way to rewrite our original equation, but the explicit
appearance of fluxes makes it possible to add a specific amount of diffusion to our equation
depending on the solution u and therefore on its vicinities. The idea is to introduce solution-
dependent correction factors αi j(uh) ∈ [0, 1] such that we can define new fluxes

f αi j B αi j fi j ,

where for α = 1 the equation remains the original one and for α = 0 it is the highly diffusive
equation. Therefore α must be close to 1 in smooth regions and 0 at steep gradients.

(Ĉ + L̂ + R)u = S + f α , (stationary) (2.46)

ML
∂u
∂t

= −(Ĉ + L̂ + R)u + S + f α . (instationary) (2.47)

Flux limiters turn an explicit equations into an implicit equation. It implies that iterative
schemes have to be used in order to solve the equations.

2.7 FEM-FCT schemes for stationary equations

This section will describe common methods for solving (2.46). It is based on [Kuz10, p.141
ff.]. In order to solve (2.46) a defect-correction-scheme will be used. This scheme can reduce
iterations compared with a fixed-point method

u(m+1) = u(m) + ω(m)
[
Ā(m)

]−1
r(m) ,

with r(m) being the residuum or the defect

r(m) = S −
(
Ĉ(m) + L̂(m) + R(m)

)
u(m) + f α

(
u(m)

)
,

[Ā(m)] being a suitable preconditioner and 0 < ω(m) ≤ 1 being a relaxation parameter, which
controls the amount of the correction step. Each update needs the inverse of Ā. This can be
done by solving the following linear system

Ā(m)∆u(m+1) = r(m) .

The old solution is now updated by the correction step ∆u(m+1)

u(m+1) = u(m) + ω∆u(m+1) .

If we choose ω = 1 and Ā =
(
Ĉ + L̂ + R(m)

)
we receive a fixed-point iteration(

Ĉ(m) + L̂(m) + R(m)
)

u(m+1) = S + f α
(
u(m)

)
.

Remark 2.15.
The stopping criteria must be defined manually. A tolerance is set and after each correction
step the norm of r(m+1) is checked.

29

2 Flux limiting for scalar equations

2.7.1 Flux limiters for stationary equations

One possible derivation of the flux limiters α for time-independent problems is presented in
[Kuz07, p. 2]. Kuzmin claims that the advantage of these limiters is that they converge to a
steady state limit if there is one. For each pair of neighboring nodes i and j such that
(ĉ + l̂) ji ≤ (ĉ + l̂)i j ≤ 0

1. Compute the sums of positive / negative antidiffusive fluxes to be limited

P+
i =

∑
j,i

a ji≤ai j

max{0, fi j} , P−i =
∑
j,i

a ji≤ai j

min{0, fi j} .

2. Compute the upper/lower boundsQ±i to be imposed on the sums P±i

Q+
i =

∑
j,i

max{0,− fi j} , Q+
j =

∑
i, j

max{0, fi j} ,

Q−i =
∑
j,i

min{0,− fi j} , Q−j =
∑
i, j

min{0, fi j} .

3. Apply the nodal correction factor R±i evaluated at the ’upwind’ node i

R±i = min{Q±i /P
±
i }, αi j =


R+

i , if fi j > 0 ,
1, if fi j = 0 ,
R−i , otherwise .

2.8 Nonlinear FEM-FCT schemes for instationary
equations

By applying the θ-scheme to (2.47)

ML
∂ui

∂t
= −(Ĉ + L̂ + R)u + S +

∑
j,i

mi j(u̇i − u̇ j) + (−di j + l+i j)(ui − u j) ,

the fully discrete equation turns into

An+1un+1 = Bnun + ∆t f α(un, un+1),

with

An+1 = (ML + ∆tθ(Ĉn+1 + L̂n+1 + Rn+1)), Bn = (ML − ∆t(1 − θ)(Ĉn + L̂n + Rn)) ,

30

2.8 Nonlinear FEM-FCT schemes for instationary equations

where f α(un, un+1) = [f α(un, un+1)i]i=1...n is a vector of the form

f αi (un, un+1) =

n∑
j

f αi j (u
n, un+1) ,

with the following entries

fi j(un, un+1) =
1
∆t

[mi j(un+1
i − un+1

j) + mi j(un
i − un

j)]

+θ(−dn+1
i j + l+

n+1

i j)(un+1
i − un+1

j) + (1 − θ)(−dn
i j + l+

n

i j)(un
i − un

j) .

The antidiffusive fluxes f αi j are dependent on the solution un+1. That is why an iterative solver
has to be found to solve the nonlinear equation.

The solution un+1 will be approximated by a sequence of intermediate solutions u(m). It is
desirable that lim

m→∞
u(m) = un+1 holds, but there is no proof for this and we will see examples

where the algorithm does not converge. The fully discrete equation can be rewritten in matrix
form

A(m)u(m+1) = Bnun + ∆t f α(un, u(m)),

where A and B are given by

A(m) = (ML + ∆tθ(Ĉ(m) + L̂(m) + R(m))), Bn = (ML − ∆t(1 − θ))(Ĉn + L̂n + Rn)) . (2.48)

We will use a three-step solution update method to calculate the auxiliary solution u(m+1).
This update ends when the residuum of two successive solutions is small enough.

1. MLũ = Bnun (2.49)

1.1 Compute correction factors α with u(m).

2. MLũ(m+1) = MLũ + ∆t f α(un, u(m)) (2.50)

3. A(m)u(m+1) = MLũ(m+1) (2.51)

Remark 2.16.

• The intermediate solution ũ has to be calculated only once per time-step.

• It follows from Remark 2.12 that the low order matrices A and B are positivity preserving
if

∆t ≤
mi

(1 − θ)(ĉ(m)
i j + l̂(m)

i j)
.

• Step 2 is positivity preserving if the prelimiters are designed to be positivity preserving.

