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Ferdinand Thein

1 Introduction

In this work moment based methods for the numerical treatment of a Population Balance Equati-
on, PBE, are investigated. The methods that are treated in this work are the Method of Moments
(MOM), the Quadrature Method of Moments (QMOM) and the Direct Quadrature Method of Mo-
ments (DQMOM). The methods are introduced in historical order and their key features and main
differences are worked out.
The PBEs that are dealt with here arise for example in the field of aerosol dynamics. The equations
describe a so called Particle Size Distribution f , PSD. This PSD depends on the time t ∈ [0, T ], the
geometric space x ∈ Ω ⊂ Rd, d ∈ {1, 2, 3}, and additionally on an internal variable e ∈ Ωe ⊂ RN

+ .
The complete problem for the PSD is

∂f(t, x, e)
∂t

+∇ · (uf(t, x, e))−∇ · (D∇f(t, x, e)) = S(t, x, e), (t, x, e) ∈ (0, T ]× Ω× Ωe,

f(t, x, e) = g(t, x, e), (t, x, e) ∈ [0, T ]× ∂Ω× Ωe,

f(t, x, e) = 0, (t, x, e) ∈ [0, T ]× Ω× ∂Ωe,

f0(x, e) = f(0, x, e), (x, e) ∈ Ω× Ωe.

(1.1)

Here we set u := u(t, x) and D := D(t, x). It is important to note that the source term S(t, x, e)
on the right-hand side will also depend on the PSD f , for example as in 2.1. As an example one
can consider a precipitation process where the internal variable is the diameter of a particle, cf.
[18]. Other applications may be found in [1] and [14]. The PBE is therefore often coupled to the
Navier–Stokes equation via the velocity. Now the arising difficulty is that the dimension of the PBE
is increased by N due to the appearance of the internal variable compared to the other system
describing equations. There are different ways how to treat this difficulty. One can be seen in [18].
The key idea of moment based methods is not to solve the whole equation for the PSD. Instead the
PBE is transformed and one solves a system of equations for the moments of the PSD. The dimension
of these equations is now reduced by N . The first moments directly correspond to physical quantities
of the system such as the number of particles, mass or the measure of the surface. For the moment
transform one multiplies equation (1.1) with ek for k = 0, 1, 2, . . . and then integrates over Ωe. The
resulting equation is

∂mk(t, x)
∂t

+∇ · (u(t, x)mk(t, x))−∇ · (D(t, x)∇mk(t, x)) =
∫

Ωe

ekS(t, x, e) de, k = 0, 1, 2, . . . .

(1.2)

Now the drawback is that f is not known in its entity anymore. To reconstruct f from a given set of
moments is an ill–posed problem as shown in [16]. Furthermore one needs that system to be closed
for a finite k. It is not obvious how many moments are needed to obtain satisfying results. In Section
2 the three methods are explained and a result for the condition number is given. In Section 3 we
investigate algorithms that are needed for the QMOM to calculate weights and abscissas for the
quadrature approximation. In Section 4 we suggest some improvements to the DQMOM. Finally we
will give numerical results in Section 5. Therefore we will first treat several problems analytically
and then give the numerical simulations.
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2 Standard Moment Methods

2.1 Method of Moments

The MOM was introduced in 1964 by Hulburt and Katz in [8]. Since there are crucial restrictions
to the problems which can be treated by the method, the MOM was not used very much, cf. [12].
In the following a simplified version of (1.1) shall be presented in order to illustrate the key points.
Therefore we set u ≡ 0, D ≡ 0 and S(t, x, e) = − ∂

∂e (φ(e)f(t, x, e)). The resulting equation is

∂f(t, x, e)
∂t

= − ∂

∂e
(φ(e)f(t, x, e)) . (2.1)

The function φ(e) is a growth function and describes the evolution of the internal variable. The
shape of the right-hand side depends on the problem. When the moment transform is performed one
gets

∂mk(t, x)
∂t

= k

∫
Ωe

ek−1φ(e)f(t, x, e) de, k = 0, 1, 2, . . . . (2.2)

Then one integrates by parts, the boundary terms vanish since we claim

lim
e→0

f(t, x, e) = 0 and lim
e→∞

f(t, x, e) = 0.

The remaining difficulty is the integral, since it still depends on the unknown function f . But if the
growth function has a special shape, i.e. φ = β0 + β1e, one obtains

∂mk(t, x)
∂t

= k

∫
Ωe

ek−1(β0 + β1e)f(t, x, e) de, k = 0, 1, 2, . . . . (2.3)

This is equivalent to

∂mk(t, x)
∂t

= kβ0mk−1(t, x) + kβ1mk(t, x), k = 0, 1, 2, . . . . (2.4)

It is now obvious, that for this type of source term the number of particles stays constant. Therefore
one looks atm0. Furthermore one clearly sees, that the resulting equation would include higher order
moments if the growth function would be of higher order.
To deal with other growth laws, Hulburt and Katz suggested to expand f in series with respect to
the orthogonal Laguerre polynomials. Now one can also deal with growth laws like

φ(e) =
β

e
, e > 0. (2.5)

For the first four moments one obtains analogous to (2.3) the system

∂m0(t,x)
∂t = 0,

∂m1(t,x)
∂t = kβm−1(t, x),

∂m2(t,x)
∂t = kβm0(t, x),

∂m3(t,x)
∂t = kβm1(t, x).

The moments of even order can be determined exactly. This is not possible for the remaining mo-
ments, since m1 depends on m−1. But if the series expansion of f is used, the moment m−1 can be
expressed through the other moments [8]

m−1 =
m2

0m1

2m2
1 −m0m2

.

9



2 Standard Moment Methods

Summing up, one can state that the range of the MOM is very restricted. If the growth law is not
constant or linear, one has to use a suited approximation of the unknown function f . But one has
to choose a good approximation. Hulburt and Katz suggested the Laguerre polynomials. Since the
Laguerre polynomials are orthogonal with respect to the gamma distribution, one expects problems
when f differs from that shape.
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2.2 Quadrature Method of Moments

As shown above, there is a crucial restriction to the MOM. That is, if the growth term does not have
a particular shape, one does not obtain a closed system of equations with respect to the moments.
To circumvent this restriction McGraw introduced a new approach [12]. Instead of approximating
f when the source term is to complicated, one approximates the integral through n-point Gaussian
quadrature, i.e. ∫

Ωe

g(e)f(t, x, e) de ≈
n∑
i=1

g(ei)wi(t, x) (2.6)

where g(e) is a given function. For g(e) = ek, k = 0, 1, 2, . . . one obtains from (2.6) the approximation
for the moments mk. For these moments of f one claims

mk =
n∑
i=1

ekiwi(t, x) k = 0, 1, 2, . . . 2n− 1. (2.7)

Since there are 2n unknowns on the right-hand side, (2.7) implies exact integration of polynomials
up to degree 2n − 1 if 2n moments are given, see Theorem 3.6 below. The transformed equation is
(1.2)

∂mk(t, x)
∂t

+∇ · (u(t, x)mk(t, x))−∇ · (D(t, x)∇mk(t, x)) =
∫

Ωe

ekS(t, x, e) de, k = 0, 1, 2, . . . .

The obtained system is now closed for all k when the integral is approximated using Gaussian
quadrature. But one has to deal with 2n unknown weights and abscissas. It is now important to
note that the 2n moments uniquely determine these weights and abscissas.
So the idea is to use the given moments in each time step to determine the corresponding weights
and abscissas. Once these are obtained, one can approximate the integral containing the source term.
How this can be done is shown in Section 5.
The unknown quantities can be calculated by solving the nonlinear system (2.7) involving the 2n
moments. This system is Ew = µ, with w = (w1, . . . , wn)T , µ = (m0, . . . ,m2n−1)T and

E :=



1 1 . . . 1
e1 e2 . . . en
e2

1 e2
2 . . . e2

n

e3
1 e3

2 . . . e3
n

...
... . . .

...

e2n−1
1 e2n−1

2 . . . e2n−1
n


∈ R2n×n. (2.8)

Keep in mind, that only µ is known. To emphasise this, we will write this system for n = 1 and
n = 2 explicitly. For n = 1

m0 = w1,

m1 = e1w1.

For n = 2 one has the system

m0 = w1 + w2,

m1 = e1w1 + e2w2,

m2 = e2
1w1 + e2

2w2,

m3 = e3
1w1 + e3

2w2.

Once the weights and abscissas are determined, all the integrals can be approximated. When this is
done you can calculate the next time step and start all over again.

11



2 Standard Moment Methods

Step 1 Calculate initial moments.

Step 2 Calculate weights and abscissas from the given moments.

Step 3 Approximate the integral containing the source term.

Step 4 Calculate the next time step for the moments

Step 5 Repeat Step 2 to Step 4 until T .

So now the missing step is the calculation of the weights and abscissas. For this, McGraw suggested
the Product-Difference-Algorithm. We will discuss this one and other possible algorithms in a separate
section.

12
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2.3 Direct Quadrature Method of Moments

The DQMOM was introduced in 2005, in order to deal with problems including more than one
internal variable, by Marchisio and Fox [10]. The main difference between the QMOM and the
DQMOM is, that one does not solve a system for the moments but obtains equations for the weights
and abscissas directly. At first we will derive the method as suggested in the original work. Then we
will show an alternative way, which avoids the delta distribution.

2.3.1 Derivation With Distributions From Marchisio/Fox (2005)

The idea of the QMOM is to replace the integrals by Gaussian quadrature, therefore the weights and
abscissas have to be determined. For the DQMOM the function f is approximated by a combination
of delta distributions

f(t, x, e) ≈
n∑
i=1

wi(t, x)δ(e− ei(t, x)) (2.9)

where δ(.) is the delta distribution with

δ(x) =

{
0, x 6= 0,
∞, x = 0,

and ∫ ∞
−∞

δ(x) dx = 1.

In (2.9) the ei can be thought of as different particles in the phase space [10]. To derive this me-
thod one starts with inserting (2.9) into equation (1.1), multiplying with the test function ek and
integrating with respect to the internal variable. Therefore one obtains (summation over i)∫

Ωe

{
∂wi(t, x)δ(e− ei(t, x))

∂t
+∇ · (u(t, x)wi(t, x)δ(e− ei(t, x)))

−∇ · (D(t, x)∇(wi(t, x)δ(e− ei(t, x))))
}
ek de =

∫
Ωe

S(t, x, e)ek de .

(2.10)

We oppress the dependance of (t, x) in the following calculations. One gets∫
Ωe

{
δ(e− ei)

∂wi
∂t
− wiδ′(e− ei)

∂ei
∂t

+ δ(e− ei)∇ · (uwi)− wiδ′(e− ei)u · ∇ei

− δ(e− ei)∇ · (D∇wi)−Dwiδ′′(e− ei)(∇ei)2 + δ′(e− ei) (D∇wi · ∇ei +∇ · (Dwi∇ei))
}
ek de

=
∫

Ωe

S(t, x, e)ek de . (2.11)

Now the terms in this equation are sorted according to the derivatives of the delta distribution∫
Ωe

{
δ(e− ei)

{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}

− δ′(e− ei)
{
wi
∂ei
∂t

+ wiu · ∇ei − (D∇wi · ∇ei +∇ · (Dwi∇ei))
}

− δ′′(e− ei)
{
Dwi(∇ei)2

}}
ek de

=
∫

Ωe

S(t, x, e)ek de.

13



2 Standard Moment Methods

Transforming the variables ei to ζi = wiei (weighted abscissae) the equations can be reformulated
as follows∫

Ωe

{
δ(e− ei)

{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}

− δ′(e− ei)
{
∂ζi
∂t

+∇ · (uζi)−∇ · (D∇ζi)− ei
(
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
)}

− δ′′(e− ei)
{
Dwi(∇ei)2

}}
ek de

=
∫

Ωe

S(t, x, e)ek de .

With the notation
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi) = ξ
(1)
i ,

∂ζi
∂t

+∇ · (uζi)−∇ · (D∇ζi) = ξ
(2)
i , (2.12)

Dwi(∇ei)2 = ξ
(3)
i ,

one gets another formulation of the k-th equation∫
Ωe

{
n∑
i=1

δ(e− ei)ξ(1)
i −

n∑
i=1

δ′(e− ei)(ξ(2)
i − eiξ

(1)
i )−

n∑
i=1

δ′′(e− ei)ξ(3)
i

}
ek de =

∫
Ωe

S(t, x, e)ek de.

(2.13)

Recall the following for the delta distribution∫
Ωe

δ(e− ei)ek de = eki ,

∫
Ωe

δ′(e− ei)ek de = −kek−1
i ,

∫
Ωe

δ′′(e− ei)ek de = k(k − 1)ek−2
i .

Inserting these expressions into (2.13) gives a linear system for the source terms ξ(1)
i , ξ

(2)
i , ξ

(3)
i

(1− k)
n∑
i=1

eki ξ
(1)
i + k

n∑
i=1

ek−1
i ξ

(2)
i = k(k − 1)

n∑
i=1

ek−2
i ξ

(3)
i +

∫
Ωe

ekS(t, x, e) de, k = 0, 1, 2, . . . .

(2.14)

Defining the following matrices

A1 :=



1 1 . . . 1
0 0 . . . 0
−e2

1 −e2
2 . . . −e2

n

−2e3
1 −2e3

2 . . . −2e3
n

...
... . . .

...

2(1− n)e2n−1
1 2(1− n)e2n−1

2 . . . 2(1− n)e2n−1
n


∈ R2n×n, (2.15)

A2 :=



0 0 . . . 0
1 1 . . . 1

2e1 2e2 . . . 2en
3e2

1 3e2
2 . . . 3e2

n
...

... . . .
...

(2n− 1)e2(n−1)
1 (2n− 1)e2(n−1)

2 . . . (2n− 1)e2(n−1)
n


∈ R2n×n, (2.16)
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A3 :=



0 0 . . . 0
0 0 . . . 0
2 2 . . . 2

6e1 6e2 . . . 6en
...

... . . .
...

2(n− 1)(2n− 1)e2n−3
1 2(n− 1)(2n− 1)e2n−3

2 . . . 2(n− 1)(2n− 1)e2n−3
n


∈ R2n×n

(2.17)

and denote by

A = [A1, A2], ξ =
[
ξ

(1)
1 , . . . , ξ(1)

n , ξ
(2)
1 , . . . , ξ(2)

n

]T
, ξ(3) =

[
ξ

(3)
1 , . . . , ξ(3)

n

]T
,

S̄ =
[∫

Ωe

S(t, x, e) de, . . . ,
∫

Ωe

e2n−1S(t, x, e) de
]T
, d = A3ξ

(3) + S̄, (2.18)

one can write the system as Aξ = d. Now one has to perform the following steps

Step 1 Calculate initial moments.

Step 2 Calculate initial weights and abscissas from the given moments using one of the algorithms
presented in Section 3.

Step 3 Approximate the integral containing the source term.

Step 4 Initialise and solve the linear system.

Step 5 Calculate the next time step for the weights and weighted abscissas.

Step 6 Optionally: Calculate the moments via (2.7).

Step 7 Repeat Step 3 to Step 6 until T .

It should be remarked, that the ξ(3)
i are directly calculated with the given quantities at the present

time step. Now one can argue that there are some disadvantages. The first is the use of the delta
distribution, (2.9) makes hardly sense when one multiplies with infinity and one can doubt whether
the powers of e are the right test functions. Furthermore one can possibly face a situation where the
weights are near to zero or the abscissas lie close to each other. In the first case one has to worry
about the weighted abscissas and in the second case the matrix is close to be singular. These problems
will be discussed below. Note that the test function ek are not necessarily needed to introduce the
moments. The moments can be obtained from the calculated weights and abscissas. These can be
determined with any suited test function, as shown below in Section 4.

2.3.2 Derivation Without Distributions and Reformulation

Here we will present a way to circumvent the delta distribution. Furthermore this seems to clarify
the key idea of the DQMOM. To do this, one inserts equation (2.7) directly into the system for the
moments (1.2). The result is (again the dependance of (t, x) is oppressed)

n∑
i=1

{
∂(wieki )
∂t

+∇ · (u(t, x)wieki )−∇ · (D∇(wieki ))
}

=
∫

Ωe

S(t, x, e)ek de. (2.19)
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2 Standard Moment Methods

By differentiating, rearranging and introducing the variable ζi = wiei (analogous to the original
way) one obtains

n∑
i=1

{
eki

{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}

+ kek−1
i

{
∂ζi
∂t

+∇ · (uζi)−∇ · (D∇ζi)− ei
(
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
)}

− k(k − 1)ek−2
i

{
Dwi(∇ei)2

}}
=
∫

Ωe

S(t, x, e)ek de.

