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1 Introduction

The WENO method in general is an approximation principle for functions
based on isolated and discrete points in an closed interval. Due to [3], the �rst
WENO Scheme was introduced by X.-D. Liu, S. Osher and T. Chan 1994 in
the Journal of Computational Physics vol. 115.
The acronym stands for Weighted Essentially Non-Oscillatory and is an im-
provement of the non-weighted ENO procedure. The aim of both, the ENO
and WENO method, is to get a preferable smooth interpolation e.g. to coun-
teract over- and undershoots near discontinuities. The WENO method uses a
linear combination of possible interpolation functions weighted on their indi-
vidual smoothness.

The common application area of the WENO method is to solve partial dif-
ferential equations (PDE), especially physical, hyperbolic conversation laws,
in a numerical way. Therefore it has to be combined with e.g. an explicit
Euler-procedure or a Runge-Kutta-Method as temporal discretization.

As it is known by basic interpolation theory, the order of accuracy depends
on the number of used nodes. We will remain as general as possible while
presenting the necessary equations, but the explicit forms, examples and �nal
results will be presented for a 5th order WENO method. However the used
pattern can be generalized easily.

At last we demonstrate and implementation of the WENO method in a
short c-program and discuss the results in Section 4. Therefore, we programed
the later explained WENO polynomial reconstruction method for given cell
averages. As example, we use a step function taken from [1] and discussed
in Section 2.2. The example of a solved di�erential equation will be given by
the simple linear transport equation. The whole source code can be reviewed
within the appendix.

1.1 Settings and Conditions

In the course of this work we will derive the necessary formulas concerning the
WENO method. Here we will not be limited to equidistant meshes. Rather
we will consider completely general grids. Though all used meshes shall be
constant in time and each space dimensions. According to those characteristics
we de�ne a one dimensional mesh through its grid values in a relative way:

xi = x0 +
i∑

k=0

gk∆x. (1)

So the di�erence of any two grid points with i ≥ j yields to:

xi − xj =
i∑

k=j+1

gk∆x = di,j. (2)
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As shown, the used numeration of the grid values is ascending with x0 as
left hand starting point. The gk > 0 are the direct distances of the points
xi−1 and xi normed by a parameter ∆x. That parameter ∆x makes the mesh
independent of the exact scaling and can be chosen freely as a constant value;
e.g. ∆x = 1, as we will do in most of the further calculations.
This construction has several possible advantages:

• Since the parameter ∆x is user de�ned, the gk can always be varied while
their ratios ga

gb
for every a, b ∈ N do not change. So all meshes, with

equal ratios, lead to e.g. the same coe�cients of the later introduced
smoothness indicators.

• One could de�ne gk = 1 for the largest cell range. So all other gk's, and
even the di,j's, indicate the relative rate concerning the largest cell range,
given by ∆x.

• It is possible to set gk = g(k) for any chosen function. This leads to very
easily constructed regular grids.

Within this report all marginal problems will be avoided. We assume that
all required points and values outside the relevant interval are known. Also
extreme solutions and special exceptional cases will not be discussed.
Later-on calculations with the WENOmethod for more than one dimension are
based on a simple 'dimension by dimension fashion', as so called in [3]. So it is
absolutely su�cient to concentrate on the one dimensional case, like we will do.

As interpolating functions we will refer to the mostly used Lagrange poly-
nomials. Such a polynomial based on the n + 1 given points (xi; yi) with
i ∈ [m;m+ n+ 1] ⊂ N is de�ned by:

P (x) =
m+n∑
i=m

yiL
m
i (x) =

m+n∑
i=m

(
yi

m+n∏
i 6=j=m

x− xj
xi − xj

)
(3)

Please note, that concerning algebraic functions we will use e.g. Lk(x) as
index and (L(x))k as power. For the rest of this paper, n will be the order
of accuracy concerning a WENO interpolation and reconstruction based on
n + 1 points and n cells, respectively the later-on large stencil. Since those
two methods are closely related we will also try to use consistent expressions
for repetitive objects. But always keep in mind that some objects, e.g. the
interpolation/reconstruction polynomials, base on di�erent concepts and got
di�erent explicit forms.
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2 The WENO Schemes

2.1 The Interpolation Problem

Like in [3], we will discuss two separated, but related, problems. They are
called 'interpolation' and 'reconstruction' and we will start with the �rst one.
The interpolation is a Finite Di�erences (FD) method using the values yi at
the nodes xi of the grid. The �nal task is to compute an additional value
between two of those nodes. To stay general we chose an interval around the
node xj with a range of s grid steps to the left and s + 1 to the right. The
searched value may belong to a point between xj and xj+1, e.g. xj+ 1

2
. So the

considered stencil contains the points {xj−s, xj−s+1, ...xj, xj+ 1
2
, xj+1, ...xj+s+1}.

The total number of used points is n+ 1 = s+ s+ 2 and the degree of an
interpolation polynomial based on those points would be n = 2s + 1, which
obviously just can take uneven numbers. This large interval will be called S
and forms our 'large stencil'. As next step we divide this Stencil in a maximal
number of 'small stencils' having a constant order, formed out of the grid nodes
and containing xj+ 1

2
. That would be exactly n+1

2
= s + 1 intervals as can be

seen in Figure 1, using the example of �fth order. The small stencils have a
length of s + 2 grid points, so their polynomials got a degree of s + 1 = n+1

2
.

To name the interpolation polynomials we chose Q(x) as interpolation based
on the large stencil S and Pk(x) for the small stencils Sk with the node xj−s+k

as most left starting point.

Figure 1: Setting of the Stencils for a 5th order interpolation of xj+ 1
2
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Following Equation (3) the semi-explicit form of the interpolation polyno-
mials for a 6-point large stencil are shown below. The Kj

i are analog to the
Lj
i , but possess degree 5 and not 3.

Q(x) =

j+3∑
i=j−2

yiK
j−2
i (4)

Q(x) = yj−2K
j−2
j−2 + yj−1K

j−2
j−1 + yjK

j−2
j + yj+1K

j−2
j+1 + yj+2K

j−2
j+2 + yj+3K

j−2
j+3 .

Pk(x) =

j+1+k∑
i=j−2+k

yiL
k
i (5)

P0(x) = yj−2L
j−2
j−2 + yj−1L

j−2
j−1 + yjL

j−2
j + yj+1L

j−2
j+1,

P1(x) = yj−1L
j−1
j−1 + yjL

j−1
j + yj+1L

j−1
j+1 + yj+2L

j−1
j+2,

P2(x) = yjL
j
j + yj+1L

j
j+1 + yj+2L

j
j+2 + yj+3L

j
j+3.

Since the combination of the small stencils forms the large stencil, a linear
weighted combination of the interpolation polynomials Pk(x) also forms the
polynomial Q(x). Therefore we chose special, so called linear weights, Ck(x)
to satisfy the following condition:

Q(x) =

n−1
2∑

k=0

Ck(x)Pk(x). (6)

Remember, that Q(x) is of degree n and the Pk are of degree
n+1
2
. So those

linear weights have to represent polynomials of degree n−1
2
. The next step is

to combine the Equations (4), (5) and (6) including just known functions and
the searched linear weights. Equating the coe�cients of the yi lets us form a
linear system of equation to calculate the Ck(x) as shown in the example for
5th/3rd order:

Kj
j−2 = C0L

j−2
j−2, (7)

Kj
j−1 = C0L

j−2
j−1 + C1L

j−1
j−1,

Kj
j = C0L

j−2
j + C1L

j−1
j + C2L

j
j,

Kj
j+1 = C0L

j−2
j+1 + C1L

j−1
j+1 + C2L

j
j+1,

Kj
j+2 = C1L

j−1
j+2 + C2L

j
j+2,

Kj
j+3 = C2L

j
j+3.
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These n + 1 equations for n+1
2

unknown polynomials can be solved easily
and elegant, using the De�nition (2):

C0 =
(x− xj+2)(x− xj+3)

dj+2,j−2dj+3,j−2
, (8)

C1 = (x− xj−2)(x− xj+3)

(
1

dj−2,j−1dj+3,j−1
− 1

dj+2,j−2dj+3,j−2

)
,

C2 =
(x− xj−1)(x− xj−2)
dj+3,j−2dj+3,j−1

.

Our �nal aim is to get a high order, smooth function interpolating our
given points. The linear weights help us just to get the high order polynomial
Q(x), witch we could also calculate directly. For now we keep them at the
back of our minds and de�ne some kind of 'smoothness indicators':

βk =

n+1
2∑

i=1

∫ xj+1

xj

(∆x)2i+1

(
di

dxi
Pk

)2

dx. (9)

Roughly speaking they sum up the di�erent derivatives of the correspond-
ing polynomial Pk(x). So they do some kind of oscillation measuring for the
interpolated functions within the interval [xi;xi+1]. The higher this smoothness
indicator is, the less smooth is the function inside the cell with the interpo-
lating point. The constant factor (∆x)2i+1 is the same as in De�nition (1)
and makes the smoothness indicator independent of the exact grid scaling. All
meshes with the same structure and relative grid-step-ratio will lead to the
same β-coe�cients.

Actually the explicit choice of this smoothness indicator is up to the user.
Other forms and formulas would work too, but within the literature this version
is established. Unfortunately most of the current publications use just equidis-
tant WENO concepts. For this reason the introduced smoothness indicator is
actually designed for equidistant grids. There might be better smoothness in-
dicators, especially for the case of non-equidistant meshes. However, as you
can see, the βk's are computed directly from the interpolation polynomials, so
we can give them an explicit, analytical form.
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Specifying the short term ḟ(x) = d
dx
f(x) and using 5th order and De�nition

(3) and (2) the derivatives of each Lm
j are in general form:

ami =

j+1+m∏
j=j−2+m

j 6=i

1

di,j
, (10)

L̇m
i = ami

3+m∑
k=m
k 6=i

3+m∏
j=m

j 6=i;j 6=k

(x− xj),

L̈m
i = 2ami

3+m∑
k=m
k 6=i

(x− xk),

...
L

m
i = 6ami .