31

2 Flux limiting for scalar equations

2.8.1 Linearization of antidiffusive fluxes

The nonlinear FEM-FCT algorithm as described before might converge very slowly since the
antidiffusive fluxes and the correction factors have to be computed after every solution update.
The relative changes may be very small and therefore many auxiliary sweeps are required.

Kuzmin proposes in [Kuz10, p.139-144] three possibilities to reduce the cost of an implicit
FEM-FCT scheme. His main idea is to find a good approximation for each un+1 to use it as a
starting iterate, such that step 2 has to be calculated only once per time step.

1. Use the high order solution to calculate the fluxes
Since the implicitness results from the fluxes it may be useful to first calculate uH, the solution
of the high-order system of

(MC + ∆tθ(Cn+1 + Ln+1 + Rn+1))uH = (MC − ∆t(1 − θ)(Cn + Ln + Rn)) un,

which is a good approximation of un+1. The amount of computation steps per time decreases
since the second auxiliary step

2. MLũ(m+1) = MLũ(0) + ∆t f α(un, u(m)) (2.52)

has to be computed only once per time step. Therefore only the third step (2.51) has to be
calculated iteratively. In case of a linear system where Ĉ(m) = Ĉ and L̂(m) = L̂, equation (2.51)
yields already the new time step solution un+1 after one execution

Au(m+1) = MLũ(m+1).

One drawback of this approach is that the calculation of the higher-order system needs dispro-
portionally more time, due to the lack of an M-matrix, than solving the third step (2.51).

2. Use the low order solution to calculate the fluxes
In contrast to the last approach it is possible to obtain uL from the low order scheme(

ML + ∆tθ(Ĉn+1 + L̂n+1 + Rn+1)
)

uL =
(
ML − ∆t(1 − θ)(Ĉn + L̂n + Rn)

)
un. (2.53)

Kuzmin states that the system can be solved efficiently but the flux-corrected solution un+1 turns
out to be too diffusive [Kuz10, p. 170].

3. Predictor-Corrector algorithms
The third approach is the first one, which is not equivalent to the original iteration (2.48) any-
more. It uses for example the low-order solution uL as an approximation for un+1. This highly
diffusive equation is corrected afterwards by adding the fluxes

MLun+1 = MLuL + ∆t f̄ (un, uL) .

The main idea is to use this auxiliary solution (smooth predictor) for the computation of u̇ in
fi j. We will use the non-discretized form of fi j

fi j = mi j(u̇L
i − u̇L

j) + (−di j + l+i j)(u
L
i − uL

j)

and replace u̇ by its iterate.

32

2.8 Nonlinear FEM-FCT schemes for instationary equations

Definition 2.7 (Richardson iteration).
Let x(0) ∈ Rn be a given initial iterate. The Richardson iteration for computing a sequence of
vectors x(k) ∈ Rn, k = 0, 1, 2, . . . , has the form

r(k) = b − Ax(k), x(k+1) = x(k) + αkr(k) .

with appropriately chosen numbers αk ∈ R.

Applying the Richardson iteration to the preconditioned form of the semidiscrete formulation

M−1
L [MCu̇L] = M−1

L [Cn+1uL],

we obtain the following algorithm

u̇(m+1) = u̇(m) + M−1
L [Cn+1uL − MCu̇(m)], m = 0, 1, 2, . . .

where the preconditioner is M−1
L

αk B M−1
L A = MC, b = Cn+1uL .

Remark 2.17. As well as for the previous iteration, there is no proof available to show that
the algorithm converges. Let x be the exact solution of MC ẋ = MLx. By subtracting the exact
solution from our iteration equation we receive

e(k+1) = e(k) − M−1
L MCe(k) .

We must find a matrix and a vector norm such that

‖e(k+1)‖ ≤ ‖1 − M−1
L MC‖ · ‖e(k)‖

holds. It would be sufficient to show that

‖1 − M−1
L MC‖ < 1 .

Remark 2.18. “The above linearization strategy offers a number of significant advantages.
First, the low-order predictor uL can be calculated by an arbitrary (explicit or implicit) time-
stepping method. In the case of an implicit algorithm, iterative solvers are fast due to the
M-matrix property of the low-order operator. Second, the leapfrog time discretization of the
antidiffusive flux is second-order accurate with respect to the time level tn+1 on which uL and fi j

are defined. Third, instead of three different solutions un, un+1 and ũ only the smooth predictor
uL is involved in the computation of fi j and αi j for the correction step [2].“ [Kuz10, p. 172]

Remark 2.19. In the algorithm which is used for the numerical examples a special case of the
Predictor-Corrector algorithm is implemented. It can be found in [JN12].

33

2 Flux limiting for scalar equations

2.8.2 Prelimiter

Kuzmin states that it may be a good approach to prelimit fluxes before calculating the correction
factors α especially in case of finite element approximations. If the intermediate solution ũi is a
maximum, fi j may be nonpositive but still preserve positivity in (2.50). This implies that fi j ≤ 0
with (ũ j − ũi) < 0 and analoguously if ui is a minimum fi j may be nonnegative and therefore
fi j ≥ 0 with (u j − ui) > 0 . Such fluxes would flatten the solution instead of steepening it.
Therefore they should be set to zero before performing flux limiting

fi j B 0, if fi j(ũ j − ũi) > 0 ,

(see [KM05, p. 17]).

2.8.3 Flux correction for time-dependent equations

In order to prevent undershoots or overshoots the limiting fluxes

f αi =
∑
j,i

f αi j , f αi j = − f αji , f αi j = α fi j

have to be LED. This is in particular the case if for a given set of positive qi j∑
j,i

qi jmin{0, u j − ui} ≤
∑
j,i

αi j fi j ≤
∑
j, j

qi jmax{0, u j − ui}

holds (see [KM05, p. 14]).