Again, with the source terms ξ(1)
i , ξ

(2)
i , ξ

(3)
i this results in (2.14)

(1− k)
n∑
i=1

eki ξ
(1)
i + k

n∑
i=1

ek−1
i ξ

(2)
i = k(k − 1)

n∑
i=1

ek−2
i ξ

(3)
i +

∫
Ωe

ekS(t, x, e) de, k = 0, 1, 2, . . . .

So now consider the case of numerical difficulties. Sure one can exclude the distribution in the
derivation of this method to be a reason for failing. Now it is also interesting to know, what happens
if the variable ζi is not introduced and you define another system. Therefore review equation (2.19).
After applying the product rule one gets

n∑
i=1

{
eki

{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}

+ kwie
k−1
i

{
∂ei
∂t

+ u · ∇ei −D∆ei

}
− kek−1

i {D∇wi · ∇ei +∇ei · ∇(Dwi)} − k(k − 1)ek−2
i

{
Dwi(∇ei)2

}}
=
∫

Ωe

S(t, x, e)ek de.

Now one introduces four source terms
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi) = ξ
(1)
i ,

∂ei
∂t

+ u · ∇ei −D∆ei = ξ
(2)
i , (2.20)

Dwi(∇ei)2 = ξ
(3)
i ,

D∇wi · ∇ei +∇ei · ∇(Dwi) = ξ
(4)
i .

Again a linear system for the source terms (where the latter two can already be calculated with the
initial data) is obtained

n∑
i=1

eki ξ
(1)
i + k

n∑
i=0

wie
k−1
i ξ

(2)
i

= k(k − 1)
n∑
i=1

ek−2
i ξ

(3)
i + k

n∑
i=1

ek−1
i ξ

(3)
i +

∫
Ωe

ekS(t, x, e) de, k = 0, 1, 2, . . . . (2.21)

With the matrices B = A3 (2.17), C = A2 (2.16),

A :=


1 . . . 1 0 . . . 0
e1 . . . en w1 . . . wn
e2

1 . . . e2
n 2e1w1 . . . 2enwn

...
...

...
...

...
...

e2n−1
1 . . . e2n−1

n (2n− 1)e2n−2
1 w1 . . . (2n− 1)e2n−2

n wn

 ∈ R2n×2n (2.22)
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and the vectors

ξ =
[
ξ

(1)
1 , . . . , ξ(1)

n , ξ
(2)
1 , . . . , ξ(2)

n

]T
, ξ(3) =

[
ξ

(3)
1 , . . . , ξ(3)

n

]T
,

ξ(4) =
[
ξ

(4)
1 , . . . , ξ(4)

n

]T
, S̄ =

[∫
Ωe

S(t, x, e) de, . . . ,
∫

Ωe

e2n−1S(t, x, e) de
]T
,

one can write the system in the following form

Aξ = Bξ(3) + Cξ(4) + S̄︸ ︷︷ ︸
=:d

.

It should be remarked, that the matrix A (2.22) is the Jacobian (2.26) that is obtained in sections
2.4 and 3.5 below. Now one performs the same steps like before. But this approach gives basically
the same numerical results. This is, because one just shifted the difficulty that occurs for wi = 0
from a division by zero to a singular system matrix (2.26). So there probably remains only one way
for a possible improvement. One has to change the test functions. So the idea is to choose adequate
test functions that improve the condition number of this problem.

2.3.3 Multidimensional DQMOM

An essential feature of the DQMOM is that it can be extended to the case of more than one internal
variable. Therefore the DQMOM shall be derived for the multivariate case according to [10]. The
delta distribution for the case of more than one dimension x ∈ Rm reads

δ(x) =
m∏
i=1

δ(xi).

Here one has e ∈ Ωe ⊂ RN with e = (e(1), . . . , e(N)). The multidimensional moments are defined
as

ml1,...,lN =
∫

Ωe

N∏
α=1

(
e(α)

)lα
f(t, x, e) de.

Again the PSD is represented via a combination of delta distributions

f(t, x, e) ≈
n∑
i=1

wi(t, x)δ(e− ei(t, x)) =
n∑
i=1

wi(t, x)
N∏
α=1

δ(e(α) − e(α)
i (t, x)). (2.23)

This expression is now inserted into the PBE (1.1) and one obtains

n∑
i=1

{
∂wi(t, x)δ(e− ei(t, x))

∂t
+∇ · (u(t, x)wi(t, x)δ(e− ei(t, x)))

−∇ · (D(t, x)∇(wi(t, x)δ(e− ei(t, x))))
}

= S(t, x, e).
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2 Standard Moment Methods

In the following calculations we suppress the dependance on (t, x). Differentiating and sorting the
terms yields

n∑
i=1

{
N∏
α=1

δ(e(α) − e(α)
i )

[
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
]

−
N∑
α=1

δ′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )

[
wi
∂e

(α)
i

∂t
+ (uwi) · ∇e(α)

i − wi∇D · ∇e
(α)
i

− 2D∇wi · ∇e(α)
i + wiD∆e(α)

i

]
−

N∑
α=1

δ′′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )

[
wiD

(
e

(α)
i

)2
]

−
N∑
α=1

N∑
β=1,β 6=α

δ′(e(α) − e(α)
i )δ′(e(β) − e(β)

i )
N∏

γ=1,γ 6=α,β
δ(e(γ) − e(γ)

i )
[
wiD∇e(α)

i ∇e
(β)
i

] = S(t, x, e).

When the weighted abscissae ζ(α)
i := e

(α)
i wi is inserted one obtains

n∑
i=1

{
N∏
α=1

δ(e(α) − e(α)
i )

[
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
]

−
N∑
α=1

δ′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )

[
∂ζ

(α)
i

∂t
+∇ · (uζ(α)

i )−∇ · (D∇ζ(α)
i )

− e
(α)
i

(
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
)]
−

N∑
α=1

δ′′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )

[
wiD

(
e

(α)
i

)2
]

−
N∑
α=1

N∑
β=1,β 6=α

δ′(e(α) − e(α)
i )δ′(e(β) − e(β)

i )
N∏

γ=1,γ 6=α,β
δ(e(γ) − e(γ)

i )
[
wiD∇e(α)

i ∇e
(β)
i

] = S(t, x, e).

Again one introduces source terms for the different expressions, i.e.

∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi) = ξ
(1)
i ,

∂ζ
(α)
i

∂t
+∇ · (uζ(α)

i )−∇ · (D∇ζ(α)
i ) = ξ

(2)
iα ,

wiD
(
e

(α)
i

)2
= ξ

(3)
iα ,

wiD∇e(α)
i ∇e

(β)
i = ξ

(4)
iαβ.

This is a total of n(N2 + N + 1) source terms. But as in the mono variate case only n(N + 1) are
unknown during the calculation. Inserting the source terms into the equation gives

n∑
i=1


N∏
α=1

δ(e(α) − e(α)
i )ξ(1)

i −
N∑
α=1

δ′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )

[
ξ

(2)
iα − e

(α)
i ξ

(1)
i

]

−
N∑
α=1

δ′′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )ξ(3)

iα

−
N∑
α=1

N∑
β=1,β 6=α

δ′(e(α) − e(α)
i )δ′(e(β) − e(β)

i )
N∏

γ=1,γ 6=α,β
δ(e(γ) − e(γ)

i )ξ(4)
iαβ

 = S(t, x, e).
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Now one can perform the moment transform and this results in (summation over i)

∫
Ωe

N∏
α=1

(
e(α)

)lα


N∏
α=1

δ(e(α) − e(α)
i )ξ(1)

i −
N∑
α=1

δ′(e(α) − e(α)
i )

N∏
β=1,
β 6=α

δ(e(β) − e(β)
i )

[
ξ

(2)
iα − e

(α)
i ξ

(1)
i

] de

=
∫
Ωe

N∏
α=1

(
e(α)

)lα N∑
α=1

δ′′(e(α) − e(α)
i )

N∏
β=1,β 6=α

δ(e(β) − e(β)
i )ξ(3)

iα de

+
∫
Ωe

N∏
α=1

(
e(α)

)lα


N∑
α=1

N∑
β=1,
β 6=α

δ′(e(α) − e(α)
i )δ′(e(β) − e(β)

i )
N∏
γ=1,
γ 6=α,β

δ(e(γ) − e(γ)
i )ξ(4)

iαβ + S(t, x, e)

 de.

This simplifies analogous to the one dimensional case

n∑
i=1

ξ(1)
i

N∏
α=1

(
e

(α)
i

)lα
+

N∑
α=1

[
ξ

(2)
iα − e

(α)
i ξ

(1)
i

]
lα

(
e

(α)
i

)lα−1
N∏

β=1,β 6=α

(
e

(β)
i

)lβ
=

n∑
i=1

N∑
α=1

ξ
(3)
iα lα(lα − 1)

(
e

(α)
i

)lα−2
N∏

β=1,β 6=α

(
e

(β)
i

)lβ

+
n∑
i=1


N∑
α=1

N∑
β=1,
β 6=α

ξ
(4)
iαβlαlβ

(
e

(α)
i

)lα−1 (
e

(β)
i

)lβ−1
N∏
γ=1,
γ 6=α,β

(
e

(γ)
i

)lγ
+
∫

Ωe

N∏
α=1

(
e(α)

)lα
S(t, x, e)

 de.

For N = 1 one clearly sees that the mono variate case is included. In the mono variate case one has
to choose 2n moments and therefore the exponents are k = 0, . . . , 2n − 1. This results in the well
known linear system. The multivariate case is very different from that. The system matrices crucially
depend on the choice of moments that is made. According to [10] we will present the bivariate case
for n = 1 and n = 2. It is obvious that the number of given moments should not be smaller than the
number of unknown source terms n(N + 1), i.e. 3 or 6 in the present cases. For N = 2 one obtains

n∑
i=1

{
ξ

(1)
i

(
e

(1)
i

)l1 (
e

(2)
i

)l2
+
[
ξ

(2)
i1 − e

(1)
i ξ

(1)
i

]
l1

(
e

(1)
i

)l1−1 (
e

(2)
i

)l2
+
[
ξ

(2)
i2 − e

(2)
i ξ

(1)
i

]
l2

(
e

(2)
i

)l2−1 (
e

(1)
i

)l1}
=

n∑
i=1

{
ξ

(3)
i1 l1(l1 − 1)

(
e

(1)
i

)l1−2 (
e

(2)
i

)l2
+ ξ

(3)
i2 l2(l2 − 1)

(
e

(2)
i

)l2−2 (
e

(1)
i

)l1
+ 2ξ(4)

i12l1l2

(
e

(1)
i

)l1−1 (
e

(2)
i

)l2−1
+
∫

Ωe

N∏
α=1

(
e(α)

)lα
S(t, x, e) de

}
.

For n = 1 the three mixed moments m00,m01 and m10 are chosen and hence the source term is

S
(1)
00 =

∫
Ωe

S(t, x, e(1), e(2)) de(1) de(2),

S
(1)
01 =

∫
Ωe

e(2)S(t, x, e(1), e(2)) de(1) de(2),

S
(1)
10 =

∫
Ωe

e(1)S(t, x, e(1), e(2)) de(1) de(2).
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Altogether one obtains for the system of unknown source terms

∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi) = S
(1)
00 ,

∂ζ
(1)
i

∂t
+∇ · (uζ1

i )−∇ · (D∇ζ1
i ) = S

(1)
01 ,

∂ζ
(2)
i

∂t
+∇ · (uζ2

i )−∇ · (D∇ζ2
i ) = S

(1)
10 .

For n = 2 the six moments of lowest order m00,m01,m10,m11,m02 and m20 are chosen. The vector
of the unknown variables is in general

ξ =
(
ξ

(1)
1 , . . . , ξ(1)

n , ξ
(2)
11 , . . . , ξ

(2)
1N , ξ

(2)
21 , . . . , ξ

(2)
nN

)T
this implies for the present case

ξ =
(
ξ

(1)
1 , ξ

(1)
2 , ξ

(2)
11 , ξ

(2)
12 , ξ

(2)
21 , ξ

(2)
22

)T
.

Therefore the system matrix is

A :=



1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−
(
e

(1)
1

)2
−
(
e

(1)
2

)2
2e(1)

1 2e(1)
2 0 0

−e(1)
1 e

(2)
1 −e(1)

2 e
(2)
2 e

(2)
1 e

(2)
2 e

(1)
1 e

(1)
2

−
(
e

(2)
1

)2
−
(
e

(2)
2

)2
0 0 2e(2)

1 2e(2)
2


.

It is shown in [10] that this matrix is singular. It can be turned into a regular one by replacing m11

by a higher order moment. For further information we refer to [10]. Again we remark that this result
can be obtained by inserting

ml1,...,lN =
n∑
i=1

wi(t, x)
N∏
α=1

(
e

(α)
i (t, x)

)lα
directly into equation (1.1).
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2.4 Condition (QMOM & DQMOM)

Now that the methods are introduced, we want to focus on the condition number of the latter two
methods (since they are the most common ones). We will refer to a paper by Gautschi [5] and cite
the result that is most interesting for us. As it was shown above, there is an analytical affinity
between the QMOM and the DQMOM and we suggested to change the test function in the original
derivation of the DQMOM in order to improve this method. These two aspects will be underlined
by the following result.
It was explained in 2.2 that the solution to a nonlinear system is needed to obtain the weights and
abscissas. This solution is obtained via a mapping G from the moment space Y to the space of
weights and abscissas X

G : Y → X.

These spaces are 2n dimensional real Euclidean spaces, i.e. X = Y = R2n. For a mapping from one
normed space Y into another X the relative condition number of G in y0 ∈ Y is defined by

κ = lim
δ→0

max
‖h‖=δ

‖y0‖
‖G(y0)‖

‖G(y0 + h)−G(y0)‖
δ

= ‖DyG(y0)‖ ‖y0‖
‖x0‖

, (2.24)

where differentiability (existence of the limit) is assumed and we set x0 = G(y0). To determine G
one looks at the mapping F

F : X → Y,

F (w1, . . . , wn, e1, . . . , en) = Ew = y0 = (m0, . . . ,m2n−1)T (2.25)

with the notation used in (2.8). If there is a unique solution for 2n given moments one can define the
inverse mapping F−1 in a neighbourhood of the exact solution. This unique solution exists, because
of Theorem 3.5 and Theorem 3.6 below and one has G = F−1. Therefore the condition number
(2.24) now changes to

κ = ‖DyG(y0)‖ ‖y0‖
‖x0‖

= ‖(DxF (x0))−1‖ ‖y0‖
‖x0‖

with x0 = (w1, . . . , wn, e1, . . . , en)T . The Jacobian DxF (x0) can be calculated to be

DxF (x0) :=


1 . . . 1 0 . . . 0
e1 . . . en w1 . . . wn
e2

1 . . . e2
n 2e1w1 . . . 2enwn

...
...

...
...

...
...

e2n−1
1 . . . e2n−1

n (2n− 1)e2n−2
1 w1 . . . (2n− 1)e2n−2

n wn

 ∈ R2n×2n. (2.26)
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This is exactly the system matrix (2.22) obtained for the DQMOM. It can be written as a product
of two matrices, i.e.

DxF = EW,

E :=


1 . . . 1 0 . . . 0
e1 . . . en 1 . . . 1
e2

1 . . . e2
n 2e1 . . . 2en

...
...

...
...

...
...

e2n−1
1 . . . e2n−1

n (2n− 1)e2n−2
1 . . . (2n− 1)e2n−2

n

 ∈ R2n×2n, (2.27)

W :=



1 0 . . . 0
0 1

. . .
... 1

...
w1

. . . 0
0 . . . 0 wn


∈ R2n×2n. (2.28)

So the condition number is

κ = ‖W−1E−1‖ ‖y0‖
‖x0‖

. (2.29)

The vector norm is chosen to be the maximum norm ‖x‖ = maxk |xk| and hence the induced matrix
norm is the maximum row sum norm

‖A‖ = max
i

∑
j

|aij |.

