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1 Introduction

Flows that are turbulent occur in many situations in nature. The simulation of turbulent
flows is a very active area of research. Nevertheless, turbulence is not a mathematically
defined term.

All incompressible, viscous flows are governed by the Navier-Stokes equations. The
structure of the equations does not change when describing turbulent or non-turbulent
flow. One way to distinguish these two types of flow was discovered by the physicist
Osborne Reynolds who, after performing a series of experiments, extracted from the
data of the flows he experimented on a dimensionless number, the Reynolds number,
that for each type of flow experiment can be used to mark the onset of turbulence.
This number can be interpreted as the ratio of inertial forces to viscous forces and the
higher this number is, the more likely it is for the flow it describes to be turbulent. This
interpretation of turbulence is compatible with the interpretation of a turbulent flow as
being one where the nonlinearity in the Navier-Stokes equations is dominant.

It seems easier to describe non-turbulent flow. This is laminar flow, which can be
described as flowing in layers that are not mixing. Generally, one pictures a turbulent
flow as consisting of lots of vortices of different sizes, as for example in a tornado or
in smoke rising from a burning cigarette. A large range for the size of the structures
that make up the flow is characteristic for turbulent flows and herein lies the difficulty
when representing them numerically. Generally, if a grid has enough grid points to
accurately represent the smallest flow structures of turbulent flows, then this number
of grid points will be too large for direct numerical simulation (DNS). Due to time and
memory limitations, it is simply not feasible. From a very simplified numerical point of
view, one could then interpret turbulence simply as the occurrence of structures in the
flow that is to be simulated that are too small as to be represented on the given grid.

One way to deal with structures that are too small to be represented on a given grid
is to introduce a turbulence model, or subgrid model. The goal is to model, based
on physical considerations, the influence of the small scales on the large scales without
actually representing the small scales. This method is called Large Eddy Simulation.
One disadvantage of this method seems to be the fact that different subgrid models lead
to widely different results, making it difficult to choose the right result.

This work concerns itself with the properties of the Leray-α model of turbulence. It
was introduced in 2005 by Cheskidov et al. (2005) and it traces back to the method for
proving the existence of weak solutions of the Navier-Stokes equations used by Leray
(1934).

In the first section, the Navier-Stokes equations that model incompressible flows will
be derived. Whether or not a flow is turbulent cannot be seen from the structure of
the equations themselves. This information is encoded in the Reynolds number, which
will also be introduced in the first section. In the second chapter the Leray-α model
and its origins will be presented. A first reason why this model seems more suitable for
turbulence modeling then previous models is discussed: an upper bound for the dimension
of its attractor is much lower than would be expected for 3D models. A derivation of
this upper bound following Cheskidov et al. (2005) is presented.
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The third chapter consists of a numerical analysis of the Leray-α model discretized by
the Crank-Nicolson scheme using Q2/P

disc
1 finite elements and following Layton et al.

(2008).
The last chapter is concerned with actual turbulence modeling. In it, following Geurts

and Holm (2003), the Leray-α model is recast as a Large Eddy Simulation, which actually
implies a subgrid model. Finally, the results of numerical simulations of a turbulent
channel flow at Reτ = 180 performed with the code MooNMD from John and Matthies
(2004) are presented.
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2 Introduction to the Navier-Stokes Equations

In this section we give a concise derivation of the Navier-Stokes equations for incom-
pressible viscous fluids. It mostly follows Landau and Lifshitz’s Fluid Mechanics course,
see Landau and Lifshitz (1959). After that the Reynolds number will be introduced.

2.1 A Brief Derivation of the Navier-Stokes Equations

Let V0 be a small control volume in the body under consideration Ω. Let ρ = ρ(x, y, z, t)
denote the density, p = p(x, y, z, t) the pressure and u = u(x, y, z, t) the velocity of the
fluid at point x = (x, y, z) in space and t in time. Let n(x, y, z) be the outer unit normal
to V0. Then, the mass of fluid in our control volume at time t = t1 is

∫
V0
ρ(x, t1) dx and

the mass of fluid flowing through the boundary at time t = t1 is
∫
∂V0

(ρu · n)(x, t1) dx.
As the difference in mass between two distinct points in time t1 and t2 must equal the
sum of flow over the boundary, we have, using the Gaussian formula on the boundary
integral, ∫

V0

ρ(x, t2)− ρ(x, t1) dx = −
∫ t2

t1

∫
V0

∇ · (ρu(x, t)) dxdt.

Assuming ρ ∈ C1(Ω × [0,∞)), we can divide by t2 − t1 and, letting t2 → t1 and using
the fundamental theorem of calculus, we get∫

V0

∂tρ(x, t1) dx = −
∫
V0

∇ · (ρu(x, t1)) dx.

As our control volume V0 ⊂⊂ Ω was chosen arbitrarily and so were t1, t2 ∈ [0,∞), we
get that

∂ρ

∂t
+∇ · (ρu) = ∂ρ

∂t
+ ρ∇ · u+ u · ∇ρ = 0 (1)

pointwise. This is called equation of continuity and it describes conservation of mass.
The pressure being denoted by p, an expression for the outside forces acting on our test
volume V0 is −

∫
∂V0

pn dS. Considering that p is a scalar valued function, we use the
Gaussian formula on each component of the vector pn to get

−
∫
∂V0

pn dS = −
∫
V0

∇p dV.

We can interpret this to mean that the fluid surrounding the control volume exerts on
it a force −∇p dV and considering V0 to be a unit volume, this force is −∇p. Now, this
total outside force is responsible for a change in movement (i.e. acceleration) inside the
unit control volume, and considering ρ to be the mass per unit volume, we have

ρ
du

dt
= −∇p, (2)

where du
dt represents the acceleration of a fluid particle moving in the volume. What we

need, however, is an expression of du
dt in terms of fixed points in space. To this end, we
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consider u along the parametrized curve c(t) = (x(t), y(t), z(t), t). Then

du

dt
= u′(c(t)) · c′(t)

=

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z
,
∂u

∂t

)
|c(t) ·

(
∂x

∂t
,
∂y

∂t
,
∂z

∂t
, 1

)
|t

= (u · ∇u)|c(t) +
∂u

∂t
|c(t).

Plugging this into our above equation (2), we get

(u · ∇u) + ∂u

∂t
= −1

ρ
∇p. (3)

This is Euler´s equation or equation of motion.
Using Euler´s equation (3), we can now get an expression for the change of momentum
in our fluid. Momentum is defined as mass times velocity, so in our control unit volume
it would be ρu. The rate of change of momentum in componentwise notation then is

∂

∂t
(ρui) = ρ

∂ui
∂t

+ ui
∂ρ

∂t
. (4)

Using the same notation, the Euler’s equation (3) and the continuity equation (1) become

∂ui
∂t

= −
∑
k

uk
∂ui
∂xk

− 1

ρ

∂p

∂xi
Euler,

∂ρ

∂t
= −

∑
k

∂ (ρuk)

∂xk
Continuity.

(5)

Plugging the equations (5) into the equation for the rate of change of momentum (4), we
get

∂

∂t
(ρui) = − ∂p

∂xi
−
∑
k

∂(ρuiuk)

∂xk
= −

∑
k

∂

∂xk
(δikp+ ρuiuk)︸ ︷︷ ︸

Πik

= −
∑
k

∂Πik
∂xk

. (6)

Πik is called the momentum flux tensor. It represents the transfer of momentum due to
the mechanical transport of fluid particles and the pressure acting on the volume.
Up to this point, we have not concerned ourselves with any distinguishing properties
our fluid might have. As the introduction says, it is supposed to be incompressible and
viscous. Incompressibility means that there is no expansion or compression in the fluid,
meaning that the density ρ is basically constant. This assumption changes nothing in
Euler´s equation but it considerably simplifies the equation of continuity.

∂ρ

∂t
+∇ · (ρu) = 0 then becomes ∇ · u = 0, (7)

meaning the velocity in an incompressible fluid is divergence-free.
Viscosity is the term for internal friction. It depends on the size and shape of the particles
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comprising the fluid and the attraction between them. Honey, for example, has a higher
viscosity than water. This will obviously change the transfer of momentum in our fluid
and therefore the momentum flux density tensor. Therefore, when including viscosity in
our model, we will have to change the equation of motion for our model.
We start by adding a term −σik to the momentum flux density tensor. The tensor −σik
is supposed to model internal friction. This occurs only when fluid particles move with
different velocities. Therefore, −σik must depend on the spatial derivatives of u. There
can be no term in −σik without these derivatives as −σik must vanish for constant u.
So −σik will be a linear combination of these derivatives. It must also vanish in the case
of uniform rotation. Let ω be the angular velocity and let r be the displacement vector.
Then, u = ω × r. Consider as an example uniform rotation in the x-y-plane:

ω =

0
0
ω

 , r =

xy
0

 ⇒ u =

−yω
xω
0

 .

Then, ∂ui
∂xk

+ ∂uk
∂xi

= 0. Seeing this, we make the ansatz

σik = a

(
∂ui
∂xk

+
∂uk
∂xi

)
+ b

∑
l

∂ul
∂xl

δik,

where a and b are functions independent of u. It turns out to be convenient to write this
in the form

σik = η

(
∂ui
∂xk

+
∂uk
∂xi

− 2

3
δik
∑
l

∂ul
∂xl

)
+ ξδik

∑
l

∂ul
∂xl

,

where η > 0 and ξ > 0 are called coefficients of viscosity.
Now we plug the new Πik back into the expression for the rate of change of momentum
(6):

∂

∂t
(ρui) = −

∑
k

∂Πik
∂xk

= −
∑
k

∂

∂xk
(δikp+ ρuiuk − σik)

= − ∂p

∂xi
− ρ

∑
k

uk
∂ui
∂xk

− ui
∑
k

∂(ρuk)

∂xk
+
∑
k

∂

∂xk
σik

= ρ

(
−
∑
k

uk
∂ui
∂xk

− 1

ρ

∂p

∂xi

)
︸ ︷︷ ︸

former Euler

−ui∇ · (ρu)︸ ︷︷ ︸
=− ∂ρ

∂t

+
∑
k

∂

∂xk
σik

!
= ρ

∂ui
∂t

+ ui
∂ρ

∂t
,

which means we have to have

∂ui
∂t

= −
∑
k

uk
∂ui
∂xk

− 1

ρ

∂p

∂xi
+

1

ρ

∑
k

∂

∂xk
σik
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as our new equation of motion. If we now expand the derivative of σ, we get∑
k

∂

∂xk
σik = η

∑
k

∂2ui
∂xk∂xk

+ η
∂

∂xi

∑
k

∂uk
∂xk

− 2

3
η
∑
k

∂uk
∂xk

+ ξ
∂

∂xi

∑
k

∂uk
∂xk

= η
∑
k

∂2ui
∂xk∂xk

+

(
1

3
η + ξ

)
∂

∂xi

∑
k

∂uk
∂xk

= η∆ui +

(
1

3
η + ξ

)
∂

∂xi
(∇ · u).

Putting all of the above together our new Euler equation in vector form is

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ η∆u+

(
1

3
η + ξ

)
∇(∇ · u).

We have already seen in (7) that incompressible fluids have divergence-free velocities.
Therefore the equations of motion and mass conservation for incompressible, viscous
fluids are (

∂u

∂t
+ (u · ∇)u

)
− η

ρ
∆u = −1

ρ
∇p,

∇ · u = 0.

 (8)

The set of equations (8) are the Navier-Stokes equations for incompressible, viscous flow.
We see that the new equation of motion differs from the old by the term η

ρ∆v, which
models viscosity. The ratio ν := η

ρ is called kinematic viscosity, as opposed to η, which
is called dynamic viscosity.

2.2 The Reynolds Number

Dimensional analysis is an important tool in model theory and experimental physics. The
goal is to extract from the model a dimensionless number which captures the essence of
the model in the sense that comparing these numbers allows us to evaluate the extent to
which different processes governed by the same model are similar.
If as an example we wanted to study the flow past an object in a given space, the type of
the flow will be determined by the shape of the object, the velocity of the flow and the
kinematic viscosity ν = η

ρ . If we take a sphere, its shape is then completely determined
by one number, the radius, and the unit of this number is length (L). The units of u
and ν are, respectively L

T and L2

T , where T represents the unit of time. Then, the only
dimensionless number that can be formed from these quantities is

Re =
uL

ν
. (9)

This is the Reynolds number. The fraction Re can also be interpreted as a ratio of
inertial to viscous forces:

Re =
uL

ν
=
ρuL

η
=

inertial forces
viscous force

.
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This allows for the interpretation that the Reynolds number measures the turbulence in
a flow. The higher the Reynolds number, the more turbulent the flow.
The two interesting cases are Re → 0 and Re → ∞. For Re → 0, the non-linear term
in the Navier-Stokes equations can be neglected and they reduce to the well-understood
Stokes problem. It describes creeping flow. In the other case, the flow exhibits turbulent
behavior and this is the form of behavior we are interested in.
Whether a flow is turbulent or not cannot be seen from the Navier-Stokes equations
directly, which are the model for all kinds of flow. Turbulence is not a mathematically
defined term. One could therefore think of turbulence as the opposite of non-turbulence.
Non-turbulence would then be the behavior of a flow which is laminar, meaning its layers
are basically not mixing. Each flow experiment will have a Reynolds number below
which the flow is considered not turbulent and above which it is considered turbulent.
Distinguishing flows in this way goes back to Osborne Reynolds, see Pope (2000). He
performed an experiment of injecting dye into a flow through a pipe and then realized
that the behavior of the flow could be described by one number: the ratio uL

ν , which is
the Reynolds number.

3 The Leray-α Model

Following Layton (2008), we first motivate the interest in a priory estimates of the L2

and H1 norms of our possible solution.
The total kinetic energy is defined by 1

2mass∗velocity2. This means that the total kinetic
energy of a fluid with constant density ρ and velocity v on a domain Ω is

1

2
ρ

∫
Ω
|u|2 dx.

The space L2(Ω) is defined as the set of all functions u : Ω → R such that

∥u∥L2(Ω) =

∫
Ω
|u|2 dx <∞,

where the norm is induced by the scalar product

(u, v)L2(Ω) =

∫
Ω
uv dx,

where in this instance v is the complex conjugate of v. Please note that in the following,
v will have a different meaning. This can of course be extended to functions u : Ω → Rd:

L2(Ω)d =
{
u = (u1, u2, ..., ud) : Ω → Rd, uj ∈ L2(Ω) for all j

}
and ∥u∥L2(Ω)d =

 d∑
j=1

∥uj∥2L2(Ω)

 1
2

.
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The space L2(Ω)d is therefore the set of all velocity fields with finite kinetic energy.
From now on, for convenience we drop the L2 subscript and denote by (·, ·) the L2 scalar
product and by ∥·∥ the L2 norm. But it is not only the velocity itself that is important.
As we have seen in Section 2.1, changes in velocity are what cause one layer of fluid
to exert force on another layer of fluid. This force must be finite for the velocity to be
physically relevant. The space that models this is the Hilbert space H1

0 (Ω). It is defined
as the closure of{

u : Ω → Rd : u ∈ C1(Ω) and u = 0 on ∂Ω
}

in ∥.∥H1
0 (Ω) .

This norm is defined as follows:

∥u∥H1
0 (Ω) =

(
∥u∥2 + ∥∇u∥2

) 1
2
.

Suppose we have already found (u, p) smooth, such that (u, p) solves the Navier-Stokes
equations. We multiply the equation of motion by u itself and integrate over the domain
Ω. We get

1

2

d

dt

∫
Ω
u2 +

∫
Ω
(u · ∇)u u− ν

∫
Ω
∆u u+

∫
Ω
∇p u =

∫
Ω
f u.

After integrating by parts, the second term and the pressure term vanish because of
∇ · u = 0. We are left with

1

2

d

dt
∥u∥2 + ν ∥∇u∥2 = (f, u).

After integrating this in time on (0, t) and using the fundamental theorem of calculus,
we get

1

2
|u(t)|2 + ν

∫ t

0
∥∇u∥2 = 1

2
∥u(0)∥2 +

∫ t

0
(f, u).

With our interpretation of the norms as above, this states (see Layton (2008), Chapter
8):

kinetic energy(t) + total energy dissipated over [0, t]

= initial kinetic energy + total power input.

This is the energy equality that Leray in Leray (1934) called energy dissipation relation.
We can see from this relation what an appropriate space for our solution might look like.
The terms on the left-hand side should be finite and so we define:

L2(0, T ;H1
0 (Ω)) :=

{
u(·, t) ∈ H1

0 (Ω) ∀t ∈ [0, T ] :

∫ T

0
∥u∥H1

0
dt <∞

}
,

L∞(0, T ;L2(Ω)) :=
{
u(·, t) ∈ L2(Ω) ∀t ∈ [0, T ] : ess sup0<t<T ∥u∥ <∞

}
.
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More generally, for a Hilbert space V we can define

Lp(0, T ;V (Ω)) :=

{
u(·, t) ∈ V (Ω) ∀t ∈ [0, T ]

(∫ T

0
∥∇u∥pV

)1/p

dt <∞

}
.