Analogously, we also de�ne for the later use:

ai =

j+3∏
j=j−2
j 6=i

1

di,j
. (11)

7



So for a 5th order interpolation the �rst smoothness indicator, belonging
to the most left stencil, is:

β0 = y2j−2

∫ xj+1

xj

(
∆x
(
L̇j−2
j−2

)2
+ (∆x)3

(
L̈j−2
j−2

)2
+ (∆x)5

(...
L

j−2
j−2

)2)
dx, (12)

+ y2j−1

∫ xj+1

xj

(
∆x
(
L̇j−2
j−1

)2
+ (∆x)3

(
L̈j−2
j−1

)2
+ (∆x)5

(...
L

j−1
j−1

)2)
dx,

+ y2j

∫ xj+1

xj

(
∆x
(
L̇j−2
j

)2
+ (∆x)3

(
L̈j−2
j

)2
+ (∆x)5

(...
L

j−1
j

)2)
dx,

+ y2j+1

∫ xj+1

xj

(
∆x
(
L̇j−2
j+1

)2
+ (∆x)3

(
L̈j−2
j+1

)2
+ (∆x)5

(...
L

j−1
j+1

)2)
dx,

+ yj−2yj−12

∫ xj+1

xj

(
∆xL̇j−2

j−2L̇
j−2
j−1 + (∆x)3L̈j−2

j−2L̈
j−2
j−1 + (∆x)5

...
L

j−2
j−2

...
L

j−2
j−1

)
dx,

+ yj−2yj 2

∫ xj+1

xj

(
∆xL̇j−2

j−2L̇
j−2
j + (∆x)3L̈j−2

j−2L̈
j−2
j + (∆x)5

...
L

j−2
j−2

...
L

j−2
j

)
dx,

+ yj−2yj+12

∫ xj+1

xj

(
∆xL̇j−2

j−2L̇
j−2
j+1 + (∆x)3L̈j−2

j−2L̈
j−2
j+1 + (∆x)5

...
L

j−2
j−2

...
L

j−2
j+1

)
dx,

+ yj−1yj 2

∫ xj+1

xj

(
∆xL̇j−2

j−1L̇
j−2
j + (∆x)3L̈j−2

j−1L̈
j−2
j + (∆x)5

...
L

j−2
j−1

...
L

j−2
j

)
dx,

+ yj−1yj+12

∫ xj+1

xj

(
∆xL̇j−2

j−1L̇
j−2
j+1 + (∆x)3L̈j−2

j−1L̈
j−2
j+1 + (∆x)5

...
L

j−2
j−1

...
L

j−2
j+1

)
dx,

+ yjyj+1 2

∫ xj+1

xj

(
∆xL̇j−2

j L̇j−2
j+1 + (∆x)3L̈j−2

j L̈j−2
j+1 + (∆x)5

...
L

j−2
j

...
L

j−2
j+1

)
dx.

This pattern is the same for the other two indicators, just changing the
corresponding points and functions. The di�erent colors represent the terms
belonging to the di�erent derivatives. As this formula shows, each βk has 10
coe�cients just depending on the grid and not on the speci�c yi-values, making
30 factors all in all. Those coe�cients, which we will name gki,j ='coe�cient of
(yiyj) respective βk', can be computed and stored at the beginning of the in-
terpolation. We will not specify the whole calculation, because it is simple and
long algebra, but show the �nal results within the appendix under Equation
(55). For all equidistant meshes these coe�cients reduce to the same set of real
numbers. This makes the use of those grid much easier and the corresponding
formulas much shorter.

We can now combine the smoothness indicators with the linear weights
to form our nonlinear weights. Because it shall be something like a convex
combination at the end, it is helpful to de�ne an auxiliary number:

αk =
Ck

(ε+ βk)2
. (13)
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As you see the α's contain another value, named ε. This quantity prevents
the denominator from becoming zero, e.g. for constant functions. It's a previ-
ously chosen number, mostly 10−6 and has no actual use for the interpolation.
Notice further, that these αk's consist of the Ck's, weighted by the smoothness
factors βk. The more smooth a function is within the relevant interval, the
lower is the smoothness factor and the higher becomes the ratio of the corre-
sponding polynomial.

These α-values are again weighted by their combined sum to get a 'kind of
convex combination' to form the 'nonlinear weights' ωk:

ωk =
αk∑n−1
2

i=0 αi

, (14)

n−1
2∑

k=0

ωk = 1.

Note that they get their sign from the Ck's and ωk ≥ 0 and Ck ≥ 0 is just
given in the space of the interval [xi;xi+1]. The proof is shown in [2]. This fact
just counts for the interpolation part and within the following reconstruction
the Ck can get negative even more easily. But for the used order of 5 and
the explicit computed points during this report, they will always be positive.
But in general, those sets don't really form convex combinations. They have
always a sum of one, but are not necessary positive.

At the end of this derivation we can construct the interpolation polyno-
mial I(x), interpolating our given node points between xj and xj+1 using the
prede�ned, low order polynomial Pk:

I(x) =

n−1
2∑

i=0

ωiPi. (15)

As you see the order of accuracy of the interpolation polynomial I(x) is n,
consisting of the n+1

2
-order interpolation polynomials Pk(x) and the n−1

2
-order

linear weights. So roughly speaking this originated function is of higher or-
der than the Pk's, but mostly is not that strongly oscillating as the calculated
Q(x). It combines advantages of both and makes the WENO procedure perfect
for interpolating piecewise smooth functions with discontinuities in between.
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2.1.1 Why those unique Ck's can always be found

Following ideas from [2] it is surely correct to say Q(xi) = yi within the large
stencil S, due to the de�nition of the interpolation polynomial. Within each
small stencil Sk an analog equation can be formed: Pk(xi) = yi. Outside each
small stencil, within the large one, the Pk take unknown values, not necessary
zero in the nodes. So we should claim:

Ck(xi) = 0 for each xi ∈ S\Sk. (16)

The n+1
2
Ck's are polynomials of degree n−1

2
. They got now a sum of n2+2n+1

4

parameters. We already can form n2−1
4

independent equations out of (16), due
to the fundamental theorem of algebra. Combining them with Equation (6),
the linear weights have to form again a 'kind of convex set', not satisfying
Ck > 0, but the main requirement

n−1
2∑

k=0

Ck(xi) = 1 for each xi ∈ S. (17)

To keep track of the dependency of these equations, we de�ne a general
form for the linear weights:

Ck(x) =

n−1
2∑

i=0

rik(x)i. (18)

We get a simpli�ed form of Equation (17), that clearly shows its n−1
2

degree
polynomial character:

n−1
2∑

i=0

(

n−1
2∑

j=0

rij)

 (xz)
i = 1 for each xz ∈ S. (19)

The polynomial on the left side has to be identical to the constant function
r(x) ≡ 1. This leads to exactly n+1

2
simple, independent equations:

n−1
2∑

j=0

rij = 0 for each i ∈
[
1,
n− 1

2

]
, (20)

n−1
2∑

j=0

r0j = 1.
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Together with Equation (16) we get n2+2n+1
4

independent equations for the
same number of parameters. The system of Ck(x) got a unique solution. We
will now discuss a short example of a 5th order interpolation. At �rst we de�ne
the general form for our 3 second degree polynomials Ck(x):

Ck(x) = ak(x)2 + bkx+ ck. (21)

So we got all in all 9 parameters to determine. 6 independent �xing equa-
tions are formed out of (16):

a0(xi)
2 + b0xi + c0 = 0 for i ∈ {j + 2, j + 3}, (22)

a1(xi)
2 + b1xi + c1 = 0 for i ∈ {j − 2, j + 3},

a2(xi)
2 + b2xi + c2 = 0 for i ∈ {j − 2, j − 1}.

Furthermore Equation (17) turns into:

(a0 + a1 + a2)(xi)
2 + (b0 + b1 + b2)xi + (c0 + c1 + c2) = 1 for each xi ∈ S. (23)

This is a simple polynomial of degree two, coinciding on 6 points with
the constant polynomial v(x) ≡ 1. Both sides have to be identical and a
comparison of coe�cients gives us the remaining 3 equations, to compute the
unique solution:

(a0 + a1 + a2) = 0, (24)

(b0 + b1 + b2) = 0,

(c0 + c1 + c2) = 1.

At least we want to mention, that the set of Ck even forms a basis of Pn−1
2
.

This easily can be seen as following de�nition, based on Equation (16) and the
fundamental theorem of algebra, forms a maximal, independent set:

Ck(x) = γk
∏

xi∈S\Sk

(x− xi) with γk ∈ R. (25)
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With this de�nition and Equation (17) we also got an additional way to
calculate the linear weights:

k∑
i=1

γi
∏

xm∈S\Si

(
xj−n−1

2
+k − xm

)
= 1 for all k ∈

[
1;
n− 1

2

]
. (26)

The so de�ned system only includes the minimal, independent set of equa-
tions and clearly shows again the unique solvability. As you will simply check,
all statements are equal and compatible with the explicit 5th-order form given
in (8).
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2.2 The Reconstruction Problem

In addition to the interpolation task, the WENO method also can be used for
reconstructing functions. The aim of such a reconstruction is also a smooth
estimation of a certain value between two known grid points. The di�erence
lays in the starting conditions. Within a reconstruction not the values at the
nodes are given, but the cell average of the function. Those types of problems
are usually called Finite Volume (FV) methods. The general setting still is the
same as during the interpolation part. Within this report the cell average of
the function u(x) within the interval [xi, xi+1] is de�ned as:

yi =
1

di+1,i

∫ xi+1

xi

u(x) dx. (27)

Since we don't want to develop the whole WENO construction from scratch,
it should be helpful to use our knowledge from the WENO interpolation. If we
can calculate all grid values out of the given cell averages we could completely
use the formulas given in Section 2.1. To reach this, another auxiliary function
is introduced, like it is done in [3]. This function is generated out of the function
f(x), which we want to reconstruct:

Uk(x) =

∫ x

xj−2+k

u(z) dz. (28)

This is an integral function with its variable in the upper limit. The lower
limit is not important and can be chosen as any optional �xed point. We will
always choose xk as most left node point of the used stencil. While later-on
Uk(x) shall be based on the small stencil Sk, we will set U(x) to be the analog
function based on the large stencil S with U(x) as xk = inf S. The outcome is a
relation between the given cell averages yj and the grid values of our previously
de�ned function Uk(x) in all relevant points xi within the used stencil:

Uk(xi) =

∫ xi

xj−2+k

u(z) dz =
i−1∑

j=j−2+k

∫ xj+1

xj

u(z) dz =
i−1∑

j=j−2+k

dj+1,jyj. (29)

Furthermore the corresponding derivative interpolates the not known func-
tion u(x), with ũ(x) being a primitive of it:

d

dx
Uk(x) =

d

dx

(∫ x

xj−2+k

u(z) dz

)
=

d

dx
(ũ(x)− ũ(xj−2+k)) = u(x). (30)
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Especially this holds for the node points. Surely this derivative also satis�es
the reconstruction of the cell averages de�ned in (27).