2.8.4 Multidimensional Zalesak limiter

The limiters are constructed such that the intermediate solution vector ũ(m) which comes from
the second calculation step (2.50) does not exceed any maximum ũmax

i or minimum ũmin
i . Pos-

itive and negative fluxes are limited separately assuming the worst-case scenario. Perform the
following steps for each pair of neighboring nodes i and j such that
(ĉ + l̂ + r) ji ≤ (ĉ + l̂ + r)i j ≤ 0

(1.) Sum all positive and negative fluxes into node i

P+
i =

∑
j,i

max{0, fi j}, P−i =
∑
j,i

min{0, fi j} .

(2.) Sum all positive and negative distances to a local extremum of the auxiliary solution

Q+
i =

mi

∆t
max{0,max

j,i
(ũj − ũi)}, Q−i =

mi

∆t
min{0,min

j,i
(ũj − ũi)} .

34

2.8 Nonlinear FEM-FCT schemes for instationary equations

(3.) Nodal correction factors for the net increment to node i

R+
i = min

{
1,

Q+
i

P+
i

}
, R−i = min

{
1,

Q−i
P−i

}
.

(4.) Limiting of the antidiffusive fluxes fi j and f ji in a symmetric way

αi j =

min{R+
i ,R

−
j }, if fij > 0

min{R−i ,R
+
j }, otherwise .

The correction factors αi are smaller or equal than 1 and greater or equal than 0. This strategy
guarantees the positivity constraint because of the following inequality

ũmin
i = ũi + Q−i ≤ ūi ≤ ũi + Q+

i = ũmax
i .

Remark 2.20.

• One typical drawback of this construction is that if ui is an extremum αi = 0 is zero. This
includes full artificial diffusion and therefore peaks lose a bit of amplitude in each time
step (see [KLT05, p. 164]). This can be observed in Example 3.2, where a step loses
height while it is transported through a pipe.

• The boundaries Q+
i and Q−i depend on ∆t. Increasing the time step results in smaller

boundaries and vice versa. “On the one hand, the LED constraints become less restric-
tive and, consequently, a larger portion of the raw antidiffusive flux fi j is retained as the
time step is refined. This makes FCT the method of choice for transient computations. On
the other hand, the use of large ∆t results in a loss of accuracy, and severe convergence
problems may occur in the steady state limit.“ [KM05, p. 20].

2.8.5 Anderson acceleration

Using a defect-correction-scheme of the form

u(m+1) = u(m) + ωA−1r(m) ,

can be very expensive. In each step a linear system and the correction factors α have to be solved
in order to get the update step. In the previously described algorithms only the last calculated
correction step ∆u(m) is taken into account for the calculation of u(m+1). Due to Kuzmin [KM05,
p. 34] the convergence can be improved by accelerating a given number of previously damped
updates to the current solution. The damping parameters are gained by solving a least squares
problem.

35

2 Flux limiting for scalar equations

Algorithm 1: Anderson acceleration
for all m = 0, . . . do

Compute ũ(m) B g(u(m))
Store ũ(m) and ∆u(m) B ũ(m) − u(m)

Given k ≤ m iterates, determine the weights
ω(m) =

(
ω(m)

1 , . . . , ω(m)
k

)T

by solving the constrained least-squares problem
minω(m) ‖

∑k
i=1 ω

(m)
i ∆u(m−k+i)‖2 s.t.

∑k
i=1 ω

(m)
i = 1

Set u(m+1) B
∑k

i=1 ω
(m)
i ũ(m−k+i)

end
return u(m+1)

Remark 2.21. There is a very simple trick to reduce the restricted problem to a simple min-
imization problem. Therefore we will rewrite the system into a matrix vector multiplication.
Instead of finding the vector (ω1, . . . , ωk)T we can simply assume the following system

‖
(
∆u(m−k+i) ∆u(m−k−1+i)) . . . ∆u(m−1+i)

)


γ1

γ2 − γ1
...

γk−i+1 − γk−i
...

γk − γk−1


‖ → min ,

whereby γ1 = ω1 and γk−i+1 − γk−i = ωk−i+1.

Because of the special sorting of the γ’s, the restriction

1 =

k∑
i=1

ω(m)
i =

k∑
i=1

γi −

k−1∑
i=1

γi = γk

reduces to the simple requirement that γk = 1.

2.9 Error estimation

The topic of this chapter is to derive an error estimation for the solution vector uh of the station-
ary convection-diffusion-reaction equation

−ε∆u + b · ∇u + cu = f in Ω , (2.54)
u = gD in ∂Ω ,

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω ,

36

2.9 Error estimation

where ε ∈ (0, ε0) with ε0 < +∞ and σ0 are constants. The results are based on the paper
[BJK16]. For the existence of the solution it will be required that

• b ∈ W1,∞(Ω)d , • c ∈ L∞(Ω) ,

• f ∈ L2(Ω) , • gD ∈ H
1
2 (∂Ω) ∩C(∂Ω) ,

• Ω is bounded, • ΓΩ is Lipschitz continuous .

We receive following variational problem:
Find u ∈ H1(Ω) such that u = ub on ∂Ω and

a(u, v) = 〈 f , v〉 ∀v ∈ H1
0(Ω).

The weak solution of (2.54) satisfies

a(u, v) = ε(∇u,∇v) + (b · ∇u, v) + (cu, v) and 〈 f , v〉 = (f , v) , (2.55)

where (·, ·) denotes the inner scalar product in L2(Ω) or L2(Ω)d.
In order to solve the variational formulation (2.55) numerically we need to introduce finite

element subspaces, which approximate the spaces H1(Ω) and H1
0(Ω). Therefore we denote

Wh ⊂ C(C̄) ∩ H1(Ω) and Vh B Wh ∩ H1
0(Ω). Thus the bilinear form a : H1(Ω) × H1

0(Ω) → R
reduces to ah : Wh × Vh → R. Therefore the numerical form of the variational formulation
becomes:
Find uh ∈ Wh such that uh(xi) = gD(xi), i ∈ {NΩ + 1, . . . ,NΓ} and

ah(uh, vh) = 〈 f , vh〉 ∀vh ∈ Vh . (2.56)

We have already seen in previous chapters that (2.56) can also be written in a matrix form

(Âu)i = S i +
∑
j,i

αi j fi j ,

with

(Du)i =
∑
j,i

fi j =
∑
j,i

di j(u j − ui) .