After deriving this integral form of our equations, we can already see that there is a way
to interpret the equations that does not require the solution u to be in C2 any more.
In fact, after introducing the notion of weak derivative, we do not need our solution to
be differentiable in the classical sense at all. Leray first introduced the notion of weak
derivative in Leray (1934). The modern definition is derived by way of partial integration
of smooth functions and the realization that the expression∫

Ω
uDαϕdx = (−1)|α|

∫
Ω
Dαuϕ dx,

where α is a multiindex, still makes sense for u,Dαu ∈ L1
loc(Ω) and so called test functions

ϕ ∈ C∞
c (Ω). Leray showed the existence and uniqueness of so-called regular solutions

for the Navier-Stokes equations, but only for an interval of time [0, T ). He could not
show that these solutions would not become irregular in finite time and he states in his
introduction in Leray (1934): “In fact it is not paradoxical to suppose that the thing
which regularizes the motion- dissipation of energy - does not suffice to keep the second
derivatives of the velocity components bounded and continuous.” However, when in the
original Navier-Stokes equations he replaced (u · ∇)u by (u · ∇)u, where u is a mollified
version of u, he could show that the resulting solution to this mollified system of equations
would not become irregular and in fact exists for all times, see Leray (1934), §26. The
limit of these solutions of mollified systems, which he called turbulent solution, see Leray
(1934), §26, is what is known today as a weak solution. There is more than one notion of
weak solution, though. One can construct weak solutions by way of the Galerkin method.
As it is not known whether weak solutions are unique, it is not known whether a solution
obtained by passing to the limit with Leray´s method is the same weak solution as is
obtained by the Galerkin method.
Jean Leray obtained his results by solving a mollified system and then showing that
the limit of the solutions to such mollified systems is in some sense a solution of the
Navier-Stokes equations. The Leray-α model now attempts to do the same. Instead of a
convolution, it uses an approximation of this convolution. The mollified system is

∂

∂t
uα − ν∆uα + (uα · ∇)uα +∇(pα) = f,

∇ · uα = 0,

uα = Φα ∗ uα,


where uα is the solution for that specific α, uα is the mollified version of uα and as
uα → uα for α→ 0, this system converges to the Navier-Stokes equations.
We now fix α > 0 and chose uα = (I − α2∆)−1uα, the smoothing kernel associated with
the Green function of the Helmholtz operator, as is done in Cheskidov et al. (2005), the
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presentation which we are following in this chapter.
The Leray-α model for some α > 0 fixed then is the following:

∂

∂t
u− ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,

u = u− α2∆u,

v periodic, with periodic box Ω = [0, 2πL]3,

+ initial condition.


(10)

We are looking for a solution in the periodic box Ω = [0, 2πL]3 so as to not have to
concern ourselves with boundary values. Looking for a periodic solution also allows us to
use Fourier analysis in some of the proofs. We will instead require our solution to have
the property

∫
Ω v dx = 0. This will take care of solutions that would only differ by an

additive constant. We define

H =

{
v : v ∈ L2(Ω), ∇ · v = 0, v is periodic in Ω,

∫
Ω
v dx = 0

}
and

V =

{
v : v ∈ H1(Ω), ∇ · v = 0, v is periodic in Ω,

∫
Ω
v dx = 0

}
.

For v ∈ H, one can show ∇ · v ∈ L2(Ω), see Temam (1984). This is true by assumption
for v ∈ V . Further, one can define a scalar product on V by

((u, v)) = (∇u,∇v).

It induces a norm on V denoted by ∥u∥V := ((u, u))1/2. Because the Poincaré inequality
is valid on V we have

∥v∥2 ≤ 1

λ1
∥v∥2V (11)

and the norm induced by the scalar product ((·, ·)) is equivalent to the H1-norm on V .
As V is a Hilbert space, because of the theorem of Riesz we can associate with u ∈ V an
operator A : V → V ′ such that

((u, v)) = ⟨Au, v⟩ ∀v ∈ V.

Since for u ∈ V ∩H2 we have

⟨Au, v⟩ = ((u, v)) = (∇u,∇v) = −(∆u, v) = −⟨∆u, v⟩ ,

we can interpret A as the Laplace operator −∆ in the distributional sense. In order for
Au to actually be a function, we need u ∈ V ∩H2. We define the domain of A in V as
D(A) := V ∩H2. We then have the relations

D(A) ⊂ V ⊂ H ⊂ V ′,
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where the embeddings are continuous and the embedding V ↪→ H is compact because the
embedding H1 ↪→ L2 is compact by the Rellich Lemma. These relations are needed to
fulfill the assumptions of the Aubin compactness theorem, which is needed in the proof
for existence of a solution to the Navier-Stokes equations.
With the help of the norm in V , we can define dimensionally homogeneous norms in
H1(Ω) and H2(Ω) as follows:

∥u∥2H1 := λ1

(
∥u∥2 + α2 ∥u∥2V

)
,

∥u∥2H2 := λ21

(
∥u∥2 + 2α2 ∥u∥2V + α4 ∥∆u∥2

)
.

Using this definition of the H2-norm, ∥u∥2 =
∥∥u− α2∆u

∥∥2 and ((u, v)) = −(u,∆v) for
v ∈ H2, we immediately get for u ∈ H2

∥u∥2H2 = λ21 ∥u∥
2 ,

and therefore
λ1 ∥u∥ ≤ ∥u∥H2 ≤ 2λ1 ∥u∥ , (12)

meaning the norm of u in H2 is equivalent to λ1 ∥u∥. We now make more precise the
notion of weak solution.
If u is a smooth solution of (10), we take the L2 scalar product in V with a function
v ∈ V to arrive at (

∂

∂t
u, v

)
+ ν((u, v)) + b(u, u, v) = (f, v) ∀v ∈ V,

where b(u, v, w) =

n∑
i,j=1

∫
Ω
ui
∂vj
∂xi

wj ,
(13)

where herein, we just assume that the functions in this expression are smooth enough for
b to make sense. By setting

(B(u, v), w) = b(u, v, w) ∀u, v, w ∈ V,

we define a bilinear operator from V × V into V ′. By partial integration, this operator
has the properties

⟨B (u, v) , w⟩V ′ = −⟨B (u,w) , v⟩V ′

⇒ ⟨B (u, v) , v⟩V ′ = 0.
(14)

Interpreting du
dt as the distributional derivative, (13) is equivalent to the functional equal-

ity

d

dt
u− νAv +B(u, u) = f.

12



This allows us to interpret the equation as an equation in V ′. We now only have to
assume f ∈ V ′ for this to make sense. The Leray-α-model (10) then becomes

d

dt
u+ νAu+B(u, u) = f,

(I + α2A)−1u = u,

∇ · u = 0,

u(0) = u0,


(15)

where u ∈ V . Note that it is not necessarily clear what is meant by u(0) = u0. One needs
to clarify why a function from V can be evaluated in a point. This is usually clarified
through an analysis of the problem, see Temam (1988), Chapter 2 for a discussion.
This is the weakest possible formulation of the Leray-α model. There are several different
formulations for weak and strong solutions of the Navier-Stokes equations. They mostly
differ in the function spaces that are used. Generally, a weak solution is a solution of
a functional differential equation like (15), making the solution a function with values
in a dual space. By strong solution, one then usually means a more regular solution
with values in the function space obtained by stronger assumptions on the data of the
equation. For an extended introduction to the modern theory of existence and uniqueness
of solutions of the Navier-Stokes equations, see Temam (1984). For a shorter overview
of the methods used in the proofs and the function spaces, see Temam (1988).
Finally, we present Leray´s results from 1934 as stated in Cheskidov et al. (2005):

Theorem 1. Let T > 0, ν > 0, α > 0 be given.
If f ∈ V ′, u0 ∈ H then (15) has a unique weak solution on [0, T ]. That is, there a
function

u ∈ L∞((0, T );H) ∩ L2((0, T );V ) ∩ C([0, T ];H) and
d

dt
u ∈ L2((0, T );V ′)

such that ⟨
d

dt
u, ϕ

⟩
+ ν ⟨Au, ϕ⟩+ ⟨B(u, u), ϕ⟩ = ⟨f, ϕ⟩

for every ϕ ∈ V , where u = (I + αA)−1u and u0 = u(0).
If f ∈ H, u0 ∈ V then this unique weak solution is a strong solution on (0, T ). That is

u ∈ L2((0, T );D(A)) ∩ C([0, T ];V ) and
d

dt
u ∈ L2((0, T );H)

such that (
d

dt
u, ϕ

)
+ ν(∇u,∇ϕ) + (B(u, u), ϕ) =

∫ t

0
(f, ϕ)

for every ϕ ∈ V where u = (I + αA)−1u and u0 = u(0).

We are going to assume that f is independent of time, which makes (15) an autonomous
dynamical system.

13



3.1 A Priori Estimates

As motivated by the introduction, next we are going to establish a priori L2 and H1

estimates for solutions of these equations. The presentation follows Cheskidov et al.
(2005).

3.1.1 L2-Estimate

Taking the inner product of (15) with u itself and using the property of the operator B
(14) gives

1

2

d

dt
∥u∥2 + ν ∥u∥2V = (f, u). (16)

We continue using the Cauchy-Schwarz inequality and Young´s inequality with p = q = 2
and the estimate of the L2-norm (11):

(f, v) ≤ ∥f∥ ∥u∥ =
1√
νλ1

∥f∥
√
νλ1 ∥u∥ ≤ 1

2νλ1
∥f∥2 + νλ1

2
∥u∥2

≤ 1

2νλ1
∥f∥2 + ν

2
∥u∥V .

Therefore, after using the estimate of the norm (11) in the last step once more, (16) reads
1

2

d

dt
∥u∥2 + ν ∥u∥2V ≤ 1

2νλ1
∥f∥2 + ν

2
∥u∥V

⇔ d

dt
∥u∥2 + ν ∥u∥2V ≤ 1

νλ1
∥f∥2

⇒ d

dt
∥u∥2 + λ1ν ∥u∥2 ≤

1

νλ1
∥f∥2 .

(17)

We would like to bring this into a form on which we can use the Grönwall inequality.
Therefore, we define

d

dt
∥u∥2 ≤ ∥f∥2

νλ1
− νλ1 ∥u∥2 =: −ũ. (18)

We now derive an inequality for ũ by differentiating. Note that we assume f to be
independent of t. Therefore, we get

d

dt
ũ = νλ1

d

dt
∥u∥2 ≤ −νλ1ũ.

Now setting g = −νλ1, we can use the Grönwall inequality to obtain

ũ(t) ≤ ũ(0)exp
(∫ t

0
−νλ1 ds

)
= ũ(0)exp (−νλ1t) . (19)

Resubstituting the definition of ũ (18) in (19) yields

−∥f∥2

νλ1
+ νλ1 ∥u(t)∥2 ≤

(
−∥f∥2

νλ1
+ νλ1 ∥u(0)∥2

)
exp (−νλ1t) .

⇒ ∥u(t)∥2 ≤ (1− exp(−νλ1t))
∥f∥2

(νλ1)2
+ ∥u(0)∥2 exp(−νλ1t) =: R(t).

(20)
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From this, we see that

lim sup
t→∞

∥u(t)∥ ≤ 1

νλ1
∥f∥ =: R.

From (12) it immediately follows that

lim sup
t→∞

∥∥∥u(t)∥∥∥
H2

≤ λ1R.

After integrating the middle equation in (17) on (0, t) we can also verify

∥u(t)∥2 + ν

∫ t

0
∥u(s)∥2V ds ≤ ∥u(0)∥2 + t

∥f∥2

νλ1
∀t,

which means we have u ∈ L2((0, t), V ) for all t > 0.

3.1.2 H1-Estimate

To establish an a priori H1-estimate, we take the inner product of (15) with Au:

1

2

d

dt
∥u∥2V + ν ∥Au∥2 + (B(u, u), Au) = (f,Au)

⇔ 1

2

d

dt
∥u∥2V + ν ∥Au∥2 = (f,Au)− (B(u, u), Au).

We proceed by estimating the right-hand side from above. We get

(f,Au)− (B(u, u), Au) ≤ |(f,Au)|+ |(B(u, u), Au)| ,

and by using the Cauchy-Schwarz inequality and Young´s inequality with p = q = 2 we
get

|(f,Au)| ≤ ∥f∥ ∥Au∥ =

√
2√
ν
∥f∥

√
ν√
2
∥Au∥ ≤ ∥f∥2

ν
+ ν

1

4
∥Au∥2 .

Using Cauchy-Schwarz, ∥(u · ∇)v∥ ≤ ∥u∥L∞ ∥∇v∥ whenever u ∈ L∞, Young´s inequality
with p = q = 2, and the Sobolev inequality in three dimensions, we also have

|(B(u, u), Au)|
≤ ∥B(u, u)∥ ∥Au∥ ≤ ∥u∥L∞ ∥∇u∥ ∥Au∥

≤
√
2√
ν
∥u∥L∞ ∥u∥V ∥Au∥

√
ν√
2
≤ 1

ν
∥u∥2L∞ ∥u∥2V +

ν

4
∥Au∥2

≤ c2

νλ
1
2
1

∥u∥2H2 ∥u∥2V +
ν

4
∥Au∥2 .

So, for the right-hand side we have

|(f,Au)− (B(u, u), Au)| ≤ |(f,Au)|+|(B(u, u), Au)| ≤ ∥f∥2

ν
+ν

1

2
∥Au∥2+ c2

νλ
1
2
1

∥u∥2H2 ∥u∥2V .
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In total, we have

1

2

d

dt
∥u∥2V +

1

2
ν ∥Au∥2 ≤ ∥f∥2

ν
+

c2

νλ
1
2
1

∥u∥2H2 ∥u∥2V . (21)

Using the estimate for the H2-norm of u from equation (12) and the L2-estimate already
established for u in (20), we get

∥u∥2H2 ≤ 4λ21 ∥u∥
2 ≤ 4λ21(∥u(0)∥

2 e−λ1νt +
∥f∥2

(λ1ν)2
(1− e−λ1νt)) =: 4λ21R(t)

2.

Using this in (21) we get

1

2

d

dt
∥u∥2V +

1

2
ν ∥Au∥2

≤∥f∥2

ν
+

c2

νλ
1
2
1

∥u∥2V 4λ21R(t)
2 =

∥f∥2

ν
+

4c2λ
3
2
1

ν
∥u∥2V R(t)

2

⇒ d

dt
∥u∥2V + ν ∥Au∥2 ≤ 2 ∥f∥2

ν
+

8c2λ
3
2
1

ν
∥u∥2V R(t)

2.

Setting K(t) = max

{
2∥f∥2
ν ,

8c2λ
3
2
1

ν R(t)2

}
we get

d

dt
∥u∥2V + ν ∥Au∥2︸ ︷︷ ︸

≥0

≤ K(t)(1 + ∥u∥2V ).

⇒ d

dt
∥u∥2V ≤ K(t)(1 + ∥u∥2V )

⇒ d

dt
(1 + ∥u∥2V ) ≤ K(t)(1 + ∥u∥2V ).

After setting w(t) = (1 + ∥u∥2), we again use the Grönwall Lemma. This then gives

w(t) ≤ w(s)exp
(∫ t

s
K(τ) dτ

)
.

⇒ 1 + ∥u(t)∥2V ≤ (1 + ∥u(s)∥2V )exp
(∫ t

s
K(τ) dτ

)
.

(22)

Since K is integrable on (0, T ) for all T by the definition of R, this means if we suppose
u(0) ∈ V , we have u ∈ L∞([0, T ] ;V ).

3.2 Estimate of the Global Attractor

We consider the dynamical system

d

dt
u = F (u), u0 = u(0). (23)
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Note that with equations (15), we have a formulation of the Leray-α model like this with
F (u) = f − νAu+B(u, u).
We say the state of the system is described by u which is an element of a metric space
H, meaning u : [0, T ] → H, u(t) ∈ H for all t for which u is defined.
If f does not depend on time, this is an autonomous dynamical system. In general, the
operator F and with it the solutions of the system (23) depend on a parameter λ. In
our case, this is the Reynolds number. Experiments (see: Taylor experiment) suggest
that if λ is small in a certain sense (dependent on the geometry of Ω and the viscosity
of the fluid), then for t → ∞ the flow will converge to a unique stationary solution of
the problem (23), meaning to the solution of the problem Fλ = 0. As λ gets larger and
larger, there will be more than one stationary solution. Solutions of problem (23) will
then converge to one of these solutions dependent on the initial values they belong to.
For even larger λ the stationary solutions disappear and we have periodic solutions, then
quasi-periodic solutions and finally fully turbulent solutions. This is usually taken to
mean that the Fourier expansion of the solution u does not consist of discrete frequencies
anymore, see Landau and Lifshitz (1959), §26/27. One can still examine the behavior of
solutions u(t) as t → ∞ and if u(t) → X as t → ∞ for some subspace X ⊂ H which in
a sense to be made precise later is invariant under the dynamics of the system (23), one
can still extract information on the long time behavior from the structure of the set X.
This set X is a so-called attractor. It describes the long-time behavior of a flow. A
comprehensive text on attractors is Temam (1988) and in it Temam writes: “It is our
understanding here that the number of degrees of freedom of a turbulent phenomenon is
the dimension of the attractor which represents it”. In this sense, the dimension of the
attractor of the Leray-α model is a measure of its complexity.
Let L denote the typical length scale of the flow under consideration and ld the viscous
dissipation length scale, which is the smallest length scale (dependent on ν) that one
needs to resolve, see Chapter 3 for a more detailed explanation. Cheskidov et al. (2005)
calculate that the dimension of the attractor of the Leray-α model is proportional to
(L/ld)

12/7, whereas the number of degrees of freedom for the 3D Navier-Stokes equations
is assumed to be proportional to (L/ld)

3. This suggests that the Leray-α model is less
complex and therefore easier to simulate numerically.

3.2.1 Attractors

Before we can begin estimating the dimension of the attractor of the Leray-α model, we
need to first establish its existence and this requires some definitions.
The evolution of the system (23) is described by the operators S(t) which are defined by

u(t) = S(t)u(0), S(0) = Id,

S(t+ s) = S(t)S(s),

and therefore form a semi-group. Writing u(t) = S(t)u(0) of course only makes sense if
there is a unique solution of the problem (23).
The orbit or trajectory of u0 is ∪t≥0S(t)u0, and an ω-limit set for u0 is the set ω(u0) =
∩s≥0∪t≥sS(t)u0. We can interpret this to mean that the ω-limit set is the set where the
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trajectory of u(0) leads. An ω-limit set can of course be defined for whole sets of initial
values, the name ω-limit set is a lot more fitting then.
We call X ⊂ H an invariant set for the semi-group S if X = S(t)X for all t ≥ 0.

Definition 1. Let B ⊂ U , U open in H, be a subset of the metric space H. B is
absorbing in U if the orbit of any bounded set B0 ⊂ U enters B after a certain time, in
other words:

∀B0 ⊂ U, B0 bounded ∃t1(B0) : S(t)B0 ⊂ B ∀t > t0(B0).

Finally, we can define what an attractor is:

Definition 2. Let H be a metric space. An attractor is a set X ⊂ H that has the
following properties:
(i) S(t)X = X, ∀t ≥ 0
(ii) X possesses an open neighborhood U such that for every u0 in U

dist(S(t)u0, X) → 0 as t→ ∞ where dist(x,X) = inf
y∈X

dist(x, y).