1

di+1,i

∫ xj+1

xj

d

dx
Uk(x) dx =

1

di+1,i

∫ xj+1

xj

u(x) dx = yi. (31)

Now we take again the stencils and interpolating polynomials used before
and shown in Figure 1. But this time the functions Pk(x) and Q(x) shall
reconstruct the 'real' function u(x) out of Equation (27) within the corre-
sponding stencil. This means precisely that both got the same average values
concerning the grid cells. We have just shown, that the derivative d

dx
Uk(x)

ful�lls this requirement. All we have to do is to construct an interpolation
polynomial P̃k(x) for the node points of Uk(x) within the stencil Sk, so that
P̃k(xi) = Uk(xi) for xi ∈ Sk. The derivative d

dx
P̃k(x) = Pk(x) of this func-

tion can be used as reconstruction function for the values of u(x). This works
analogously for the reconstructing polynomial Q(x) = d

dx
Q̃(x) within the large

stencil, with Q̃(xi) = U(xi) for xi ∈ S. This leads to:

∫ xj+1

xj

Pk(z) dz =

∫ xj+1

xj

d

dx
Uk(x) dx = dj+1,jyi, (32)∫ xj+1

xj

Q(z) dz =

∫ xj+1

xj

d

dx
U(x) dx = dj+1,jyi.

To summarize, we just have to calculate the node points of the function
Uk(x) (respectively U(x)) with Equation (29). Then we interpolate them in
terms of the Lagrange polynomial in (3). At last we determine the derivative
of that interpolation polynomial and use it as reconstruction (in terms of same
cell averages) for the unknown function u(x). The general equation for the
interpolation of the primitive auxiliary function Uk(x), based on the stencil Sk

and a order 5 reconstruction is:

Uk(x) =
k+3∑

i=j−2+k

(
i−1∑

h=j−2+k

dh+1,hyh

)
j+1+k∏
s=j−2+k

s 6=i

x− xs
xi − xs

, (33)

U(x) =

j+3∑
i=j−2

(
i−1∑

h=j−2

dh+1,hyh

)
j+3∏

s=j−2
s6=i

x− xs
xi − xs

.
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This leads to the general 3rd and 5th order reconstruction polynomial as
its derivative for the same stencil and point combination:

Pk(x) =

j+1+k∑
i=j−2+k

aki
(

i−1∑
h=j−2+k

dh+1,hyh

)
j+1+k∑

t=j−2+k

j+1+k∏
s=j−2+k
s 6=i;s 6=t

(x− xs)

 , (34)

Q(x) =

j+3∑
i=j−2

aki
(

i−1∑
h=j−2

dh+1,hyh

)
j+3∑

t=j−2

j+3∏
s=j−2
s 6=i;s 6=t

(x− xs)

 .

With aki and ai from Equation (10) and (11). These complicated looking
functions are just the combination of the Equations (3),(10), (28), (29), (30),
and (31). They reconstruct the polynomial of degree three or �ve with given
cell averages. Please note, that e.g. the polynomial Qk has an order of accu-
racy of n, if n+ 1 points and n cells are used, though it is just a polynomial of
degree n− 1. This is, because it is a reconstruction and not an interpolation.
To satisfy the main requirement (32) it has to be integrated and gets a degree
of n, counting as interpolating function for the given cell averages.

the next step is to �nd the explicit forms of the linear weights Ck(x). Again,
they shall be the linking part between the reconstruction functions based on
the small stencils Sk, with Pk(x), and the high degree polynomial Q(x), based
on the large stencil S. So the general setting is equal to the interpolation part.
Since the reconstruction polynomials all are based on the same reconstruction
function u(x), they got the same grid values according to Equation (30). So
they also count as order n − 1 and n−1

2
interpolation polynomials for those

grid points based on n and n+1
2

points. The general linear weights have to be
polynomials of degree n−1

2
again. According to that, the arguments for their

existence and uniqueness are the analog ones as before. The only di�erence is
the much more complicated form they got within the reconstruction problem.
So due to simplicity we just calculate them at one special point. In Equation
(57) of the appendix you can �nd the explicit linear weights, computed at the
node point xj+1.

Actually this was the main point concerning the reconstruction problem.
All work left is the calculation of the smoothness indicators. But as you easily
can see in Equation (12) of Section 2.1, their coe�cients are not depending
of the actual given data, but just on the mesh. Also emember, that our re-
construction polynomials are already the �rst derivatives of the interpolating
auxiliary function. They are based on L̇m

i in a �fth order reconstruction. Their
derivatives, used to compute the smoothness indicators, are combinations of
the given L̈m

i and
...
L

m
i , that are also used within the interpolation part to get

the coe�cients gji . So all we have to do now is to copy the coe�cients of the
smoothness indicators from Equation (55), but skip the �rst summand, which
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is colored red, because it belongs to the not used �rst derivative. As node
points yi we take the values of the corresponding auxiliary function Uk(xi).
This might not be the most e�cient way, but within this report it works good
enough to use. The concrete reconstruction values are computed with a for-
mula similar to Equation (15), using again De�nition (13) and (14).

Figure 2: Reconstruction of cell boundaries. Solid lines: exact function; symbols: aproxi-
mations. Left: 5th order WENO; Right: 5th order Traditional[1]

As said before, the probably greatest advantage of the WENO schemes over
other interpolation and reconstruction methods is in the case of non-smooth
functions. In Figure 2, taken from [1], the di�erence between a traditional
�fth order reconstruction with Equation (34) and the WENO reconstruction is
presented. Like it is characteristic for most reconstruction concepts, around the
discontinuity appear quite strong oscillations, while the WENO reconstructed
function looks smooth, �ts the exact solution and avoids over- and undershoots.
In here the reconstructed function was u(x) = 2x for x ≤ 0 and u(x) = −20
for x > 0. The used uniform mesh was constructed by xi = 0.02(i− 0.4965).
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3 Solving Di�erential Equations

The main usage of the WENO schemes lays in the �eld of applied numerical
science, especially to solve hyperbolic conservation laws. Those are mostly
homogenous partial di�erential equations. In this report, we will discuss the
example of an one-dimensional case with the general form:

∂tu(x, t) + ∂xf(u(x, t)) = 0, (35)

where u(x, t) is the searched function with time coordinate t and a single
space dimension x, ∂k = ∂

∂k
shall be the short term of the partial derivative

with respect to k and f(z) represents the concrete conservation function. We
will discuss this problem again for di�erent boundary conditions. As before we
call the procedure an FV method for given cell averages, de�ned in (27). For
given node values it represents a FD scheme and will be described afterwards.

3.1 The Finite Volume Scheme

If we got given cell averages yi, in terms of Equation (27) out of Section 2.2,
we need a FV method again. Therefore we have to transform the partial dif-
ferential equation into its integral form, taking ' 1

di+1,i

∫ xi+1

xi
dx' on every term:

∂t yi(t) +
1

di+1,i

(f [yi+1(t)]− f [yi(t)]) = 0. (36)

Since we can compute the node values from the given cell averages, we can
reduce the equation by its space dimension. It actually results in an ordinary
di�erential equation with respect to the time. This type of equation can be
solved with other concepts, e.g. the explicit Euler method. This is a low order
method and is just use for the simplicity of presentation. In practice one would
rather use a 3rd order Runge-Kutta-Method.

The basic idea of the explicit Euler method is simple. We suppose a linear
change of each cell averages within a nonuniform time-grid with tj+1−tj = ∆tj.
So we can assume:

yi(tj+1) = yi(tj) + ∆tj∂t yi(t)|t=tj . (37)

Using (36), this leads to:

yi(tj+1) = yi(tj) +
∆tj
di+1,i

(f [yi(tj)]− f [yi+1(tj)]) . (38)
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This equation is an explicit formula to approximate all desired cell averages
at any chosen time coordinate. Of course this method of time discretization
is very simple and not used often, but it shows the possibility of using the
WENO method to solve such di�erential equations.

3.2 The Finite Di�erence Scheme

The FD method is based again on the node values, while cell averages are not
given. One simple idea is to use the FV scheme of Section 3.1 and calculate the
needed cell averages via numerical quadrature like e.g. Newton's integration.
But because of the multiple transformations of the given data the accuracy is
su�ering.

So it seems best to use just the grid values and take the partial di�erential
equation in its di�erential form like it is in (35). To solve it, we need to compute
the derivative of the given, concrete function f(u). We will see that the WENO
interpolation scheme is a good choice to handle this problem. Just some little
adjustments have to be done. First of all the linear weights Ck change since our
De�nition (6) changes into a di�erential analogon, again using ḟ(x) = d

dx
f(x).