In [5] the basic interval is (0, 1) and hence ei ∈ (0, 1), for all i = 1, . . . , n. It is obvious that ‖y0‖ ≥ m0.
Furthermore one can conclude for the weights that if

wi > 0, for all i = 1, . . . , n
n∑
i=1

wi = m0

 ⇒ wi < m0, for all i = 1, . . . , n.

Altogether this fact implies

‖x0‖ = ‖(w1, . . . , wn, e1, . . . , en)‖ = max
i=1,...,n

{wi, ei} < max{m0, 1}.

Since W is a (positive) diagonal matrix one has for the inverse

‖W−1‖ = max
i=1,...,n

{
1,

1
wi

}
≥ max

{
1,

1
m0

}
≥ min

{
1,

1
m0

}
,

and one obtains for the product

‖W−1E−1‖ = max
i=1,...,2n

2n∑
j=1

∣∣∣(W−1E−1
)
ij

∣∣∣
= max

 max
i=1,...,n

2n∑
j=1

∣∣∣(E−1
)
ij

∣∣∣ , max
i=n+1,...,2n

1
wi−n

2n∑
j=1

∣∣∣(E−1
)
ij

∣∣∣


≥ min
{

1,
1
m0

}
‖E−1‖.
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Combining these results with (2.29) leads to

κ = ‖W−1E−1‖ ‖y0‖
‖x0‖

>
m0 min

{
1, 1

m0

}
max{1,m0}

‖E−1‖ = min
{
m0,

1
m0

}
‖E−1‖. (2.30)

It remains to determine a lower bound for ‖E−1‖. In terms of Gautschi E is a confluent Vandermonde
matrix [4] and the following theorem is applied.

Theorem 2.1 (Bounds for the Inverse of a Confluent Vandermonde Matrix)
Let e1, . . . , en be mutually distinct positive numbers and E be the matrix defined in (2.27). Then

u1 ≤ ‖E−1‖ ≤ max(u1, u2), (2.31)

where the maximum row sum norm is used and for l = 1, 2

ul = max
i=1,...,n

b
(l)
i

n∏
j=1;j 6=i

(
1 + ej
ei − ej

)2

, (2.32)

b
(1)
i := 1 + ei, b

(2)
i :=

∣∣∣∣∣∣1 + 2ei
n∑

j=1;j 6=i

1
ei − ej

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
n∑

j=1;j 6=i

1
ei − ej

∣∣∣∣∣∣ .
Proof: Gautschi proved in [4] that

E−1 =
(
A

B

)
,

where A = (aik), B = (bik) are n× 2n-matrices satisfying

2n∑
k=1

|aik| ≤ b
(2)
i

n∏
j=1;j 6=i

(
1 + ej
ei − ej

)2

,

2n∑
k=1

|bik| = b
(1)
i

n∏
j=1;j 6=i

(
1 + ej
ei − ej

)2

. (2.33)

With

α := max
i=1,...,n

2n∑
k=1

|aik|, β := max
i=1,...,n

2n∑
k=1

|bik|,

(2.32) and (2.33) it follows that α ≤ u2 and β = u1. Now, if α ≤ β it follows that ‖E−1‖ = β = u1.
If conversely α > β the result is u1 = β < ‖E−1‖ = α ≤ u2 and the theorem is proved. �
It should be remarked that Gautschi showed that there are cases where these bounds are attained
by certain matrices [4]. Using Theorem 2.1 together with (2.30) one obtains the final result

κ > min
(
m0,

1
m0

)
max
i=1,...,n

(1 + ei)
n∏

j=1;j 6=i

(
1 + ej
ei − ej

)2
 . (2.34)

It is now obvious that if the abscissas lie close to each other the problem is badly conditioned.
Furthermore Gautschi derived in [5] an approximate lower bound, i.e.

κ & min
(
m0,

1
m0

)
exp(3.5n). (2.35)

So the condition number is already very large for small n, e.g. for n = 3 and m0 = 1 one has
κ > 36 315. Therefore an alternative algorithm is needed to avoid a direct calculation of the solution
to the nonlinear system introduced in 2.2.
How can this be applied to the DQMOM ? It was previously shown that the matrix of the linear
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system slightly changes if the weighted abscissae variable is not introduced. This matrix is exactly
the Jacobian (2.26) and hence the linear system has the same bad condition number (2.34). Even if
the weighted abscissae is introduced we obtain by analogous calculations the matrix

A :=


1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
−e2

1 . . . −e2
n 2e1 . . . 2en

...
...

...
...

...
...

−(2n− 2)e2n−1
1 . . . −(2n− 2)e2n−1

n (2n− 1)e2n−2
1 . . . (2n− 1)e2n−2

n

 ∈ R2n×2n.

(2.36)

It can be factorised into two matrices

A = EV,

E :=


1 . . . 1 0 . . . 0
e1 . . . en 1 . . . 1
e2

1 . . . e2
n 2e1 . . . 2en

...
...

...
...

...
...

e2n−1
1 . . . e2n−1

n (2n− 1)e2n−2
1 . . . (2n− 1)e2n−2

n

 ∈ R2n×2n,

V :=



1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
...

. . .
. . .

...
0 0 . . . 0 1 0 . . . . . . 0
−e1 0 . . . 0 1 0 . . . 0

0 −e2 0
. . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . . . . 0 −en 0 . . . . . . 0 1



∈ R2n×2n. (2.37)

Now we just have to exchange the lower bound of W−1 by the lower bound of V−1, i.e.

‖V−1‖ = 1 + max
i=1,...,n

ei > 1.

The condition number therefore changes to

κ > min(m0, 1) max
i=1,...,n

(1 + ei)
n∏

j=1;j 6=i

(
1 + ej
ei − ej

)2

. (2.38)

In the case of m0 < 1 the lower bounds for the condition numbers (2.34) and (2.38) are equal and
in the other case m0 > 1 (2.34) is by a factor 1/m0 smaller than (2.38). Since the linear system is
an important part of the DQMOM one should try to improve the condition of this system.
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3 Algorithms for Gaussian Quadrature

In this chapter we want to introduce four methods that can be used to calculate the weights and
abscissas for the QMOM. The methods can basically be classified in two groups. The first three
algorithms determine the coefficients of a recurrence relation for the orthogonal polynomials cor-
responding to the weight function f(x). We use this notation, because the PSD that is given by
(1.1) will be this weight function. With these coefficients the weights and abscissas can be obtained
by solving an eigenvalue problem. The last method is the classical Newton iteration for a nonlinear
system of equations. Since the algorithms use a lot of quadrature theory, the most important results
will be briefly presented at the beginning.

3.1 Gaussian Quadrature

For the following results we refer to [3], but these can also be found in other numerical standard
literature. The Gaussian quadrature tries to increase the order of the approximation∫ b

a
g(x)f(x) dx ≈

n∑
i=1

g(xi)wi

by not choosing equidistant abscissas. One could also say that one tries to optimise the order of
approximation by letting abscissas and weights be 2n degrees of freedom. At first we want to give a
definition for the weight function.

Definition 3.1 (Weight Function)
A function f is called weight function on [a, b] ⊂ R, if the following conditions are true

(i) f must be measurable and non negative on [a, b].

(ii) All moments

mk =
∫ b

a
xkf(x) dx, k = 0, 1, . . .

exist and are finite.

(iii) For all polynomials s(x) ≥ 0, for all x ∈ [a, b] with∫ b

a
s(x)f(x) dx = 0

follows s(x) ≡ 0.

Remark 3.2
If f ∈ C0([a, b],R+), then the conditions in Definition 3.1 are met. Condition (iii) is equivalent to

0 < m0 =
∫ b

a
f(x) dx.

Since f is positive, one can define an inner product in

L2
f ([a, b]) :=

{
g ∈ L2([a, b]) :

∫ b

a
g(x)2f(x) dx <∞

}
.
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Definition 3.3 (Inner Product)
Let f be a weight function as in Definition 3.1. For two functions g, h ∈ L2

f ([a, b]) the inner product
is defined by

〈g, h〉 :=
∫ b

a
g(x)h(x)f(x) dx.

The following result is important for the algorithms in Sections 3.2, 3.3 and 3.4.

Theorem 3.4 (Unique System of Orthogonal Polynomials)
For j = 0, 1, . . . exist unique polynomials

pj(x) = xj +
j−1∑
l=0

aj−lx
l with 〈pi, pk〉 = 0, i 6= k.

These polynomials satisfy the recursion

p−1(x) := 0
p0(x) := 1 (3.1)

pi+1(x) := (x− βi)pi(x)− α2
i pi−1(x), i = 0, 1, . . . .

One has for the coefficients

βi =
〈xpi, pi〉
〈pi, pi〉

, i ≥ 0, α2
i =

1, i = 0,
〈pi, pi〉
〈pi−1, pi−1〉

, i = 1, . . . .

Note that the uniqueness comes from the requirement that the coefficient of xj in pj is set to be one.
Theorem 3.4 provides uniqueness of the orthogonal polynomials and hence also for coefficients in
the recursion. Furthermore one clearly sees, that the square root αi is well defined since the square
is equal to one or a fraction consisting of positive definite inner products. Furthermore one can
conclude that all polynomials up to degree n − 1 are orthogonal to pn, since they can be written
as a linear combination of the pj , j = 0, 1, . . . , n − 1. The next result is another step in proving
uniqueness of the weights and abscissas in the quadrature rule.

Theorem 3.5 (Uniqueness of the Abscissas)
The roots xi, i = 1, . . . , n, of pn are real, simple and are located in the open interval (a, b).

Now the next Theorem guaranties the uniqueness and positivity of the weights. The positivity was
already used in Section 2.4.

Theorem 3.6 (Uniqueness & Positivity of the Weights)
(1) Let x1, . . . , xn be the roots of pn and w1, . . . , wn the solution of the linear system

n∑
i=1

pk(xi)wi =

{
〈p0, p0〉, if k = 0,
0, if k = 1, 2, . . . , n− 1.

(3.2)

Note that this system is of full rank and there exists a unique solution. Then the weights are
positive, i.e. wi > 0 for i = 1, . . . , n, as well as
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∫ b

a
p(x)f(x) dx =

n∑
i=1

wip(xi) (3.3)

for all polynomials up to degree 2n− 1.

(2) If conversely (3.3) is true for certain real numbers wi, xi, i = 1, . . . , n and all polynomials up
to degree 2n− 1, it follows that the xi are the roots of pn and the wi solve the linear system
(3.2).

(3) There are no real numbers wi, xi, i = 1, . . . , n such that (3.3) is valid for all polynomials up
to degree 2n.

The theory of orthogonal polynomials is connected to tridiagonal matrices. If one writes the coeffi-
cients of the relation (3.1) in the following way in a matrix

An =



β0 α1 0 . . . . . . 0

α1 β1 α2 0 . . .
...

0
. . .

. . .
. . . . . .

...
...

. . .
. . .

. . . 0
0 . . . . . . αn−2 βn−2 αn−1

0 . . . . . . 0 αn−1 βn−1


. (3.4)

then the polynomials satisfy pi(x) ≡ det(Ai−xI). We give the following very important theorem.

Theorem 3.7 (Correspondence to Tridiagonal Matrices)
The roots xi, i = 1, . . . , n, of the n-th orthogonal polynomial pn are the eigenvalues of the matrix
An (3.4). Furthermore it is

wk = (vk1)2, k = 1, . . . , n,

where vk1 denotes the first component of the k-th eigenvector corresponding to the eigenvalue xk

Anvk = xkvk.

The eigenvector is normalised, such that

vTk vk = 〈p0, p0〉 =
∫ b

a
f(x) dx.

We close this rough presentation of results for Gaussian quadrature with a result for the approxi-
mation error.

Theorem 3.8 (Approximation Error)
For a function g ∈ C2n([a, b]) one has∫ b

a
g(x)f(x) dx−

n∑
i=1

wig(xi) =
g(2n)(ξ)

(2n)!
〈pn, pn〉

with a ξ ∈ (a, b).
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3.2 Product-Difference-Algorithm

3.2.1 The Algorithm

The Product-Difference-Algorithm (PDA) was introduced in 1968 by Gordon [7]. We will present this
algorithm and prove its correctness. The algorithm transforms a sequence of moments into coefficients
of a continued fraction. These coefficients can be used to calculate the weights and abscissas via a
corresponding eigenvalue problem. In the first step of the PDA a matrix B = (bij) ∈ R(2n+1)×(2n+1)

is initialised. The elements of the first and second column are set as follows

bi1 = δi1, i = 1, . . . , 2n+ 1,

bi2 = (−1)i−1mi−1, i = 1, . . . , 2n,
b2n+1,2 = 0,

where δij is the Kronecker delta. It is possible to choose m0 = 1 and rescale at the end of the
algorithm. It is important that these moments are the moments of a weight function with compact
support in the positive real axis. This algorithm will fail for example for theGauss Hermite quadrature
on (−∞,+∞). The other components are obtained by applying the following rule

bij =

{
b1,j−1bi+1,j−2 − b1,j−2bi+1,j−1, j = 3, . . . , 2n+ 1, i = 1, . . . , 2n+ 2− j,
0, else.

(3.5)

Altogether the matrix looks like

B =



1 1 b13 . . . . . . b1,2n+1

0 −m1 b23 . . . b2,2n 0
...

...
... . .

.
. .
. ...

... m2n−2 b2n−1,3 0
...

0 −m2n−1 0 0 . . . 0

 .

In the next step the coefficients ci are determined

ci =

m0, i = 1,
b1,i+1

b1ib1,i−1
, i = 2, . . . , 2n.

(3.6)

Now one can construct a symmetric tridiagonal matrix An = (aij) ∈ Rn×n. This is nearly matrix
(3.4) mentioned before. The elements are given by

βi−1 =

{
c2, i = 1,
c2i + c2i−1, i = 2, . . . , n,

αi = −√c2i+1c2i, i = 1, . . . , n− 1. (3.7)

The minus sign of the off-diagonal entries does not affect the eigenvalues, since the characteristic
polynomial only depends on the squares of these elements. The weights and abscissas are now given
by the eigenvectors and corresponding eigenvalues of the matrix (Avi = eivi), see Theorem 3.7.
Specifically the weights are given by wi = m0v

2
i1. Here vi1 denotes the first component of the i-th

eigenvector.
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3.2.2 Proof of Correctness of the PDA

To prove the correctness of the PDA an intensive use of the theory of continued fractions is necessary.
Therefore we will refer to the book [19]. The idea behind this argumentation can be visualised by
the following scheme

Stieltjes Transform of f
(1)↔Continued Fraction

(2)↔ Tridiagonal Matrix
(3)↔ Gaussian Quadrature .

(4) l (3.8)
PDA Recursion (3.5)

The arrows just state that there is a connection between these topics and shall underline the idea
behind the proof. We do not claim that these are strict logical equivalent connections.
For (1) we refer to [19] Chapter XIII and omit the details. It is shown that every suited function
corresponding to a positive definite continued fraction can be expressed as a Stieltjes Transform,
Theorem 66.1 [19]. This is especially true for the approximants of certain positive definite continued
fractions, (67.1) [19]. It is very important to talk about the condition positive definite. In [19] Chapter
IV a continued fraction is said to be positive definite if a certain associated quadratic form is positive
definite. We again omit the explicit details. But in our case this quadratic form is induced by the
matrix An given by (3.7)

Q(ξ) := ξTAnξ, ξ ∈ Rn.