(iii) We say that X ⊂ H is a global attractor for the semi-group {S(t)}t≥0 if X is a
compact attractor that attracts the bounded sets of H.

Next, we need a tool for proving the existence of a global attractor. Before we do that,
we need one more definition:

Definition 3. We call the operators S(t) uniformly compact for large t, if for every
bounded set B0 there is a t0 such that ∪

t≥t0

S(t)B0

is relatively compact.

Now we have the following theorem for the existence of an attractor:

Theorem 2. Let H be a metric space. Assume the operators S(t) are uniformly compact.
Further assume there is an open set U and a bounded set B ⊂ U such that B is absorbing
in U . Then the ω-limit set of B,

X =
∩
s≥0

∪
t≥s

S(t)B,

is a compact attractor that attracts the bounded sets in U . It is also the maximal bounded
attractor in U .

One now generally first shows existence and uniqueness of solutions for the problem
(23). Then, one finds an absorbing set and shows that S(t) is a compact operator. Using
Theorem 2, one can then establish the existence of an attractor for the system.
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For the Leray-α model (15) we already have existence and uniqueness of solutions from
Theorem 1. Therefore, the solution operators S(t) exist. From the L2-estimate (20) we
already deduced

lim sup
t→∞

∥u(t)∥ ≤ 1

νλ1
∥f∥ =: R.

Therefore,
B1(H) := {w ∈ H : ∥w∥ ≤ R}

is an absorbing ball for the solution u(t): the trajectory of any u0 ∈ B0 where B0 is a
bounded set in H will eventually after a time t0 = t0(B0) end up in B1(H).
From (12) we immediately get that

B2(H) := {w ∈ H : ∥w∥H2 ≤ 2λ1R}

is an absorbing ball for u(t). We now use the H1 estimate to prove compactness of
the operator S(t). First, integrating the middle equation in (17) on (t, r) gives us the
estimate ∫ t+r

t
∥u(τ)∥2V dτ ≤ ∥u(t)∥2 + ∥f∥2

νλ1
r

≤ 2rR0 for t ≥ t0(B0) and u0 ∈ B0.

(24)

Then, we use this estimate and the uniform Grönwall Lemma on the inequality for the
H1-norm

1 + ∥u(t)∥2V ≤ (1 + ∥u(s)∥2V )exp
(∫ t

s
K(τ) dτ

)
derived in (22). Using notation from the uniform Grönwall Lemma, we then have g =
K(t), y = (1 + ∥u∥V )2, h = 0 and because K(t) is integrable and because of (24) we get
the estimates∫ t+r

t
y(s) ds = r +

∫ t+r

t
∥u(s)∥2V ds ≤ r(1 + 2R0) =: a3 for t > t0B0,∫ t+r

t
g(s) ds =

∫ t+r

t
K(s) ds =: a1.

Now, the uniform Grönwall Lemma gives us the estimate

∥u(t+ r)∥V ≤ a3
r

exp (a1) = (1 + 2R0) exp (a1) =: R2,

and we see that the ball B2(V ), by which we will denote the ball with radius R2 in V ,
is an absorbing set. But we have also bounded u in the V -norm depending on u0 being
bounded in the H-norm. This means if u0 is bounded in H, after a certain time u will be
bounded in V . In other words, for any bounded set B0 in H there will be a time t0 such
that S(t)B0 ⊂ B2(V ). But B2(V ) is bounded in H1

0 and as we know from the Rellich
Lemma, the embedding H1 ↪→ L2 is compact. Therefore, the embedding V ↪→ H is
also compact and B2(V ) is relatively compact in H. Then, S(t) is a uniformly compact
operator. Now Theorem 2 guarantees the existence of a global attractor:
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Theorem 3. Let u0 ∈ H and also f ∈ H. Then, the Leray-α model possesses the unique
global attractor X in H and

X =
∩
s≥0

∪
t≥s

S(t)B1.

Note that in a similar way an absorbing set and attractor in V can be derived from
the a priori H1-estimates.

3.2.2 The Estimate

Following Cheskidov et al. (2005) we will now estimate the Hausdorff dimension of the
global attractor. This is done by tracking the evolution of a small volume element in the
attractor.
In any Hilbert space H, because it is endowed with a scalar product, one can for each
element φ of this Hilbert space define a linear operator

Lφ : H → R, Lφ(v) := (φ, v)H .

Analogously, if H is an (at least) m-dimensional Hilbert space, one can, using m elements
φ1, . . . , φm of this Hilbert space, define an m-linear operator by

φ1 ⊗ . . .⊗ φm : Hm → R,

φ1 ⊗ . . .⊗ φm :=

m∏
i=1

(φi, vi)H ∀v1, . . . , vm ∈ H.

Now one can define the so-called m-exterior product of H, usually denoted by
∧mH,

which is the space spanned by all the sums

φ1 ∧ . . . ∧ φm :=
∑
σ

(−1)σφσ(1) ⊗ . . .⊗ φσ(m),

where σ is a permutation and φ1 ∧ . . . ∧ φm is called wedge product. On this space, one
can define a scalar product as follows:

(φ1 ∧ . . . ∧ φm, ψ1 ∧ . . . ∧ ψm)∧mH := det {(φi, ψi)H}1≤i,j≤m ,

where of course φ1, . . . , φm, ψ1, . . . , ψm ∈ H. This scalar product in the usual way
induces a norm. As the norm of the determinant of a matrix equals the volume of
the parallelepiped spanned by the columns of the matrix, |φ1 ∧ . . . ∧ φm|∧mH can be
interpreted as the volume of the volume element spanned by φ1, . . . , φm. Therefore, if
we want to get an idea of how a small volume element develops, we need an estimate for
the norm of the wedge product of the functions spanning it.
Setting F = I + α2A, we first suppose that u(t) ⊂ X for some t > t0 and that it is a
solution of

d

dt
u+ νAu+B(u, u) = f,

u = F−1u.
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Let ξ ∈ V denote a small disturbance that we add to u ∈ V . Then we get

d

dt
(u+ ξ) + νA(u+ ξ) +B(F−1(u+ ξ), u+ ξ) = f +O(ξ2)

⇔ d

dt
ξ + νAξ +B(F−1u, ξ) +B(F−1ξ, u) = 0.

This means the disturbance evolves according to

d

dt
ξ + Λξ = 0,

F−1ξ = η,

ξ(0) = ξ0,


where Λ(t)ξ = νAξ +B(u, ξ) +B(η, u).
Let ξj(t) = (ξj1(t), ξj2(t), ξj3(t)) denote solutions of this system corresponding to initial
values ξj(0) = ξ0j and let QN (t) be the L2−orthogonal projection from L2 to the N -
dimensional subspace spanned by ξj(t)1≤j≤N . Then, assuming Λ(t) Fréchet-differentiable
and denoting by Tr the trace of an operator, analogously to Temam (1988) Section V.2.3,
we can derive an equation governing the evolution of the N-dimensional volume element:

|(ξ1 ∧ . . . ∧ ξN )(t)|∧NL2

= |(ξ1 ∧ . . . ∧ ξN )(0)|∧NL2 exp
(
−
∫ t

0
Tr(QN (τ) ◦ Λ(τ) ◦QN (τ))

)
dτ.

If we can now find a constant K = K(N) dependent on the dimension N such that

lim inf
t→∞

1

t

∫ t

0
Tr(QN (τ) ◦ Λ(τ) ◦QN (τ)) dτ ≥ K(N) > 0,

then we have shown that

|(ξ1 ∧ . . . ∧ ξN )(t)|∧NL2 ≤ |(ξ1 ∧ . . . ∧ ξN )(0)|∧NL2 exp (−K(N)t) ,

for some t > t0, meaning we have exponential decay of the volume element inside the
attractor. This already suggests that the attractor must be finite-dimensional. A theorem
from Temam (1988), Chapter V.3.3, Theorem 3.3 then gives the result that the Hausdorff
dimension of the attractor will be less or equal to N if also N>1. Therefore, this estimate
is what we are trying to establish.
We begin by selecting ψ1(t), . . . , ψN (t), an L2-orthonormal basis of span{ξ1(t), . . . , ξN (t)}
and we let ζj = F−1(ψj). Using the definition of trace and (B(u, v), v) = 0 for u, v ∈ V
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we then estimate for a fixed time t:

Tr(QN (t) ◦ Λ(t) ◦QN (t)) =
∞∑
j=1

((QN (t) ◦ Λ(t) ◦QN )ψj , ψj) =
N∑
j=1

(Λ(t)ψj , ψj)

=
N∑
j=1

ν ∥ψj∥2V + (B(u, ψj), ψj) + (B(ζj , u), ψj)

=

N∑
j=1

ν ∥ψj∥2V + (B(ζj , u), ψj)

≥
N∑
j=1

ν ∥ψj∥2V −

∣∣∣∣∣∣
N∑
j=1

(B(ζj , u), ψj)

∣∣∣∣∣∣ .

(25)

Further, using the definition of B, we have∣∣∣∣∣∣
N∑
j=1

(B(ζj , u), ψj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
N∑
j=1

((ζj · ∇)u, ψj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Ω

N∑
j=1

3∑
i,k=1

ζjiDiukψjk

∣∣∣∣∣∣
≤
∫
Ω
|∇u|

N∑
j=1

3∑
i,k=1

|ζjiψjk |

=

∫
Ω
|∇u|

N∑
j,l=1

3∑
i,k=1

|clψliψjk | using ζji =
N∑
l=1

clψli

=

∫
Ω
|∇u|

N∑
j=1

3∑
i,k=1

|cjψjiψjk | using orthonormality

≤
∫
Ω
|∇u|

 N∑
j=1

|ζj |2
1/2

︸ ︷︷ ︸
=:(ρN (x))1/2

N∑
j=1

N∑
i=1

|ψji |
2

︸ ︷︷ ︸
=
∑N

j=1|ψj |2

≤ ∥ρN∥L∞

∫
Ω
|∇u|

N∑
j=1

|ψj |2

≤ ∥ρN∥L∞

(∫
Ω
|∇u|

)1/2

 N∑
j=1

∫
Ω
|ψj |2︸ ︷︷ ︸
=1


1/2

= ∥ρN∥L∞ ∥u∥V N
1/2.

We will need two more Propositions before we can proceed with estimating the trace.
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Proposition 1. Let γ = α/L. Then for every function ζ ∈ H2(Ω)

∥ζ∥L∞ ≤ C(γ)(2πL)−
3
2

∥∥(ζ + α2Aζ)
∥∥ .

Proof. We will use the Fourier transform of a function in this proof. Note that there are
several definitions of the Fourier transform. Here, it will be defined by

ζ̂k =

(
1

2πL

)3 ∫
Ω
ζ(x)exp

(
−ik x

L

)
dx.

Therefore, we can represent ζ as

ζ(x) =
∑
k∈Z3

ζ̂k exp
(
ik
x

L

)
. (26)

We can calculate the L2-norm of ζ in terms of its Fourier coefficients ζ̂, using on each
component of the exponential function the fact that for n ∈ N we have∫ 2πL

0
exp(int) dt =

{
2πL for n = 0
1
in (exp (in2πL− 1)) = 0 for nL ∈ N, n ̸= 0.

We then immediately get

∥ζ∥2 =

∥∥∥∥∥∥
∑
k∈Z3

ζ̂k exp
(
ik
x

L

)∥∥∥∥∥∥
2

=
∑
k,l∈Z3

ζ̂kζ̂l

∫
Ω

exp
(
ik
x

L

)
exp

(
il
x

L

)
dx

=
∑
k,l∈Z3

ζ̂kζ̂l

∫
Ω

exp
(
i(k − l)

x

L

)
dx =

∑
k∈Z3

∣∣∣ζ̂k∣∣∣2 |Ω|︸︷︷︸
(2πL)3

.

(27)

Using the definition of A, we calculate

Aζ = −∆ζ = −
∑
k∈Z3

ζ̂k

3∑
j=1

∂j∂j

(
exp

(
ik
x

L

))
= −

∑
k∈Z3

ζ̂k

3∑
j=1

(
i

L
kj

)2

exp
(
ik
x

L

)
=
∑
k∈Z3

|k|2

L2
ζ̂k exp

(
ik
x

L

)
.

(28)

Now using (28), (26), γ = α
L and (27), we can also calculate

∥∥ζ + α2Aζ
∥∥2 =

∥∥∥∥∥∥
∑
k∈Z3

(
1 +

α2

L2
|k|2
)
ζ̂k exp

(
ik
x

L

)∥∥∥∥∥∥
2

=

∣∣∣∣∣∣
∑
k∈Z3

(
1 +

α2

L2
|k|2
)∣∣∣∣∣∣

2

∥ζ∥2 =

∣∣∣∣∣∣
∑
k∈Z3

(
1 +

α2

L2
|k|2
)∣∣∣∣∣∣

2∑
k∈Z3

∣∣∣ζ̂k∣∣∣2
 (2πL)3

≥
∑
k∈Z3

∣∣∣ζ̂k∣∣∣2 (1 + γ |k|2
)2

(2πL)3 .

(29)
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We now use all of this to derive the bound we actually want. By using the Fourier
expansion of ζ, the fact that |exp(iφ)| = 1 for all φ ∈ R, multiplying by 1 and using the
inequality

∑
k(akbk)

1/2 ≤ (
∑

k ak)
1/2(

∑
k bk)

1/2, we get

|ζ(x)| =

∣∣∣∣∣∣
∑
k∈Z3

ζ̂k exp
(
ik
x

L

)∣∣∣∣∣∣ ≤
∑
k∈Z3

∣∣∣ζ̂k∣∣∣
=
∑
k∈Z3

(∣∣∣ζ̂k∣∣∣2 (1 + γ2 |k|2
)2 (

1 + γ2 |k|2
)−2

) 1
2

≤

∑
k∈Z3

∣∣∣ζ̂k∣∣∣2 (1 + γ2 |k|2
)2 1

2
∑
k∈Z3

(
1 + γ2 |k|2

)−2

 1
2

.

(30)

Now we prove that there is C = C(γ) such that∑
k∈Z3

(
1 + γ2 |k|2

)−2
≤ C2(γ). (31)

We start by choosing c21 > 0 such that c21 <
|k|
p4/3

and therefore

∑
k∈Z3

(
1 + γ2 |k|2

)−2
≤

∞∑
p=0

(
1 + c21γ

2p4/3
)−2

.

For a number a ∈ R we denote by [a] the smallest number n ∈ N such that n ≥ a. We
then split the sum as

∞∑
p=0

(
1 + c21γ

2p4/3
)−2

=

[(c1γ)−3/2]∑
p=0

(
1 + c21γ

2p4/3
)−2

+

∞∑
p=[(c1γ)−3/2]

(
1 + c21γ

2p4/3
)−2

.

(32)
Writing P :=

(
1 + c21γ

2p4/3
)−2 and expanding P , we see that we can estimate

P ≤ 1 and P ≤ 1

c41γ
4p8/3

.

Using the first estimate for the first sum and the second estimate for the second sum in
(32), we obtain

[(c1γ)−3/2]∑
p=0

1 +
∞∑

p=[(c1γ)−3/2]

1

c41γ
4p8/3

≤1 + (c1γ)
−(3/2) +

∫ ∞

(c1γ)
−3/2

1

c41γ
4p8/3

dp = 1 +

(
1

c21γ
2

)3/4

+
8

5

(
1

c21γ
2

)3/4

= 1 +
13

5

(
1

c21γ
2

)3/4

=:C2 (γ) ,
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and have therefore achieved our goal. Immediately using this estimate (31) and (29) in
(30), we get

∥ζ∥L∞ ≤ C(γ)
∑
k∈Z3

(∣∣∣ζ̂k∣∣∣2 (1 + γ2 |k|2
)2) 1

2

= C(γ)(2πL)−3/2
∥∥ζ + α2Aζ

∥∥ ,
which is the desired estimate.

Proposition 2. Let {ψ1 . . . ψN} be orthonormal in the L2 inner product. Let ζj ∈ H2(Ω)

such that ζj = (I + α2A)−1(ψj), j = 1, 2, . . . , N . Let |ρN (x)|2 =
∑N

j=1 |ζj(x)|
2. Then

there exists a constant CF (γ) independent of N such that

∥ρN∥L∞ ≤ CF (γ)(2πL)
− 3

2 .

Proof. Let Θ1, . . . ,ΘN ∈ R be such that
∑N

j=1Θ
2
j = 1. Then, using the result of Proposi-

tion 1 on each ζj individually, using the definition of ψj , the assumption that
∑N

j=1Θ
2
j = 1

and finally the orthogonality of (ψ)Nj=1 we get∣∣∣∣∣∣
N∑
j=1

Θjζj(x)

∣∣∣∣∣∣ ≤ C(γ)(2πL)−3/2

∥∥∥∥∥∥
N∑
j=1

Θj

(
ζj + α2Aζj

)∥∥∥∥∥∥
= C(γ)(2πL)−3/2

∥∥∥∥∥∥
N∑
j=1

Θjψj

∥∥∥∥∥∥ = C(γ)(2πL)−3/2

 N∑
j=1

Θ2
j

1/2

= C(γ)(2πL)−3/2

for all x ∈ Ω. Squaring the inequality and denoting by ζkj the k-th component of the
vector ζj , we get N∑

j=1

Θjζ
1
j (x)

2

+

 N∑
j=1

Θjζ
2
j (x)

2

+

 N∑
j=1

Θjζ
3
j (x)

2

≤ C2(γ)(2πL)−3, x ∈ Ω.

Choosing first Θj = (
∑N

j=1 ζ
1
j (x)

2)−1/2ζ1j (x), we obtain

N∑
j=1

(ζ1j (x))
2 ≤ C(γ)2(2πL)−3, x ∈ Ω.