To show the analogy we also choose related symbols:

Q̇(x) =

n−1
2∑

k=0

C̃k(x)Ṗk(x). (39)

n is still the order of accuracy concerning the used WENO method, just as
of the polynomial Q(x) based on the large stencil S. As one can see, the general
setting stays again exactly the same as in Section 2. Actually this Equation
(39) has the same form as the de�nition of the linear weights within the re-
construction problem in Section 2.2. There, the reconstruction polynomials
Q(x) and Pk(x) were derivatives of the auxiliary functions U(x) and Uk(x),
which have been interpolated based on the previously computed grid values.
And since we just need the derivative values at the grid points, e.g. xi+1, we
can copy the linear weights of Equation (57) for a �fth order interpolation.
We even can nearly copy the polynomials of Equation (34) of Section 2.2 and
take them as interpolation polynomials for the searched derivatives Ṗk(x) and
Q̇(x). The summations of the cell averages have to be changed into the now
given node values. The concrete Forms are presented in Equation (40). Of
course we also just need their values at the node point xi+1. As you can see,
the reconstruction and interpolation problems are really interlaced.
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The explicit forms of the 5th order polynomials are:

Ṗk(x) =

j+1+k∑
i=j−2+k

aki yi j+1+k∑
t=j−2+k

j+1+k∏
s=j−2+k
s 6=i;s 6=t

(x− xs)

 , (40)

Q̇(x) =

j+3∑
i=j−2

aki yi j+3∑
t=j−2

j+3∏
s=j−2
s 6=i;s 6=t

(x− xs)

 .

The next change concerns the smoothness indicators, which are now called
β̃k. Unlike De�nition (9), the sum of integrals starts with the second derivative
of the corresponding Pk.

β̃k =

n+1
2∑

i=2

∫ xj+1

xj

(∆x)2i+1

(
di

dxi
Pk

)2

dx. (41)

This arises from the fact, that we actually want to interpolate the �rst
derivative and its smoothness is measured with higher derivatives. Further-
more the polynomial Pk got an order of

n+1
2

and at most that much derivatives,
not using its own, concrete function values. So that has to be the end of the
summation. Fortunately we don't need to compute the explicit �fth order
equations for the smoothness indicators again, but roughly can take the ones
from the WENO interpolation part in Section 2.1. We just need to delete the
�rst of the three summands, which belongs to the �rst derivative and is colored
red within this paper. The concrete calculation of the derivative values is done
with a similar formula as before, using the analogon to De�nition (13) and (14):

∂xu(x)|x=xi
= İ(xi) =

n−1
2∑

k=0

ω̃k(xi)Ṗk(xi). (42)

With this approximation we are able to solve our di�erential equation. The
approximation for the derivative of the di�erential function f(u) computed at
xi is given by:

∂xf [u(x, tj)]|x=xi
=
(
∂uf(u)|u=u(xi,tj)

) n−1
2∑

k=0

ω̃k(xi)Ṗk(xi)

 . (43)

Note that on the right side the addiction to t is given by the fact, that all
used node values belong to the special tj-coordinate from the left side of the
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equation. So also the used polynomials and weights actually depend on t. Now
we choose again an explicit Euler method for the part of time discretization,
as it is discussed in section 3.1. But this time we assume:

yi(tj+1) = yi(tj) + ∆tj∂tyi(t)|t=tj . (44)

Combining this with Equation (35) and (42) gives us the �nal formula:

yi(tj+1) = yi(tj)−∆tj
(
∂uf(u)|u=u(xi,tj)

) n−1
2∑

k=0

ω̃k(xi)Ṗk(xi). (45)

4 The Implementation

Now we want to present the practical use of the WENO method. Therefore
we implemented a c-program for reconstruction, in terms of Section 2.2, and
solving partial di�erential equations (PDE), in terms of Section 3.1. The whole
program can be seen in the appendix. The implementation just consists of
formulas and functions described in this report. The results will be shown in
a qualitative way, quantitative error values will not be computed.

Note that this is just a prototype program. Its only use is to show that the
presented concepts do not just work theoretically, but also in practice. So it
is not optimized and got a lot of opportunities for improvement.

4.1 WENO Reconstruction of a Step-Function

As example for a reconstructed function we take the piecewise de�ned polyno-
mial presented in Section 2.2:

u(x) =

{
2x , x ≤ 0

−20 , else
. (46)

The used mesh includes the same amount of points within the analysed
range of [−0.2; 0.2], as one in Section 2.2 did. But we use a non equidistant
mesh, manually adjusted to the discontinuity. So the highest point density is
set around the x = 0 and the grid can be referred to as adapted. Using the
general form of De�nition (1) the grid is given by the recursive formula for
i > 0:

xi = xi−1 + 0.06(1− 0.93e−130x
2
i−1) , x0 = −0.19993. (47)
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Due to generalisation and simplicity, the cell averages, used as start values
in the implementation, were computed with a 6th order Newton's integration.
The analytical formula for calculating the cell averages of function (46) within
the cell [xi;xi+1] would be:

yi =


xi+1 + xi , xi+1 ≤ 0

−20 , xi ≥ 0
−(xi)

2−20xi+1

di+1,i
, else

. (48)

The results of the reconstruction process can be seen in Figure 3. The
equidistant reconstruction result uses the same grid as it is used in [1] and
Section 2.2, but still is computed with our general, non-equidistant version of
the WENO program. As said before, both reconstructions are based on the
same number of node points. Though, the non equidistant mesh, which is
adapted to the discontinuity, produce much better results.

Figure 3: Reconstruction of Function (46) with our implementation of the WENO method
compared to the equidistant case

Please note, that we actually just implemented a program to solve PDE's.
The reconstruction can be achieved by manually setting the range of the time
approximation with 'endt = 0' to zero. With this modi�cation, just one simple
reconstruction is performed, and the actual PDE-solving-part of the implemen-
tation is skipped.
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4.2 Solution of the Linear Transport Equation

As the main usage of the WENO method is to solve partial di�erential equa-
tions, we also want to present a simple implementation and their results. We
have chosen a quite simple physical conservation law called 'linear transport
equation'. The complete initial boundary value problem is given by its general
form as:

∂tu(x, t) + ∂xu(x, t) = 0, (49)

u(x, 0) = g(x).

The analytical and exact solution in general is given as:

u(x, t) = g(x− t). (50)

As one can see, the initial function g(x) is simply shifted to the right, as
the time increases. This fact explains the name of the used PDE and gives us
a comparable function for the solutions of our WENO implementations. The
physical interpretation of the linear transport equation could be a salt con-
centration in a smooth river, that is transported by its �ow, or dust, carried
by a steady wind. Of course within this simple model all kinds of di�usion or
turbulences are neglected.

We want to present the example of the following initial function for t0 = 0:

g(x) =

{
x
2

, |x| ≤ 2

0 , else
. (51)

Obviously g(x) got 2 discontinuities at x = ±2, where the function makes
a relatively huge step from a linear function, to the constant polynomial of
zero. The analytical formula for calculating the cell averages of the interval
[xi;xi+1] is:

yi =



0 , xi+1 < −2

0 , xi > 2
xi+xi+1

4di+1,i
, xi ≥ −2 & xi+1 ≤ +2

1
di+1,i

( (xi+1)
2

4
− 1) , xi < −2 & xi+1 ≥ −2

1
di+1,i

(1− (xi)
2

4
) , xi ≤ +2 & xi+1 > +2

. (52)
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As Equation (50) shows, the exact solution for the initial value problem is
a shifted version of the start function:

u(x, t) =

{
x−t
2

, |x− t| ≤ 2

0 , else
. (53)

Figure 4: Solution of the PDE (49) with the initial function (51) for t = 0; 3 using an
adapted and non-equidistant grid

This quite extreme example is shown in Figure 4., with the reconstructed
initial condition at t = 0 and the computed solution for t = 3. Here we have
chosen another type of equidistant grid, recursive de�ned for i > 0 as:

xi = xi−1 + 0.2k , x0 = −3, (54)

k =

{
0.3 ,−2.5 < x < 5.5

1 , else
.

This mesh got a small cell range within the movement area of the disconti-
nuities for t ∈ [0; 3] and a bigger cell range outside. The time discretisation was
done with an equidistant grid, using the parameter ∆t = 0.005. As obvious,
the reconstruction at t = 0 �ts much better at the exact solution than the ap-
proximation for t = 3. Especially the sharp edges of the discontinuity became
round and smooth. That phenomenon is characteristic for the multiple poly-
nomial reconstructions during the approximation procedure. However, neither
the initial function, nor the end approximation shows visible overshoots.
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5 Conclusion and Future Prospects

To summarise the results of this report, the WENO method is a good choice
to interpolate or reconstruct non smooth functions. The convex combina-
tion including linear and non-linear weights reduces overshoots and oscillations
near discontinuities to a minimum. The general, non-equidistant equations are
mostly long and complicated functions, but contain just simple algebra. Also
the di�erent concepts of e.g. interpolation and reconstruction, with di�erent
boundary values, have a lot in common and are closely related to each other.
Combined with time discretisation priciples, like the Runge-Kutta method or
the used explicit Euler method, the WENO concept is also well-suited to solve
PDE's.

further the simple, but signi�cant, examples showed the practical use of the
introduced WENO method. It was proven, that a implementation of the pre-
sented procedures is able to reconstruct functions out of given cell averages and
can solve partial di�erential equations. Even if we did not explicitly compare
the WENO method with traditional polynomial reconstruction concepts, the
results are free of overshoots and do not show any kind of oscillation around
their discontinuities. This makes the WENO method a strong tool in the area
of numerical calculation, which should be worked on to improve it even more.

As last point we want to give some proposals for potential future researches
on the topic of non-equidistant WENO methods. They mainly include im-
provements of the concepts presented in this report and our corresponding
implementation.

• The whole implementation is just a rough prototype program. Its only
use was to show the possibility of a working WENO method. So there is
much space for correction and perfection. E.g. the parameter, which do
not depend on the concrete values, but on the grid, could be computed
within a separated, outsourced function. The equations for all quantities
might also be reworked to increase their numerical accuracy.