This properties are used to rewrite the problem in the following way

N∑
j=1

ai ju j+

N∑
j=1

(1 − αi j)di j(u j − ui) = S i, i = 1, . . . ,NΩ,

ui = gi, i = NΩ + 1, . . . ,NΓ .

37

2 Flux limiting for scalar equations

Remark 2.22. This formulation is also used in the implementation of the algorithm.

We obtain the new reformulated equation, which will be the basis of our error estimations:
Find uh ∈ Wh such that uh(xi) = g(xi), i = NΩ + 1, . . . ,N and

ah(uh, vh) + dh(uh; uh, vh) = 〈 f , vh〉 ∀vh ∈ Vh , (2.57)

with

dh(wh; zh, vh) =

N∑
i, j=1

(1 − αi j(wh))di j(z j − zi)vi ∀wh, zh, vh ∈ Wh .

Consider a space Wh ⊂ H1(Ω) of continuous piecewise linear functions, i.e.,

Wh = {vh ∈ C(Ω̄); vh|τ ∈ P1(τ) ∀τ ∈ Jh} ,

on a regular family of triangulations Jh of Ω. For further analysis, we will set

h B max {diam(hτ) : hτ ∈ Jh} .

We will denote the norm ‖ · ‖a with

‖v‖2a = ε |v|21,Ω + σ0‖v‖20,Ω ,

such that ah is elliptic on the space Vh, i.e., there is a constant Ca > 0 such that

ah(vh, vh) ≥ Ca‖vh‖
2
a ∀ vh ∈ Vh,

where ‖ · ‖a is a norm on the space H1
0(Ω). We will first estimate the error deriving from the

diagonal approximation of the reaction matrix.

Lemma 2.1.
There is a constant C independent of h such that∣∣∣∣∣∣∣(cuh, vh) −

NΩ∑
i=1

(c, φi)uivi

∣∣∣∣∣∣∣ ≤ Ch‖c‖0,∞,Ω|uh|1,Ω‖vh‖0,Ω,

for all c ∈ L∞(Ω), uh ∈ Wh, and vh ∈ Vh

Proof. The proof will be skipped here. It is referred to Analysis of algebraic flux correction
schemes (p.14). �

The Lagrange interpolator ih : C(Ω)→ Wh is defined by

ihv =

N∑
i=1

v(xi)φi, v ∈ C(Ω̄) . (2.58)

38

2.9 Error estimation

A norm on Vh is defined according to the left-hand side of the reformulated problem (2.57)

‖vh‖h B
(
Ca‖vh‖

2
a + dh(uh; vh, vh)

)1/2
, vh ∈ Vh . (2.59)

We will begin with an intermediate result from [BJK16, p. 13] of the error estimation

‖u − uh‖h ≤ C1/2
a ‖u − ihu‖a + sup

vh∈Vh

a(u, vh) − ah(ihu, vh)
‖vh‖h

+ (dh(uh; ihu, ihu))1/2 . (2.60)

Each part on the right-hand side is analyzed and estimated separately. We will begin with the
first term on the right-hand side.

Assume that u ∈ H2(Ω) is the solution of (2.54). Then standard interpolation estimates give

‖u − ihu‖h ≤ C(ε + σ0h2)1/2h|u|2,Ω .

Lemma 2.2.
The second term of the right-hand side of (2.60) can be estimated in the following form

sup
vh∈Vh

a(u, vh) − ah(ihu, vh)
‖vh‖h

≤ C
(
ε + σ−1

0 {‖b‖
2
0,∞,Ω + ‖c‖20,∞,Ω}

)1/2
h‖u‖2,Ω . (2.61)

If c = 0, then

sup
vh∈Vh

a(u, vh) − ah(ihu, vh)
‖vh‖h

≤ C
(
ε + ε−1‖b‖20,∞,Ω + h2

)1/2
h|u|2,Ω . (2.62)

Proof. See p.16. �

Remark 2.23.
If c = 0 it follows that σ0 = 0. According to (2.62), if

√
ε < h it implies a bad error estimation.

Therefore it is important that

h .
√
ε

holds.
If c > 0 and therefore σ0 > 0, one obtains from (2.61) that

‖u − uh‖h ≤ Ch‖u‖2,Ω + (dh(uh; ihu, ihu))1/2 . (2.63)

Finally the third term of estimation (2.60) can be estimated with the following lemma.

Lemma 2.3.
Let the matrix D be defined by di j = d ji = −max{ai j, 0, a ji}, ∀i , j with dii = −

∑
j,i di j. Then

there is a constant C independent of h and the data of problem (2.54) such that

dh(wh; ihu, ihu) ≤ C
(
ε + ‖b‖0,∞,Ωh

)
|ihu|21,Ω ∀wh ∈ Wh, u ∈ C(Ω̄) .

39

2 Flux limiting for scalar equations

Proof. See p.16. �

If we insert this result into (2.63), the convergence order is reduced.

Corollary 2.1.
Let u ∈ H2(Ω) be the solution of (2.60), and uh be a solution of the discrete problem (2.57) .
Then if σ0 > 0, there exists a constant C > 0, independent of h and the data of (2.60) such that

‖u − uh‖h ≤ C
(
ε + σ−1

0 {‖b‖
2
0,∞,Ω + ‖c‖20,∞,Ω} + σ0h2

)1/2
h‖u‖2,Ω

+ C
(
ε + ‖b‖0,∞,Ωh

)1/2
|ihu|1,Ω .