Next, choosing Θj = (
∑N

j=1 ζ
2
j (x)

2)−1/2ζ1j (x) and then Θj = (
∑N

j=1 ζ
1
j (x)

3)−1/2ζ1j (x), we
obtain analogous estimates for

∑N
j=1(ζ

2
j (x))

2 and
∑N

j=1(ζ
3
j (x))

2. Finally, we have

|ρN (x)|2 =
N∑
j=1

|ζj(x)|2 =
N∑
j=1

ζ1j (x)
2 +

N∑
j=1

ζ2j (x)
2
N∑
j=1

ζ3j (x)
2 ≤ 3C(γ)2(2πL)−3, x ∈ Ω.
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Plugging the results of Proposition 1 and Proposition 2 into (25) and then using the
Sobolev-Lieb-Thirring Inequality in three dimensions (n = 3, m = 1), we obtain

Tr(QN (t)Λ(t) ◦QN (t)) ≥ ν

N∑
j=1

∥ψj∥2V − ∥u(t)∥V ∥ρN∥L∞ N1/2

≥ ν
N∑
j=1

∥ψj∥2V − ∥u(t)∥V CF (γ)(2πL)
−3/2N1/2

≥ νc1
(
(2πL)3

)−2/3
N5/3 − ∥u(t)∥V CF (γ)(2πL)

−3/2N1/2

= νc2L
−2N5/3 − ∥u(t)∥V CF (γ)(2πL)

−3/2N1/2.

We now have

Tr(QN (t) ◦ Λ(t) ◦QN (t)) ≥ νc2L
−2N5/3 − ∥u(t)∥V CF (γ)(2πL)

−3/2N1/2,

which means

lim inf
T→∞

1

T

∫ T

0
Tr(QN (t) ◦ Λ(t) ◦QN (t)) dt

≥ νc2L
−2N5/3 − CF (γ)(2πL)

−3/2N1/2 lim sup
T→∞

(
1

T

∫ T

0
∥u(t)∥2V dt

)1/2

.

Defining ϵLeray, the mean rate of dissipation of energy, and ld, the viscous dissipation
length scale, by

ϵLeray :=
ν

(2πL)3
sup

u(0)∈X
lim sup
t→∞

(
1

T

∫ T

0
∥u(t)∥2V dt

)
and ld :=

(
ν3

ϵLeray

)1/4

we then have

lim inf
T→∞

1

T

∫ T

0
Tr(QN (t) ◦ Λ(t) ◦QN (t)) dt

≥ νc2L
−2N5/3 − CF (γ)(2πL)

−3/2N1/2

(
(2πL)3

ν
ϵLeray

)1/2

> 0

⇔ N >

(
L

ld

)12/7(CF (γ)
c2

)6/7

.

Therefore, according to the so called trace formula explained in the beginning of this
chapter, we have

Hausdorff dimension of X =: dH(X) ≤
(
L

ld

)12/7(CF (γ)
c2

)6/7

.
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4 Numerical Analysis

4.1 Finite Element Method

At its heart, the finite element method relies on the weak formulation of a problem.
Transforming the problem into a problem formulated in the right function spaces, in this
case a Hilbert space, one can use theorems from functional analysis such as Riesz, Lax-
Milgram or Babuska’s extension of the Lax-Milgram theorem, see for example Layton
(2008), Chapter 2 Theorem 9, to prove existence and uniqueness of a solution for the
weak formulation of a problem. In classical PDE theory, one would then further use regu-
larity theorems to obtain conditions under which such a weak solution is actually regular.
The aim of the finite element method, however, is to approximate a solution given by the
above theorems. To this end, one has to assume that the Hilbert space H in which the
solution lives has a countable orthonormal basis. Then, one can select finite-dimensional
subspaces H1,H2, ... ⊂ H that approximate H from within. This means that for each
v ∈ H, there will be a sequence (vk)k∈N with vk ∈ Hk for each k that converges to v. In
the case that we can formulate our problem so that it only involves the scalar product of
a certain Hilbert space, we can use the theorem of Riesz to get existence and uniqueness
of a solution. In the case that the bilinear form involved is not the scalar product but
is still continuous and coercive, meaning there exists a constant C > 0 independent of v
such that C ∥v∥2H ≤ a(v, v), we can use the Lax-Milgram Theorem.
In the case of the Navier-Stokes equations, however, there is one more difficulty. The
equations contain two unknowns, the velocity u and the pressure p, that also live in two
different function spaces. By choosing a divergence-free subspace from which the approx-
imation functions come, one can eliminate the pressure from the weak formulation. In
practice, the construction of a divergence-free subspace is not that easy (see for example
the Argyris finite element). One then has to use what is called a mixed method. Instead
of eliminating the pressure from the equation, one of the bilinear forms involved will take
variables from two different spaces, namely the pressure space Q and the velocity space
X. But this means that the coercivity condition, that guaranteed existence of a solution,
needs to be modified.
If a is coercive on H, it follows that

C ∥v∥H ≤ sup
w∈H

a(w, v)

∥w∥H
∀v ∈ H.

This weaker condition now makes sense for a bilinear form b : H × Π → R, where Π is
another function space. The condition

C ∥p∥Π ≤ sup
v∈H

b(v, p)

∥v∥H
∀p ∈ Π

is called inf-sup condition. The discrete version of this, meaning the inequality that has
to hold for the approximation functions from the finite element spaces, is the discrete
inf-sup condition or LBBh − condition, named after its inventors:

0 < C ≤ inf
q∈Πh

sup
v∈Hh

|b(v, p)|
∥v∥H ∥q∥Π

.
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The LBBh-condition can not only guarantee the existence and uniqueness of a pressure
ph for the velocity vh, but also ensures that the choices for the finite element pressure
space and the finite element velocity space fit, so to speak. An example for what can go
wrong if LBBh is not satisfied is given in Layton (2008), Section 4.3.
Another important question to consider when choosing a finite element space is whether
it is conforming, meaning it is actually contained in the function space it is supposed to
approximate. In the following analysis, we will always suppose the finite element space
to be conforming and to satisfy the LBBh condition. An extensive treatment of finite
element spaces and their properties can be found in Brenner and Scott (1994).
A common choice of finite element spaces for fluid dynamics are the so-called Q2/P

disc
1

elements. They are used in our numerical experiments and they are defined as follows:
Let T be a triangulation of Ω. Then, the velocity-space Xh is defined by

Xh = Q2 :=
{
vh ∈ H1

0 (Ω) : v
h
∣∣
τ

is triquadratic ∀τ ∈ T
}
.

The pressure space is defined by

Qh = P disc1 :=
{
qh ∈ L2

0(Ω) : q
h
∣∣
τ

is linear ∀τ ∈ T
}
.

Note that the pressure space is not presumed to be continuous across cells.
If we choose X = H1

0 and Q = L2
0 we obviously have Xh ⊂ X and Qh ⊂ Q. Therefore,

Q2/P
disc
1 is conforming. It also satisfies the LBBh condition, see Matthies and Tobiska

(2002).

4.1.1 The Stokes Problem as an Example

The Stokes equations are given by

−∆u+∇p = f, ∇ · u = 0,

where as usual u is the velocity of the fluid and p is the pressure and we suppose u
vanishes on ∂Ω. The variational formulation then is∫

Ω
∇u : ∇v −∇ · vp =

∫
Ω
f · v ∀v ∈ X,

∫
Ω
∇ · uq = 0 ∀q ∈ Q,

where X and Q are some appropriate function spaces. Setting

a(u, v) :=

∫
Ω
∇u : ∇v and b(u, q) :=

∫
Ω
∇ · uq,

this becomes

a(u, v)− b(v, p) = F (v) ∀v ∈ X, b(u, q) = 0 ∀q ∈ Q. (33)

These expressions now make sense for u ∈ H1
0 (Ω) = X and p ∈ Q where

Q =

{
q ∈ L2 :

∫
Ω
q = 0

}
.
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The bilinear form a is coercive on H1
0 (Ω), as can be seen by using the Poincaré-Friedrichs

inequality:

2a(v, v) = 2

∫
Ω
|∇v|2 = ∥∇v∥2 + ∥∇v∥2

≥ ∥∇v∥2 + C ∥v∥2 ≥ max {1, C} ∥∇v∥2H1
0
.

As a consequence of the continuity of b, see Layton (2008), Chapter 4, the space

V =
{
v ∈ H1

0 (Ω) : b(v, q) = 0 ∀q ∈ Q
}

is a closed subspace of H1
0 (Ω) and therefore itself a Hilbert space. Since b(u, q) = 0 in

(33), we are looking for a solution u ∈ V . The problem of finding u then becomes the
problem

Find u ∈ V, such that a(u, v) = F (v). (34)

As a is coercive, Lax-Milgram guarantees the existence of a unique solution to this part
of the problem. Having determined u ∈ V , the equation

b(v, p) = a(u, v)− F (v) =: F̃ (v) ∀v ∈ H1
0 (Ω) (35)

now must hold for the pressure p. If we assume the inf-sup-condition to hold for b, we
can then use Babuska’s extension of the Lax-Milgram Theorem, see Layton (2008), or
prove existence directly as is done in Brenner and Scott (1994). This also means that
finding (u, p) ∈ (H1

0 , Q) such that (33) holds is equivalent to finding a solution u ∈ V
such that (34) holds and then finding p ∈ Q, such that (35) holds.

4.2 Numerical Analysis of the Leray-α Model

This analysis is based entirely on Layton et al. (2008). In their paper higher order
deconvolution models are studied of which the Leray-α model is a special case. The
computations herein are their calculations restricted to that special case. Herein, we
will restrict ourselves to the non periodic case, as the analysis does not differ from the
periodic case except for notation.

4.2.1 Preliminaries

In the non-periodic case the spaces used are

Q = L2
0, X = H1

0 =
{
v ∈ H1(Ω), v = 0 on ∂Ω

}
.

The space of weakly divergence-free functions is

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} .

The finite element spaces Xh and Qh are assumed to be conforming, i.e., Xh ⊂ X and
Qh ⊂ Q and to satisfy the LBBh condition. We can for example think of Q2/P

disc
1

elements. The discretely divergence-free subset V h of Xh is

V h =
{
vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh

}
.
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As usual, the L2-norm will simply be denoted by ∥·∥ and the L2 scalar product by
(·, ·). In Hk = W k,2 the norm is denoted by ∥·∥k, the semi-norm by |·|k. The spaces
Lp((0, T );Hk) are defined by having finite norms which are defined by

∥v∥p,k :=
(∫ T

0
∥v(t, ·)∥pk

) 1
p

for 1 ≤ p <∞, (36)

and
∥v∥∞,k := ess sup

0<t<T
∥v(t, ·)∥k for p = ∞. (37)

The analogues for the discrete spaces are

∥|v|∥p,k :=

(
M∑
n=0

∆t ∥vn∥pk

) 1
p

,
∥∥∥∣∣∣v 1

2

∣∣∣∥∥∥
p,k

:=

(
M∑
n=1

∆t
∥∥∥vn− 1

2

∥∥∥p
k

) 1
p

, (38)

and
∥|v|∥∞,k := sup

0≤n≤M
∥vn∥k ,

∥∥∥∣∣∣v 1
2

∣∣∣∥∥∥
∞,k

:= sup
1≤n≤M

∥∥∥vn− 1
2

∥∥∥
k
. (39)

For an operator f : V1 → V2 the operator norm is defined as follows:

∥f∥∗ := sup
v∈V1

∥f(v)∥V2
∥v∥V1

.

The following approximation properties of finite element spaces such as the ones above
are used repeatedly:

Lemma 1.

inf
v∈Xh

∥u− v∥ ≤ Chk+1 |u|k+1 , u ∈ Hk+1(Ω), (40)

inf
v∈Xh

∥u− v∥1 ≤ Chk |u|k+1 , u ∈ Hk+1(Ω), (41)

inf
r∈Qh

∥p− r∥ ≤ Chs+1 |p|s+1 , p ∈ Hs+1(Ω). (42)

This is a corollary of the Bramble-Hilbert Lemma, see for example Brenner and Scott
(1994), Chapter 4.
Next, as the Leray-α model involves a filtering operation, we provide some definitions
and results for it.

Definition 4. For v ∈ L2(Ω) and α > 0 the filtering operation on v is v, where v is the
unique solution of

−α2∆v + v = v. (43)

v is called continuous differential filter. We denote by F := (−α2∆+ I) and write
F−1v = v.

In order to define a discrete filter, we will need the two following definitions
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Definition 5. We define the L2-projection Πh : L2 → Xh by

(Πhv − v, ξ) = 0 ∀ξ ∈ Xh,

and the discrete Laplacian ∆h : X → Xh by

(∆hv, ξ) = −(∇v,∇ξ) ∀ξ ∈ Xh. (44)

We set Fh = −α2∆h +Πh.

Then, the discrete version of this filter can be defined:

Definition 6. For v ∈ L2(Ω) and α > 0 the discrete filtering operation on v is vh, where
vh is the unique solution in Xh of

α2(∇vh,∇ξ) + (vh, ξ) = (v, ξ) ∀ξ ∈ Xh. (45)

We write vh = F−1
h v.

Note that we only assume v ∈ L2, which means an expression like ∇vh
h
, which will

appear in the error analysis, makes sense. The next two lemmata provide us with some
estimates on the discrete filter.

Lemma 2. For v ∈ X, it holds∥∥∥vh∥∥∥ ≤ ∥v∥ ,
∥∥∥∇vh∥∥∥ ≤ ∥∇v∥ . (46)

Proof. In the definition of the discrete filter (45), set ξ = vh. We then have, using
Cauchy-Schwarz and Young’s inequality with p = q = 1

2

α2
(
∇vh,∇vh

)
+
(
vh, vh

)
=
(
v, vh

)
⇒ α2

∥∥∥∇vh∥∥∥2 + ∥∥∥vh∥∥∥2 ≤ ∣∣∣(v, vh)∣∣∣ ≤ ∥v∥
∥∥∥vh∥∥∥ ≤ 1

2
∥v∥2 + 1

2

∥∥∥vh∥∥∥2
⇒ 2

∥∥∥vh∥∥∥2 ≤ ∥v∥2 +
∥∥∥vh∥∥∥2

⇔
∥∥∥vh∥∥∥2 ≤ ∥v∥2 .

For the second inequality,we use the definition of the discrete Laplacian (44) on the first
term in the definition of the discrete filter (45), then set ξ = ∆hv

h and then use the
definition of the discrete Laplacian again to obtain, in the same way as in the previous
inequality,

− α2
∥∥∥∆hv

h
∥∥∥2 + (vh,∆hv

h
)
=
(
v,∆hv

h
)

⇒ −α2
∥∥∥∆hv

h
∥∥∥2 − ∥∥∥∇vh∥∥∥2 = −

(
∇v,∇vh

)
⇒ α2

∥∥∥∆hv
h
∥∥∥2 + ∥∥∥∇vh∥∥∥2 ≤ ∣∣∣(∇v,∇vh)∣∣∣ ≤ 1

2
∥∇v∥2 + 1

2

∥∥∥∇vh∥∥∥2
⇒
∥∥∥∇vh∥∥∥ ≤ ∥∇v∥ .
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Lemma 3. For v ∈ X, ∆v ∈ L2(Ω) it holds

α2
∥∥∥∇(v − vh)

∥∥∥2 + ∥∥∥v − vh
∥∥∥2 ≤ C sup

ξ∈Xh

{
α2 ∥∇(v − ξ)∥2 + ∥v − ξ∥2

}
+ Cα4 ∥∆v∥2 .

Proof. By definition of the discrete filter vh satisfies

α2
(
∇vh,∇ξ

)
+ (vh, ξ) = (v, ξ) ∀ξ ∈ Xh, (47)

and by assumption v satisfies

α2 (∇v,∇ξ) + (v, ξ) = −α2(∆v, ξ) + (v, ξ) ∀ξ ∈ Xh. (48)

Setting e = v− vh and subtracting the first equation (47) from the second equation (48),
we obtain

α2(∇e,∇ξ) + (e, ξ) = −α2(∆v, ξ). (49)

Let ṽ ∈ Xh be arbitrary. Then, e = (v − ṽ)− (vh − ṽ) =: η − φ, where φ ∈ Xh and we
have split the error into a part that lies in Xh and into one that doesn’t. The right-hand
side of the inequality that we want to prove suggests that the strategy should be to keep
the terms involving η on the right-hand side and to estimate from above terms involving
φ. We then have

α2(∇η,∇ξ)− α2(∇φ,∇ξ) + (η, ξ)− (φ, ξ) = −α2(∆v, ξ)

⇒ α2(∇φ,∇ξ) + (φ, ξ) = α2(∆v, ξ) + α2(∇η,∇ξ) + (η, ξ).

Setting ξ = φ and using Cauchy-Schwarz, Young’s inequality with p = q = 2 on the term
in the middle and Young’s inequality with ϵ = 1

4 on the first and the third term, we get

α2 ∥∇φ∥2 + ∥φ∥2 ≤ α2 |(∆v, φ)|+ α2 |(∇η,∇φ)|+ |(η, φ)|
≤ α2 ∥∆v∥ ∥φ∥+ α2 ∥∇η∥ ∥∇φ∥+ ∥η∥ ∥φ∥

≤ 1

2
∥φ∥2 + α4 ∥∆v∥2 + α2 1

2
∥∇η∥2 + α2 1

2
∥∇φ∥2 + ∥η∥2 .

Multiplying by 2 and bringing every term involving φ to the left-hand side, we get

α2 ∥∇φ∥2 + ∥φ∥2 ≤ 2α4 ∥∆v∥2 + α2 ∥∇η∥2 + 2 ∥η∥2 .

We now use v − vh = e = η − φ and the above calculation to obtain

α2
∥∥∥∇(v − vh)

∥∥∥2 + ∥∥∥v − vh
∥∥∥2 = α2 ∥∇e∥2 + ∥e∥2

≤ 2
(
α2 ∥∇η∥2 + α2 ∥∇φ∥2 + ∥η∥2 + ∥φ∥2

)
≤ C

(
α2 ∥∇η∥2 + ∥η∥2 + α4 ∥∆v∥2

)
≤ C

(
α2 ∥∇(v − ṽ)∥2 + ∥v − ṽ∥2 + α4 ∥∆v∥2

)
.
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As ṽ was arbitrary, we get

α2
∥∥∥∇(v − vh)

∥∥∥2 + ∥∥∥v − vh
∥∥∥2 ≤ C inf

ξ∈Xh

{
α2 ∥∇(v − ξ)∥2 + ∥v − ξ∥2

}
+ Cα4 ∥∆v∥2 .

Lemma 4. For v ∈ Hk−1 it holds∥∥∥v − vh
∥∥∥ ≤ C(αhk + hk+1) |v|k+1 + Cα2

∥∥∆F−1v
∥∥ .

Proof. We begin by splitting the difference:∥∥∥v − vh
∥∥∥ ≤ ∥v − v∥+

∥∥∥v − vh
∥∥∥ .