• We presented the ordinary formulas for the smoothness indicators in
Equation (9). But actually this special form was designed and tested
for equidistant meshes. There are several ideas to improve the accuracy
or computation time of the WENO concept, by using di�erent smooth-
ness indicators. N. Črnjarić − Žic, S. Maćešić and Bojan Crnković
e.g.described a di�erent method for the smoothness indication based on
non-uniform meshes.1

1E�cient implementation of WENO schemes to nonuniform meshes - Università degli
Studi di Ferrara - Oct. 2007
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• The principle of time discretisation can surely be optimised. As men-
tioned before, the explicit Euler method is actually not used. An imple-
mented Runge-Kutta-Method would extremely raise the accuracy of the
PDE solutions. Also an e�ective implementation of temporal adaptive
grids could increase the whole e�ciency. The focus of high point density
could be shifted to the area of highest interest during the computation.
Therefore a lot of optimisation is needed. But the main problem might
be to implement a concept to adapt the given cell averages to the newly
generated mesh cells.

• We just introduced the WENO method for the starting conditions of
given node values and cell averages. Surely, the WENO concept can
be specialized also to di�erent kinds of given quantities. Also di�erent
types of interpolation and reconstruction polynomials could be used. One
could analise, weather it would make sense to change several parts of
the discussed WENO method to improve e.g. the accuracy for special
problems.
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6 Appendix

The coe�cients of the smoothness indicators out of the interpolation problem
of Section 2.1. They also can be modi�ed and used for the reconstruction
problem in Section 2.2 and are closely related to the smoothness indicators for
the �rst derivative interpolation of Section 3.2:

g0j−2,j−2 = (a0j−2)
2
[(dj+1,j)

3∆x

15
(5dj,j−1dj+1,j−1 + 2(dj+1,j)

2) (55)

+
4(∆x)3

9
((dj+1,j − dj,j−1)3 + (dj+1,j−1 + dj+1,j)

3)

+ 36dj+1,j(∆x)5
]
,

g0j−1,j−1 = (a0j−1)
2
[(dj+1,j)

3∆x

15
(5dj,j−2dj+1,j−2 + 2(dj+1,j)

2)

+
4(∆x)3

9
((dj+1,j − dj,j−2)3 + (dj+1,j−2 + dj+1,j)

3)

+ 36dj+1,j(∆x)5
]
,

g0j,j = (a0j)
2
[
∆x(

9((xj+1)
5 − (xj)

5)

5
+3((xj)

4 − (xj+1)
4)(xj−2 + xj−1 + xj+1)

+
2((xj+1)

3 − (xj)
3)

3
(2(xj−2)

2 + 2(xj−1)
2 + 2(xj+1)

2

+ 7xj−2(xj−1 + xj+1) + 7xj−1xj+1)

+2((xj)
2 − (xj+1)

2)(xj−2 + xj−1 + xj+1)(xj−2(xj−1 + xj+1)

+ xj−1xj+1)

+(xj+1 − xj)(xj−2(xj−1 + xj+1) + xj−1xj+1)
2)

+
4(∆x)3

9
((dj+1,j − dj,j−2 − dj,j−1)3 + (dj+1,j−2 + dj+1,j−1)

3)

+ 36dj+1,j(∆x)5
]
,

g0j+1,j+1 = (a0j+1)
2
[
∆x(

9(xj+1)
5

5
− 3(xj+1)

4(xj−2 + xj−1 + xj)

+
2(xj+1)

3

3
(2(xj−2)

2 + 2(xj−1)
2 + 2(xj)

2

+7xj−2(xj−1 + xj) + 7xj−1xj)

−2(xj+1)
2(xj−2 + xj−1 + xj)(xj−2(xj−1 + xj) + xj−1xj)

+xj+1(xj−2(xj−1 + xj) + xj−1xj)
2

+
xj
15

(5(xj)
3(xj−2 + xj−1)− 15(xj−2)

2(xj−1)
2

− 5(xj)
2(xj−2 + xj−1)

2 − 2(xj)
4))

+
4(∆x)3

9
((dj+1,j−2 + dj+1,j−1 + dj+1,j)

3 − (dj,j−2 + dj,j−1)
3)

+ 36dj+1,j(∆x)5
]
,
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g0j−2,j−1 = 2a0j−2a
0
j−1
[(dj+1,j)

3∆x

30
(5dj+1,j−2dj,j−1 + 5dj,j−2dj+1,j−1 + 4(dj+1,j)

2)

+ 2dj+1,j(∆x)3(dj,j−1dj+1,j−2 + dj,j−2dj+1,j−1 + 2(dj+1,j)
2)

+ 36dj+1,j(∆x)5
]
,

g0j−2,j = 2a0j−2a
0
j

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+1,j−1)
2 + 7(dj,j−1)

2

+5dj,j−2dj+1,j−1 + 5dj+1,j−2dj,j−1 + dj,j−1dj+1,j−1)

+ 2dj+1,j(∆x)3(dj,j−2(dj,j−1 + dj+1,j−1)

+(dj+1,j−1)
2 + (dj+1,j)

2 + (dj,j−1)
2)

+ 36dj+1,j(∆x)5
]
,

g0j−2,j+1 = 2a0j−2a
0
j+1

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 7(dj+1,j−1)
2 + 2(dj,j−1)

2

+5dj,j−2dj+1,j−1 + 5dj+1,j−2dj,j−1 + dj,j−1dj+1,j−1)

+ 2dj+1,j(∆x)3(dj,j−1dj+1,j−2 + dj+1,j−1dj+1,j−2

+(dj+1,j)
2 + (dj,j−1)

2 + (dj+1,j−1)
2)

+ 36dj+1,j(∆x)5
]
,

g0j−1,j = 2a0j−1a
0
j

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+1,j−2)
2 + 7(dj,j−2)

2

+5dj,j−1dj+1,j−2 + 5dj+1,j−1dj,j−2 + dj,j−2dj+1,j−2)

+ 2dj+1,j(∆x)3(dj,j−1(dj,j−2 + dj+1,j−2)

+(dj+1,j−2)
2 + (dj+1,j)

2 + (dj,j−2)
2)

+ 36dj+1,j(∆x)5
]
,

g0j−1,j+1 = 2a0j−1a
0
j+1

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj,j−2)
2 + 7(dj+1,j−2)

2

+5dj+1,j−1dj,j−2 + 5dj,j−1dj+1,j−2 + dj+1,j−2dj,j−2)

+ 2dj+1,j(∆x)3(dj+1,j−1(dj+1,j−2 + dj,j−2)

+(dj,j−2)
2 + (dj+1,j)

2 + (dj+1,j−2)
2)

+ 36dj+1,j(∆x)5
]
,

g1j−1,j−1 = (a1j−1)
2
[(dj+1,j)

3∆x

15
(2(dj+2,j)

2 + 2(dj+2,j+1)
2 + dj+2,j+1dj+2,j)

+
4(∆x)3

9
((dj+1,j + dj+2,j)

3 + (dj+1,j − dj+2,j+1)
3)

+ 36dj+1,j(∆x)5
]
,
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g0j,j+1 = 2a0ja
0
j+1

[
∆x(

3((xj+1)
5 − (xj)

5)

10

−2((xj+1)
4 − (xj)

4)

3
(xj−2 + xj−1)

+
((xj+1)

3 − (xj)
3)

3
((xj−2)

2 + 5xj−2xj−1 + (xj−1)
2 − xjxj+1

2
)

−((xj+1)
2 − (xj)

2)(xj−2(xj−1)
2 + xj−1(xj−2)

2

− xjxj+1

3
(xj−2 + xj−1))

+(xj+1 − xj)((xj−2)2(xj−1)2 − xj−2xj−1xjxj+1))

+ 2dj+1,j(∆x)3(3dj,j−2dj,j−1 + 2(dj+1,j−1)
2 + (dj+1,j−2)

2

+dj,j−2dj+1,j−2 + dj+1,j−1dj,j−2)

+ 36dj+1,j(∆x)5
]
,

g1j,j = (a1j+1)
2
[
∆x(

9((xj+1)
5 − (xj)

5)

5
−3((xj+1)

4 − (xj)
4)(xj−1 + xj+1 + xj+2)

+
2((xj+1)

3 − (xj)
3)

3
(2(xj−1)

2 + 2(xj+1)
2 + 2(xj+2)

2

+ 7xj−1(xj+1 + xj+2) + 7xj+1xj+2)

−2((xj+1)
2 − (xj)

2)(xj−1 + xj+1 + xj+2)(xj−1(xj+1 + xj+2)

+ xj+2) + xj+1xj+2)

+(xj+1 − xj)(xj−1(xj+1 + xj+2) + xj+1xj+2)
2)

+
4(∆x)3

9
((dj+1,j−1 − dj+2,j+1)

3 + (dj+2,j + dj+1,j − dj,j−1)3)

+ 36dj+1,j(∆x)5
]
,

g1j+1,j+1 = (a1j+1)
2
[
∆x(

9((xj+1)
5 − (xj)

5)

5
−3((xj+1)

4 − (xj)
4)(xj−1 + xj + xj+2)

+
2((xj+1)

3 − (xj)
3)

3
(2(xj−1)

2 + 2(xj)
2 + 2(xj+2)

2

+ 7xj−1(xj + xj+2) + 7xjxj+2)

−2((xj+1)
2 − (xj)

2)(xj−1 + xj + xj+2)(xj−1(xj + xj+2) + xjxj+2)

+(xj+1 − xj)(xj−1(xj + xj+2) + xjxj+2)
2)

+
4(∆x)3

9
((dj+1,j−1 − dj+2,j+1)

3 + (dj+2,j + dj+1,j − dj,j−1)3)

+ 36dj+1,j(∆x)5
]
,
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g1j+2,j+2 = (a1j+2)
2
[(dj+1,j)

3∆x

15
(2(dj,j−1)

2 + 2(dj+1,j−1)
2 + dj+1,j−1dj,j−1)

+
4(∆x)3

9
((dj+1,j − dj,j−1)3 + (dj+1,j + dj+1,j−1)

3)

+ 36dj+1,j(∆x)5
]
,

g1j−1,j = 2a1j−1a
1
j

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+2,j+1)
2 + 7(dj+2,j)

2

−5dj,j−1dj+2,j+1 − 5dj+1,j−1dj+2,j + dj+2,jdj+2,j+1)

+ 2dj+1,j(∆x)3((dj+2,j+1)
2

+(dj+1,j)
2 + (dj+2,j)