Remark 2.24.
For the convection-dominated case (ε < ‖b‖0,∞,Ωh) the result of Lemma 2.3 reduces to

dh(wh; ihu, ihu) ≤ C(‖b‖0,∞,Ωh)|ihu|21,Ω ∀wh ∈ Wh, u ∈ C(Ω̄) .

Therefore the error estimate (2.63) is of order O(
√

h).

40

3 Numerical examples

3.1 Smooth Solution

This example has a polynomial solution. Consider Ω = (0, 1)2 with ε = 10−6, and b = (10, 2)T ,
c = 2, gD = 0. The right-hand side is chosen such that

u(x, y) = 100x2(1 − x)2y(1 − y)(1 − 2y) ,

is the solution of (2.54). The Galerkin discretization is performed with P1-elements. The
stopping criterion for the fixed-point iteration (see Remark 2.15) is 10−9. We store 5 residuals
to use Anderson acceleration.

Figure 3.1: Smooth solution on grid 1 mirror, level 4

We will calculate the error ‖u − uh‖ in the L2, H1, d1/2
h -norm and the error in the previously

introduced h norm. We want to figure out if the results from the analysis are reflected in the
numerical results. According to Remark 2.24 we expect the order of convergence to be 1/2
for d1/2

h and for the h-norm. The order of convergence p is calculated by using two succeeding
errors

‖uh − u‖
‖uh′ − u‖

=

(
h
h′

)p

.

41

3 Numerical examples

level 0 1 2 3 4 5 6 7
1 − α(uh) 0.429 0.324 0.150 0.877 0.051 0.0287 0.0161 0.00881

Table 3.1: Arithmetic mean of
(
1 − αi j(uh)

)
on grid 1 mirror

If we take a look at the results in Table 3.2-3.7, it is obvious that the order of convergence for
the h-norm and d1/2

h is better than 1/2, i.e. we have an approximate order of 1. This indicates
that the estimates in the proof of Lemma 2.3 are too pessimistic. In particular it turns out that
the expression (1 − αi j) from (2.58) is estimated by 1, wherease the correction factors αi j may
be close to 1 and therefore lead to a better convergence.
The worst order of convergence is expected on grid 3, since it is an unstructured grid. Nev-
ertheless, it turns out that for the norms d1/2

h and h it does not have significant differences to
the other grids. However, for the L2 and H1 semi-norms we obtain worse results. The order of
convergence for the H1-norm seems to tend to zero.
Grid 5 evolves from grid 4 by shifting the middle point to (0.6,0.6). As expected, the order of
convergence is worse than on grid 4.

(a) Grid 1 (b) Grid 1 mirror (c) Grid 2

(d) Grid 3 (e) Grid 4 (f) Grid 5

Figure 3.2: Grids for testing in level 0

42

3.1 Smooth Solution

level L2-error order H1 -semi order d1/2
h order h-norm order

0 2.809e-01 2.046 0 0.3973
1 2.018e-01 0.477 1.742 0.232 1.200 1.234 -1.64
2 7.421e-02 1.44 9.823e-01 0.827 7.184e-01 0.741 7.260e-01 0.765
3 2.119e-02 1.81 5.329e-01 0.882 3.169e-01 1.18 3.183e-01 1.19
4 6.383e-03 1.73 2.823e-01 0.917 1.252e-01 1.34 1.255e-01 1.34
5 1.835e-03 1.80 1.437e-01 0.975 5.067e-02 1.30 5.073e-02 1.31
6 4.748e-04 1.95 6.600e-02 1.12 2.229e-02 1.18 2.230e-02 1.19
7 1.192e-04 1.99 3.084e-02 1.10 1.022e-02 1.13 1.022e-02 1.13
8 2.922e-05 2.03 1.459e-02 1.08 4.893e-03 1.06 4.893e-03 1.06
9 7.189e-06 2.02 6.985e-03 1.06 2.390e-03 1.03 2.390e-03 1.03

Table 3.2: Grid 1

level L2-error order H1 -semi order dh order h-norm order
0 2.754e-01 2.022 0 0.3894
1 1.990e-01 0.469 1.790 0.176 1.027 1.065 -1.45
2 6.259e-02 1.67 9.576e-01 0.902 6.857e-01 0.582 6.914e-01 0.623
3 1.568e-02 2.00 4.846e-01 0.983 2.963e-01 1.21 2.971e-01 1.22
4 4.822e-03 1.70 2.395e-01 1.02 1.153e-01 1.36 1.155e-01 1.36
5 1.272e-03 1.92 1.164e-01 1.04 4.906e-02 1.23 4.910e-02 1.23
6 3.179e-04 2.00 5.876e-02 0.987 2.201e-02 1.16 2.202e-02 1.16
7 7.850e-05 2.02 2.976e-02 0.982 1.028e-02 1.10 1.028e-02 1.10
8 1.939e-05 2.02 1.469e-02 1.02 4.911e-03 1.07 4.911e-03 1.07
9 4.768e-06 2.02 6.856e-03 1.10 2.383e-03 1.04 2.383e-03 1.04

Table 3.3: Grid 1 mirror

level L2-error order H1 -semi order d1/2
h order h-norm order

0 2.254e-01 1.866 0.9514 1.003
1 8.128e-02 1.47 9.809e-01 0.928 7.796e-01 0.287 7.881e-01 0.349
2 2.035e-02 2.00 5.198e-01 0.916 3.580e-01 1.12 3.591e-01 1.13
3 6.164e-03 1.72 2.754e-01 0.917 1.717e-01 1.06 1.719e-01 1.06
4 1.769e-03 1.80 1.507e-01 0.870 7.998e-02 1.10 8.002e-02 1.10
5 4.852e-04 1.87 8.398e-02 0.843 3.832e-02 1.06 3.833e-02 1.06
6 1.382e-04 1.81 5.435e-02 0.628 1.859e-02 1.04 1.860e-02 1.04
7 4.388e-05 1.65 4.136e-02 0.394 9.125e-03 1.03 9.126e-03 1.03
8 1.637e-05 1.4225 3.595e-02 0.20 4.514e-03 1.02 4.514e-03 1.02