From the definition of the filtering operation we immediately get

∥v − v∥ = α2
∥∥∆F−1v

∥∥ .
For the second term, we use the definitions of the differential filter (43) and the discrete
filter (45):

α2(∇v,∇ξ) + (v, ξ) = (v, ξ) ∀ξ ∈ Xh,

α2(∇vh,∇ξ) + (vh, ξ) = (v, ξ) ∀ξ ∈ Xh.

Setting e = v − vh and subtracting the above equations, we get

α2(∇e,∇ξ) + (e, ξ) = 0 ∀ξ ∈ Xh.

This is exactly the same situation as in (49) in the previous lemma, except we do not
have a right-hand side. This means that from here, we can proceed in the same way as
in the previous lemma to obtain an estimate, but we don´t have the contributions from
the right-hand side. Also using inequalities (40) and (41) in the last step, we then arrive
at

α2
∥∥∥∇(v − vh)

∥∥∥2 + ∥∥∥v − vh
∥∥∥2 ≤ C inf

ξ∈Xh

{
α2 ∥∇(v − ξ)∥2 + ∥v − ξ∥2

}
⇒
∥∥∥v − vh

∥∥∥ ≤ C(α inf
ξ∈Xh

∥∇(v − ξ)∥+ inf
ξ∈Xh

∥v − ξ∥)

≤ C(αhk |v|k+1 + hk+1 |v|k+1) = C(αhk + hk+1) |v|k+1 .

Putting everything together, we get∥∥∥v − vh
∥∥∥ ≤ ∥v − v∥+

∥∥∥v − vh
∥∥∥

≤ α2
∥∥∆F−1v

∥∥+ C(αhk + hk+1) |v|k+1 .
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Note that the estimate provided by Lemma 4 is only useful if v can actually be bounded
independent of α. We just note that under the assumption that ∂Ω ∈ Ck+3 and v ∈
H1

0 (Ω)∩Hk+1(Ω), one can show v ∈ H1
0 (Ω)∩Hk+3(Ω) and ∥v∥j ≤ C ∥v∥j for j = 0, 1, 2,

where C does not depend on α. This means an assumption of v ∈ H1
0 would be enough

for this estimate to make sense. Estimates for higher k are possible under additional
assumptions, see Layton et al. (2008), Remark 2.15 and references therein.
Also note that in the definition of the discrete filter (45) the solution is sought in Xh and
not in V h, which means that the discrete divergence of the discrete filtering operation vh

is not necessarily zero and therefore incompressibility, which was modeled by the velocity
being divergence-free, is not preserved. This can be rectified by modifying the model. In
the Navier-Stokes equations the nonlinear term can be expressed as an instance of the
trilinear form b(u, v, w) = ((u ·∇)v, w) which, under the assumption that u is divergence-
free, is skew-symmetric. If we now want to replace u by u as is done in the Leray-α model,
and u is not divergence-free, we have to modify the equation to preserve skew-symmetry
and with it incompressibility. One easily calculates

1

2
b(u, v, w) = −1

2
b(u,w, v)− 1

2
((∇ · u)v, w),

⇒ b(u, v, w) +
1

2
((∇ · u)v, w) = −1

2
b(u,w, v) +

1

2
b(u, v, w).︸ ︷︷ ︸

=:b∗(u,v,w)

Now b∗(u, v, w) is clearly skew-symmetric and we see that we have to modify our model
by adding 1

2((∇ · u)v, w).

Definition 7. The skew-symmetric trilinear form b∗ : X ×X ×X → R is defined by

b∗(u, v, w) :=
1

2
((u · ∇)v, w)− 1

2
((u · ∇)w, v).

We note that for v, w ∈ X and u ∈ V

b∗(u, v, w) = ((u · ∇)v, w)

and b∗(u, v, v) = 0 ∀u, v ∈ X.

The Leray-α model modified to preserve incompressibility then is

ut + (u · ∇)u+
1

2
(∇ · u)− ν∆u+∇p = f,

∇ · u = 0 in Ω× (0, T ),

+ boundary conditions and initial condition,


or in its weak formulation

(ut, v) + b∗(u, u, v) + ν(∇u,∇u) + (p,∇ · v) = (f, v) ∀v ∈ X,

(∇ · u, q) = 0 ∀q ∈ Q,

+ initial condition.


We now list some properties of b∗ to be used later.
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Lemma 5. For u, v, w ∈ X and v,∇v ∈ L∞(Ω) the trilinear term b∗ can be bounded:

|b∗(u, v, w)| ≤ 1

2
(∥u∥ ∥∇v∥∞ ∥w∥+ ∥u∥ ∥∇w∥ ∥v∥∞) , (50)

|b∗(u, v, w)| ≤ C0(Ω) ∥∇u∥ ∥∇v∥ ∥∇w∥ , (51)

|b∗(u, v, w)| ≤ C0(Ω) ∥u∥
1
2 ∥∇u∥

1
2 ∥∇v∥ ∥∇w∥ . (52)

Proof. We make use of the generalized Hölder’s inequality for three functions:∫
Ω
|u| |v| |w| ≤ ∥u∥Lq ∥v∥Lp ∥w∥Lr for

1

q
+

1

p
+

1

r
= 1, 1 ≤ p, q, r <∞.

For the first inequality (50) we get, using the triangle inequality and the assumptions v,
∇v ∈ L∞,

|b∗(u, v, w)| ≤ 1

2

(∫
Ω
|u| |∇v| |w|+

∫
Ω
|u| |∇w| |v|

)
≤ 1

2

(
∥∇v∥∞

∫
Ω
|u| |w|+ ∥v∥∞

∫
Ω
|u| |∇w|

)
≤ 1

2
(∥∇v∥∞ ∥∇u∥ ∥w∥+ ∥v∥∞ ∥∇u∥ ∥∇w∥) .

For the second inequality (51) we use the generalized Hölder’s inequality with q = 2 and
p = r = 4. Using the Sobolev embedding theorem with q = 4, p = 1

2 and therefore
m = 3

4 and then the interpolation inequality with s1 = 0, s2 = 1 and Θ = 1
4 , we have

the estimate for the L4-norms

∥u∥L4 ≤ C ∥u∥
H

3
4
≤ C ∥u∥

1
4

L2 ∥u∥
3
4

H1 .

Due to the Poincaré inequality, the H1 norm and ∥∇v∥L2 are equivalent on H1
0 . We then

get

|b∗(u, v, w)| ≤ ∥u∥L4 ∥∇v∥L2 ∥w∥L4 + ∥u∥L4 ∥∇w∥L2 ∥v∥L4

≤ C ∥u∥
1
4 ∥∇u∥

3
4 ∥∇v∥ ∥w∥

1
4 ∥∇w∥

3
4

+ ∥u∥
1
4 ∥∇u∥

3
4 ∥∇w∥ ∥v∥

1
4 ∥∇v∥

3
4 .

One more application of the Poincaré inequality on the terms not containing gradients
gets us the desired result. For the last inequality (52) we use the generalized Hölder´s
inequality with p = 3, q = 2 and r = 6. Using the Sobolev embedding theorem with
q = 3, p = 2 and therefore m = 1

2 and then the interpolation inequality with s1 = 0,
s2 = 1 and Θ = 1

2 , we have the estimate for the L3-norm

∥u∥L3 ≤ C ∥u∥
H

1
2
≤ C ∥u∥

1
2

L2 ∥u∥
1
2

H1 ,
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and using the Sobolev embedding theorem with q = 6, p = 2, and therefore m = 1 we
get the estimate for the L6-norm

∥u∥L6 ≤ C ∥u∥H1 .

Again using the equivalence of norms mentioned above, we get

|b∗(u, v, w)| ≤ ∥u∥L3 ∥∇v∥L2 ∥w∥L6 + ∥u∥L3 ∥∇w∥L2 ∥v∥L6

≤ C ∥u∥
1
2 ∥∇u∥

1
2 ∥∇v∥ ∥∇w∥ .

For the estimates in the next section, we will need the discrete Grönwall inequality.

Lemma 6. Let ∆t,H, an, bn, cn, dn > 0 such that

al +∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

dnan +∆t

l∑
n=0

cn +H,

and suppose ∆tdn < 1 ∀n. Then,

al +∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

dn
1−∆tdn

)(
∆t

l∑
n=0

cn +H

)
.

4.2.2 Analysis of the Crank-Nicolson Scheme

Throughout this text, the notation vn+ 1
2
:= (vn+vn+1)

2 is used.
The Crank-Nicholson method is a time-stepping method that can be derived by taking
the average of a forward Euler at time t = tn and of a backward Euler in t = tn+1.
The discretization in space is done by finite element methods. However, there are two
different notions of Crank-Nicolson method in the literature. To illustrate, let

∂u

∂t
= F (u)

be some type of differential equation, where F is some kind of (differential) operator.
Then, using forward Euler at time tn and backward Euler at time tn+1 yields

F.E.:
un+1 − un

∆t
= F (un), B.E.:

un+1 − un
∆t

= F (un+1),

and taking the average of these yields

un+1 − un
∆t

=
1

2
(F (un+1) + F (un)) . (53)

If F is linear, this is equivalent to

un+1 − un
∆t

= F (un+ 1
2
). (54)
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One can now define the Crank-Nicolson method by the averaging which results in (53)
or simply by defining it as (54). Herein, the numerical analysis will be performed for the
version given by (54). The results are valid for the version (53) also, which is lacking
some terms compared to (54). The version (53) will because of its simpler form be used
in the computations.
As it will play a key role in the numerical analysis, the first lemma provides some general
estimates regarding the quantity vn+ 1

2
.

Lemma 7. Assume u ∈ C0(tn, tn+1;L
2(Ω)).

If u is twice continuously differentiable in time and utt ∈ L2((tn, tn+1)× Ω), then∥∥∥un+ 1
2
− u(tn+ 1

2
)
∥∥∥2 ≤ C(∆t)3

∫ tn+1

tn
∥utt∥2 dt. (55)

Assume ut ∈ C0(tn, tn+1;L
2(Ω)).

If u is three times continuously differentiable in time and uttt ∈ L2((tn, tn+1)× Ω), then∥∥∥∥un+1 − un
∆t

− ut(tn+ 1
2
)

∥∥∥∥2 ≤ C(∆t)3
∫ tn+1

tn
∥uttt∥2 dt. (56)

Assume ∇u ∈ C0(tn, tn+1;L
2(Ω)).

If the function ∇utt is continuous in time and ∇utt ∈ L2((tn, tn+1)× Ω), then∥∥∥∇(un+ 1
2
− u(tn+ 1

2
))
∥∥∥2 ≤ C(∆t)2

∫ tn+1

tn
∥∇utt∥2 dt. (57)

Proof. This proof is based on the Taylor expansion with remainder in mean value form.
For u ∈ C2(tn, tn+1) we can write

u(tn+1) = u(tn+ 1
2
) + ut(tn+ 1

2
)

(
∆t

2

)
+
utt(c1)

2

(
∆t

2

)2

for c1 ∈ (tn+ 1
2
, tn+1),

u(tn) = u(tn+ 1
2
) + ut(tn+ 1

2
)

(
−∆t

2

)
+
utt(c2)

2

(
∆t

2

)2

for c2 ∈ (tn, tn+ 1
2
).

This gives us∥∥∥un+ 1
2
− u(tn+ 1

2
)
∥∥∥2 = ∥∥∥∥14 (∆t)24

(utt(c1) + utt(c2))

∥∥∥∥2 = C(∆t)4 ∥utt(c1) + utt(c2)∥2

≤ C(∆t)3
(
∆t

2

)(
∥utt(c1)∥2 + ∥utt(c2)∥2

)
,

using 1
2 ∥utt(c1) + utt(c2)∥2 ≤ ∥utt(c1)∥2 + ∥utt(c2)∥2. Because of the triangle inequality,

the norm of a continuous function is a continuous function. As we assumed u to be
twice continuously differentiable in time, this means the function t 7→ ∥utt(t, ·)∥L2 is
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continuous. Therefore, we can apply the midpoint rule. The midpoint rule for integrals

states that there exists ξ ∈
(
tn, tn+ 1

2

)
such that

(
∆t
2

)
∥utt(ξ)∥2 =

∫ tn+1
2

tn ∥utt∥2 dt. We
then get

C(∆t)3
(
∆t

2

)
(∥utt(c1)∥2 + ∥utt(c2)∥2)

= C(∆t)3

∫ tn+1

t
n+1

2

∥utt∥2 dt+
∫ t

n+1
2

tn

∥utt∥2 dt


= C(∆t)3

∫ tn+1

tn

∥utt∥2 dt,

where the constant provided in the midpoint rule (here: ξ) and the ones we get from the
Taylor expansion (here: c1, c2) are the same, because the constant in the remainder of
the Taylor expansions comes precisely from the midpoint rule.
The next two proofs follow the exact same pattern. In order to prove (56), we expand u
as

u(tn+1) = u(tn+ 1
2
) + ut(tn+ 1

2
)

(
∆t

2

)
+
utt(tn+ 1

2
)

2

(
∆t

2

)2

+
uttt(c1)

6

(
∆t

2

)3

for c1 ∈ (tn+ 1
2
, tn+1) and

u(tn) = u(tn+ 1
2
) + ut(tn+ 1

2
)

(
−∆t

2

)
+
utt(tn+ 1

2
)

2

(
∆t

2

)2

+
uttt(c1)

6

(
−∆t

2

)3

for c2 ∈ (tn, tn+ 1
2
) and proceed as above. The proof for (57) is exactly the same.

Because it is utilized so often in the error estimates, we present a quick estimate on the
norm of vn+ 1

2
, although it is easy to derive. One uses the definition of a norm induced

by a scalar product, the triangle inequality and the Cauchy-Schwarz inequality to obtain∥∥∥vn+ 1
2

∥∥∥2 = 1

4
∥vn+1 + vn∥2 ≤

1

4

(
∥vn+1∥2 + 2 |(vn+1, vn)|+ ∥vn∥2

)
≤ 1

4

(
∥vn+1∥2 + 2 ∥vn+1∥ ∥vn∥+ ∥vn∥2

)
≤ 1

4

(
∥vn+1∥2 + ∥vn+1∥2 + ∥vn∥2 + ∥vn∥2

)
=

1

2

(
∥vn+1∥2 + ∥vn∥2

)
.

(58)

Therefore we have
M−1∑
n=0

∥∥∥vn+ 1
2

∥∥∥2 ≤ M−1∑
n=0

1

2

(
∥vn+1∥2 + ∥vn∥2

)
≤

M∑
n=0

∥vn∥2 . (59)

Finally we present the scheme that will be analyzed.

38



Algorithm 1. (Crank-Nicolson Finite Element Scheme for the Leray-α Model).
Let ∆t > 0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and T =M∆t, where M is an integer.
For n = 0, . . . ,M − 1, find (whn+1, q

h
n+1) such that

1

∆t

(
whn+1 − whn, v

h
)
+ b∗

(
wh
n+ 1

2

h
, wh

n+ 1
2

, vh
)
− (qh

n+ 1
2

,∇ · vh) + ν
(
∇wh

n+ 1
2

,∇vh
)

=
(
fn+ 1

2
, vh
)

∀vh ∈ Xh,(
∇ · whn+1, χ

h
)
= 0 ∀χh ∈ Qh.

Since we assume the LBBh condition to be satisfied, as explained in the previous
section, this is equivalent to the problem to find a velocity in V h:

1

∆t

(
whn+1 − whn, v

h
)
+ b∗

(
wh
n+ 1

2

h
, wh

n+ 1
2

, vh
)
+ ν

(
∇wh

n+ 1
2

,∇vh
)

=
(
fn+ 1

2
, vh
)

∀vh ∈ V h.

(60)

Now we do the analysis. First we note

Lemma 8. The scheme (60) has a solution whl for each time step l = 1, . . . ,M . The
scheme is also unconditionally stable and allows the a priori bound∥∥∥whM∥∥∥2 + ν∆t

M−1∑
n=0

∥∥∥∇whn+ 1
2

∥∥∥2 ≤ ∥∥∥wh0∥∥∥2 + C2∆t

ν

M−1∑
n=0

∥∥∥fn+ 1
2

∥∥∥2
∗
, (61)

where C is the constant from the Poincaré inequality.

Proof. The proof for the existence of a solution is an application of the Leray-Schauder
principle, see for example Layton (2008). By replacing every wn+1 in the wn+ 1

2
-terms by

a variable z ∈ V h, we define a family of operators Bn : V h → V h, setting y = Bn(z), by

(y, v) = −∆tb∗

((
z + whn

2

)h
,
z + whn

2
, v

)
−∆tν

(
∇
(
z + whn

2

)
,∇v

)
+ (whn, v) + ∆t(fn+ 1

2
, v)

:= (Bn(z), v).

If the operators Bn are compact and if any solution zλ = λBn(zλ) for 0 ≤ λ ≤ 1, should
it exist, allows a bound ∥zλ∥V ≤ r independent of λ, the Leray-Schauder fixed point
theorem guarantees the existence of a solution to the fixed point problem z = Bn(z).
That means for an initial value whn the existence of a bounded solution whn+1 is guaranteed.
Therefore it is sufficient to prove the compactness of the operator B0. For convenience
of notation, we define a(z) = z+wh

0
2 .