This quadratic form is positive definite if and only if the eigenvalues of this matrix are positive
definite. Therefore the support of the weight function must lie in the positive real axis. This is a
very important restriction to the PDA. The following two algorithms do not need this restriction.
One could state that this is not important for the practical case since the PSD depends for example
on the diameter and therefore the abscissas must be positive. But this is an important weak point
in this algorithm, since the abscissas can become negative due to numerical errors.
Step (2) is a bit easier. It is shown in [7] and in [19] Chapter XII how a continued fraction corresponds
to a tridiagonal matrix.
The third step, (3), was given above in Section 3.1. Theorem 3.7 states that the weights and abscissas
can be obtained via an eigenvalue problem of a tridiagonal matrix. The entries of this matrix are the
coefficients of the recurrence relation (3.1) for the system of orthogonal polynomials corresponding
to the weight function.
In the PDA the coefficients of the matrix need to be calculated. Therefore the coefficients of the
continued fraction are needed. Step (4) gives these coefficients via the recursion (3.5). This step will
be explained in detail now. In the beginning we start with the integral

I(z) :=
∫ ∞

0

f(ξ)
z + ξ

dξ

since it corresponds to a certain type of continued fraction, [19]. Using the series expansion

1
z + ξ

=
2n∑
i=1

(−1)i−1ξi−1

zi
+

ξ2n

z2n(z + ξ)︸ ︷︷ ︸
=:R2n

results in

I(z) =
∫ ∞

0
f(ξ)

(
2n∑
i=1

(−1)i−1ξi−1

zi
+R2n

)
dξ =

2n∑
i=1

(−1)i−1

zi

∫ ∞
0

ξi−1f(ξ) dξ +
∫ ∞

0
R2nf(ξ) dξ

=
2n∑
i=1

(−1)i−1mi−1

zi
+
∫ ∞

0
R2nf(ξ) dξ.
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Here we used Definition 3.1 (ii). The first part of this shall now be expanded into a continued
fraction. This is the first step. For this purpose it must be reformulated into a rational function with
deg(P̃1) = 2n and deg(P̃2) = 2n− 1

C(z) =
2n∑
i=1

(−1)i−1mi−1

zi
=

2n∑
i=1

(−1)i−1mi−1z
2n−i

z2n
=:

P̃2(z)
P̃1(z)

.

In the next step we use a division procedure, i.e.

P̃1(z) = r1(z)P̃2(z) + P̃3(z).

This results in
P̃2(z)
P̃1(z)

=
1

P̃1(z)

P̃2(z)

=
1

r1(z) +
P̃3(z)

P̃2(z)

.

In the first division the results are

r1(z) =
1
m0

z, P̃3(z) =
1
m0

2n−1∑
i=1

(−1)i+1miz
2n−i.

So one only divides the terms of the highest power. The second division gives the following results

P̃2(z) = r2(z)P̃3(z) + P̃4(z),

r2(z) =
m2

0

m1
, P̃4(z) =

2n−2∑
i=1

(−1)i
(
mi −

m0

m1
mi+1

)
z2n−1−i −m2n−1.

The degree is decreased at least by one in every second division and hence this process will terminate.
In general, we define that the coefficients of each polynomial P̃j are denoted as b̃ij , where b̃1j is the
coefficient of the highest power of P̃j . Furthermore we state for these coefficients

b̃ij = 0, for all j = 3, . . . , 2n+ 1, i = 2n+ 3− j, . . . , 2n+ 1.

These polynomials satisfy the following relation by construction

P̃j−1(z) = rj−1(z)P̃j(z) + P̃j+1(z), rj−1(z) =
b̃1,j−1

b̃1,j
zdeg(P̃j−1)−deg(P̃j).

One can explicitly write down the coefficients of P̃j+1

P̃j+1(z) = P̃j−1(z)− rj−1P̃j(z) ⇔ b̃i,j+1 = b̃i+1,j−1 −
b̃1,j−1

b̃1,j
b̃i+1,j . (3.9)

The continued fraction for now looks like

C(z) =
1

r1(z) +
1

r2(z) +
1

r3(z) + . . .

.

In the next step (3.9) shall be modified, therefore we must expand the specific fraction with b̃1j ,
i.e.

rj−1 +
1
P̃j

P̃j+1

= rj−1 +
1

b̃1,jP̃j

b̃1,jP̃j+1︸ ︷︷ ︸=:Pj+1

.
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The recursion for the coefficients of the new polynomials Pj+1 is (3.5)

bi,j+1 = b1,jbi+1,j−1 − b1,j−1bi+1,j .

So we have derived the recursion (3.5) in order to construct the continued fraction. Now we normalise
each rj−1 by setting the coefficient of the highest order to one and obtain

C(z) =

b1,2

b1,1

z +

b1,3

b1,2b1,1

1 +

b1,4

b1,3b1,2
z + . . .

=
c1

z +
c2

1 +
c3

z + . . .

.

From this calculation we obtain the first two formulae used in the PDA, i.e. (3.5) and (3.6). Now
to the second step in this proof. It remains to deduce the eigenvalue problem, namely the tridia-
gonal matrix with the proper coefficients. Therefore one needs to define the even and odd part of
a continued fraction. By [19] the even part is understood as the continued fraction whose sequence
of approximants is the even sequence of approximants of the given continued fraction. Similarly
for the odd part. If the approximants of C(z) would be denoted with C1, C2, C3, . . . the approxi-
mants of Ceven would be C2, C4, . . . and analogously for Codd C1, C3, . . . . We will give the first four
approximants explicitly

C1(z) =
c1

z
, C2(z) =

c1

z + c2

C3(z) =
c1

z +
c2

1 +
c3

z

, C4(z) =
c1

z +
c2

1 +
c3

z + c4

.

It is noted in [19] and also in [7] that the even part is a lower and the odd part an upper bound for
the integral we started with. Furthermore it is shown in [7] that the following calculations can also
be done with the odd part. The result will slightly differ in the coefficients that are needed. So we
continue according to [7]. Taking the even approximants of this continued fraction one can write as
in [7] and [19]

Ceven(z) =
c1

z + c2 −
c2c3

z + c3 + c4 −
c4c5

z + c5 + c6 . . .

.

Now to step (2) of (3.8). It is shown in [19] and [7] that Ceven is the solution x1 to the following
problem 

z + c2 −√c2c3 0 0 0 . . .
−√c2c3 z + c3 + c4 −√c4c5 0 0 . . .

0 −√c4c5 z + c5 + c6 −√c6c7 0 . . .
...

. . .
. . .

. . .
...



x1

x2

x3

...

 =


c1

0
0
...

 .

This equation can be written as
(zId+An)x = c1e1
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and therefore the solution is
x = c1(zId+An)−1e1.

We will give an example for n = 2. The system is(
z + c2 −√c2c3

−√c2c3 z + c3 + c4

)(
x1

x2

)
=
(
c1

0

)
.

Therefore one has the solution(
x1

x2

)
=

1
(z + c2)(z + c3 + c4)− c2c3

(
z + c3 + c4

√
c2c3√

c2c3 z + c2

)(
c1

0

)
.

So one obtains for x1

x1 =
c1(z + c3 + c4)

(z + c2)(z + c3 + c4)− c2c3
=

c1

z + c2 −
c2c3

z + c3 + c4

and this is the fraction Ceven given above for n = 2. Since An is a symmetric tridiagonal matrix
it can be transformed to a diagonal matrix Ξ by an orthogonal transformation matrix V and one
gets

x = c1V V
−1(zId+An)−1V V −1e1

= c1V (V −1(zId+An)V )−1V −1e1

= c1V (zId+ Ξ)−1V −1e1,

x1 = c1

n∑
i=1

1
z + ei

V 2
1i.

In the last step we used the fact that V is an orthogonal transformation and denoted the eigenvalues
of Ξ with ei, i = 1, . . . , n. Hence we have two representations for x1 = Ceven and therefore step (3)
of (3.8) is verified

I(z) =
∫ ∞

0

f(ξ)
z + ξ

dξ ≈
n∑
i=1

c1V
2

1i

z + ei
.

This is the n point Gaussian quadrature with abscissas ei and weights

wi = c1V
2

1i = m0V
2

1i.

It is important to note that these quantities do not depend on z. Now one can write more general
with Section 3.1 ∫ ∞

0
g(ξ)f(ξ) dξ ≈

n∑
i=1

wig(ei).

The PDA needs 2n2 − 1 summations, 4n2 + n − 2 multiplications, 2n − 1 divisions, n − 1 square
roots and the solution of a n-dimensional eigenvalue problem.
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3.3 Long Quotient-Modified Difference Algorithm

3.3.1 The Algorithm

The major part of the work with the QMOM used the PDA since it was suggested by McGraw. In
the process of improving this method one should look for other possible algorithms which provide
useful alternative features. The first algorithm which is discussed for this reason is the Long Quotient
- Modified Difference Algorithm (LQMD - Algorithm). It was first discussed in 1972 by Sack and
Donovan in [15]. There are two advantages of this method. The first one is that it can be directly
applied to so-called modified moments which can increase the numerical stability. Second, when used
for standard moments, i.e. powers of the internal variable ek, the number of operations is decreased.
Furthermore it can also be applied to quadratures with negative abscissas. We will present the
complete algorithm and the special case, when applied to standard moments.
Consider the real weight function f(x) and its modified moments

νl =
∫ b

a
Pl(x)f(x) dx, l = 0, 1, . . . , (3.10)

where Pl are polynomials of degree l satisfying a three term recurrence relation with known coeffi-
cients

xPl(x) = alPl+1(x) + blPl(x) + clPl−1, l = 0, 1, . . . . (3.11)

Again the tridiagonal matrix (3.4) is established from which the weights and abscissas can be cal-
culated. Analogous to the matrix B in the PDA, a matrix B ∈ R(n+1)×2n is derived. There are two
rows given initially

b1,j := s−1,j = 0, b2,j := s0,j =
νj−1

ν0
, j = 1, . . . , 2n.

These can be used to calculate three coefficients

τi = ai−1, i = 0, . . . , n− 2
σi = aisi,i+1 + bi − ai−1si−1,i, i = 0, . . . , n− 1 (3.12)
ρi = (bi+1 − σi)si,i+1 + ai+1si,i+2 − ai−1si−1,i+1 + ci+1, i = 0, . . . , n− 2.

Then the new row can be determined by

si+1,i+1 = 1, si+1,j = ρ−1
i [(bj − σi)si,j + ajsi,j+1 + cjsi,j−1 − τisi−1,j ],

i = 0, . . . , n− 2, j = i+ 2, . . . , 2n− 2− i (3.13)

and all remaining values are set to zero. The fact that we set si+1,i+1 equal to one in (3.13) has
purely computational reasons, since the coefficient ρi is chosen such that the result of the formula
for si+1,j , j = i+ 1, would also be one. This can be seen in the proof below. With the new row one
calculates new coefficients via (3.12) and a new row via (3.13) until B

B =


0 . . . 0
1 ν1

ν0
. . . ν2n−1

ν0
0 1 s12 . . . s1,2n−2 0
...

. . .
. . .

. . . . .
.

. .
. ...

0 . . . 0 1 sn−1,n 0 . . . 0
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is fully determined. We just introduced the matrix B to compare it with the matrix used in the
PDA.
The n× n - tridiagonal matrix (3.4) has the elements

βi = σi, i = 0, . . . , n− 1

α2
i+1 = ai−1ρi = ρiτi+1, i = 0, . . . , n− 2. (3.14)

Now again, as in the PDA, the weights and abscissas can be obtained from the corresponding
eigenvalues and eigenvectors.
For the standard moments the recurrence relation (3.11) has the coefficients al = 1, bl = cl = 0 and
simplifies to

Pl+1(x) = xPl(x).

Hence the formulae (3.12) and (3.13) simplify to

τi = 1,
σi = si,i+1 − si−1,i, i = 0, . . . , n− 1
ρi = −σisi,i+1 + si,i+2 − si−1,i+1, i = 0, . . . , n− 2

si+1,j = ρ−1
i [−σisi,j + si,j+1 − si−1,j ], i = 0, . . . , n− 2

j = i+ 2, . . . , 2n− 2− i.

and the matrix elements are

βi = σi, i = 0, . . . , n− 1, α2
i+1 = ρi, i = 0, . . . , n− 2.
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3.3.2 Proof of Correctness of the LQMD

To derive this procedure, Sack and Donovan ([15]) made use of the set of orthogonal polynomials as-
sociated to the weight function f(x). These polynomials will be denoted with Ti(x), i = −1, 0, 1, . . .
and satisfy

xTi(x) = αiTi+1(x) + βiTi(x) + γiTi−1(x), i = 0, 1, . . . , (3.15)

0 =
∫ b

a
Ti(x)Tj(x)f(x) dx, for i 6= j (3.16)

with T−1(x) := 0 and T0(x) := 1. Since these polynomials can be scaled with an arbitrary multipli-
cative constant it is possible to obtain αi = γi+1 and the polynomials therefore satisfy

xTi(x) = αiTi+1(x) + βiTi(x) + αi−1Ti−1(x).

The following proof reformulates the eigenvalue problem for the matrix An (3.4) and derives the
recursion formula in terms of the modified moments. Essentially a recurrence relation analogous to
(3.11) for suited polynomials is established and it is shown that this is equivalent to the relation of
the polynomials Ti(x). Consider the eigenvalue problem

χn(λ) = det(An − λId) = 0. (3.17)

The elements (i, j) of An − λId can be written as∫ b

a
Ti(x)Tj(x)(x− λ)f(x) dx,

this follows from the recursion (3.15) and property (3.16). Now each Ti can be written as a linear
combination of the given polynomials Pl, l ≤ i. Hence we find a infinite dimensional lower triangular
constant matrix Q with non-zero elements such that

T = QP.

Here T and P denote the coefficient vector of the corresponding set of polynomials, i.e.

Ti(x) =
i∑

j=1

tjix
j−1, i = 1, 2, . . . ,

T = (t11, t12, t22, t13, t23, . . . )T ,

Pi(x) =
i∑

j=1

pjix
j−1, i = 1, 2, . . . ,

P = (p11, p12, p22, p13, p23, . . . )T .

This equation still holds for a finite n. Now the eigenvalue problem (3.17) can be reformulated as

det
[
Qn(Ξn − λNn)QTn

]
= 0. (3.18)

The elements of Ξn and Nn are

ξij =
∫ b

a
Pi(x)Pj(x)xf(x) dx,

νij =
∫ b

a
Pi(x)Pj(x)f(x) dx,

 i, j = 1, 2, . . . , n. (3.19)
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We will exemplarily calculate the element (QnΞnQTn )ij

(QnΞnQTn )ij =
j∑
l=1

i∑
k=1

qikξklq
T
lj

=
j∑
l=1

i∑
k=1

qikξklqjl =
j∑
l=1

i∑
k=1

qik

∫ b

a
Pk(x)Pl(x)xf(x) dx qjl

=
j∑
l=1

i∑
k=1

∫ b

a

(
k∑
r=1

qikprkx
j−1

)(
l∑

r=1

qjlprlx
j−1

)
xf(x) dx

=
∫ b

a
Ti(x)Tj(x)xf(x) dx.

Since Qn is non-singular (3.18) implies

det[Ξn − λNn] = det[N−1
n Ξn − λId] = 0.

Hence the eigenvalues of An are equal to those of the asymmetric matrix N−1
n Ξn. Why is this matrix

asymmetric? Let X∞ denote the infinite tridiagonal matrix corresponding to (3.11)

X∞ =


b1 c2 0 . . . . . . 0

a1 b2 c3 0 . . .
...

0 a2 b3 c4

...

0
. . .

 .

Now (3.11) and (3.19) imply

Ξ∞ = N∞X∞ = XT
∞N∞ (3.20)

and hence N−1
n Ξn is asymmetric. Again we will give a precise calculation

(N∞X∞)ij =
n∑
l=1

νilxlj

= aj

∫ b

a
Pi(x)Pj+1(x)f(x) dx+ bj

∫ b

a
Pi(x)Pj(x)f(x) dx+ cj

∫ b

a
Pi(x)Pj−1(x)f(x) dx

=
∫ b

a
Pi(x)[ajPj+1(x) + bjPj(x) + cjPj−1(x)]f(x) dx

=
∫ b

a
Pi(x)Pj(x)xf(x) dx = ξij .

If the matrices are truncated for a finite n, the equation (3.20) is no longer true, since the element
an−1 is missing in Xn. Hence (3.20) is replaced by

Ξn = NnXn +Rn,

N−1
n Ξn = Xn + Yn.