Table 3.4: Grid 2

43

3 Numerical examples

level L2-error order H1 -semi order d1/2
h order h-norm order

0 1.090e-01 1.290 6.612e-01 6.789e-01
1 4.482e-02 1.28 8.735e-01 0.563 5.332e-01 0.310 5.370e-01 0.338
2 1.616e-02 1.47 4.644e-01 0.912 2.775e-01 0.942 2.785e-01 0.947
3 5.643e-03 1.52 2.879e-01 0.690 1.372e-01 1.02 1.374e-01 1.02
4 1.735e-03 1.70 1.670e-01 0.786 6.870e-02 0.998 6.875e-02 0.999
5 5.156e-04 1.75 1.028e-01 0.700 3.387e-02 1.02 3.388e-02 1.02
6 1.544e-04 1.74 7.194e-02 0.515 1.655e-02 1.03 1.655e-02 1.03
7 4.901e-05 1.66 5.699e-02 0.336 8.095e-03 1.03 8.096e-03 1.03

Table 3.5: Grid 3

level L2-error order H1 -semi order d1/2
h order h-norm order

0 1.652e-01 1.533 1.003 1.030
1 5.297e-02 1.64 7.750e-01 0.985 6.124e-01 0.712 6.170e-01 0.740
2 1.555e-02 1.77 3.909e-01 0.987 2.817e-01 1.12 2.826e-01 1.13
3 4.972e-03 1.64 2.011e-01 0.959 1.177e-01 1.26 1.179e-01 1.26
4 1.398e-03 1.83 9.855e-02 1.03 4.988e-02 1.24 4.991e-02 1.24
5 3.582e-04 1.96 5.009e-02 0.976 2.209e-02 1.17 2.210e-02 1.18
6 8.861e-05 2.02 2.507e-02 0.999 1.015e-02 1.12 1.015e-02 1.12
7 2.158e-05 2.04 1.238e-02 1.02 4.808e-03 1.08 4.808e-03 1.08

Table 3.6: Grid 4

level L2-error order H1 -semi order d1/2
h order h-norm order

0 1.645e-01 1.522 9.368e-01 9.652e-01
1 5.239e-02 1.65 7.758e-01 0.972 6.018e-01 0.638 6.063e-01 0.671
2 1.672e-02 1.65 4.163e-01 0.898 2.777e-01 1.12 2.787e-01 1.12
3 5.596e-03 1.58 2.178e-01 0.935 1.190e-01 1.22 1.192e-01 1.23
4 1.591e-03 1.81 1.036e-01 1.07 5.178e-02 1.20 5.183e-02 1.20
5 4.161e-04 1.93 5.152e-02 1.01 2.326e-02 1.15 2.326e-02 1.16
6 1.054e-04 1.98 2.572e-02 1.00 1.077e-02 1.11 1.078e-02 1.11
7 2.633e-05 2.00 1.289e-02 0.997 5.127e-03 1.07 5.127e-03 1.07
8 6.574e-06 2.00 6.358e-03 1.02 2.474e-03 1.05 2.474e-03 1.05

Table 3.7: Grid 5

44

3.2 Transport of a step

3.2 Transport of a step

Figure 3.3: AFC: Step solution on a quadrilateral mesh for ε = 10−10

Figure 3.4: SUPG: Step solution on a quadrilateral mesh for ε = 10−10

Consider the following problem:

ε∆u +

(
1
0

)
· ∇u = 0 (x, y) ∈ (0, 10) × (0, 1)

ub =


1 x = 0, y ∈ [0.375, 0.625] ,
0 x = 0, y < [0.375, 0.625] ,
0, y = 0, or y = 1 ,

ε∇u · η = 0 on x = 10, y ∈ (0, 1) .

This example shows the impact of artificial diffusion very clearly. While the boundary condi-
tion is a step with values 1 or 0, the transportation through a pipe of length 10 yields a smeared

45

3 Numerical examples

outlet. The expected behavior is that for very small ε the solution of the outlet should be very
close to the inlet. For better comparison, we will also solve this equation with SUPG, which
does not include artificial diffusion and therefore leads to the expected results.

(a) Smeared outlets for all levels in point x = 10

Figure 3.5: ε = 10−6

(a) Quadrilateral grids for levels 0,1,2 and 3 (b) Triangular grids for levels 0,1,2 and 3

We set ε = 10−6, 10−8, 10−10 and we store 5 solutions for the Anderson acceleration. The
solutions in level 0 are calculated on a quadrilateral grid consisting of 10 squares and on a
triangular grid consisting of 20 triangles. The grids are refined uniformly (see figure 3.2).
We will take a look at the following error measuring factors

• The integral of the inlet and outlet. The exact solution at the inlet is 0.25.

• The value at the center of the outlet. It should be close to 1. The smaller it is, the more
diffusive is the solution method.

• The volume of the solution. If there is no diffusion, the inlet must be transported through
the pipe without loss of height. Therefore the solution should be close to 2.5

46

3.2 Transport of a step

methode/ε 10−6 10−8 10−10

AFC: quadrilateral 0.98 0.98 0.98
AFC: triangular 0.959 0.959 0.959
SUPG: quadrilateral not converged 1.0

Table 3.8: Value at center of outlet for different ε in level 6.

• The difference of the volumes of the inlet and the outlet.

The values of the first three measuring factors look exactly the same for all ε, that is why we will
show only ε = 10−6. Nevertheless there are variances visible for the difference of the volume
of the inlet and outlet for different ε. It is clear that the solutions for level 0 and level 1 are not
representative. But taking a deeper look at higher levels, we see that the solutions are very close
to the expected values.
We can resume that ε does not have a strong impact on the solution. Table 3.2 indicates that
very small ε are intercepted by artificial diffusion.