In order to prove compactness, we define the operators

T : X∗ → V h, T (g) = z s.t. (z, v) + ∆tν(∇a(z),∇v) = g(v) ∀v ∈ V, (62)
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the solution operator of the Helmholtz equation, and

N : V h → X∗, s.t. (N(z), v) = (∆tf 1
2
+ wh0 , v)−∆tb∗(a(z)

h
, a(z), v) ∀v ∈ V. (63)

We then have B0 = T ◦ N . T is obviously linear. It is also bounded as can be seen
by setting v = z in the Helmholtz equation (62). One then uses the definition of the
operator norm on g, the Cauchy-Schwarz inequality and the fact that ∥v∥X = ∥v∥H1

0
≤

(C + 1) ∥∇v∥, which follows from the Poincaré inequality, to obtain

∥z∥2 +∆tν

(
∇
(
z + wh0

2

)
,∇z

)
= ∥z∥2 +∆tν

1

2
∥∇z∥2 + 1

2
∆tν

(
∇wh0 ,∇z

)
= (g, z)

⇒ ∥∇z∥2 ≤ 2

∆tν
|(g, z)|+

∣∣∣(∇wh0 ,∇z)∣∣∣ ≤ 2

∆tν
∥g∥∗ ∥z∥X +

∥∥∥∇wh0∥∥∥ ∥∇z∥
≤ 2C

∆tν
∥g∥∗ ∥∇z∥+

∥∥∥∇wh0∥∥∥ ∥∇z∥
⇒ ∥∇z∥ ≤ 2C

∆tν
∥g∥∗ +

∥∥∥∇wh0∥∥∥ .
Once more, we use that the H1

0 -norm is equivalent to ∥∇v∥ and we see that T is a
bounded operator.
As bounded linear operators are continuous, T is continuous. Because compositions of
a continuous and a compact operator are compact, we now only have to prove that
N is compact, as B0 = T ◦ N . But we have V ⊂ H1 and by the Rellich Lemma,
the embedding H1 ↪→ H

3
4 is compact. If we prove that N is continuous from H

3
4 to

V ∗, N is itself the composition of a compact and a continuous operator and therefore
compact. The difficulty lies in bounding the nonlinearity b∗. Assuming a(z) ∈ L∞ ∩ L4

and ∇a(z) ∈ L∞, we can use the inequality (50), the Poincaré inequality, the property
(46), the nestedness of Lp spaces and the Sobolev embedding theorem with q = 4, p = 2
and m = 3

4 to obtain

∥∥∥b∗(a(z)h, a(z), ·)∥∥∥
∗
= sup

v∈V

∣∣∣b∗(a(z)h, a(z), v)∣∣∣
∥v∥V

≤ C sup
v∈V

∥∥∥a(z)h∥∥∥ (∥∇a(z)∥∞ ∥v∥+ ∥∇v∥ ∥a(z)∥∞)

∥∇v∥
≤ C ∥a(z)∥ ≤ C ∥a(z)∥L4 ≤ C ∥a(z)∥

H
3
4
.

Therefore,

∥N∥V ∗ = sup
v∈V

|(N(z), v)|
∥v∥V

≤ sup
v∈V

∣∣∣(∆tf 1
2
+ wh0 , v)

∣∣∣+∆t
∣∣∣b∗(a(z)h, a(z), v)∣∣∣

∥∇v∥

≤ ∆t
∥∥∥f 1

2

∥∥∥
∗
+
∥∥∥wh0∥∥∥∗ +∆t ∥a(z)∥

H
3
4
≤ C ∥a(z)∥

H
3
4
,
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where C = C(∥f∥∗ ,
∥∥wh0∥∥∗ ,∆t). Therefore, N is continuous and B0 is compact.

Finally, we check whether a zλ satisfying (zλ, v) = λ(B0(zλ), v) for some λ ∈ [0, 1] is
bounded independent of λ. We use B0 = T ◦N , set v = a(z) in the definition of T (62),
use the property b∗(u, v, v) = 0 and the assumption λ ≤ 1 to obtain

(zλ, v) = λ(B(zλ), v) ∀v ∈ V

⇔ (zλ, v) + ∆tν(∇a(zλ),∇v) = λ(N(zλ), v) ∀v ∈ V

⇒ (zλ, a(zλ)) + ∆tν(∇a(zλ),∇a(zλ)) ≤ ∆t(f 1
2
+ wh0 , a(zλ)).

Taking the wh0 -term to the left-hand side, using the definition of the operator norm on
the f - term, the Poincaré inequality on ∥a(z)∥ and the Peter-Paul inequality with ϵ = ν
we obtain

1

2

(
∥(zλ)∥2 −

∥∥∥wh0∥∥∥2)+∆tν ∥∇a(zλ)∥2 ≤ ∆tC2

∥∥∥f 1
2

∥∥∥2
∗

2ν
+∆tν

∥∇a(zλ)∥2

2

⇒ ∥∇a(zλ)∥2 ≤
C2

ν2

∥∥∥f 1
2

∥∥∥2
∗
+

1

∆tν

∥∥∥wh0∥∥∥2 =:M2

⇒ ∥∇a(zλ)∥ ≤M.

(64)

Further, we have

∥∇zλ∥ =
∥∥∥∇zλ +∇wh0 −∇wh0

∥∥∥ ≤
∥∥∥∇zλ +∇wh0

∥∥∥+∥∥∥∇wh0∥∥∥ = 2 ∥∇a(zλ)∥ ≤ 2M+
∥∥∥∇wh0∥∥∥ .

Once more we use the Poincaré inequality to obtain

∥zλ∥X ≤ (C + 1) ∥∇z∥ ≤ (C + 1)
(
2M +

∥∥∥wh0∥∥∥) .
Therefore, zλ is bounded independent from λ. This means that the operator B0 possesses
a fixed point which is the solution to our scheme. As mentioned above, this same proof
works for Bn, whenever

∥∥fn+1/2

∥∥
∗ ≤ C and

∥∥whn∥∥∗ ≤ C for some C. For the a priori
estimate (61), which is basically the same calculation as (64), one sets vh = wh

n+ 1
2

in the
scheme (60). Using the definition of the operator norm, the Poincaré inequality and in
the last step the Peter-Paul inequality with ϵ = ν one obtains

1

2∆t

(∥∥∥whn+1

∥∥∥2 − ∥∥∥whn∥∥∥2)+ ν
∥∥∥∇whn+ 1

2

∥∥∥2 ≤ ∣∣∣(fn+ 1
2
, wn+ 1

2

)∣∣∣ ≤ C
∥∥∥fn+ 1

2

∥∥∥
∗

∥∥∥∇whn+ 1
2

∥∥∥
≤ C2

2ν

∥∥∥fn+ 1
2

∥∥∥2
∗
+
ν

2

∥∥∥∇whn+ 1
2

∥∥∥2 ∀n.

Multiplying by two and bringing all terms involving ∇wh
n+ 1

2

to the left-hand side and
finally summing from n = 0 to n =M − 1 and multiplying by ∆t completes the calcula-
tion.

Next, we present the main convergence result:
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Theorem 4. Let (u(t),p(t)) be a strong solution of the NSE with either no-slip boundary
conditions or being periodic with zero mean such that for k ∈ N the bounding norms are
finite. Suppose (wh0 , q

h
0 ) are approximations of (u(0), p(0)) such that estimates (40) - (42)

in Lemma 1 hold and u ∈ L∞ (Hk+1
)
, p ∈ L∞ (Hs+1

)
for some k, s ∈ N. Then for small

enough ∆t there is a constant C = C(u, p) such that∥∥∥∣∣∣u− wh
∣∣∣∥∥∥

∞,0
≤ H(∆t, h, α) + Chk+1 ∥|u|∥∞,k+1 ,(

ν∆t

M−1∑
n=0

∥∥∥∇(un+ 1
2
− wh

n+ 1
2

)∥∥∥2)
1
2

≤ H(∆t, h, α) + Cν
1
2 (∆t)2 ∥∇utt∥2,0

+ Cν
1
2hk ∥|u|∥2,k+1 ,

where

H(∆t, h, α) := C∗
[
ν−

1
2hk+

1
2

(
∥|u|∥24,k+1 + ∥|∇u|∥24,0

)
+ ν

1
2hk ∥|u|∥2,k+1

+ ν−
1
2hk

(
∥|u|∥24,k+1 + ν−

1
2

(∥∥∥wh0∥∥∥+ ν−
1
2 ∥|f |∥2,∗

))
++ν−

1
2hs+1

∥∥∥∣∣∣p 1
2

∣∣∣∥∥∥
2,s+1

+ ν−
1
2α2

∥∥∆F−1u
∥∥
2,0

+ ν−
1
2

(
αhk + hk+1

)
∥u∥2,k+1

+ (∆t)2
(
∥uttt∥2,0 + ν−

1
2 ∥ptt∥2,0 + ∥ftt∥2,0 + ν

1
2 ∥∇utt∥2,0

+ ν−
1
2 ∥∇utt∥24,0 + ν−

1
2 ∥|∇u|∥24,0 + ν−

1
2

∥∥∥∣∣∣∇u 1
2

∣∣∣∥∥∥2
4,0

)]
.

The constant C∗ is dependent on ν: C(ν) = exp(ν−3T ). There is a smallness assump-

tion on the time step needed in the Grönwall Lemma: ∆t < C
(
ν−3 ∥|∇u|∥4∞,0 + 1

)−1
.

Proof. At time tn+ 1
2

a strong solution u of the Navier-Stokes equations satisfies((
ut, v

h
)
+
(
(u · ∇)u, vh

)
−
(
p,∇ · vh

)
+ ν

(
∇u,∇vh

)) ∣∣
t=t

n+1
2

= (f, vh)
∣∣
t=t

n+1
2

.

(65)
In order to approximate our scheme from Algorithm 1, we first write (65) as(

un+1 − un
∆t

, vh
)
+ b∗

(
un+ 1

2

h, un+ 1
2
, vh
)
+ ν

(
∇un+ 1

2
,∇vh

)
−
(
pn+ 1

2
,∇ · vh

)
=
(
fn+ 1

2
, vh
)
+ IntErr

(
un, pn; v

h
)

∀vh ∈ V h,

(66)

42



where the usual interpolation error here takes the form

IntErr
(
un, pn; v

h
)
=

(
un+1 − un

∆t
− ut

∣∣
t=t

n+1
2

, vh
)
+ ν

(
∇un+ 1

2
−∇u

∣∣
t=t

n+1
2

,∇vh
)

+ b∗
(
un+ 1

2
, un+ 1

2
, vh
)
− b∗

(
u
∣∣
t=t

n+1
2

, u
∣∣
t=t

n+1
2

, vh
)

− b∗
(
un+ 1

2
− un+ 1

2

h, un+ 1
2
, vh
)

−
(
pn+ 1

2
− p
∣∣
t=t

n+1
2

,∇ · vh
)
+

(
f
∣∣
t=t

n+1
2

− fn+ 1
2
, vh
)
.

This is now in a form that can be compared to the Crank-Nicolson Algorithm (60). Note
that

b∗
(
un+ 1

2
, un+ 1

2
, vh
)
− b∗

(
u
∣∣
t=t

n+1
2

, u
∣∣
t=t

n+1
2

, vh
)
− b∗

(
un+ 1

2
− un+ 1

2

h, un+ 1
2
, vh
)

= b∗
(
un+ 1

2

h, un+ 1
2
, vh
)
− b∗(u

∣∣
t=t

n+1
2

, u
∣∣
t=t

n+1
2

, vh)

and this contains terms of the form b∗(un+1
h, un, v

h) + b∗(un
h, un+1, v

h) that would not
be present in the simpler Crank-Nicolson scheme, see the beginning of this chapter.
Setting en = un − whn, we proceed by subtracting the Crank-Nicolson scheme (60) from
(66) and obtain an equation for the error in each step:

1

∆t

(
en+1 − en, v

h
)
+ b∗

(
un+ 1

2

h, un+ 1
2
, vh
)
− b∗

(
wh
n+ 1

2

h
, wh

n+ 1
2

, vh
)
+ ν

(
∇en+ 1

2
,∇vh

)
=
(
pn+ 1

2
,∇ · vh

)
+ IntErr

(
un, pn; v

h
)

∀vh ∈ V h.

(67)

Denoting by Un the L2-projection of u
∣∣
t=tn

in V h, we can decompose the error en into
the part that lies in V h and the part that is orthogonal to V h by writing
en = (un−Un)− (whn−Un) := ηn−φhn. Here, φhn ∈ V h and the strategy is again to keep
the terms involving η and to estimate from above the terms involving φ. We now choose
vh = φh

n+ 1
2

in (67) and separating the parts of the error that lie in V h and those that do

not, we get for all qh ∈ Qh(
φhn+1 − φhn, φ

h
n+ 1

2

)
+ ν∆t

∥∥∥∇φhn+ 1
2

∥∥∥2 +∆tb∗
(
wh
n+ 1

2

h
, en+ 1

2
, φh

n+ 1
2

)
+∆tb∗

(
en+ 1

2

h, un+ 1
2
, φh

n+ 1
2

)
=
(
ηn+1 − ηn, φ

h
n+ 1

2

)
+∆tν

(
∇ηn+ 1

2
,∇φh

n+ 1
2

)
+∆t

(
pn+ 1

2
− qh,∇ · φh

n+ 1
2

)
+ IntErr(un, pn;φhn+ 1

2
),
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and then, using (φhn+1−φhn, φhn+ 1
2

) = (φhn+1−φhn, 12(φ
h
n+1+φ

h
n)) =

1
2

(∥∥φhn+1

∥∥2 − ∥∥φhn∥∥2)
and en+ 1

2
= ηn+ 1

2
− φh

n+ 1
2

and b∗(u, v, v) = 0 and
(
ηn+1 − ηn, φ

h
n+ 1

2

)
= 0 we get

1

2

(∥∥∥φhn+1

∥∥∥2 − ∥∥∥φhn∥∥∥2)+ ν∆t
∥∥∥∇φhn+ 1

2

∥∥∥2
= ν∆t

(
∇ηn+ 1

2
,∇φh

n+ 1
2

)
−∆tb∗

(
ηn+ 1

2

h, un+ 1
2
, φh

n+ 1
2

)
+∆tb∗

(
φh
n+ 1

2

h
, un+ 1

2
, φh

n+ 1
2

)
−∆tb∗

(
wh
n+ 1

2

h
, ηn+ 1

2
, φh

n+ 1
2

)
+∆t

(
pn+ 1

2
− qh,∇ · φh

n+ 1
2

)
+∆t IntErr

(
un, pn;φ

h
n+ 1

2

)
≤
∣∣∣ν∆t(∇ηn+ 1

2
,∇φh

n+ 1
2

)∣∣∣+ ∣∣∣∆tb∗ (ηn+ 1
2

h, un+ 1
2
, φh

n+ 1
2

)∣∣∣
+

∣∣∣∣∆tb∗(φhn+ 1
2

h
, un+ 1

2
, φh

n+ 1
2

)∣∣∣∣+ ∣∣∣∣∆tb∗(whn+ 1
2

h
, ηn+ 1

2
, φh

n+ 1
2

)∣∣∣∣
+
∣∣∣∆t(pn+ 1

2
− qh,∇ · φh

n+ 1
2

)∣∣∣+ ∣∣∣∆t IntErr
(
un, pn;φ

h
n+ 1

2

)∣∣∣ .
(68)

We proceed by bounding the terms on the right-hand side. First, we use the Cauchy-
Schwarz and the Peter-Paul inequality with ϵ = 10 to obtain

ν∆t
(
∇ηn+ 1

2
,∇φh

n+ 1
2

)
≤ ν∆t

∥∥∥∇ηn+ 1
2

∥∥∥∥∥∥∇φhn+ 1
2

∥∥∥
≤ ν∆t

20

∥∥∥∇φhn+ 1
2

∥∥∥2 + Cν∆t
∥∥∥∇ηn+ 1

2

∥∥∥2 ,
and then we again use Cauchy-Schwarz, the fact that ∥∇ · φ∥ ≤ ∥∇φ∥ and Peter-Paul
with ϵ = 10

ν to obtain

∆t
(
pn+ 1

2
− qh,∇ · φh

n+ 1
2

)
≤ ∆t

∥∥∥pn+ 1
2
− qh

∥∥∥∥∥∥∇φhn+ 1
2

∥∥∥
≤ ν∆t

20

∥∥∥∇φhn+ 1
2

∥∥∥2 + C∆tν−1
∥∥∥pn+ 1

2
− qh

∥∥∥2 .
We proceed by treating the b∗-terms. Using the already established inequality (50) for
b∗ and Peter-Paul with ϵ = 10

ν and (46) we estimate:∣∣∣∆tb∗ (ηn+ 1
2

h, un+ 1
2
, φh

n+ 1
2

)∣∣∣ ≤ C∆t
∥∥∥ηn+ 1

2

h
∥∥∥ 1

2
∥∥∥∇ηn+ 1

2

h
∥∥∥ 1

2
∥∥∥∇un+ 1

2

∥∥∥∥∥∥∇φhn+ 1
2

∥∥∥
≤ ν∆t

20

∥∥∥∇φhn+ 1
2

∥∥∥2
+ C∆tν−1

∥∥∥∇ηn+ 1
2

∥∥∥∥∥∥ηhn+ 1
2

∥∥∥∥∥∥∇un+ 1
2

∥∥∥2 ,
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∣∣∣∣∆tb∗(whn+ 1
2

h
, ηn+ 1

2
, φh

n+ 1
2

)∣∣∣∣ ≤ C∆t

∥∥∥∥whn+ 1
2

h
∥∥∥∥ 1

2
∥∥∥∥∇whn+ 1

2

h
∥∥∥∥ 1

2
∥∥∥∇ηn+ 1

2

∥∥∥∥∥∥∇φhn+ 1
2

∥∥∥
≤ ν∆t

20

∥∥∥∇φhn+ 1
2

∥∥∥2
+ C∆tν−1

∥∥∥∇whn+ 1
2

∥∥∥∥∥∥whn+ 1
2

∥∥∥∥∥∥∇ηn+ 1
2

∥∥∥2 .
For the third term, we use the the same properties of b∗, the properties of the discrete
filter from (46) and then Young’s inequality with ϵ = ν

20 and p = 4
3 and q = 4 to obtain

∆tb∗
(
φh
n+ 1

2

h
, un+ 1

2
, φh

n+ 1
2

)
≤ C∆t

∥∥∥∥φhn+ 1
2

h
∥∥∥∥ 1

2
∥∥∥∥∇φhn+ 1

2

h
∥∥∥∥ 1

2
∥∥∥∇un+ 1

2

∥∥∥∥∥∥∇φhn+ 1
2

∥∥∥
≤ C∆t

∥∥∥φhn+ 1
2

∥∥∥ 1
2
∥∥∥∇φhn+ 1

2

∥∥∥ 3
2
∥∥∥∇uhn+ 1

2

∥∥∥
≤ ν∆t

20

∥∥∥∇φhn+ 1
2

∥∥∥2 + C∆tν−3
∥∥∥φhn+ 1

2

∥∥∥2 ∥∥∥∇un+ 1
2

∥∥∥4 .
Recall that we assume whn to be the solution we computed using the scheme Algorithm 1
by starting with wh0 being the projection of u0 into V h. Then, by assumption

∥∥φh0∥∥ = 0
and summing (68) from 0 to M − 1 we obtain

1

2

∥∥∥φhM∥∥∥2 + ν∆t
M−1∑
n=0

∥∥∥∇φhn+ 1
2

∥∥∥2
≤ Cν−3∆t

M−1∑
n=0

∥∥∥φhn+ 1
2

∥∥∥2 ∥∥∥∇un+ 1
2

∥∥∥4 + 1

4
ν∆t

M−1∑
n=0

∥∥∥∇φhn+ 1
2

∥∥∥2
+ Cν∆t

M−1∑
n=0

∥∥∥∇ηn+ 1
2

∥∥∥2 + Cν−1∆t

M−1∑
n=0

∥∥∥ηn+ 1
2

∥∥∥∥∥∥∇ηn+ 1
2

∥∥∥∥∥∥∇un+ 1
2

∥∥∥2
+ Cν−1∆t

M−1∑
n=0

∥∥∥whn+ 1
2

∥∥∥∥∥∥∇whn+ 1
2

∥∥∥∥∥∥∇ηn+ 1
2

∥∥∥2
+ Cν−1∆t

M−1∑
n=0

∥∥∥pn+ 1
2
− q
∥∥∥2 +∆t

∣∣∣∣∣
M−1∑
n=0

IntErr(un, pn;φhn+ 1
2

)

∣∣∣∣∣ .