Rn and Yn are matrices where only the last column is different form zero. The explicit elements of
Rn are an−1νin. Therefore the last column of Yn, denoted by y(n), is the solution to the following
equation

r(n) = Nny(n). (3.21)
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So the eigenvalues of An are equal to those of Xn + Yn but the asymmetric form makes it expensive
to diagonalise. Instead the elements of An are determined via recursion by the elements of Xn + Yn.
For this purpose the trace is used, since it is an invariant quantity

Tr(An) =
n∑
k=1

βk = Tr(Xn + Yn) =
n∑
k=1

bk + y(n)
n ,

Tr(A2
n) =

n∑
k=1

β2
k + 2

n−1∑
k=1

α2
k (3.22)

=
n−1∑
k=1

b2k +
(
bn + y(n)

n

)2
+ 2

n−1∑
k=1

akck+1 + 2an−1y
(n)
n−1.

Now if the βk and α2
k−1 are known for all k < n, βn and α2

n−1 can be obtained if y(n)
n and y(n)

n−1 are
known. By subtraction one can directly compute

βi = Tr(Ai)− Tr(Ai−1) = bi + y
(i)
i − y

(i−1)
i−1 , (3.23)

α2
i =

1
2
[
Tr(A2

i+1)− Tr(A2
i )− β2

i+1

]
(3.24)

= ai

(
ci+1 + y

(i+1)
i

)
+ y

(i+1)
i

(
bi+1 − bi + y

(i+1)
i+1 − y

(i)
i

)
− ai−1y

(i)
i−1.

Recall equation (3.21), y(n) still remains a solution when this equation is multiplied with an arbitrary
non-singular square matrix Mn

Mnr(n) = MnNny(n) = Sny(n). (3.25)

The multiplication means that multiple rows of Nn are added together. The elements sij of Sn are
therefore given as integrals

sij =
∫ b

a
Si(x)Pj(x)f(x) dx, (3.26)

where the functions Si(x) are polynomials of degree i (non-zero coefficient of xi). Now Sack and
Donovan ([15]) chose Sn to be the truncated form of an infinite upper triangular matrix with diagonal
elements equal to unity

sij = 0, j < i, sii = 1. (3.27)

This implies, together with (3.26), that the polynomials Si(x) are orthogonal to all polynomials
Pj(x) with degree less than i. Since the polynomials Tj(x) are linear combinations of all polynomials
Pl(x) up to degree j < i, these polynomials Si(x) are orthogonal to the Tj(x) and hence they must
be a constant multiple of Ti(x). The elements of Mnr(n) are given by an−1sin, i = 1, . . . , n. The
Si(x) also satisfy a recurrence relation (since they are constant multiples) analogous to (3.15)

xSi(x) = ρiSi+1(x) + σiSi(x) + τiSi−1(x)

⇔ Si+1(x) =
1
ρi

[(x− σi)Si(x)− τiSi−1(x)]. (3.28)
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Taking (3.11) and (3.26) into account, equation (3.28) implies (3.13)

si+1,j =
∫ b

a
Si+1(x)Pj(x)f(x) dx

=
∫ b

a

1
ρi

[(x− σi)Si(x)− τiSi−1(x)]Pj(x)f(x) dx

=
1
ρi

[∫ b

a
xSi(x)Pj(x)f(x) dx− σisij − τisi−1,j

]
=

1
ρi

[∫ b

a
Si(x) (ajPj+1(x) + bjPj(x) + cjPj−1(x)) f(x) dx− σisij − τisi−1,j

]
=

1
ρi

[(bj − σi)sij + ajsi,j+1 + cjsi,j−1 − τisi−1,j ] , i = 2, . . . , n.

Now the coefficients ρi, σi and τi have to be determined in a way that the shape of Sn given in (3.27)
stays true, under the assumption that the previous row has the desired form. These conditions lead
to (3.12)

si+1,i−1 = 0 ⇒ τi = ai−1,

si+1,i = 0 ⇒ σi = aisi,i+1 + bi − ai−1si−1,i,

si+1,i+1 = 1 ⇒ ρi = (bi+1 − σi)si,i+1 + ai+1si,i+2 − ai−1si−1,i+1 + ci+1,

 i = 0, . . . , n− 2.

As already stated two initial rows are needed, these are given by

s−1,j = 0, s0,j =
νj−1

ν0
j = 1, . . . , 2n.

It follows from (3.12) that the maximum value of j for which the elements sij are given through
(3.13) is decreased by one in each step. That the moments must be known up to ν2n−1 is due to the
fact that y(n)

n−1 and hence sn−1,n must be known for the calculation. Now the two values of the Yn
that are needed can be expressed in terms of elements of Sn in view of (3.22), (3.25) and (3.27)

y
(n)
n−1 = an−1sn−1,n,

y
(n)
n−2 = an−1(sn−2,n − sn−2,n−1sn−1,n).

In combination with (3.23),(3.24) and (3.12) this finally results in (3.14)

βi = σi, i = 1, . . . , n

α2
i = aiρi = ρiτi+1, i = 1, . . . , n− 1.

Hence the equivalence of (3.15) and (3.28) is shown.
The unchanged case of the LQMD-Algorithm needs 4(n − 1)2 + 3(n − 1) + 2n multiplications,
(n − 1)2 + 2n − 1 divisions, 4(n − 1)2 + 6n − 4 summations and n − 1 square roots. The special
case for the classical moments needs (n− 1)2 + (n− 1) multiplications, (n− 1)2 + 2n− 1 divisions,
2(n−1)2 +3(n−1)+1 summations and n−1 square roots. Both also need to solve a n×n-eigenvalue
problem.
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3.4 Golub-Welsch Algorithm

3.4.1 The Algorithm

Golub and Welsch proposed another algorithm in [6]. This algorithm needs 2n + 1 moments and
uses the Cholesky decomposition of a certain moment matrix M . To calculate the elements of the
tridiagonal matrix one has to compute the elements of the Cholesky decomposition. With Mij =
mi+j−2 for i, j = 1, . . . , n+ 1 these are given by

rii =

(
Mii −

i−1∑
k=1

r2
ki

) 1
2

, i = 1, . . . , n+ 1,

rij =
Mij −

i−1∑
k=1

rkirkj

rii
, i < j, j = 1, . . . , n+ 1.

Given these elements one can compute the βi and αi via

βj−1 =
rj,j+1

rj,j
− rj−1,j

rj−1,j−1
, j = 1, . . . , n,

αj =
rj+1,j+1

rjj
, j = 1, . . . , n− 1,

with r00 = 1 and r01 = 0.

3.4.2 Proof of Correctness of the GWA

As usual the moments are defined by

mk =
∫ b

a
xkf(x) dx, k = 0, 1, . . . , 2n.

Now the matrix M is defined via

M =
[∫ b

a
xi+j−2f(x) dx

]
i,j=1,...,n+1

,

M =



m0 m1 m2 . . . mn

m1 m2 . .
.

m2 . .
. ...

... . .
.

mn . . . m2n


. (3.29)

This is matrix is called Hankel matrix and it is also positive definite. In practice the moments are
first obtained via the initial data and then from the solution of the next time step. It is known that a
positive definite matrix is invertible and all principle minors are also positive definite. The Cholesky
decomposition is based on the following theorem, again we refer to Stoer [3].

Theorem 3.9 (Cholesky Decomposition)
For every real positive m × m matrix M exists a unique real upper triangular m × m matrix R,
rik = 0 for k < i, with rii > 0, i = 1, 2, . . . ,m, such that M = RTR.
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Let M = RTR be the Cholesky decomposition of M with

rii =

(
Mii −

i−1∑
k=1

r2
ki

) 1
2

, i = 1, . . . , n+ 1,

rij =
Mij −

i−1∑
k=1

rkirkj

rii
, i < j, j = 1, . . . , n+ 1. (3.30)

Since R is an upper triangular matrix, we can write for the inverse

R−1 =


s11 s12 . . . s1,n+1

0 s22 . . . s2,n+1

...
. . .

...
0 . . . 0 sn+1,n+1

 .

Now Golub and Welsch state that the polynomials

pj−1(x) =
j∑
i=1

sijx
i−1, j = 1, . . . , n+ 1

form an orthonormal system and hence satisfy the three term recurrence relation

xpj−1(x) = αj−1pj−2(x) + βj−1pj−1(x) + αjpj(x), j = 1, . . . , n,

with p−1(x) = 0 and p0(x) = 1, [6]. Comparing the coefficients of the two highest powers xj and
xj−1 on both sides of this identity results in

sjj = αjsj+1,j+1, sj−1,j = βjsjj + αjsj,j+1, j = 1, . . . , n

and so

αj =
sjj

sj+1,j+1
, βj =

sj−1,j

sjj
− sj,j+1

sj+1,j+1
, j = 1, . . . , n.

Now, with

R =


r11 r12 . . . r1,n+1

0 r22 . . . r2,n+1

...
. . .

...
0 . . . 0 rn+1,n+1


a straightforward computation shows

sjj =
1
rjj

, sj,j+1 =
−rj,j+1

rjjrj+1,j+1
, j = 1, . . . , n.

Inserting this in the equation for the coefficients of the recurrence relation gives

βj−1 =
rj,j+1

rj,j
− rj−1,j

rj−1,j−1
, j = 1, . . . , n,

αj =
rj+1,j+1

rjj
, j = 1, . . . , n− 1,

with r00 = 1 and r01 = 0. These are again exactly the coefficients for the tridiagonal matrix (3.4).
It clearly seems that there are some connections to the formula used in the PDA and this is no
surprise, since the coefficients of the continued fraction can be determined via certain determinants
of Hankel matrices, cf. [7] and [19].
The algorithm proposed by Golub and Welsch needs n(n+ 1)/2 + (n3 − n)/6 multiplications, 3n−
1+n(n+1)/2 divisions, n(n+1)/2+(n3−n)/6+n summations and n+1 square roots. Furthermore
the solution to the eigenvalue problem is needed.
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3.5 Newton’s Method

The last alternative algorithm which should be presented here is Newton’s method. For a given
function F : Rm → Rm it calculates the root x∗ of F (x∗) = 0. Therefore F must be differentiable in
an appropriate neighbourhood of x∗ and the Jacobian of F must not be singular. By iterating

x(k+1) = x(k) −DF
(
x(k)

)−1
· F
(
x(k)

)
, (3.31)

the root can the be obtained with the desired accuracy. With DF ∈ Rm×m we denote the Jacobian.
In our case we have m = 2n and F : R2n → R2n is given by

F (x1, . . . , xn, xn+1, . . . , x2n) :=



n∑
i=1

xi −m0

n∑
i=1

xn+ixi −m1

...
n∑
i=1

x2n−1
n+i xi −m2n−1


.

Therefore the Jacobian is

DF (x) :=


1 . . . 1 0 . . . 0

xn+1 . . . x2n x1 . . . xn
x2
n+1 . . . x2

2n 2xn+1x1 . . . 2x2nxn
...

...
...

...

x2n−1
n+1 . . . x2n−1

2n (2n− 1)x2n−2
n+1 x1 . . . (2n− 1)x2n−2

2n xn

 .

In view of (2.7) we have for x∗ = (w1, . . . , wn, e1, . . . , en)

F (x∗) = 0,

DF (x∗) :=


1 . . . 1 0 . . . 0
e1 . . . en w1 . . . wn
e2

1 . . . e2
n 2e1w1 . . . 2enwn

...
...

...
...

e2n−1
1 . . . e2n−1

n (2n− 1)e2n−2
1 w1 . . . (2n− 1)e2n−2

n wn

 .

This matrix is exactly the matrix (2.26) we obtained in Section 2.4 in order to investigate the
condition number of the QMOM. So we cannot expect the condition number to be too good. In
Section 2.4 we investigated the condition number of the solution to the nonlinear problem (2.8)
Ew = µ. Now we focus on Ew− µ = 0. The matrix (2.26) is clearly non-singular if ei 6= ej for i 6= j
and wi 6= 0 for all i is true. In practice one is interested in the question of convergence. We therefore
refer to [3] (Theorem 5.3.4, p. 299) for the following result.

Theorem 3.10 (Newton-Kantorovich)
Let F : Ω → Rn be continuous differentiable on the convex set Ω ⊆ Rn with the Jacobian matrix
DF (x0), non-singular in x0. Furthermore there are positive constants α, β and γ such that the
following conditions are met

(a) ‖DF (x)−DF (y)‖ ≤ γ‖x− y‖ for all x, y ∈ Ω,

(b) ‖DF (x0)−1‖ ≤ β,
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(c) ‖DF (x0)−1F (x0)‖ ≤ α.

With the constants

h := αβγ, r1,2 := α
1∓
√

1− 2h
h

the following is true:
If h ≤ 1/2 and Br1(x0) ⊂ Ω, F (x) has exactly one root x∗ in Ω∩Br2(x0), then the sequence (xk)k∈N,

x(k+1) = x(k) −DF
(
x(k)

)−1
· F
(
x(k)

)
, k = 0, 1, . . . ,

stays in Br1(x0) and converges to x∗.

Now we want to apply this theorem to our case. In the following calculations we scale the quantities
such that m0 = 1 and the basic interval for the abscissas is (0, 1). Hence we have Ω = (0, 1)2n.
Finding a suited x0 is very difficult but we can state that in view of the Jacobian the components
x

(i)
0 are non-zero for i = 1, . . . , n and mutually distinct for i = n+ 1, . . . , 2n. Therefore we can apply

Theorem 2.1 and obtain

‖DF (x0)−1‖ ≤ max(u1, u2) =: β

ul = max
i=1,...,n

bli

n∏
j=1;j 6=i

(
1 + x

(j)
0

x
(i)
0 − x

(j)
0

)2

,

b
(1)
i := 1 + x

(i)
0 ,

b
(2)
i :=

∣∣∣∣∣∣1 + 2x(i)
0

n∑
j=1;j 6=i

1

x
(i)
0 − x

(j)
0

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
n∑

j=1;j 6=i

1

x
(i)
0 − x

(j)
0

∣∣∣∣∣∣ .
In the next step a Lipschitz constant γ shall be derived, again we are using the row sum norm
according to Section 2.4

‖DF (x)−DF (y)‖ = max
i=1,...,2n

n∑
j=1

{
|xi−1
n+j − y

i−1
n+j |+ (i− 1)|xi−2

n+jxj − y
i−2
n+jyj |

}

≤ max
i=1,...,2n

n∑
j=1

{
sup
ξ∈(0,1)

(i− 1)ξi−2|xn+j − yn+j |+ (i− 1)|xi−2
n+jxj − y

i−2
n+jxj + yi−2

n+jxj − y
i−2
n+jyj |

}

≤ max
i=1,...,2n

(i− 1)
n∑
j=1

{
sup
ξ∈(0,1)

ξi−2|xn+j − yn+j |+ |xi−2
n+jxj − y

i−2
n+jxj |+ |y

i−2
n+jxj − y

i−2
n+jyj |

}

≤ max
i=1,...,2n

(i− 1)
n∑
j=1

{
sup
ξ∈(0,1)

ξi−2|xn+j − yn+j |+ sup
ξ∈(0,1)

(i− 2)ξi−3|xj ||xn+j − yn+j |+ |yi−2
n+j ||xj − yj |

}

= max
i=1,...,2n

(i− 1)
n∑
j=1

{
|yi−2
n+j ||xj − yj |+

(
sup
ξ∈(0,1)

ξi−2 + sup
ξ∈(0,1)

(i− 2)ξi−3|xj |

)
|xn+j − yn+j |

}

≤ max
i=2,...,2n

(i− 1)
n∑
j=1

{|xj − yj |+ (i− 1)|xn+j − yn+j |}

≤ max
i=2,...,2n

n(i− 1)i max
j=1,...,2n

|xj − yj | = 2n2(2n− 1) max
j=1,...,2n

|xj − yj | = γ‖x− y‖.

Here we have used the Lipschitz inequality for differentiable functions

|g(x)− g(y)| ≤ sup
ξ∈(a,b)

|g′(ξ)||x− y|
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to estimate the terms |xi−1
n+j − y

i−1
n+j | and |x

i−2
n+j − y

i−2
n+j |.

Now Theorem 3.10 states that h should be smaller than 1/2, that leads to

α ≤ 1
2βγ

.

Since Gautschi derived an approximate lower bound (2.35) we conclude

α ≤ 1
2 exp(3.5n)2n2(2n− 1)

.

Here we have assumed that m0 is normalised to one.
Considering (c) we have

‖DF (x0)−1F (x0)‖ ≤ ‖DF (x0)−1‖‖F (x0)‖ ≤ β‖F (x0)‖
!
≤ α

and hence

‖F (x0)‖ ≤ α

β
≤ 1

2β2γ
≤ 1

2 exp(7n)2n2(2n− 1)
.