47

3 Numerical examples

(c) Concentration at inlet and outlet for (d) Difference of the integral of inlet and outlet

(e) Value at center of outlet (f) Volume of solution for ε = 10−6

Figure 3.6: AFC: Error measuring for ε = 10−6 on a quadrilateral grid.

48

3.2 Transport of a step

(a) Concentration at inlet and outlet (b) Difference of the integral of inlet and outlet for ε =

10−6, 10−8, 10−10 in level 5,6 and 7

(c) Value at center of outlet (d) Volume of solution for ε = 10−6

Figure 3.7: AFC: Error measuring for ε = 10−6 on a triangular grid.

49

3 Numerical examples

(a) Concentration at inlet and outlet (b) Difference of the integral of inlet and outlet for ε =

10−10 in levels 3-6

(c) Value at center of outlet (d) Volume of solution for ε = 10−10

Figure 3.8: SUPG: Error measuring for ε = 10−10 on a quadrilateral grid.

3.3 Traveling wave

The following instationary example from [GIJW15] will show that algebraic flux correction
may still generate oscillations. It is given in the domain Ω = (0, 1)2 and (0,T) = (0, 1)

∂tu − ε∆u +

(
cos(π/3)
sin(π/3)

)
· ∇u + u = f in Ω × [0,T] , (3.1)

u(x, 0) = u0(x) ∀x ∈ Ω , (3.2)
u(x, t) = 0 ∀x ∈ ∂Ω . (3.3)

The solution is defined by

u(t, x, y) = 0, 5sin(πx)sin(πy)
[
tanh

(
x + y − t − 0.5

√
ε

)
+ 1

]
.

50

3.3 Traveling wave

It has a moving layer. The right-hand side f and the initial condition u0 are chosen such that the
solution satisfies the boundary value problem (3.1). The example will be analyzed on a simple
triangular grid which is refined to level 7. Because the results on a simple quadrilateral grid are
similar, they will be skipped here. The solution is calculated for ε = 10−6, 10−8 and 10−12. It
turns out that the solutions tend to generate oscillations the smaller ε becomes. For ε = 10−8

the first peak occurs in time step 13. After time step 50, that means when the wave begins to
get smaller, the peaks appear more frequently. The worst results are obtained for ε = 10−12. At
some point uh(x, t) reaches a concentration of 65.
It is not clear why these peaks develop. The first assumption was that ∆t needs to be smaller.
Analyzing ∆t = 0.001 and ∆t = 0.0001 reveals that the highest peak decreases to approximately
15 and 26, but these results are still not satisfactory.

(a) ε = 10−6, ∆t = 0.01, t=0 (b) ε = 10−6, ∆t = 0.01, t=50 (c) ε = 10−6, ∆t = 0.01, t=100

Figure 3.9: Some results for ε = 10−6, ∆t = 0.01

51

3 Numerical examples

(a) ε = 10−8, ∆t = 0.01, t=13 (b) ε = 10−8, ∆t = 0.01, t=62 (c) ε = 10−8, ∆t = 0.01, t=63

(d) ε = 10−8, ∆t = 0.01, t=74 (e) ε = 10−8, ∆t = 0.01, t=76 (f) ε = 10−8, ∆t = 0.01, t=76

Figure 3.10: Some results for ε = 10−8, ∆t = 0.01

(a) ε = 10−12, ∆t = 0.01, t=1 (b) ε = 10−12, ∆t = 0.01, t=12 (c) ε = 10−12, ∆t = 0.01, t=13

Figure 3.11: Some results for ε = 10−12, ∆t = 0.01

52

3.4 Two interior layers

3.4 Two interior layers

This stationary example is a standard example from [Kuz10, p. 201]. It generates strong under-
and overshoots when using SUPG. We will calculate the solution on the previously introduced
grids in Figure 3.1 and take a look at undershoots and overshoots.
Let the domain be Ω = (0, 1)2. The solution has to fulfill the following differential equation:

10−6∆u +

(
−y
x

)
∇u =0, x ∈ Ω ,

gD(x, y) =

1 if (x, y) ∈ (1/3, 2/3) × {0} ,
0 on ∂ΩD ,

ε∇u(x, y) · η =0 ∀(x, y) ∈ {0} × (0, 1) . (3.4)

Figure 3.4 shows the solution of (3.4) on the eighth refinement of Grid 4 from Figure 3.1. The
left Subfigure (a) depicts the SUPG solution. At the top of both layers a border of overshoots is
visible as well as a peak of undershoots at the bottom. It seems that Subfigure (b) which shows
the solution of the linearized AFC algorithm does not contain any overshoots and undershoots
or at least has very small peaks. Subfigures (a)-(j) of Figure 3.13 display the summed up over-
and undershoots for grids 1-5 on a logarithmic scale. The results are plotted for two stopping
criteria from Remark 2.15: r(m+1) < 10−9 and r(m+1) < 10−6. The levels 1-12 are plotted on the
X axis. Some cases did not converge and therefore these plots do not contain values for those
levels.
The first obvious result to point out is that SUPG is always worse compared to AFC. The values
of SUPG vary between 0.1 and 0.01, although there is a slight improvement for higher grid
levels. On Grid 3 and Grid 5 we could not obtain values for SUPG on level 12 , because the
stopping criterion has not been reached.
It is striking that the stopping criterion in AFC was mostly reached only for grid levels 1-8.
Calculations for higher grid levels needed at least 3 days or did not converge. Subfigures (a)
and (b) indicate that AFC tends to generate higher overshoots and undershoots for higher grid
levels.
Weakening the stopping criterion allows to obtain more solutions on higher grids on the one
hand, on the other hand it leads to higher calculation inaccuracies.

53

3 Numerical examples

(a) SUPG, ε = 10−6, Grid 4, level 8 (b) AFC, ε = 10−6, Grid 4, level 8

Figure 3.12: Two solutions for SUPG and AFC.