(69)

We will take care of the terms on the right-hand side involving φ later and proceed
in further bounding the other terms on the right-hand side of (69). We use (59), the
approximation property estimate (41) and the definition of the discrete norm (38):

Cν∆t

M−1∑
n=0

∥∥∥∇ηn+ 1
2

∥∥∥2 ≤ Cν∆t

M∑
n=0

∥∇ηn∥2

≤ Cν∆t

M∑
n=0

h2k |un|2k+1 ≤ Cνh2k ∥|u|∥22,k+1 .

(70)
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For the next term, we use the approximation property estimates (40) and (41) and in the
step after that we use Cauchy’s inequality on each summand and then apply the same
steps as in (58) just with the exponent 4. In the last step, one uses the definition of the
discrete norm to obtain

Cν−1∆t

M−1∑
n=0

∥∥∥ηn+ 1
2

∥∥∥∥∥∥∇ηn+ 1
2

∥∥∥∥∥∥∇un+ 1
2

∥∥∥2
≤ Cν−1∆t

M−1∑
n=0

(∥ηn+1∥+ ∥ηn∥) (∥∇ηn+1∥+ ∥∇ηn∥)
∥∥∥∇un+ 1

2

∥∥∥2
≤ Cν−1∆th2k+1

M−1∑
n=0

(
|un+1|2k+1 + |un+1|k+1 |un|k+1 + |un|2k+1

)∥∥∥∇un+ 1
2

∥∥∥2
≤ Cν−1h2k+1

(
∆t

M∑
n=0

|un|4k+1 +∆t

M∑
n=0

∥∇un∥4
)

= Cν−1h2k+1
(
∥|un|∥44,k+1 + ∥|∇un|∥44,0

)
.

(71)

For the next term, we start by using the already established a priori estimate (61) to
absorb the

∥∥∥wh
n+ 1

2

∥∥∥-terms into the constant. Note that we assume ∆t = O(ν). Otherwise,

the constant we get from the a priori estimate is C = C( 1ν ). We then again use the
approximation inequality (41), (58)-type calculations and in the last step again the a
priori estimate, this time to estimate the gradient of wh

n+ 1
2

:

Cν−1∆t

M−1∑
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∥∥∥whn+ 1
2

∥∥∥∥∥∥∇whn+ 1
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(
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2

∥∥∥
≤ Cν−1∆th2k

M−1∑
n=0

(
|un+1|2k+1 + |un|2k+1

)∥∥∥∇whn+ 1
2

∥∥∥
≤ Cν−1h2k

(
∆t

M∑
n=0

|un|4k+1 +∆t
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n=0

∥∥∥∇whn+ 1
2

∥∥∥2)

≤ Ch2kν−1

(
∥|u|∥44,k+1 +

1

ν

∥∥∥wh0∥∥∥2 + 1

ν2
∆t

M−1∑
n=0

∥∥∥fn+ 1
2

∥∥∥2
∗

)

= Ch2kν−1

(
∥|u|∥44,k+1 +

1

ν

∥∥∥wh0∥∥∥2 + 1

ν2
∥|f |∥22,∗

)
.

(72)
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For the pressure term we add a zero, use the approximation inequality (42) and the
integral inequality (55) and the definition of the norms to get

Cν−1∆t
M−1∑
n=0

∥∥∥pn+ 1
2
− qh

∥∥∥2 ≤ Cν−1∆t
M−1∑
n=0

∥∥∥p(tn+ 1
2
)− qh

∥∥∥2 + ∥∥∥pn+ 1
2
− p(tn+ 1

2
)
∥∥∥2

≤ Cν−1

(
h2s+2∆t

M−1∑
n=0

∥∥∥p(tn+ 1
2
)
∥∥∥2
s+1

+∆t

M−1∑
n=0

C(∆t)3
∫ tn+1

tn

∥ptt∥2 dt

)

≤ Cν−1

(
h2s+2

∥∥∥∣∣∣p 1
2

∣∣∣∥∥∥2
2,s+1

+ (∆t)4 ∥ptt∥22,0
)
.

(73)

We proceed with the interpolation error. Using in the first step the Cauchy-Schwarz and
Cauchy’s inequalities and in the second step the integral inequalities (56) and (55) from
Lemma 7 respectively, we get∣∣∣∣(un+1 − un

∆t
− ut(tn+ 1

2
), φh

n+ 1
2

)∣∣∣∣ ≤ 1

2

∥∥∥φhn+ 1
2

∥∥∥2 + 1

2

∥∥∥∥un+1 − un
∆t

− ut(tn+ 1
2
)

∥∥∥∥2
≤ 1

2

∥∥∥φhn+ 1
2

∥∥∥2 + C(∆t)3
∫ tn+1

tn
∥uttt∥2 dt,

(74)

and ∣∣∣(f(tn+ 1
2
)− fn+ 1

2
, φh

n+ 1
2

)∣∣∣ ≤ 1

2

∥∥∥φhn+ 1
2

∥∥∥2 + 1

2

∥∥∥f (tn+ 1
2

)
− fn+ 1

2

∥∥∥2
≤ 1

2

∥∥∥φhn+ 1
2

∥∥∥2 + C(∆t)3
∫ tn+1

tn
∥ftt∥2 dt.

(75)

Using Cauchy-Schwarz and Peter-Paul with ϵ = 8
ν and in the second step Lemma 7 we

obtain∣∣∣(pn+ 1
2
− p(tn+ 1

2
),∇ · φh

n+ 1
2

)∣∣∣ ≤ ν

16

∥∥∥∇φhn+ 1
2

∥∥∥2 + Cν−1
∥∥∥pn+ 1

2
− p(tn+ 1

2
)
∥∥∥2

≤ ν

16

∥∥∥∇φhn+ 1
2

∥∥∥2 + Cν−1(∆t)3
∫ tn+1

tn
∥ptt∥2 dt,

(76)

and (with ϵ = 8, because this term already has a ν )

ν
∣∣∣(∇un+ 1

2
−∇u(tn+ 1

2
),∇φh
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2
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16
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tn
∥utt∥2 dt.

(77)

For the b∗ terms we get, using (51), Peter-Paul with ϵ = 8
ν , the fact that

(|a|+ |b|)2 ≤ 2
(
|a|2 + |b|2

)
and Lemma 7 and then Cauchy´s inequality under the inte-
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gral
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(78)

For the last term, we start by using (50), then using the assumption that a strong solution
of the Navier-Stokes equations is for each tn a function in L∞ and so is ∇u. Then, we use
the Poincaré inequality on φ and then again Peter-Paul with ϵ = 8

ν and finally Lemma 4
to get
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(79)

Finally, we combine the estimates (74) - (79) to establish an estimate for the interpolation
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error:
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(80)

Now finally, we can use the estimates (70) - (73) in (69) and also plug the estimate for
the interpolation error (80) into it. Multiplying by two and taking the terms involving
∇φ from the right-hand side to the left-hand side, we get the estimate∥∥∥φhM∥∥∥2 + ν∆t
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Using (59) on the term involving φ on the right-hand side, we finally get∥∥∥φhM∥∥∥2 + ν∆t

M−1∑
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ν−3 ∥∇un∥4 + 1

)∥∥∥φhn∥∥∥2 + terms involving various norms.

In this form, we can now apply the discrete Grönwall Lemma. Using notation from the
Lemma itself, we see dn = C

(
ν−3 ∥∇un∥4 + 1

)
and cn = 0. If we suppose
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(81)

From this, we immediately get
∥∥φhM∥∥ ≤ H. As M was not specified, this estimate holds

for all times n. After one application of the triangle inequality and a last application of
the approximation property (40) the proof is almost done:

∥en∥ =
∥∥∥un − whn

∥∥∥ =
∥∥∥(un − Un)− φhn

∥∥∥
≤ ∥un − Un∥+

∥∥∥φhn∥∥∥
≤ Chk+1 |u|k+1 +H,

As this holds for all n = 0, . . .M , it will hold for the maximum over all n and so we
arrive at the desired estimate:∥∥∥∣∣∣u− wh

∣∣∣∥∥∥
∞,0

≤ H(∆t, h, α) + Chk+1 ∥|u|∥∞,k+1 .

For the estimate of the gradient we use the assumption that u is a strong solution.
Therefore, we can estimate ∇u

∣∣
t=t

n+1
2

≤ C∇un+ 1
2
. Then, after adding some zeros and
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using the approximation inequality (41) and the integral inequality (57), we get∥∥∥∇(un+ 1
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Summing from n = 0 to n =M − 1, multiplying by ν∆t and using (81) on the gradient
of φ, we get
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)
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Taking the square root, we arrive at the desired estimate.

Under the assumptions of this last theorem and the assumption that the finite element
space used is the Q2/P

disc
1 elements, it immediately follows

Theorem 5. Suppose k=2 and s=1 and suppose u ∈ H3 ∩ H1
0 . Then, the error is of

order

∥∥∥∣∣∣u− wh
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ν∆t
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2
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= O(h2 + (∆t)2 + α2).
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5 Turbulence Modeling

In this last section, we investigate the turbulence modeling qualities of the Leray-α
model. In the same way as the Navier-Stokes equations model all kinds of flows, laminar
or turbulent, in the Leray-α model itself there is no mention of turbulence. Following
Geurts and Holm (2003), we will recast the Leray-α model as a typical Large Eddy
Simulation, seeing that it automatically implies a subgrid model. Last, we show some
simulations of a turbulent channel flow at Reτ = 180, following John and Roland (2007),
and using the code MooNMD, see John and Matthies (2004).

5.1 Large Eddy Simulation

Turbulent flows are characterized by having structures, called eddies, of various scales.
Seeing as in reality, it will be far too expensive to compute (or resolve) all scales (large
eddies and small eddies) of a turbulent flow, one needs to think about what scales are
important to resolve.
Driven by viscosity, larger eddies break down into smaller eddies until the smallest struc-
tures are so small that they are ground down by dissipation. Their kinetic energy is
finally dissipated by the viscosity of the fluid. This process is called the energy cascade.
The next question then is that of the smallest scales in a turbulent flow. Following Kol-
mogorov’s hypothesis that at sufficiently high Reynolds numbers the small scale motions
are isotropic i.e., invariant under shifts in space and time and invariant under rotations
and reflections of the coordinate system, it is possible to estimate the smallest scales in a
turbulent flow, as long as one knows two parameters of the flow: the rate of dissipation
of turbulence energy, herein denoted by ϵ and the kinematic viscosity ν. Experiments
show that ϵ is proportional to a ratio of velocity and length scales:

ϵ ∼ u3

L
. (82)

One can then define the so-called Kolmogorov scales

λ =

(
ν3

ϵ

) 1
4

, uλ = (ϵν)
1
4 , tλ =

(ν
ϵ

) 1
2
. (83)

One can infer from this, as is done in John (2006), that these scales are actually dissi-
pative scales, i.e., scales at which the kinetic energy of eddies possessing these scales is
dissipated by viscosity. Plugging into the definition of smallest length scale λ from (83)
the expression for the rate of dissipation (82), one easily calculates

λ ∼ Re
3
4L.

Using this similarity one can, depending on a given grid size, find a bound on the Reynolds
number of a flow that can be accurately represented on this grid. An example is given
in John (2006). This shows that Direct Numerical Simulation (DNS), which aims to
represent all scales of a flow down to the smallest Kolmogorov scale, is an expensive
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endeavor. However, one can think of the large eddies as those eddies that contain enough
energy to have a lot of influence on the overall development on the flow. Therefore
it is mostly the large eddies that are important to resolve in a numerical simulation.
Nevertheless, the smaller eddies do have influence on the larger eddies. So even if one
does not fully resolve them, one needs to consider their influence on the larger eddies.
In Large Eddy simulation (LES), the resolved large scales are defined by an average.
Usually, one uses a convolution with an appropriate filter function g. The large scales
(u, p) are therefore defined by

u(y) =
1

α(y)d

∫
Rd

g

(
y − x

α(y)

)
u(x)dx, and p(y) =

1

α(y)d

∫
Rd

g

(
y − x

α(y)

)
p(x)dx.

Seeing as the support of u lies in a ball of radius α if the support of the filter function
lies in a ball of radius 1, it is the parameter α that defines the large scales. The small
scales are then simply defined as the difference

u′ = u− u and p′ = p− p.

The general idea of a Large Eddy Simulation then goes as follows: we filter the whole set
of equations, trying to get a new equation for only the large scales u. If there are terms
that still involve the small scales u′ or equivalently the whole function u, we try to model
that term using only terms involving u. We will of course apply this line of thinking to
the Navier-Stokes equations

∂tu+ (u · ∇)u− ν∆u+∇p = f, ∇ · u,

here for simplicity in componentwise notation (where summation over repeated indicees
is implied),

∂tui + uj∂jui − ν∂j∂jui + ∂ip = fi, ∂juj = 0,

which, using ∂juj = 0, is equal to

∂tui + ∂j(ujui)− ν∂j∂jui + ∂ip = fi, ∂juj = 0.

First, we filter the whole system of equations and make the assumption that the filtering
operation and the differentiation operators commute to get

∂tui + ∂j(ujui)− ν∂j∂jui + ∂ip = fi,

∂iui = 0.

}
(84)

Recognizing that in general ujui ̸= uj ui, we introduce the so called turbulent stress
tensor

τij = ujui − uj ui, (85)

which allows us to reformulate problem (84) as

∂tui + ∂j(ujui)− ν∂j∂jui + ∂ip = fi − ∂jτij ,

∂iui = 0.

}
(86)
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Now, the left-hand side only contains the filtered (and therefore less expensive to com-
pute) u. The right-hand side still contains the whole function u, containing large and
small scales. Through the appearance of the small scales on the right-hand side the effect
of the small scales on the large scales is modeled. The function u is what we want to
solve for. The right-hand side is the term that we need to model in order to get an
equation for only the large scales. The choice of an expression only involving large scale
terms for τ then is the choice of a turbulence model, sometimes called subgrid model. For
an overview of models and the problems that come with them, see John (2006); for an
extensive treatment of the topic, see Pope (2000) or Sagaut (2006).
There are of course problems associated with this kind of turbulence modeling. For
starters, different turbulence models produce very different results, seemingly contra-
dicting the assumption that the small scales are isotropic and therefore have an almost
universal character, see Geurts and Holm (2006).
This is a problem that the Leray-α model solves. From the model itself, we can derive
an LES-type model like the one in (86), where τ will be a slightly different expression.
But by having a filter L and its inverse given explicitly, τ now automatically only con-
tains u-terms, so there is no need for additional subgrid modeling. The subgrid model is
automatically implied by the Leray-α model itself!
To derive this, we proceed as is done in Geurts and Holm (2003) and first present the
Leray-α model in componentwise notation. It then reads

∂tui + uj∂jui − ν∂j∂jui + ∂ip = fi,

∂juj = 0,

Lui = ui,


where for example L = −α2∆+ I, as in the previous sections. We proceed by replacing
every u by L(u). Then, we use the assumption that ∂juj = 0 (alternatively, we im-
pose zero boundary conditions) to get for the convective term uj∂j(Lui) = ∂j(ujLui).
Subtracting this and adding L∂j(uj ui) on both sides, we get

L∂tui + L∂j(uj ui)− ν∂j∂jui + ∂ip = fi − ∂j(ujLui) + L∂j(uj ui), ∂juj = 0.

We now assume the filtering operation L to be invertible and adopting the notation
L−1p = p and L−1f = f and then applying the inverse operator L−1 to the equation, we
get

∂tui + ∂j(uj ui)− ν∂j∂jui + ∂ip = fi − L−1∂j (ujLui) + ∂j(uj ui)

= fi − ∂j

L−1(ujLui)− uj ui︸ ︷︷ ︸
:=mij

 .
(87)

Comparing (87) to (86), it is immediately apparent that the Leray-α model directly
implies a subgrid model, as the tensor mij only contains large scale terms and filtering
operators that are explicitly given. So (87) is already the new equation for the large
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scales u that can now be solved by discretizing with a method of choice.
Note that the assumptions used herein, namely the assumption that the operator L and
the differential operators commute and the assumption that u is divergence-free, are not
entirely unproblematic. In practice, commutation errors will occur and are non-negligible
especially near the boundary, see John (2006). In general, u will not be divergence-free
just because u is. This can certainly not be derived from the Leray-α model itself.
However, this assumption does follow from imposing zero boundary values for u and u
and applying the ∇ operator to the equation for u.

5.2 Numerical Simulations

In our simulations, we consider the flow through a channel, using an anisotropic grid in
wall normal direction. The simulations were performed on a coarse grid and a finer grid.
Because the filter width parameter α should be connected to the width of the mesh h as
α = Ch, where C is the filter width constant, the focus of our numerical experiments laid
on comparing different values of C on the same grid. Note that unlike in the numerical
analysis, α is not constant on the grid, as the grid is anisotropic. As there are different
ways of measuring the width of a mesh cell, we performed our experiments for three
different measures, namely the geometric mean, the diameter of the cell and the shortest
edge of the cell. The results were compared to results from Moser et al. (1999).