That means for n = 1 that ‖F (x0)‖ ≤ 0.227970 · 10−3 and for n = 2 already ‖F (x0)‖ ≤ 0.000017 ·
10−3. So the starting value must be very close to the actual zero to guarantee convergence of Newton’s
method and therefore this approach is not recommended from a theoretical point of view. For this
reason, it is not included into the numerical studies in Section 5.
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4 Improvements to the DQMOM

We have shown in Section 2.3 that the one chance to improve the bad condition (2.38) of the
DQMOM seems to be the change of the test functions. We will still need the weights and abscissas
but we will be able to improve the condition of the linear system that is needed for the source terms,
cf. (2.14).

4.1 Approach With Universal Test Functions

We will go the same way as Marchisio and Fox did, just with universal test function ϕk. For now we
will leave them unspecified and just assume enough differentiability for our needs. We again start
with the following equation∫

Ωe

{
∂wi(t, x)δ(e− ei(t, x))

∂t
+∇ · (u(t, x)wi(t, x)δ(e− ei(t, x)))

−∇ · (D(t, x)∇(wi(t, x)δ(e− ei(t, x))))
}
ϕk(e) de

=
∫

Ωe

S(t, x, e)ϕk(e) de. (4.1)

Now we rearrange the left-hand side, at first we differentiate∫
Ωe

{
δ(e− ei)

∂wi
∂t
− wi

∂ei
∂t

∂δ(e− ei)
∂e

+ δ(e− ei)∇ · (uwi)− wiu · ∇ei
∂δ(e− ei)

∂e

− δ(e− ei)∇ · (D∇wi) +D∇wi · ∇ei
∂δ(e− ei)

∂e
+∇ · (Dwi∇ei)

−Dwi(∇ei)2∂
2δ(e− ei)
∂e2

}
ϕk(e) de =

∫
Ωe

S(t, x, e)ϕk(e) de.

By sorting the terms we obtain∫
Ωe

{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}
δ(e− ei)ϕk(e) de

−
∫

Ωe

{
wi
∂ei
∂t

+ wiu · ∇ei − (D∇wi · ∇ei +∇ · (Dwi∇ei))
}
∂δ(e− ei)

∂e
ϕk(e) de

−
∫

Ωe

{
Dwi(∇ei)2

} ∂2δ(e− ei)
∂e2

ϕk(e) de

=
∫

Ωe

S(t, x, e)ϕk(e) de.

The PDEs including the wi and ei are extracted from the integrals. Then we integrate by parts and
obtain

n∑
i=1

[{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}
ϕk(ei)

+
{
wi
∂ei
∂t

+ wiu · ∇ei − (D∇wi · ∇ei +∇ · (Dwi∇ei))
}
ϕ′k(ei)

−Dwi(∇ei)2ϕ′′k(ei)
]

=
∫

Ωe

S(t, x, e)ϕk(e) de.
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As we have seen in Section 2.3.2 and Section 2.4, the variable ζi := wiei makes no difference,
analytically and numerically. So again we introduce this variable since it makes the equation more
convenient to read and work with. We obtain

n∑
i=1

[{
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
}
ϕk(ei)

+
{
∂ζi
∂t

+∇ · (uζi)−∇ · (D∇ζi)− ei
(
∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi)
)}

ϕ′k(ei)

−Dwi(∇ei)2ϕ′′k(ei)
]

=
∫

Ωe

S(t, x, e)ϕk(e) de.

As in (2.12) we set

∂wi
∂t

+∇ · (uwi)−∇ · (D∇wi) = ξ
(1)
i ,

∂ζi
∂t

+∇ · (uζi)−∇ · (D∇ζi) = ξ
(2)
i ,

Dwi(∇ei)2 = ξ
(3)
i .

The following equation is obtained

n∑
i=1

{
ξ

(1)
i ϕk(ei) + (ξ(2)

i − eiξ
(1)
i )ϕ′k(ei)− ξ

(3)
i ϕ′′k(ei)

)
=
∫

Ωe

S(t, x, e)ϕk(e) de

and by rearranging

n∑
i=1

{
ξ

(1)
i (ϕk(ei)− eiϕ′k(ei)) + ξ

(2)
i ϕ′k(ei)

}
=

n∑
i=1

ξ
(3)
i ϕ′′k(ei) +

∫
Ωe

S(t, x, e)ϕk(e) de.

Now with 2n suited test functions ϕ1, . . . , ϕ2n we obtain analogous to (2.15), (2.16) and (2.17) the
matrices

M1 :=


ϕ1(e1)− e1ϕ

′
1(e1) . . . ϕ1(en)− enϕ′1(en)

ϕ2(e1)− e1ϕ
′
2(e1) . . . ϕ2(en)− enϕ′2(en)

... . . .
...

ϕ2n(e1)− e1ϕ
′
2n(e1) . . . ϕ2n(en)− enϕ′2n(en)

 , (4.2)

M2 :=


ϕ′1(e1) . . . ϕ′1(en)
ϕ′2(e1) . . . ϕ′2(en)
... . . .

...
ϕ′2n(e1) . . . ϕ′2n(en)

 , M3 :=


ϕ′′1(e1) . . . ϕ′′1(en)
ϕ′′2(e1) . . . ϕ′′2(en)
... . . .

...
ϕ′′2n(e1) . . . ϕ′′2n(en)

 . (4.3)

Therefore we can write the system compact as follows

Mξ = M3ξ
(3) + S̄︸ ︷︷ ︸
=:d

.

Here we set M = [M1,M2] and defined ξ, ξ3 and S̄ analogous to (2.18). If one would choose ϕk(e) =
ek−1, one would obtain the standard DQMOM. Now the aim is to choose the test functions such

48



4.2 Finding Test Functions Ferdinand Thein

that the matrix M suffice some desired conditions (full rank etc.). If one takes a closer look at M ,
one can see that it can be written as a product of two matrices

P :=

 ϕ1(e1) . . . ϕ1(en) ϕ′1(e1) . . . ϕ′1(en)
...

...
...

...
ϕ2n(e1) . . . ϕ2n(en) ϕ′2n(e1) . . . ϕ′2n(en)

 ∈ R2n×2n (4.4)

and

Q :=



1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
...

. . .
. . .

...
0 0 . . . 0 1 0 . . . . . . 0
−e1 0 . . . 0 1 0 . . . 0

0 −e2 0
. . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . . . . 0 −en 0 . . . . . . 0 1



∈ R2n×2n. (4.5)

Therefore the determinant is
detM = detP detQ︸ ︷︷ ︸

=1

= detP

and for the condition number (we claim detM 6= 0)

κ(M) = ‖M‖‖M−1‖ = ‖P ·Q‖‖Q−1 · P−1‖
≤ ‖P‖‖Q‖‖Q−1‖‖P−1‖ = κ(P )κ(Q).

If one would choose ‖.‖ = ‖.‖∞, the result is

κ(M) ≤ κ(P )
(

max
i=1,...,n

{|ei|+ 1}
)2

.

4.2 Finding Test Functions

Since the test functions ϕ1, . . . , ϕ2n are not specified yet, one could claim any desired condition
number for M , e.g. if P = Q−1 then cond(M) = 1. However the choice P = Q−1 is infeasible.
For this reason one has to prescribe the values ϕ(j)

k (ei) for j = 0, 1, k = 1, . . . , 2n and i = 1, . . . , n.
But it is important to notice that the test functions also occur on the right hand side of the system.
The idea is now to look at this as an interpolation problem. Since we prescribe values for the function
and its first derivative we will use the Hermite interpolation. An advantage of this interpolation is
that the interpolation polynomials can be written down explicitly and one does not have to solve
another linear system. So now we have to formulate and solve an interpolation problem for each test
function ϕk. We have n real numbers e1 < · · · < en and 2n prescribed values

ϕ
(j)
k (ei) =

{
δki, j = 0,
δk,i+n, j = 1.

(4.6)
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That means we go for the best that is possible, P shall be the identity. It is well known that
there exists a unique polynomial Pk with degree 2n − 1 such that P (j)

k (ei) = ϕ
(j)
k (ei), cf. [3]. The

polynomials are given through

Pk(x) =
n∑
i=1

1∑
j=0

ϕ
(j)
k (ei)Lij(x). (4.7)

The Lij(x) denote the generalized Lagrange polynomials. Consider the polynomials

lij(x) := (x− ei)j
n∏

r=1,r 6=i

(
x− er
ei − er

)2

for i = 1, . . . , n and j = 0, 1. Then the Lij are defined via

Li1(x) := li1(x), Li0(x) := li0(x)− l′i0(ei)li1(x)

and therefore they have the degree 2n− 1. Altogether the polynomials Pk(x) are

Pk(x) =
n∑
i=1

1∑
j=0

ϕ
(j)
k (ei)Lij(x) =

n∑
i=1

[
δki(li0(x)− l′i0(ei)li1(x)) + δk,i+nli1(x)

]
=

{
lk0(x)− l′k0(ek)lk1(x), k = 1, . . . , n,
lk−n,1(x), k = n+ 1, . . . , 2n.

For l′k0(ek) one obtains

d
dx
lk0(x)

∣∣∣∣
x=ek

=
d
dx

n∏
r=1,r 6=k

(
x− er
ek − er

)2 ∣∣∣∣
x=ek

= 2
n∑

s=1,s 6=k

 x− es
(ek − es)2

n∏
r=1,r 6=k,s

(
x− er
ek − er

)2
 ∣∣∣∣∣

x=ek

= 2
n∑

s=1,s 6=k

1
ek − es

.

That finally gives

Pk(x) =


n∏

r=1,r 6=k

(
x−er
ek−er

)2
[

1− 2(x− ek)
n∑

s=1,s 6=k

1
ek−es

]
, k = 1, . . . , n,

(x− ek−n)
n∏

r=1,r 6=k−n

(
x−er

ek−n−er

)2
, k = n+ 1, . . . , 2n.

(4.8)

Now we want to determine the first and second derivative of Pk(x). The second derivative is needed
for matrix M3 (4.3). We start with the case k = 1, . . . , n and obtain for P ′k(x)

P ′k(x) = 2
n∑

s=1,s 6=k

 x− es
(ek − es)2

n∏
r=1,r 6=k,s

(
x− er
ek − er

)2
1− 2(x− ek)

n∑
s=1,s 6=k

1
ek − es


−

2
n∑

s=1,s 6=k

1
ek − es

 n∏
r=1,r 6=k

(
x− er
ek − er

)2

.
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It follows for P ′′k (x)

P ′′k (x) = 2
n∑

s=1,s 6=k

 1
(ek − es)2

n∏
r=1,r 6=k,s

(
x− er
ek − er

)2

+2
x− es

(ek − es)2

n∑
i=1,i 6=k,s

 x− ei
(ek − ei)2

n∏
r=1,r 6=k,s,i

(
x− er
ek − er

)2
1− 2(x− ek)

n∑
s=1,s 6=k

1
ek − es


− 8

 n∑
s=1,s 6=k

1
ek − es

 n∑
s=1,s 6=k

 x− es
(ek − es)2

n∏
r=1,r 6=k,s

(
x− er
ek − er

)2
 .

We evaluate the second derivative for matrix M3 (4.3)

P ′′k (el) =


2

(ek−el)2
n∏

r=1,r 6=k,l

(
el−er
ek−er

)2
[

1− 2
n∑

s=1,s 6=k

el−ek
(ek−es)2

]
, l 6= k,

2
n∑

s=1,s 6=k

[
1

(ek−es)2
+ 2

ek−es

n∑
i=1,i 6=k,s

1
ek−ei

]
− 8

(
n∑

s=1,s 6=k

1
ek−es

)2

, l = k.

It remains to do the same calculations for the case k = n + 1, . . . , 2n. The polynomials Pk(x) are
given through (4.8). Hence the first derivative is

P ′k(x) =
n∏

r=1,r 6=k−n

(
x− er

ek−n − er

)2

+ 2(x− ek−n)
n∑

s=1,s 6=k−n

x− es
(ek−n − es)2

n∏
r=1,r 6=k−n,s

(
x− er

ek−n − er

)2

.

Now the second derivative can be obtained

P ′′k (x) = 4
n∑

s=1,s 6=k−n

x− es
(ek−n − es)2

n∏
r=1,r 6=k−n,s

(
x− er

ek−n − er

)2

+ 2(x− ek−n)
n∑

s=1,s 6=k−n

 1
(ek−n − es)2

n∏
r=1,r 6=k−n,s

(
x− er

ek−n − er

)2

+2
x− es

(ek−n − es)2

n∑
i=1,i 6=k−n,s

 x− ei
(ek−n − ei)2

n∏
r=1,r 6=k−n,s,i

(
x− er

ek−n − er

)2
 .

Again we evaluate the polynomials and obtain

P ′′k (el) =


− 2
ek−n−el

n∏
r=1,r 6=k−n,l

(
el−er

ek−n−er

)2
, l 6= k − n,

4
n∑

s=1,s 6=k

1
ek−n−es , l = k − n.

What was basically done here can be compared to the approach of [15] or [5]. But they suggested
orthogonal polynomials, whereas we can use any suited test function. Furthermore there are more
benefits than the improvement of the condition number. To highlight these advantages we will
consider the example (5.1)

∂f(t, e)
∂t

= − ∂

∂e
(φ(e)f(t, e)) , (t, e) ∈ (0, T ]× (0,∞),

f0(e) = f(0, e) = ae2 exp(−be), e ∈ (0,∞),

51



4 Improvements to the DQMOM

which will also be treated in Section 5. Transforming the source term according to the previous
calculation one obtains

−
∫ ∞

0

∂

∂e
(φ(e)f(t, e))ϕk(e) de =

∫ ∞
0

φ(e)f(t, e)ϕ′k(e) de k = 1, . . . , 2n.

With (4.6) the approximation therefore simplifies to∫ ∞
0

φ(e)f(t, e)ϕ′k(e) de ≈

{
0, k = 1, . . . , n
φ(ek−n)wk−n, k = n+ 1, . . . , 2n.

(4.9)

For the next improvement one looks at the powers of the internal variable el for l = 0, . . . , 2n − 1
and Ωe = (0,∞). These powers will increase rapidly during the calculation for our example and
therefore the values for the source term will do the same. As shown above there are no more powers
of the internal variable in the approximated source term. The polynomials will still grow as e grows
but not as fast as the powers. This is shown in the following Figure 1 which was done for the given
initial data of Problem I and n = 2 at the beginning of a calculation.
Furthermore we will give the corresponding matrix with the second derivates, which occurs on the
right-hand side of the system

M3 =


−0.1350 0.0315
0.0585 −0.1350
−0.6000 0.3000
−0.3000 0.6000

 .

For comparison we will give the analogue matrix obtained in the DQMOM

M3 =


0 0
0 0
2 2

20.0014 60.0031

 .

It is important to note that, as mentioned above, P = Q−1 is not a good choice for this approach.
In our tests Matlab failed to compute results. But one clearly sees the advantage to the standard
powers of the internal variable, the values are smaller. For example for n = 2, t = 0 and e = 20 the
polynomial P4 is smaller than 70, whereas the third power of e would be 203.

Fig. 1: Test Functions for Problem I with n = 2 at t = 0.
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5 Numerical Results

In this section we want to discuss the presented methods. Therefore we will present PBEs which
can be solved analytically, so that the numerical results can be compared to an exact solution. Then
we want to compare the algorithms from Sections 3.2, 3.3 and 3.4 which compute the weights and
abscissas for a given set of moments. The focus will lie on the time that is needed for a calculation. In
the end we will compare the QMOM, DQMOM and the improved DQMOM for several problems.