(a) ε = 10−6, Grid 1, r(m+1) < 10−6 ,r(m+1) < 10−9 (b) ε = 10−6, Grid 1,r(m+1) < 10−6, r(m+1) < 10−9

54

3.4 Two interior layers

(c) ε = 10−6, Grid 2, r(m+1) < 10−6, r(m+1) < 10−9 (d) ε = 10−6, Grid 2, r(m+1) < 10−6, r(m+1) < 10−9

(e) ε = 10−6, Grid 3, r(m+1) < 10−6, r(m+1) < 10−9 (f) ε = 10−6, Grid 3, r(m+1) < 10−6, r(m+1) < 10−9

(g) ε = 10−6, Grid 4, r(m+1) < 10−6, r(m+1) < 10−9 (h) ε = 10−6, Grid 4, r(m+1) < 10−6, r(m+1) < 10−9

55

3 Numerical examples

(i) ε = 10−6, Grid 5, r(m+1) < 10−9 (j) ε = 10−6, Grid 5, r(m+1) < 10−9

Figure 3.13: Overshoots and undershoots for AFC and SUPG with stopping criterion r(m+1) <
10−6 and r(m+1) < 10−9.

56

4 Summary

The main advantages of algebraic flux stabilizations are their ability to satisfy discrete maxi-
mum principles due to their positivity-preserving property. Nevertheless, they impose certain
restraints on the velocity field b. It has to be incompressible in order to guarantee the zero row-
sum property which is a fundamental condition of this algorithm. In addition, the algorithm can
only be performed with P1 and Q1 finite elements. Time-dependent problems solved with the
θ-scheme lead to constraints on the time step ∆t which are not trivial, if a reactive term is part
of the equation (see Theorem 2.15).

Our numerical examples showed that algebraic flux stabilizations have main advantages as
well as some drawbacks. On the one hand oscillations are reduced by adding artificial diffusion.
On the other hand the solution often turns out to be too diffusive. This is particularly visible in
Example 3.2 for ε = 10−10, where the outlet for AFC is too diffusive.
Another drawback is the dependency between the grid structure and the order of convergence
as shown in Tables 3.2-3.7. The H1-semi norm for Grids 2 and 3 is twice as bad as for the other
grids. In contrast to Grid 3, Grid 2 is a structured mesh, therefore this behavior can not only
stem from unstructured grids. An approach to improve this, is to use adaptive grid refinement
as presented in [Kuz10, p. 197ff.].
Example 3.4 revealed three important properties of the AFC algorithm.

(1.) It reduces overshoots and undershoots compared to SUPG, even though they tend to in-
crease for higher levels.

(2.) It does not converge for all levels or at least it needs far more time to reach the stopping
criterion.

(3.) Reducing the stopping criterion 2.15 for AFC improves convergence but worsens the
amount of over- and undershoots.

The time-dependent Example 3.3 made clear that algebraic stabilizations can also have strong
oscillations. Neither smaller time steps, nor a finer grid could resolve this problem.

It remains a task of further analysis to find the cause of the oscillations occurring in the
traveling wave example. Altogether, algebraic flux stabilization is a good approach to solve
elliptic and parabolic problems which still requires a deeper analysis regarding convergence,
dependency on grid structures and error estimations.

57

Bibliography

[BB73] Boris, Jay P and David L Book: Flux-corrected transport. i. shasta, a fluid transport
algorithm that works. Journal of computational physics, 11(1):38–69, 1973.

[BJK16] Barrenechea, G, Volker John, and Petr Knobloch: Analysis of algebraic flux correc-
tion schemes. SIAM J. Numer. Anal., 2016. in press.

[Eva98] Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. Amer-
ican Mathematical Society, 1998, ISBN 9780821807729.

[GIJW15] Giere, Swetlana, Traian Iliescu, Volker John, and David Wells: Supg reduced order
models for convection-dominated convection–diffusion–reaction equations. Com-
puter Methods in Applied Mechanics and Engineering, 289:454–474, 2015.

[JN12] John, Volker and Julia Novo: On (essentially) non-oscillatory discretizations of evo-
lutionary convection-diffusion equations. J. Comput. Phys., 231:1570–1586, 2012,
ISSN 0021-9991.

[KLT05] Kuzmin, D, R Löhner, and S Turek: Flux-Corrected Transport: Principles, Algo-
rithms, and Applications. Scientific Computation. Springer, 2005.

[KM05] Kuzmin, Dmitri and Matthias Möller: Algebraic flux correction. I. Scalar conserva-
tion laws. In Flux-corrected transport, 155206. Springer, Berlin, 2005.

[Kuz07] Kuzmin, DMITRI: Algebraic flux correction for finite element discretizations of cou-
pled systems. Computational Methods for Coupled Problems in Science and Engi-
neering II, CIMNE, Barcelona, pages 653–656, 2007.

[Kuz08] Kuzmin, Dmitri: On the design of algebraic flux correction schemes for quadratic
finite elements. J. Comput. Appl. Math., 218(1):79–87, 2008, ISSN 0377-0427.

[Kuz09] Kuzmin, Dmitri: Explicit and implicit FEM-FCT algorithms with flux linearizetion.
J. Comput. Phys., 228(7):2517–2534, 2009, ISSN 0021-9991.

[Kuz10] Kuzmin, Dmitri: A guide to numerical methods for transport equations. 2010.

[Zal79] Zalesak, Steven T: Fully multidimensional flux-corrected transport algorithms for
fluids. Journal of computational physics, 31(3):335–362, 1979.

59

Selbstständigkeitserklärung

Name:

(Nur Block- oder Maschinenschrift verwenden.)

Vorname:

geb.am:

Matr.Nr.:

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende

___________________________ selbstständig und ohne Benutzung anderer als der angegebenen

Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus

anderen Schriften entnommen sind, habe ich als solche kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch bei keiner anderen Universität als

Prüfungsleistung eingereicht und ist auch noch nicht veröffentlicht.

Datum: _________________ Unterschrift: __________________________

 (____________________)