2 − dj,j−1(dj+2,j + dj+2,j+1))

+ 36dj+1,j(∆x)5
]
,

g1j−1,j+1 = 2a1j−1a
1
j+1

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+2,j)
2 + 7(dj+2,j+1)

2

−5dj+1,j−1dj+2,j − 5dj,j−1dj+2,j+1 + dj+2,j+1dj+2,j)

+ 2dj+1,j(∆x)3((dj+2,j)
2 + (dj+1,j)

2 + (dj+2,j+1)
2

−dj+1,j−1(dj+2,j+1 + dj+2,j))

+ 36dj+1,j(∆x)5
]
,

g1j−1,j+2 = 2a1j+2a
1
j−1
[(dj+1,j)

3∆x

30
(−5dj+2,j+1dj,j−1 − 5dj+2,jdj+1,j−1 + 4(dj+1,j)

2)

+ 2dj+1,j(∆x)3(2(dj+1,j)
2 − dj,j−1dj+2,j+1 − dj+2,jdj+1,j−1)

+ 36dj+1,j(∆x)5
]
,

g1j,j+1 = 2a0ja
0
j+1

[
∆x(

3((xj+1)
5 − (xj)

5)

10

−2((xj+1)
4 − (xj)

4)

3
(xj+2 + xj−1)

+
((xj+1)

3 − (xj)
3)

3
((xj+2)

2 + 5xj+2xj−1 + (xj−1)
2 − xjxj+1

2
)

−((xj+1)
2 − (xj)

2)(xj+2(xj−1)
2 + xj−1(xj+2)

2

− xjxj+1

3
(xj+2 + xj−1))

+(xj+1 − xj)((xj+2)
2(xj−1)

2 − xj+2xj−1xjxj+1))

+ 2dj+1,j(∆x)3(2(dj+1,j−1)
2 + (dj+2,j+1)

2 − 3dj+2,jdj,j−1

+dj+2,jdj+2,j+1 − dj+1,j−1dj+2,j)

+ 36dj+1,j(∆x)5
]
,

g1j,j+2 = 2a1j+2a
1
j

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+1,j−1)
2 + 7(dj,j−1)

2

−5dj+2,jdj+1,j−1 − 5dj+2,j+1dj,j−1 + dj,j−1dj+1,j−1)

+ 2dj+1,j(∆x)3((dj+1,j−1)
2 + (dj+1,j)

2 + (dj,j−1)
2

−dj+2,j(dj,j−1 + dj+1,j−1))

+ 36dj+1,j(∆x)5
]
,
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g1j+1,j+2 = 2a1j+2a
1
j+1

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 7(dj+1,j−1)
2 + 2(dj,j−1)

2

−5dj+2,jdj+1,j−1 − 5dj+2,j+1dj,j−1 + dj,j−1dj+1,j−1)

+ 2dj+1,j(∆x)3(−dj,j−1dj+2,j+1 − dj+1,j−1dj+2,j+1

+(dj+1,j)
2 + (dj,j−1)

2 + (dj+1,j−1)
2)

+ 36dj+1,j(∆x)5
]
,

g2j+3,j+3 = (a2j+3)
2
[(dj+1,j)

3∆x

15
(2(dj+1,j)

2 + 5dj+2,j+1dj+2,j)

+
4(∆x)3

9
((dj+2,j+1 − dj+1,j)

3 + (dj+2,j + dj+1,j)
3)

+ 36dj+1,j(∆x)5
]
,

g2j+2,j+2 = (a2j+2)
2
[(dj+1,j)

3∆x

15
(5dj+3,j+1dj+3,j + 2(dj+1,j)

2)

+
4(∆x)3

9
((dj+1,j + dj+3,j)

3 + (dj+1,j − dj+3,j+1)
3)

+ 36dj+1,j(∆x)5
]
,

g2j+1,j+1 = (a0j+1)
2
[
∆x(

9(xj+1)
5

5
− 3(xj+1)

4(xj+3 + xj+2 + xj)

+
2(xj+1)

3

3
(2(xj+3)

2 + 2(xj+2)
2 + 2(xj)

2

+ 7xj+3(xj+2 + xj) + 7xj+2xj)

−2(xj+1)
2(xj+3 + xj+2 + xj)(xj+3(xj+2 + xj) + xj+2xj)

+xj+1(xj+3(xj+2 + xj) + xj+2xj)
2

+
xj
15

(5(xj)
3(xj+3 + xj+2)− 15(xj+3)

2(xj+2)
2

− 5(xj)
2(xj+3 + xj+2)

2 − 2(xj)
4))

+
4(∆x)3

9
((+dj+1,j − dj+3,j+1 − dj+2,j+1)

3 − (dj+3,j + dj+2,j)
3)

+ 36dj+1,j(∆x)5
]
,

g2j+3,j = 2a2j+3a
2
j

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 7(dj+2,j)
2 + 2(dj+2,j+1)

2

+5dj+3,j+1dj+2,j + 5dj+3,jdj+2,j+1 + dj+2,j+1dj+2,j)

+ 2dj+1,j(∆x)3(dj+2,j+1dj+3,j + dj+2,jdj+3,j

+(dj+1,j)
2 + (dj+2,j+1)

2 + (dj+2,j)
2)

+ 36dj+1,j(∆x)5
]
,
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g2j,j = (a2j)
2
[
∆x(

9((xj+1)
5 − (xj)

5)

5
+3((xj)

4 − (xj+1)
4)(xj+3 + xj+2 + xj+1)

+
2((xj+1)

3 − (xj)
3)

3
(2(xj+3)

2 + 2(xj+2)
2 + 7xj+3(xj+2 + xj+1)

+ 7xj+2xj+1)

+2((xj)
2 − (xj+1)

2)(xj+3 + xj+2 + xj+1)(xj+3(xj+2 + xj+1)

+ xj+2xj+1)

+(xj+1 − xj)(xj+3(xj+2 + xj+1) + xj+2xj+1)
2)

+
4(∆x)3

9
((dj+1,j + dj+3,j + dj+2,j)

3 − (dj+3,j+1 + dj+2,j+1)
3)

+ 36dj+1,j(∆x)5
]
,

g2j+3,j+2 = 2a2j+3a
2
j+2

[(dj+1,j)
3∆x

30
(5dj+3,jdj+2,j+1 + 5dj+3,j+1dj+2,j + 4(dj+1,j)

2)

+ 2dj+1,j(∆x)3(dj+2,j+1dj+3,j + dj+3,j+1dj+2,j + 2(dj+1,j)
2)

+ 36dj+1,j(∆x)5
]
,

g2j+3,j+1 = 2a2j+3a
2
j+1

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+2,j)
2 + 7(dj+2,j+1)

2

+5dj+3,j+1dj+2,j + 5dj+3,jdj+2,j+1 + dj+2,j+1dj+2,j)

+ 2dj+1,j(∆x)3(dj+3,j+1(dj+2,j+1 + dj+2,j)

+(dj+2,j)
2 + (dj+1,j)

2 + (dj+2,j+1)
2)

+ 36dj+1,j(∆x)5
]
,

g2j+2,j+1 = 2a2j+2a
2
j+1

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+3,j)
2 + 7(dj+3,j+1)

2

+5dj+2,j+1dj+3,j + 5dj+2,jdj+3,j+1 + dj+3,j+1dj+3,j)

+ 2dj+1,j(∆x)3(dj+2,j+1(dj+3,j+1 + dj+3,j)

+(dj+3,j)
2 + (dj+1,j)

2 + (dj+3,j+1)
2)

+ 36dj+1,j(∆x)5
]
,

g2j+2,j = 2a2j+2a
2
j

[(dj+1,j)
3∆x

30
(2(dj+1,j)

2 + 2(dj+3,j+1)
2 + 7(dj+3,j)

2

+5dj+2,jdj+3,j+1 + 5dj+2,j+1dj+3,j + dj+3,jdj+3,j+1)

+ 2dj+1,j(∆x)3(dj+2,j(dj+3,j + dj+3,j+1)

+(dj+3,j+1)
2 + (dj+1,j)

2 + (dj+3,j)
2)

+ 36dj+1,j(∆x)5
]
,
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g2j,j+1 = 2a2ja
2
j+1

[
∆x(

3((xj+1)
5 − (xj)

5)

10

−2((xj+1)
4 − (xj)

4)

3
(xj+3 + xj+2)

+
((xj+1)

3 − (xj)
3)

3
((xj+3)

2 + 5xj+3xj+2 + (xj+2)
2 − xjxj+1

2
)

−((xj+1)
2 − (xj)

2)(xj+3(xj+2)
2 + xj+2(xj+3)

2

− xjxj+1

3
(xj+3 + xj+2))

+(xj+1 − xj)((xj+3)
2(xj+2)

2 − xj+3xj+2xjxj+1))

+ 2dj+1,j(∆x)3(3dj+3,jdj+2,j + 2(dj+2,j+1)
2 + (dj+3,j+1)

2

+dj+3,jdj+3,j+1 + dj+2,j+1dj+3,j)

+ 36dj+1,j(∆x)5
]
.