5.1 Analytical Solutions & Treatment of the Problems

In this section several test problems are solved analytically in order to compare the numerical results
with them. After this is done the approximated source terms are derived. The first three problems
are of the form 

∂f(t, e)
∂t

= − ∂

∂e
(φi(e)f(t, e)) , (t, e) ∈ (0, T ]× (0,∞),

f0(e) = f(0, e) = ae2 exp(−be), e ∈ (0,∞),
(5.1)

with

φ1(e) = β, (5.2)
φ2(e) = βe, (5.3)
φ3(e) = β/e. (5.4)

We will refer to these problems as Problem I – III. These three problems are solved by applying the
Method of Characteristics, cf. [2]. These problems were also treated in [12]. The last four problems
are of the form

∂f(t, e)
∂t

=
1
2

∫ e

0
C(e− e′, e′)f(t, e− e′)f(t, e′) de′ −

∫ ∞
0

C(e, e′)f(t, e)f(t, e′) de′

+
∫ ∞
e

M(e′)b(e, e′)σ(e′)f(t, e′) de′ − σ(e)f(t, e). (5.5)

We will use different initial data and integral kernels for this equation. This type of problem was
treated in [13] with some remarks in [9] and in a generalized way in [11]. We will refer to these
problems as Problem IV – VII.

5.1.1 Problem I

With the Method of Characteristics one obtains the following system of ordinary differential equa-
tions for the source term (5.2)

ẋ1(s) = 1, x1(0) = 0,
ẋ2(s) = β, x2(0) = ξ,

ż(s)
(5.1)
= 0, z(0) = aξ2 exp(−bξ).

(5.6)

Where x1 corresponds to t, x2 corresponds to e and z corresponds to f . This is just a homogeneous
scalar transport equation. Hence the well known solution is f(t, e) = f0(e− βt)

f(t, e) =

{
a(e− βt)2 exp(−b(e− βt)) , e− βt ≥ 0,
0 , e− βt < 0.
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Now the moments are calculated for k = 0, 1, . . .

mk(t) = a

∫ ∞
βt

ek(e− βt)2 exp(−b(e− βt)) de

= a

∫ ∞
βt

2∑
i=0

(
2
i

)
(−βt)2−iei+k exp(−b(e− βt)) de

= a exp(bβt)
2∑
i=0

(
2
i

)
(−βt)2−i

∫ ∞
βt

ei+k exp(−be) de

= a

2∑
i=0

(
2
i

)
(−1)2−i

k+i∑
j=0

(βt)2+k−j

bj+1

j−1∏
l=0

(k + i− l) k = 0, 1, 2, . . . .

If the moment transform is performed one yields the following equations

∂mk

∂t
= −

∫ ∞
0

∂

∂e
(φ1(e)f(t, e)) ek de = k · βmk−1, k = 0, 1, 2, . . . . (5.7)

To see that the moments full fill this equations one substitutes v = b(e−βt). One therefore obtains

mk(t) =
a

b3

∫ ∞
0

(v
b

+ βt
)k
v2 exp(−v) dv

and now one clearly sees that the moments satisfy (5.7).
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5.1.2 Problem II

With the Method of Characteristics one obtains the following system of ordinary differential equa-
tions for the source term (5.3)

ẋ1(s) = 1, x1(0) = 0,
ẋ2(s) = βx2(s), x2(0) = ξ,

ż(s)
(5.1)
= −βz(s), z(0) = aξ2 exp(−bξ).

(5.8)

When (5.8) is solved and transformed back, one yields the solution

f(t, e) = ae2 exp(−(be exp(−βt) + 3βt)).

Now the moments can be determined exactly for all k = 0, 1, . . .

mk(t) =
∫ ∞

0
ekf(t, e) de

= a exp(−3βt)
∫ ∞

0
ek+2 exp(−be exp(−βt)) de k = 0, 1, 2, . . . .

To clarify this integral we set ã := ã(t) := a exp(−3βt) and b̃ := b̃(t) := b exp(−βt). Then the
moments can be obtained by integrating by parts

mk(t) = ã

∫ ∞
0

ek+2 exp(−b̃e) de = (k + 2)!
ã

b̃k+3
= (k + 2)!

a

bk+3
exp(kβt), k = 0, 1, 2, . . . .

When the moment transform is performed one obtains

∂mk

∂t
= −

∫ ∞
0

∂

∂e
(φ2(e)f(t, e)) ek de = k · βmk, k = 0, 1, 2, . . . . (5.9)

One clearly sees that the calculated moments satisfy these equations.

5.1.3 Problem III

As before one obtains for source term (5.4) the following system of characteristic ODEs

ẋ1(s) = 1, x1(0) = 0,
ẋ2(s) = β

x2(s) , x2(0) = ξ,

ż(s)
(5.1)
= β

x2(s)2
z(s), z(0) = aξ2 exp(−bξ).

(5.10)

If (5.10) is solved and transformed back, one obtains the solution

f(t, e) =

{
ae
√
e2 − 2βt exp(−b

√
e2 − 2βt) , e2 − 2βt ≥ 0,

0 , e2 − 2βt < 0.

For this function one can only determine the moments of even order in a closed form. The remaining
moments are treated separately. In general one has

mk(t) =
∫ ∞

0
ekf(t, e) de (5.11)

= a

∫ ∞
0

ek+1
√
e2 − 2βt exp(−b

√
e2 − 2βt) de. (5.12)
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For k = 0, 2, 4, . . . . one obtains by substituting v =
√
e2 − 2βt

mk(t) = a

∫ ∞
0

(
v2 + 2βt

)k/2
v2 exp(−bv) dv

= a

∫ ∞
0

k/2∑
i=0

(
k/2
i

)
(2βt)k/2−iv2i+2 exp(−bv) dv

= a

k/2∑
i=0

(
k/2
i

)
(2βt)k/2−i

∫ ∞
0

v2i+2 exp(−bv) dv

=
a

b3

k/2∑
i=0

(
k/2
i

)
(2βt)k/2−i

(2i+ 2)!
b2i

k = 0, 2, 4, . . . .

When the moment transform is performed on obtains

∂mk

∂t
= −

∫ ∞
0

∂

∂e
(φ2(e)f(t, e)) ek de = k · βmk−2, k = 0, 1, 2, . . . . (5.13)

This system was already mentioned here (2.5). Again one can directly verify that the moments
satisfy these equations. For the moments of uneven order one can perform a similar substitution, i.e.
v = b

√
e2 − 2βt and therefore on obtains

mk(t) =
a

b2

∫ ∞
0

(
v2

b2
+ 2βt

)k/2
v2 exp(−v) dv.

Since these moments cannot be calculated analytically one could apply the Gauss-Laguerre quadra-
tur

mk(t) =
a

b2

∫ ∞
0

(
v2

b2
+ 2βt

)k/2
v2 exp(−v) dv ≈ a

b2

ν∑
i=1

(
ξ2
i

b2
+ 2βt

)k/2
ξ2
i ωi.

For the approximation error we refer to Theorem 3.8. To calculate the weights and abscissas for this
specific quadrature one can use algorithms 3.2 or 3.3 with the standard moments for µk = k! for
k = 0, 1, 2, . . . , 2ν − 1 to obtain the weights and abscissas.
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5.1.4 Problems IV – VII

In this section equation (5.5)

∂f(t, e)
∂t

=
1
2

∫ e

0
C(e− e′, e′)f(t, e− e′)f(t, e′) de′ −

∫ ∞
0

C(e, e′)f(t, e)f(t, e′) de′

+
∫ ∞
e

M(e′)b(e, e′)σ(e′)f(t, e′) de′ − σ(e)f(t, e).

shall be solved analytically. For more information to the following quantities and assumptions we
refer to [13], [9] and [11]. At first the integral kernels and initial conditions have to be specified.
For a precise interpretation of those quantities we refer to suited literature. The expression C(e, e′)
represents the aggregation rate and is set to one, C(e, e′) = 1. The term M(e′) = 2 models binary
breakage. b(e, e′) = 1/e′ is a probability density that measures the probability that the breakage of a
particle of size e′ produces a particle of size e. Obviously one should state b(e, e′) = 0 if e ≥ e′. The
quantity σ(e) models the fragmentation rate and is set proportional to the particle size, σ(e) = σe.
Finally the equation reads

∂f(t, e)
∂t

=
1
2

∫ e

0
f(t, e− e′)f(t, e′) de′ −

∫ ∞
0

f(t, e)f(t, e′) de′

+ 2σ
∫ ∞
e

f(t, e′) de′ − σef(t, e). (5.14)

Two initial conditions are used for this problem. These are

f(0, e) = f0(e) =

{
exp(−e), Problems IV, V & VI
4e exp(−2e), Problem VII

. (5.15)

To solve this equation one first applies the Laplace Transform to the internal variable

G(t, p) = L(g(t, e)) =
∫ ∞

0
g(t, e) exp(−pe) de.

The result is a partial differential equation which can be solved by the Method of Characteristics
which means that an ODE of the Riccati Type has to be solved. When the Laplace Transform is
applied one obtains

∂F (t, p)
∂t

=
1
2

∫ ∞
0

∫ e

0
f(t, e− e′)f(t, e′) de′ exp(−pe) de−

∫ ∞
0

∫ ∞
0

f(t, e′) de′︸ ︷︷ ︸
=:Φ(t)

f(t, e) exp(−pe) de

+ 2σ
∫ ∞

0

∫ ∞
e

f(t, e′) de′ exp(−pe) de− σ
∫ ∞

0
ef(t, e) exp(−pe) de

=
1
2
F (t, p)2 − Φ(t)F (t, p) + 2σ

∫ ∞
0

[∫ ∞
0

f(t, e′) de′ −
∫ e

0
f(t, e′) de′

]
exp(−pe) de

− σ∂F (t, p)
∂p

=
1
2
F (t, p)2 − Φ(t)F (t, p) +

2σ
p

[Φ(t)− F (t, p)] + σ
∂F (t, p)
∂p

.

This is a quasi linear first order PDE

∂F (t, p)
∂t

− σ∂F (t, p)
∂p

=
1
2
F (t, p)2 − F (t, p)

[
Φ(t) +

2σ
p

]
+

2σΦ(t)
p

. (5.16)
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Therefore one can use the Method of Characteristics to solve this equation. The resulting system
is

ẋ1(s) = 1, x1(0) = 0,
ẋ2(s) = −σ, x2(0) = ξ,

ż(s)
(5.16)

= 1
2z(s)

2 − z(s)
[
Φ(s) + 2σ

x2(s)

]
+ 2σΦ(s)

x2(s) , z(0) = z0.

(5.17)

The initial data is obtained by transforming (5.15). Hence one obtains

z(ξ, 0) = z0(ξ) =


1

ξ + 1
, Problems IV V & VI

4
(ξ + 2)2

, Problem VII
. (5.18)

The first two equations of (5.17) can be solved directly and one obtains

x1(s) = s, x2(s) = −σs+ ξ.

Altogether one has to solve the following problem

ż(s) =
1
2
z(s)2 − z(s)

[
Φ(s) +

2σ
ξ − σs

]
+

2σΦ(s)
ξ − σs

, (5.19)

z(0) =


1

ξ + 1
, Problems IV V& VI

4
(ξ + 2)2

, Problem VII
. (5.20)

Now one would usually try to guess a special solution and then transform this ODE into an ODE of
Bernoulli Type. Unfortunately the function Φ(s) is unknown. To obtain a unique solution for z one
has to define Φ through another equation. Since Φ(s) represents the total number of particles this
will directly affect the system. In [13] Φ was chosen to be constant Φ = 1, [9] adopted this choice. A
more general choice was made in [11]. The total number of particles is described by the ODE

Φ̇(s) =
Φ(∞)2 − Φ(s)2

2
. (5.21)

The initial condition is given by the zero order moment of the initial distribution given in (5.15), i.e.
Φ(0) = 1. Here Φ(∞) denotes a constant which represents an asymptotic state of the system and
the following relation holds

σ =
1
2

Φ(∞)2.

One clearly sees that the case Φ(s) = 1 treated in [13] is included in this equation. For the first
initial condition used in Problem IV – VI the solution is

z(s) =
Φ(s)2

ξ − σs+ Φ(s)
. (5.22)

This is, because z(s) satisfies the initial condition and Φ satisfies (5.21). The solution of (5.21) is
according to [11]

Φ(s) = Φ(∞)
1 + Φ(∞) tanh(Φ(∞)s/2)
Φ(∞) + tanh(Φ(∞)s/2)

. (5.23)
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So by the Method of Characteristics the solution is

F (t, p) =
Φ(t)2

p+ Φ(t)
.

Now F (t, p) has to be transformed back, because of the simple shape this is no difficulty and one
obtains

f(t, e) = Φ(t)2 exp(−Φ(t)e).

Having determined f(t, e) one can calculate the moments

mk(t) =
∫ ∞

0
ekf(t, e) de = Φ(t)2

∫ ∞
0

ek exp(−Φ(t)e) de = k!
Φ(t)2

Φ(t)k+1

= k!Φ(t)1−k = k!
(

Φ(∞) + tanh(Φ(∞)s/2)
Φ(∞)(1 + Φ(∞) tanh(Φ(∞)s/2))

)k−1

, k = 0, 1, 2 . . . . (5.24)

Now the difference between the problems is the different choice of Φ(∞) in the initial condition. In
Problem IV Φ(∞) is chosen to be smaller than one, that means in view of (5.21) that the number
of particles is decreasing, i.e. aggregation. Whereas in Problem V Φ(∞) is chosen to be larger than
one and hence the particle number is increasing, i.e. fragmentation. For Problem VI we choose
Φ(∞) = 1 and therefore one obtains a steady state solution. For Problem VII we choose the second
initial condition f0(e) = 4e exp(−2e) and Φ(∞) = 1, which implies that the total number of particle
stays constant. We will directly give the solution to this problem. For the derivation of this solution
we again refer to [13] and [9]. The solution is

f(t, e) =
2∑
i=1

K1(t) + pi(t)K2(t)
L(t) + 4pi(t)

exp(pie) (5.25)

for all t > 0. The quantities are as follows

K1(t) = 7 + t+ exp(−t), K2(t) = 2− 2 exp(−t),

L(t) = 9 + t− exp(−t), p1/2 =
1
4

(exp(−t)− t− 9)± 1
4

√
d(t),

d(t) = t2 + (10− 2 exp(−t))t+ 25− 26 exp(−t) + exp(−2t).

One has to verify that the solution converges to the initial data as t converges to zero. We will give
a rough presentation of this calculation. At first one writes the solution (5.25) as one fraction

f(t, e) =
(K1 + p1K2)(L+ 4p2) exp(p1e) + (K1 + p2K2)(L+ 4p1) exp(p2e)

(L+ 4p1)(L+ 4p2)
.

Now one can apply l’Hospital’s rule to this fraction. After that an important step is to split the p′i
into two summands, i.e.

p′1/2 = −1
4

(exp(−t) + 1)︸ ︷︷ ︸
=:A

± d′(t)
8
√
d(t)︸ ︷︷ ︸

=:B

.

Now a carefully examination finally shows

lim
t↘0

f(t, e) =
−64e exp(−2e)

−16
= 4e exp(−2e) = f0(e).
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To verify that the moments are finite one has to proof that the pi are negative and hence that d(t)
is positive

p1(t) =
1
4

(exp(−t)− t− 9) +
1
4

√
d(t)

=
1
4

(exp(−t)− t− 9) +
1
4

√
t2 + (10− 2 exp(−t))t+ 25− 26 exp(−t) + exp(−2t)

≤ −2− 1
4
t+

1
4

√
t2 + 10t+ 25 + 1

= −2− 1
4
t+

1
4

√
(t+ 5)2 + 1

≤ −2− 1
4
t+

1
4

(t+ 5) +
1
4

= −1
2
< 0,

p2(t) =
1
4

(exp(−t)− t− 9)− 1
4

√
d(t)

≤ −2− 1
4

√
t2 + (10− 2 exp(−t))t+ 25− 26 exp(−t) + exp(−2t) < 0.