5.2.1 Channel Flow

We consider the flow through a rectangular channel Ω. The bottom wall is at y = 0, the
top wall is at y = 2H and the center line is at y = H, z = 0. The flow is predominantly
in the x-direction, making it the stream wise direction. The velocity varies mainly in
the y-direction, which is the cross stream direction. The z-direction, which is also called
the span wise direction, is assumed to be large compared with the height of the channel.
This allows us to assume that the flow is statistically independent of z, except of course
at and near the walls. However, in our experiments homogeneous Dirichlet boundary
conditions were only used in y-direction and periodic boundary conditions were used in
the x- and z-directions, making the channel infinitely long and infinitely wide, so as to
not have to deal with walls and the problems they pose. This will mean that statistics no
longer vary with x, making the flow statistics only dependent on y, see also Pope (2000),
Chapter 7, Wall flows for a similar set-up. This type of flow is, as one would expect,
statistically symmetric around the mid-plane y = H.
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5.2.2 Algorithm

The Leray-α model is first discretized in time by a simplified Crank-Nicolson method,
see Chapter 4, section 4.2.2, (53) to yield

un+1 +
1

2
∆t (−ν∆un+1 + (un+1 · ∇)un+1 +∇pn+1)

= un −
1

2
∆t (−ν∆un + (un · ∇)un +∇pn) +

1

2
∆t(fn + fn+1),

∇ · un+1 = 0,(
Id − α2∆

)
un+1 = un+1.


(88)

This is transformed into variational form and discretized by a finite element method
using the Q2/P

disc
1 finite element. Finally, this is linearized to resemble an Oseen system,

meaning in the nonlinearity one replaces (un+1 · ∇)un+1 by (un · ∇)un+1. This is then
solved by a fixed point iteration. Problem (88) then becomes:
Given un+1

0 = un, solve in each time step

(u
(k)
n+1, v) +

1

2
∆t
(
ν(∇u(k)n+1,∇v) +

(
(un+1

(k−1) · ∇)u
(k)
n+1, v

)
+ (p

(k)
n+1,∇ · v)

)
= (un, v)−

1

2
∆t

(
ν(∇un, v) + ((un · ∇)un, v)

+ (pn,∇ · v)
)
+

1

2
∆t(fn + fn+1, v),

(∇ · u(k)n+1, q) = 0,(
Id − α2∆

)
un+1

(k) = u
(k)
n+1.


In the numerical experiments themselves, the deformation tensor formulation was used.
Herein, the term (∇u,∇v) is replaced by the term 2(D(u), D(v)), where
D(u) = 1

2(∇u+∇uT ). This is solved using homogeneous Dirichlet boundary conditions.
The Crank-Nicolson scheme was applied with an equidistant time step of ∆t = 0.002.
The grid that was used is uniform in the periodic directions x and z. It is anisotropic
in the wall normal direction y, where the spacing of the nodes becomes finer and finer
towards the wall. The nodes yi are then given by

yi = 1− cos
(
iπ

Ny

)
, i = 0, . . . , Ny,

where Ny is the number of cell layers in y-direction. Our coarse grid consists of 8 × 8
cells in the x- and z-directions and and 16 layers of these cells in y-direction. For the
fine grid, we refined once more in the y-direction, resulting in 32 layers of cells.

5.2.3 Statistics of Interest

As we want to compare our results to a direct numerical simulation of the channel flow,
there are some statistics that were computed.
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Let uh(t, x, y, z) = (U(t, x, y, z), V (t, x, y, z),W (t, x, y, z)) be the solution computed by
using the method described above. Let Na denote the number of grid points in the
direction indicated by the subscript a. The first statistic of interest is the spatial average:
as the grids used are uniform, the spatial mean velocity at time tn in the plane y =const.
is denoted by ⟨

uh(tn, x, y, z)
⟩
s
=

1

NxNz

Nx∑
i=1

Nz∑
j=1

uh(tn, xi, y, zj).

If we average these in time, again keeping in mind that the time steps are uniform too,
we get the mean velocity profile depending on y:

uhmean(y) :=
⟨⟨
uh(tn, x, y, z)

⟩
s

⟩
t
=

1

Nt + 1

Nt∑
n=0

⟨
uh(tn, x, y, z)

⟩
s
. (89)

The first secondary statistic used is the Reynolds Stress Tensor. It is derived from the
Navier-Stokes equations in exactly the same way as the turbulent stress tensor τ , see
(85) , except that we now interpret the bar over u as an averaging of our choice instead
of as a given filter. If we denote this averaging of our choice by ⟨·⟩, the equations (86)
then read

∂t ⟨ui⟩+ ∂j(⟨uj⟩ ⟨ui⟩)− ν∂j∂j ⟨ui⟩+ ∂i ⟨p⟩ = ⟨fi⟩ − ∂jRij ,
∂i ⟨ui⟩ = 0,

}

where
Rij = ⟨ujui⟩ − ⟨ui⟩ ⟨uj⟩

is the general form of the Reynolds Stress Tensor. From this equation, we can interpret
the Reynolds Stress Tensor as the force that determines how the average ⟨ui⟩ develops.
As the averaging is one of our choice, there is more than one version of the Reynolds
Stress Tensor used in the literature, depending on what kind of averaging was used. Here,
we will present results for the component Ruv := Ru1u2 of the Reynolds Stress Tensor,
which we define as

Ruv = ⟨⟨uv⟩s⟩t − ⟨⟨u⟩s⟩t ⟨⟨v⟩s⟩t . (90)

The diagonal components of the stress tensor are called normal stresses and the off-
diagonal components are the shear stresses. Naturally, what is shear stress and what
is normal stress depends on the choice of coordinate system, but useful distinctions can
be made between isotropic and anisotropic stresses. Seeing as the trace of a tensor is
invariant under coordinate transformations, the term 1

3

∑3
i=1 ⟨Rii⟩, which is the trace

of the Reynolds Stress Tensor normalized by the dimension, is called isotropic stress.
Therefore, the deviation from isotropy can be expressed by Rij − 1

3

∑3
i=1Riiδij .

In contrast to free shear flows, a channel flow is a wall flow, meaning that the viscosity
of the fluid is an influential parameter at the walls of the channel. The total shear stress
can be derived from the averaged momentum equation. This is solved for the pressure
term. The other terms then model the stress and the term containing the viscosity ν
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is called viscous contribution, see Pope (2000), Section 7.1.2 for details. If we assume
zero boundary conditions, at the wall the so called wall shear stress is entirely due to the
viscous contribution

τw = ρν

(
d ⟨u⟩
dy

)
y=0

.

This stress will influence the flow dependent on its distance from the wall. Therefore,
the introduction of so called viscous scales, dependent on τw, is appropriate. These are

uτ =

√
τw
ρ

friction velocity, αν = ν

√
ρ

τw
viscous length scale,

Reτ =
uτα

ν
friction Reynolds number, y+ =

y

αν
=
uτy

ν
wall units.

The friction Reynolds number in our numerical experiments is Reτ = 180. Herein, the
simulated friction velocity is approximated by a one-sided difference at each wall and
then the average will be computed, giving

uhτ =
1

2

(
Umean(y

+
min)

y+min
−
Umean(2− y+min)

2− y+min

)
,

where y+min is the minimum height of a cell. This will be used to normalize the secondary
statistics.
Finally, we can give the definitions of the statistics used in the simulations. The first
order statistic we calculate is the mean velocity. Results for this statistic will be shown
for the first component Umean(y) of uhmean(y) from equation (89). For clarity, we also
show a plot of the difference of the mean to the reference mean. The Reynolds Stress
Tensor component that is shown was calculated by

Ruv := R12 :=
Rh12
(uhτ )

2
.

The root mean square turbulence intensities were computed by

urms =

∣∣∣Rh11 − 1
3

∑3
j=1Rhjj

∣∣∣ 12
uhτ

.

Finally, we note that when actually using the Large Eddy Formulation of the Leray-α
model to compute a solution, there should be a slight modification when computing the
statistics, as is pointed out by Winckelmans et al. (2002). As we want to compare our
results to a Direct Numerical Simulation, we will have to compare the statistics of uDNS ,
which is the result of the DNS calculation, to the statistics of u, which is the result of
Large Eddy Modeling. It is natural to assume that

⟨u⟩ ∼ ⟨u⟩ ,
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as u is just a filtered version of u. Therefore, we can directly compare the first order
statistics. For the second order statistics, we use the fact that the tensor mij from (87),
after being filtered once more, can be written as

mij = uj ui − ujui.

We also use the fact that averaging is homogeneous, meaning

⟨u⟩ ≈ ⟨u⟩ ⇐⇒ ⟨u⟩ a ≈ ⟨u⟩ a⇐⇒ ⟨ua⟩ ≈ ⟨ua⟩ .

The Reynolds Stress Tensors RDNSij of u and RLESij belonging to u are then related by

RDNSij = ⟨ui⟩ ⟨uj⟩ − ⟨uiuj⟩ ≈ ⟨ui⟩ ⟨uj⟩ − ⟨uiuj⟩
≈ ⟨ui⟩ ⟨uj⟩ − ⟨mij⟩ −

⟨
uj ui

⟩
= RLESij − ⟨mij⟩ .

5.2.4 Results

According to the rule α = ChK , where hK is some measure of the cell K, the filter width
α varies in wall normal direction.
For the cell measure hK , three different options were tested. Denoting by hx(K), hy(K)
and hz(K) the lengths of the edges of the cell K, we define

cubic(K) := 3
√
hxhyhz, diam(K) :=

√
h2x + h2y + h2z, edge(K) := min {hx, hy, hz} .

In the first stage of our experiment results for values of C in the range of C = 0.2, 0.3, . . .
0.9, 1.0, 1.2, 1.5, 2.0 were computed for each of these cell measures on the coarse grid.
Depending on the results, additional finer values were computed.
The results on the coarse grid are presented in Figures 1, 2 and 3. We classify the results
by first comparing the mean profile and selecting acceptable values of C. Then from these
values of C we choose the one that is nearest to the secondary statistics of he reference
and declare it as the best value.
For the Cubic measure (Figure 1), values C = 0.1 and C = 0.15 were the closest to the
mean velocity profile of the reference mean velocity profile from the DNS simulation.
The computed root mean square intensities (rmsu) do have the correct form, but highly
overpredict the values. The overprediction is smallest for C = 0.1. None of the results
for the Reynolds Stress Tensor component (Ruv) are particularly good. The form of
the curves is similar to the reference values for C = 0.1, C = 0.15 and C = 0.2, but
the oscillations near the wall are quite pronounced. These are both effects that will be
lessened considerably on the finer grid. All in all, for the cubic cell measure, the value
C = 0.1 seems to be the best value.

For the diam cell measure, the values of the filter width constant for which the
mean velocity profile was acceptable were somewhat lower than the values for the edge
measure. As can be seen in Figure 2, only the value C = 0.025 produced reasonable
results. Especially the root mean square intensities are far overpredicted for the other
values.
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Figure 1: Cubic on coarse grid
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Figure 2: Diam on coarse grid
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For the cell measure edge, we show the full range of values for C, see Figure 3. In
terms of the quality of their mean velocity profile, none of the results are particularly
good, but the values C = 0.3 through C = 0.8 are comparable. As the root mean square
intensity and the Reynolds Stress Tensor are best for C = 0.8, this is the value we select
as best result.

The results for the fine grid are presented in Figures 4, 5 and 6.
On the fine grid, the only two values of C that produce a reasonably close velocity profile
for the measure Cubic are C = 0.2 and C = 0.3, see Figure 4. These two values are also
the only two values that produce curves that have the correct shape for rmsu and the
Reynolds Stress Tensor. Of these, C = 0.3 far overpredicts rmsu. We select C = 0.2 as
the best value. We see that the overpredictions and oscillations are lessened.

For the measure Diam on the fine grid, similar to the situation on the coarse grid, only
C = 0.025 produces acceptable results for all considered statistics, see Figure 5.

For the measure Edge, the differences between the results for different C were minimal,
especially in the range [0.2, 0.8]. Of these, C = 0.8 yields the best results for the second
order statistics, which is why we pick it as the best value.

A comparison shows that the best result on the coarse grid is produced for the measure
Diam and the value C = 0.025, see Figure 7, but this is also the only value that Diam
produces a reasonable result for. On the fine grid, Figure 8 shows that the best result is
also achieved by selecting the diam measure.

All in all, the dependence on α can clearly be seen. For the measures Cubic and Diam
the range of C that produced acceptable results is relatively small. No choice of C was
a perfect fit for the reference value profile.
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Figure 3: Edge on coarse grid
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Figure 4: cubic on fine grid
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Figure 5: Diam on fine grid
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Figure 6: Edge on fine grid
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Figure 7: Comparison of best results on coarse grid
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Figure 8: Comparison of best results on fine grid
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6 Summary and Outlook

We have seen that due to the smaller dimension of its attractor, theory suggests that the
Leray-α model of turbulence is easier to simulate numerically than other 3d models of
turbulence. Our own numerical experiments did not produce a value for the filter width
α that produces perfect results. It might be interesting to consider the question of what
would be a perfect result. After all, even if it implies its own subgrid model, the Leray-α
model is still just a model of turbulence. The question of how accurately it can depict
turbulence and what accuracy means in this context might be interesting to consider.
Still, some experiments do suggest that the Leray-α model might be better at depicting
the turbulent character of a flow than the usual Large Eddy Simulations, see for example
Figure 1 in Geurts and Holm (2003).

Nevertheless, more numerical experiments using the Leray-α model and studies that
compare the results of experiments using the Leray-α model to the results obtained by
other turbulence models are needed.

An interesting candidate for an even better turbulence model seems to be the so-
called LANS-α Model, which is an extension of the Leray-α model. These two models
are investigated in Geurts and Holm (2006), where the authors record the result that
“the Leray model is more robust but also slightly less accurate than the LANS-α model.
The LANS-α model retains more of the small-scale variability in the resolved solution”.
The authors do note that this increase in accuracy requires a corresponding increase
in spatial resolution. This of course will result in an increase in memory consumption
and computational time compared to the Leray-α model. Again, more experiments are
needed to quantify whether this increase in computational cost is justified compared to
the increase in accuracy.
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7 Appendix

As notation and nomenclature are not consistent throughout the literature, this will be
a list of standard inequalities that are used throughout the text.

Cauchy’s inequality

ab ≤ a2

2
+
b2

2
.

Cauchy’s inequality with ϵ

ab ≤ ϵa2 +
b2

4ϵ
.

Cauchy-Schwarz Let (·, ·) denote a scalar product and let ∥·∥ denote the norm in-
duced by this scalar product. Then

|(a, b)| ≤ ∥a∥ ∥b∥ .

Young’s inequality

ab ≤ ap

p
+
bq

q
,

1

q
+

1

p
= 1.

Young’s inequality with ϵ

ab ≤ ϵap + C(ϵ)bq, C(ϵ) = (ϵp)
−q
p q−1.

Peter-Paul

ab ≤ ϵa2

2
+
b2

2ϵ
.

Set ϵ = ϵ̃
2 in Cauchy with ϵ to obtain this.

Hölder
∥uv∥L1 ≤ ∥u∥Lp ∥v∥Lq , 1 ≤ p, q,≤ ∞ 1

q
+

1

p
= 1.

Grönwall´s inequality, differential form Let g, h be non-negative, summable func-
tions on [0, T ]. Let y be a non-negative, absolutely continuous function on [0, T ] that for
a.e. t ∈ [0, T ] satisfies

dy

dt
≤ gy + h.

Then, y also satisfies

y ≤ exp
(∫ t

0
g(s) ds

)(
y(0) +

∫ t

0
h(s) ds

)
.

Uniform Grönwall Lemma, see Temam (1988). Let g, h, y be three positive locally
integrable functions on (t0,∞) such that y′ is locally integrable on (t0,∞) and which
satisfy

dy

dt
≤ gy + h for t ≥ t0,
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and ∫ t+r

1
g(s) ds ≤ a1,

∫ t+r

1
h(s) ds ≤ a2,

∫ t+r

1
y(s) ds ≤ a3, for t ≥ t0,

where r, a1, a2, a3 are positive real constants. Then,

y(t+ r) ≤
(a3
r

+ a2

)
exp(a1), ∀t ≥ t0.

Poincaré inequality Let u ∈ W 1,p(Ω), Ω bounded with Lipschitz boundary and
1 ≤ p ≤ ∞. Then there is a constant C = C(p,Ω) such that

∥u− uΩ∥L2 ≤ C ∥∇u∥L2 ,

where uΩ =
1

|Ω|

∫
Ω
u(y)dy.

On bounded domains Ω ⊂ Rn a Poincaré-type inequality of the form

∥v∥2 ≤ 1

λ1
∥∇v∥2 ,

where λ1 is the smallest eigenvalue of the Stokes operator −∆, holds for functions in H1
0

and for functions in H1 with periodic boundary conditions. This can be derived using the
Fredholm alternative and the fact that the Rayleigh quotient of the negative Laplacian
can be minimized by λ1: min ∥∇v∥2

∥v∥2 = λ1.
Interpolation inequality for Sobolev spaces Let s1 < s2 and s = Θs1+(1−Θ)s2,

where 0 < Θ < 1. Then

∥v∥Hs ≤ ∥v∥ΘHs1 ∥v∥1−Θ
Hs2 ∀v ∈ Hs2 .

Sobolev embedding theorem

∥u∥Lq(Rn) ≤ C ∥u∥Wm,p(Rn) for
1

q
=

1

p
− m

N
, p ̸= N

m
,

N being the dimension.
Sobolev inequality in 3 dimensions

∥u∥L∞ ≤ c

λ
1/4
1

∥u∥H2 ,

where λ1 is again the smallest eigenvalue of the Stokes operator.
Generalization of Sobolev-Lieb-Thirring inequality, see Temam (1988). Let Ω

be a bounded set of Rn with regular boundary. Let φj , 1 ≤ j ≤ N be a family in Hm(Ω)k

which is finite and orthonormal in L2(Ω)k. We then have

|Ω|2m/n
N∑
j=1

∫
Ω
|Dmφj |2 dx ≥ c1N

1+2m/n,

where c1 depends on n,m and the shape of Ω.
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