The reconstruction polynomials of Section 2.2, computed at the node xj+1:

P0(xj+1) = dj−1,j−2[a
0
j−1dj+1,j−2dj+1,j + a0jdj+1,j−2dj+1,j−1 (56)

+a0j+1(dj+1,j−2dj+1,j−1 + dj+1,j−2dj+1,j + dj+1,j−1dj+1,j)]yj−2

+ dj,j−1[a
0
jdj+1,j−2dj+1,j−1

+a0j+1(dj+1,j−2dj+1,j−1 + dj+1,j−2dj+1,j + dj+1,j−1dj+1,j)]yj−1

+ dj+1,j[a
0
j+1(dj+1,j−2dj+1,j−1 + dj+1,j−2dj+1,j + dj+1,j−1dj+1,j)]yj,

P1(xj+1) = dj,j−1[− a1jdj+2,j+1dj+1,j−1

+a1j+1(dj+1,j−1dj+1,j − dj+2,j+1dj+1,j − dj+2,j+1dj+1,j−1)

+a1j+2dj+1,jdj+1,j−1]yj−1

+ dj+1,j[ + a1j+1(dj+1,j−1dj+1,j − dj+2,j+1dj+1,j − dj+2,j+1dj+1,j−1)

+a1j+2dj+1,jdj+1,j−1]yj

+ dj+2,j+1[ + a1j+2dj+1,jdj+1,j−1]yj+1,

P2(xj+1) = dj+1,j[a
2
j+1(dj+2,j+1dj+3,j+1 − dj+1,jdj+3,j+1 − dj+1,jdj+2,j+1)

−a2j+2dj+3,j+1dj+1,j − a2j+3dj+2,j+1dj+1,j]yj

− dj+2,j+1[a
2
j+2dj+3,j+1dj+1,j

+a2j+3dj+2,j+1dj+1,j]yj+1

− dj+3,j+2[a
2
j+3dj+2,j+1dj+1,j]yj+2,
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Q(xj+1) = dj−1,j−2[aj−1dj+1,j−2dj+1,jdj+2,j+1dj+3,j+1

+ajdj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1

+aj+1(dj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1 + dj+1,j−2dj+1,jdj+2,j+1dj+3,j+1

+dj+1,j−1dj+1,jdj+2,j+1dj+3,j+1 − dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1

−dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1)

−aj+2dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1

−aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]yj−2
+ dj,j−1[ajdj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1

+aj+1(dj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1 + dj+1,j−2dj+1,jdj+2,j+1dj+3,j+1

+dj+1,j−1dj+1,jdj+2,j+1dj+3,j+1 − dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1

−dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1)

−aj+2dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1

−aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]yj−1
+ dj+1,j[aj+1(dj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1 + dj+1,j−2dj+1,jdj+2,j+1dj+3,j+1

+dj+1,j−1dj+1,jdj+2,j+1dj+3,j+1 − dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1

−dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1)

−aj+2dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1

−aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]yj
− dj+2,j+1[aj+2dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1

+aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]yj+1

− dj+3,j+2[aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]yj+2.
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The linear weights for the reconstruction problem of Section 2.2 and the
FD PDE solving method of 3.2, computed at the node xj+1:

C0(xj+1) = [aj−1dj+1,j−2dj+1,jdj+2,j+1dj+3,j+1 (57)

+ajdj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1

+aj+1(dj+1,j−2dj+1,j−1dj+2,j+1dj+3,j+1 + dj+1,j−2dj+1,jdj+2,j+1dj+3,j+1

+dj+1,j−1dj+1,jdj+2,j+1dj+3,j+1 − dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1

−dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1)

−aj+2dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1

−aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]

·[a0j−1dj+1,j−2dj+1,j + a0jdj+1,j−2dj+1,j−1

+a0j+1(dj+1,j−2dj+1,j−1 + dj+1,j−2dj+1,j + dj+1,j−1dj+1,j)]
−1,

C1(xj+1) =
(
[a2j+2dj+3,j+1dj+1,j + a2j+3dj+2,j+1dj+1,j]C2

+[aj+2dj+1,j−2dj+1,j−1dj+1,jdj+3,j+1

+aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1])

·[a1j+2dj+1,jdj+1,j−1]
−1,

C2(xj+1) = [aj+3dj+1,j−2dj+1,j−1dj+1,jdj+2,j+1]

·[a2j+3dj+2,j+1dj+1,j]
−1.
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'solving pde.c'

1 /∗ PDE so l v i n g program − Ph i l i p Rupp − 9\11\12 ∗/

#inc lude <s td i o . h>
4 #inc lude <math . h>
#inc lude " r e c on s t ru c t i on . c"

7

/∗ This i s a prototype program to s o l v e p a r t i a l d i f f e r e n t i a l
equat ions . There fore a combination o f the
WENO method and the e x p l i c i t e Euler method was implemented . Al l

used func t i on s are outsourced in to a f i l e
10 c a l l e d ' r e c on s t ru c t i on . c ' . ∗/

13

16 /∗ Used Parameters :

s t a r t v : S ta r t va lue o f the g r id
19 endv : End value o f the g r id

endt : End time o f the PDE computation
t imer : Timestep o f the PDE computation

22 x : Aux i l i a ry quant i ty
ca l cv : Function va lue s f o r determining o f

the c e l l averages v ia Newton i n t e g r a t i o n
i , j : I nd i c e s f o r while−r ou t i n e s

25 n : Number o f used g r id po in t s
nt : Number o f computed t imes teps
g r id : x−va lue s o f the gr id−s t ep s

28 ava l : Average va lue s o f the used c e l l s
r e u l s t : Endvalues o f the computation
c e l l r : Parameter f o r the g r id s c a l i n g

31

∗/

34

i n t main ( void ) {

37

long i , j , n , nt ;
double x , c e l l r =0.2 , s t a r t v=−3, endv=7, endt=3, t imer =0.005;

40

/∗ Determining o f the nece s sa ry node po in t s and time s t ep s ∗/

43 i =0;
x=s t a r t v ;
whi l e ( x < endv ) {

46 x=x+c e l l r ∗moduf ( x ) ;
i++;

}
49 n=i ;

nt=endt/ t imer+1;
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52

55 /∗ Construct ing o f the used g r id and the i n t e r p o l a t e d func t i on
va lue s ∗/

double g r id [ n ] , ava l [ n ] , r e s u l t [ n ] , c a l cv [7∗n+7] ;
58

i =1;
61 g r id [0 ]= s t a r t v ;

whi l e ( i < n) {
g r id [ i ]= gr id [ i−1]+ c e l l r ∗moduf ( g r id [ i −1]) ;

64

i++;
}

67

i =0;
whi l e ( i < n) {

70

ca l cv [7∗ i ]= va l ( g r id [ i ] ) ;
c a l cv [7∗ i +1]=va l ( g r id [ i ]+( g r id [ i +1]−g r id [ i ] ) / 6 . ) ;

73 ca l cv [7∗ i +2]=va l ( g r id [ i ]+2∗( g r id [ i +1]−g r id [ i ] ) / 6 . ) ;
c a l cv [7∗ i +3]=va l ( g r id [ i ]+3∗( g r id [ i +1]−g r id [ i ] ) / 6 . ) ;
c a l cv [7∗ i +4]=va l ( g r id [ i ]+4∗( g r id [ i +1]−g r id [ i ] ) / 6 . ) ;

76 ca l cv [7∗ i +5]=va l ( g r id [ i ]+5∗( g r id [ i +1]−g r id [ i ] ) / 6 . ) ;
c a l cv [7∗ i +6]=va l ( g r id [ i +1]) ;

79 i++;
}

82 /∗ Determining o f the average va lue s ∗/

average ( ca lcv , n , ava l ) ;
85

/∗ Star t o f the PDE so l v i n g a lgor i thsm ∗/
88

i =0;
whi l e ( i < nt ) {

91

/∗ Reconstruct ing o f the g iven c e l l averages ∗/

94 r e c on s t ru c t (n , gr id , aval , r e su l t , c e l l r ) ;

97 j =0;
whi l e ( j < n) {

100 /∗ The fundamental PDE so l v i n g equat ion ∗/

ava l [ j ]= ava l [ j ]− t imer ∗ ( 1 . / ( g r id [ j+1]−g r id [ j ] ) ) ∗( pde ( r e s u l t
[ j +1])−pde ( r e s u l t [ j ] ) ) ;

103

j++;
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106 }

109 i++;
}

112

115 /∗ Output o f the computed r e s u l t s ∗/

118 output (n , gr id , r e s u l t ) ;

121

p r i n t f ( "\n\n" ) ;
p r i n t f ( "The approximation  was s u c c e s s f u l l y  computed ! \ n" ) ;

124 p r i n t f ( "Al l  r e s u l t s  are  s to r ed  in  a f i l e  c a l l e d  ' output . txt '\n" ) ;
p r i n t f ( "The used g r id  had %d nodes ,  whi l e  the  PDE computation used

 %d t imeteps . \ n" , n , nt ) ;
p r i n t f ( "\n\n" ) ;

127

130 re turn 0 ;
}

37



'reconstruction.c'

1 /∗ PDE so l v i n g program − Ph i l i p Rupp − 9\11\12 ∗/

4

/∗ This i s an inc lude− f i l e f o r the main implementation ' s o l v i n g
pde . c ' . ∗/

7

/∗ The e x p l i c i t p a r t i a l d i r r e r e n t i a l equat ion func t i on ∗/

10 double pde ( double x ) {

double y ;
13

y=x ;

16 re turn y ;
}

19

/∗ Data Output in txt− f i l e ∗/
22

void output ( long range , double ∗ gr id , double ∗ value ) {
long i =0;

25 FILE ∗ da t e i = fopen ( "output . txt " , "w" ) ;

whi l e ( i < range ) {
28 f p r i n t f ( date i , "%g\ t%g\n" , g r id [ i ] , va lue [ i ] )

;
i++;

}
31 }

34 /∗ Non−equ i d i s t an t g r id modulation func t i on ∗/

double moduf ( double x ) {
37

double y ;

40 y=(1−0.93∗( exp(−130∗pow(0+x , 2 ) ) ) ) ;

i f ( x < −2.5 | | x > 5 . 5 ) {
43

y=1;
}

46 e l s e {

y=0.3 ;
49 }

52

38



re turn y ;
}

55

/∗ I n i t i a l cond i t i on f o r the r e cons t ruc t ed func t i on ∗/

58 double va l ( double x ) {
double y ;

61 i f ( f abs (x ) <= 2) {
y=x / 2 . ;