For d(t) one sees d(0) = 0 and

ḋ(t) = 2t+ (10 + 2 exp(−t))t+ 10− 2 exp(−t) + 26 exp(−t)− 2 exp(−2t)
= 12t+ 2 exp(−t)(t+ 25)− 2 exp(−2t) + 10
≥ 12t+ 2 exp(−t)(t+ 25) + 8 > 0,

so clearly d(t) is positive for all t > 0. Therefore the moments are easily calculated to be

mk(t) =
∫ ∞

0
ekf(t, e) de =

2∑
i=1

K1(t) + pi(t)K2(t)
L(t) + 4pi(t)

∫ ∞
0

ek exp(pie) de

= k!
2∑
i=1

(−pi(t))−(k+1)K1(t) + pi(t)K2(t)
L(t) + 4pi(t)

. (5.26)
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5.1.5 Approximation of the Source Terms

In the previous section the analytical solutions to the problems were shown. Now the methods shall
be applied to the problems and therefore one has to approximate the source term. For the QMOM
and DQMOM the approximation of the source term is the same. One has for the problems I – III∫ ∞

0
ekS(t, e) de ≈

n∑
i=1

kφ(ei)ek−1
i wi, k = 0, 1, 2 . . . 2n− 1 . (5.27)

For the improved DQMOM the approximation reduces to

−
∫ ∞

0

∂

∂e
(φ(e)f(t, e))ϕk(e) de =

∫ ∞
0

φ(e)f(t, e)ϕ′k(e) de

=
∫ ∞

0
φ(e)f(t, e)ϕ′k(e) de ≈

{
0, k = 1, . . . , n,
φ(ek−n)wk−n, k = n+ 1, . . . , 2n.

(5.28)

For the problems IV – VII the situation is a bit more complicated, especially for the improved
DQMOM. Here one has to use b(e, e′) = 0 for e ≥ e′ and f(t, e) = 0 for e ≤ 0. One obtains for the
QMOM and DQMOM for k = 0, 1, . . . , 2n− 1∫ ∞

0
ekS(t, e) de =

1
2

∫ ∞
0

ek
∫ e

0
C(e− e′, e′)f(t, e− e′)f(t, e′) de′ de−

∫ ∞
0

ekσ(e)f(t, e) de

−
∫ ∞

0
ek
∫ ∞

0
C(e, e′)f(t, e)f(t, e′) de′ de+

∫ ∞
0

ek
∫ ∞
e

M(e′)b(e, e′)σ(e′)f(t, e′) de′ de

≈ 1
2

∫ ∞
0

ek
n∑
j=1

C(e− ej , ej)f(t, e− ej)wj de−
n∑
i=1

eki σ(ei)wi

−
∫ ∞

0
ek

n∑
j=1

C(e, ej)wjf(t, e) de+
∫ ∞

0
ek

n∑
i=1

M(ei)b(e, ei)σ(ei)wi de

=
1
2

n∑
i=1

n∑
j=1

(ei + ej)kC(ei, ej)wjwi −
n∑
i=1

n∑
j=1

ekiC(ei, ej)wjwi

+
n∑
i=1

[
M(ei)

∫ ∞
0

ekb(e, ei) de− eki
]
σ(ei)wi

=
1
2

n∑
i=1

n∑
j=1

[
(ei + ej)k − eki

]
C(ei, ej)wjwi +

n∑
i=1

[
M(ei)

∫ ei

0
ekb(e, ei) de− eki

]
σ(ei)wi.

Now one inserts the quantities and finally yields for k = 0, 1, 2, . . . , 2n− 1∫ ∞
0

ekS(t, e) de ≈ 1
2

n∑
i=1

n∑
j=1

[
(ei + ej)k − eki

]
wjwi

+
1
2

Φ(∞)
n∑
i=1

[
2

k + 1
− 1
]
ek+1
i wi. (5.29)

For the improved DQMOM one basically does the same calculations and obtains for k = 1, . . . , 2n∫ ∞
0

Pk(e)S(t, e) de ≈ 1
2

n∑
i=1

n∑
j=1

[Pk(ei + ej)− Pk(ei)]wjwi

+
1
2

Φ(∞)
n∑
i=1

[
2

1
ei

∫ ei

0
Pk(e) de− Pk(ei)

]
eiwi.
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The polynomials Pk are by construction of degree 2n− 1. Therefore one can use the n-point Gauss–
Legendre quadrature for the exact integration of the integral in the second summand. After trans-
forming the interval one obtains∫ ei

0
Pk(e) de =

ei
2

n∑
l=1

Pk

(ei
2

(ξl + 1)
)
ωl.

To obtain the weights and abscissas for this specific quadrature one can use one of the algorithms
introduced in Section 3.3 or 3.4 with the moments

µk =


2

k + 1
, k even

0, k uneven
.

It is not possible to use the PDA since negative abscissas are involved and the PDA therefore would
fail.
This calculation has only to be performed once at the beginning of the simulations.
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5.2 Comparison of Quadrature - Algorithms

In this section the three algorithms 3.2, 3.3 and 3.4 discussed in Section 3 are compared when they
are used in the QMOM. Since all of the moment equations are reduced to exclusively time dependent
equations one can use Runge Kutta Methods for solving these equations. We have used the standard
fourth order Runge Kutta Method, i.e. written in a Butcher Tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

.

Given the same set of moments the algorithms basically give the same results. Therefore we will not
present any results of the calculated moments, but we will focus on the time that is needed for a
calculation. We recall the results for the number of operations needed in these algorithms

PDA 3.2 LQMD 3.3 GWA 3.4
Summations 2n2 − 1 2(n− 1)2 + 3(n− 1) + 1 n(n+1)

2 + n3−n
6 + n

Multiplications 4n2 + n− 2 (n− 1)2 + (n− 1) n(n+1)
2 + n3−n

6

Divisions 2n− 1 (n− 1)2 + 2n− 1 3n− 1 + n(n+1)
2

Square Roots n− 1 n− 1 n+ 1
Eigenvalue Problem 1 1 1

and specifically for n = 3

PDA 3.2 LQMD 3.3 GWA 3.4
Summations 17 15 13
Multiplications 37 6 10
Divisions 5 9 14
Square Roots 2 2 4
Eigenvalue Problem 1 1 1

The second algorithm 3.3 was used for the standard moments. The third algorithm needs an extra
moment m2n. The first one is calculated from the initial data and the following ones are calculated
from the obtained weights and abscissas using the given quadrature rule

m2n ≈
n∑
i=1

e2n
i wi.

A problem that occurs is, that this value is not the exact value.
Nicht im Original enthalten: Using Theorem 3.8 and 3.4 one obtaines for the approximation error

∫ ∞
0

e2nf(t, e) de−
n∑
i=1

e2n
i wi =

d(2n)

de(2n)
e2n

∣∣∣∣
e=ξ

(2n)!
〈pn, pn〉 = 〈pn, pn〉 =

n∏
i=1

α2
i .

As a consequence of this it may happen that the matrix (3.29) is not positive definite. Therefore
the Cholesky decomposition might fail. We observed that the Matlab procedure chol returned an
error because of that. But when the formula (3.30) are used, one can still perform this algorithm. We
guess that the use of the approximated moment makes the matrix analytically not positive definite.
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But the error seems to be small enough so that the method remains stable. As mentioned before
we did not run tests with Newton’s Method 3.5, because of the analytical results obtained for the
convergence theorem 3.10. Another disadvantage is the fact that all of the first three algorithms
perform a finite number of steps until the result is obtained. Whereas Newton’s Method is iterative
and therefore it is difficult to predict the number of steps that are needed for a certain accuracy. All
calculations were performed in Matlab 7.4. For all the Problems we have chosen T = 10, dt = 0.01
and n = 3. The times were measured using the Matlab commands tic and toc. The time values are
given in seconds.

PDA 3.2 LQMD 3.3 GWA 3.4
Problem I 0.5741 0.5481 0.6095
Problem II 0.5784 0.5471 0.6125
Problem III 0.5608 0.5454 0.6116
Problem IV 0.4728 0.4586 0.5162
Problem V 0.4763 0.4533 0.4774
Problem VI 0.4758 0.4539 0.5004
Problem VII 0.4709 0.4539 0.5

The important outcome of this is, that the second method, the Long Quotient Modified Difference
Algorithm is the fastest. This is consistent with the number of operations given in the table above.
The precise times may vary from system to system. Here the time differences are not that large but
we only simulated simple problems for only one location. In more difficult CFD computations one
needs to perform this computations in much more than one location. Even the size of a time step
may be decreased which leads to more iterations until the final time and therefore one expects larger
time differences between the algorithms.
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5.3 Comparison of the Three Main Methods

We finally want to compare the three Methods QMOM, DQMOM and the improved DQMOM for
the seven introduced problems. Again we have used the standard fourth order Runge Kutta Method.
It is important to note that this is a relevant topic for itself. The moments should always be the
moments of a positive weight function. Therefore they have to satisfy certain conditions. A good
indication for failure are negative abscissas during the calculations. A work that deals with this topic
was recently published by Vikas et al. [17]. For the problems treated here the standard method just
worked fine and we were not concerned with this topic.
If the problems would be space dependent one could use the Method of Lines which means that at
first the space variable is discretised and then the time integration is applied to the obtained system.
Taking into account the results from the previous Section 5.2 all of the calculations used the Long
Quotient Modified Difference Algorithm 3.3. As before we have chosen T = 10 and dt = 0.01 for all
problems. It is possible to choose a bigger dt for some problems. The initial moments were calculated
using a standard (left) rectangle rule on the interval [0, 100] with a step size he = 0.1

mk(0) =
1000∑
i=1

((i− 1)he)kf0((i− 1)he)he.

For the first three problems we have chosen the following constants according to [12]

a = 0.108, b = 0.6 and β = 0.78.

The Problems I – III all model growth laws with a constant number of particles, normalised to one.
Problem I is presented in Figure 2 and Figure 3. It describes particle growth in a free-molecular size
regime, see [12].
Problem II models the growth of solution droplets for sulfric acid-water droplets under certain quasi-
equilibrium conditions, see [12] and is presented in Figure 4 and Figure 5.
In Figure 7 and Figure 8 we display the results for Problem III. This problem describes diffusion
controlled growth, see [12].
The results for Problem IV are shown in Figure 9 and Figure 10. For this problem we have used
Φ(∞) = 0.1.
Figure 11 and Figure 12 display the results for Problem V. Here we have used Φ(∞) = 5.
The steady state result for Problem VI with Φ(∞) = 1 is presented in Figure 13 and Figure 14.
Finally Figure 15 and Figure 16 show the results for Problem VII.
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(a) m0

(b) m1

(c) m2

Fig. 2: Problem I, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 3: Problem I, calculated moments m3,m4,m5 and the relative error
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(a) m0

(b) m1

(c) m2

Fig. 4: Problem II, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 5: Problem II, calculated moments m3,m4,m5 and the relative error
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We will now compare the condition numbers of the linear systems in the DQMOM and improved
DQMOM for Problem II. We used the same parameters as before. In Figure 6 on can clearly see
the improvement due to the test functions. That the condition number is still that big is because
of the fact that the value for the largest abscissa is en ≈ 3.7626 104. The growth of the condition
number in time is due to the problem. The moments of this problem grow and become very large,
e.g. m5 ∼ 1021.

(a) DQMOM

(b) improved DQMOM

Fig. 6: Condition number for the linear system in the DQMOM and improved DQMOM
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(a) m0

(b) m1

(c) m2

Fig. 7: Problem III, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 8: Problem III, calculated moments m3,m4,m5 and the relative error
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(a) m0

(b) m1

(c) m2

Fig. 9: Problem IV, Φ(∞) = 0.1, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 10: Problem IV, Φ(∞) = 0.1, calculated moments m3,m4,m5 and the relative error
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(a) m0

(b) m1

(c) m2

Fig. 11: Problem V, Φ(∞) = 5, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 12: Problem V, Φ(∞) = 5, calculated moments m3,m4,m5 and the relative error
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(a) m0

(b) m1

(c) m2

Fig. 13: Problem VI, Φ(∞) = 1, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 14: Problem VI, Φ(∞) = 1, calculated moments m3,m4,m5 and the relative error
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(a) m0

(b) m1

(c) m2

Fig. 15: Problem VII, calculated moments m0,m1,m2 and the relative error
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(a) m3

(b) m4

(c) m5

Fig. 16: Problem VII, calculated moments m3,m4,m5 and the relative error
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These results can be interpreted as follows. The three methods basically give the same results for
the case of one internal variable. The qualitative behaviour of the relative error does not differ very
much. In fact in many figures one sees overlapping lines due to the same results. For the first three
problems the results can also be compared to those in [12] and one will see the consistency. It should
be remarked that the polynomials obtained in Section 4 seem to fit very good to the problems
one to three, but not that good to the remaining problems. The improved DQMOM simplifies the
calculation of some source terms drastically, as shown in (4.9). This then can be seen for example in
Figure 4 and 5 for Problem II. This underlines the fact that one has to find different test functions
for different types of problems. We therefore suggest to use the QMOM combined with the LQMD
for problems with one internal variable, if the test functions do not improve the computation. For
the case of more then one internal variable further work will be required. The fact that the relative
error seems to be quite large in the beginning, for example for m0 of Problem IV Figure 9, is due to
the approximation error of the initial moments. If the accuracy would be higher the relative error
will decrease in the beginning. This does not affect the qualitative behaviour of the relative error.
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6 Conclusion

In this work we have presented moment based methods for the numerical treatment of Population
Balance Equations. The MOM was discussed as it highlights the key idea of using the moments.
Furthermore we have shown the main disadvantage that led to the formulation of the QMOM.
For the QMOM we discussed four methods to obtain the quadrature weights and abscissas. The
Product Difference Algorithm 3.2 was first discussed, since it was suggested in [12] and therefore it
became the commonly used one. A comprehensive proof of correctness was given for this algorithm.
The understanding of such algorithms is of importance when such methods as the QMOM and their
potential failures are discussed.
As the second algorithm we introduced the Long Quotient Modified Difference Algorithm 3.3. To
the authors knowledge, this algorithm has not been used in the QMOM yet. We have shown that
this algorithm needs less operations than the PDA when used for the standard moments. Further-
more it can be applied to modified moments which may increase the stability of the whole method.
Considering the results in section 5.2 we suggest to use this algorithm for calculations where such
algorithms play a crucial role in the process.
The third algorithm 3.4 presented by Golub and Welsch was discussed as another alternative. Alt-
hough it is not recommended for the use in the QMOM for one internal variable, we suggest to
investigate this algorithm for multidimensional quadrature. In the original work [6] the moment
matrix (3.29) was derived for multidimensional moments and even the result that the columns of
the inverse matrix form an orthogonal system of polynomials is given for more than one dimension.
Therefore we assume that the remaining part can be extended to multivariate case, at least for
certain Ωe. That would give the opportunity to easily extend the QMOM to multivariate cases as
an alternative to the DQMOM.
The last algorithm that was discussed was Newton’s Method. We have shown theoretical worst case
estimates for the convergence of this method. This led to the conclusion that this approach is very
expensive an therefore it is not recommended. It still may be that there is a feasible practical ap-
proach to use this method.
The next method that was introduced is the DQMOM. For this method we discussed the standard
derivation as given in [10] and an approach without using distributions. Furthermore we derived the
multidimensional DQMOM. A result obtained in [5] was given in Section 2.4. This result is used to
estimate the condition number of the nonlinear system (2.8) and the system matrix of the linear
system (2.14) from below. To the authors knowledge this was not done before. Given the estimated
condition number we thought of improving the DQMOM. In Section 4 we made our suggestions.
We derived a formulation that makes it possible to choose any suited test function to work with
in the DQMOM. We used polynomials that were obtained by Hermite interpolation. That might
not be the optimal choice, but we surely improved the condition number of the linear system. With
this new approach one can investigate the underlying problem and then choose the right set of test
functions that for example reduce computational time or increase the stability of the calculations.
Our approach was only discussed for the mono variate case and it includes the standard DQMOM.
It therefore has to be investigated in which way this can be extended to the multivariate case.
Finally we discussed seven different problems in order to compare the numerical with the analytical
results. These have shown that the three compared methods are nearly giving the same results.
The last thing we would like to remark is concerned with the reconstruction of the Particle Size
Distribution. The first three algorithms discussed in Section 3 all calculate certain coefficients βi and
αi. These are the coefficients of the recurrence relation for the orthogonal polynomials corresponding
to the PSD. Given 2n moments it is therefore possible to determine these polynomials up to pn. Now
one can think of expanding the PSD in a series of its orthogonal polynomials. Perhaps this will give
a good approximation. Of course one has to increase n. We have done calculations with n = 10 and
obtained satisfying results for all the moments. Another possible approach can be the idea which
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6 Conclusion

was used to prove the correctness of the Product Difference Algorithm. One knows the moments and
therefore one can calculate an approximation of the Stieltjes Transform of the PSD. It remains to
invert the transform to obtain an approximation of the PSD itself.
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