}
64 e l s e {

y=0;
}

67

re turn y ;
70 }

73

/∗ Ce l l average determining v ia Newton In t e g r a t i on ∗/

76 void average ( double ∗ ca l cva l , long n , double ∗ ava l ) {

long i =0;
79 double x , c [ 7 ]={41 ./840 , 216 . /840 ,27 . /840 ,272 . /840 ,

27 . /840 , 216 . /840 , 41 . /840} ;

whi l e ( i < n) {
82 ava l [ i ]=( c [ 0 ] ∗ c a l c v a l [ 7∗ i ]+c [ 1 ] ∗ c a l c v a l [ 7∗ i +1]+c [ 2 ] ∗

c a l c v a l [ 7∗ i +2]+c [ 3 ] ∗ c a l c v a l [ 7∗ i +3]+c [ 4 ] ∗ c a l c v a l [ 7∗ i +4]+
c [ 5 ] ∗ c a l c v a l [ 7∗ i +5]+c [ 6 ] ∗ c a l c v a l [ 7∗ i +6]) ;

i++;
85 }

}
88

91

/∗ Reconstruct ion o f the node po in t s out o f g iven c e l l averages −
Boundries are neg l e c t ed ∗/

94 /∗ Used Parameters :

value0 , value1 , value2 : Aux i l i a ry quant i ty
97 a , a2 : C o e f f i c i e n t s o f the i n t e r p o l a t i o n

polynomia ls ( a2 f o r the l a r g e s t e n c i l )
alpha : Aux i l i a ry quant i ty f o r the end

computation o f the convex combination
x , b : Aux i l i a ry quant i ty

100 beta : C o e f f i c i e n t s o f the smoothness
i n d i c a t o r s

c : L inear weights
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i , k , j : I nd i c e s f o r while−r ou t i n e s
103 pco e f f : C o e f f i c i e n t s o f the c a l c u l a t ed

polynomia ls

Trans fered Parameters :
106

n : Number o f used g r id po in t s
g r id : x−va lue s o f the gr id−s t ep s

109 ava l : Average va lue s o f the used c e l l s
r e u l s t : Endvalues o f the computation
c e l l r : Parameter f o r the g r id s c a l i n g

112

∗/

115

void r e con s t ru c t ( long n , double ∗ gr id , double ∗aval , double ∗
r e su l t , double c e l l r ) {

118 long i =0,k=0, j =0;
double value0 [ 4 ] [ n ] , va lue1 [ 4 ] [ n ] , va lue2 [ 4 ] [ n ] , a [ 4 ] [ n−3] , a2 [ 6 ] [

n−5] , w[ 3 ] , alpha [ 4 ] , p c o e f f [ 9 ] [ n−2] , x [ 3 ] , b [ 3 ] , c [ 3 ] [ n ] , beta
[ 3 0 ] [ n ] ;

121

/∗ Computing o f the gr id−depending parameters a_k and the
c o e f f i c i e n t s o f beta and P_k ∗/

124 /∗ Determining o f a_k − a2 be longs to the l a r g e s t e n c i l ∗/
i =0;
k=0;

127 j =0;
whi l e ( k < n−3){

130 whi le ( i < 4) {
a [ i ] [ k ]=1;
j =0;

133 whi le ( j <4){
i f ( j != i ) {
a [ i ] [ k]=a [ i ] [ k ] ∗ 1 . / ( g r id [ k+i ]− g r id [ k+j ] ) ;

136 }
j++;
}

139 i++;
}
i =0;

142 k++;
}

145

i =0;
k=0;

148 j =0;
whi l e ( k < n−5){

151 whi le ( i < 6) {
a2 [ i ] [ k ]=1;
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j =0;
154 whi le ( j <6){

i f ( j != i ) {
a2 [ i ] [ k]=a2 [ i ] [ k ] ∗ 1 . / ( g r id [ k+i ]− g r id [ k+j ] ) ;

157 }
j++;
}

160 i++;
}
i =0;

163 k++;
}

166 /∗ Determining o f the c o e f f i c i e n t s o f P_k − Boundries are
neg l e c t ed ∗/

j =2;
169 whi le ( j < n−2){

b [0 ]= a [ 1 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j ] ) ;
172 b [1 ]= a [ 2 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1]) ;

b [2 ]= a [ 3 ] [ j −2]∗(( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1])+(g r id [
j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j ] ) +(g r id [ j+1]−g r id [ j −1]) ∗( g r id
[ j+1]−g r id [ j ] ) ) ;

175 pco e f f [ 0 ] [ j +1]=( g r id [ j−1]−g r id [ j −2]) ∗(b [0 ]+b [1 ]+b [ 2 ] ) ;
p c o e f f [ 1 ] [ j +1]=( g r id [ j ]− g r id [ j −1]) ∗(b [1 ]+b [ 2 ] ) ;
p c o e f f [ 2 ] [ j +1]=( g r id [ j+1]−g r id [ j ] ) ∗b [ 2 ] ;

178

b[0]=−a [ 1 ] [ j −1]∗( g r id [ j+2]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j −1]) ;
b [1 ]= a [ 2 ] [ j −1]∗(( g r id [ j+1]−g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] )−( g r id [ j

+2]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j ] )−( g r id [ j+2]−g r id [ j +1]) ∗( g r id [
j+1]−g r id [ j −1]) ) ;

181 b [2 ]= a [ 3 ] [ j −1]∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+1]−g r id [ j −1]) ;

184 pco e f f [ 3 ] [ j +1]=( g r id [ j ]− g r id [ j −1]) ∗(b [0 ]+b [1 ]+b [ 2 ] ) ;
p c o e f f [ 4 ] [ j +1]=( g r id [ j+1]−g r id [ j ] ) ∗(b [1 ]+b [ 2 ] ) ;
p c o e f f [ 5 ] [ j +1]=( g r id [ j+2]−g r id [ j +1])∗b [ 2 ] ;

187

b [0 ]= a [ 1 ] [ j ] ∗ ( ( g r id [ j+2]−g r id [ j +1]) ∗( g r id [ j+3]−g r id [ j +1])−( g r id [ j
+1]−g r id [ j ] ) ∗( g r id [ j+3]−g r id [ j +1])−( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j
+2]−g r id [ j +1]) ) ;

b[1]=−a [ 2 ] [ j ] ∗ ( g r id [ j+3]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j ] ) ;
190 b[2]=−a [ 3 ] [ j ] ∗ ( g r id [ j+2]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j ] ) ;

193 pco e f f [ 6 ] [ j +1]=( g r id [ j+1]−g r id [ j ] ) ∗(b [0 ]+b [1 ]+b [ 2 ] ) ;
p c o e f f [ 7 ] [ j +1]=( g r id [ j+2]−g r id [ j +1]) ∗(b [1 ]+b [ 2 ] ) ;
p c o e f f [ 8 ] [ j +1]=( g r id [ j+3]−g r id [ j +2])∗b [ 2 ] ;

196

j++;
}

199

/∗ Determining o f the conc re t e va lue s o f the C_k at the node −
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Boundries are neg l e c t ed ∗/
202

j =2;
whi l e ( j < n−2){

205

c [ 2 ] [ j +1]=(a2 [ 5 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1])
∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+2]−g r id [ j +1]) ) ∗1 . / ( a [ 3 ] [ j ] ∗ ( g r id [ j
+2]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j ] ) ) ;

208 c [ 1 ] [ j +1]=((a [ 2 ] [ j ] ∗ ( g r id [ j+3]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j ] )+a
[ 3 ] [ j ] ∗ ( g r id [ j+2]−g r id [ j +1]) ∗( g r id [ j+1]−g r id [ j ] ) ) ∗c [ 2 ] [ j+1]−a2
[ 4 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1]) ∗( g r id [ j
+1]−g r id [ j ] ) ∗( g r id [ j+3]−g r id [ j +1])−a2 [ 5 ] [ j −2]∗( g r id [ j+1]−g r id [ j
−2]) ∗( g r id [ j+1]−g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+2]−g r id [
j +1]) ) ;

c [ 1 ] [ j+1]=c [ 1 ] [ j +1]/( a [ 3 ] [ j −1]∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+1]−g r id
[ j −1]) ) ;

211 c [ 0 ] [ j+1]=a2 [ 1 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j ] ) ∗(
g r id [ j+2]−g r id [ j +1]) ∗( g r id [ j+3]−g r id [ j +1])+a2 [ 2 ] [ j −2]∗( g r id [ j
+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1]) ∗( g r id [ j+2]−g r id [ j +1]) ∗(
g r id [ j+3]−g r id [ j +1]) ;

c [ 0 ] [ j+1]=c [ 0 ] [ j+1]+a2 [ 3 ] [ j −2]∗(( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−
g r id [ j −1]) ∗( g r id [ j+2]−g r id [ j +1]) ∗( g r id [ j+3]−g r id [ j +1])+(g r id [ j
+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+2]−g r id [ j +1]) ∗( g r id [
j+3]−g r id [ j +1])+(g r id [ j+1]−g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id
[ j+2]−g r id [ j +1]) ∗( g r id [ j+3]−g r id [ j +1]) ) ;

c [ 0 ] [ j+1]=c [ 0 ] [ j+1]−a2 [ 3 ] [ j −2]∗(( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−
g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+2]−g r id [ j +1])+(g r id [ j
+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [
j+3]−g r id [ j +1]) ) ;

214 c [ 0 ] [ j+1]=c [ 0 ] [ j+1]−a2 [ 4 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−
g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+3]−g r id [ j +1]) ;

c [ 0 ] [ j+1]=c [ 0 ] [ j+1]−a2 [ 5 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−
g r id [ j −1]) ∗( g r id [ j+1]−g r id [ j ] ) ∗( g r id [ j+2]−g r id [ j +1]) ;

c [ 0 ] [ j+1]=c [ 0 ] [ j +1]∗1 ./( a [ 1 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j
+1]−g r id [ j ] )+a [ 2 ] [ j −2]∗( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j
−1])+a [ 3 ] [ j −2]∗(( g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −1])+(
g r id [ j+1]−g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j ] ) +(g r id [ j+1]−g r id [ j −1])
∗( g r id [ j+1]−g r id [ j ] ) ) ) ;

217

j++;
}

220

/∗ Determining o f the c o e f f i c i e n t s beta_k with in [ j , j +1] −
Boundries are neg l e c t ed − order can be i d e n t i f i e d by the used a
−va lue s ∗/

223

j =2;
whi l e ( j < n−2){

226 b [0 ]=36∗ ( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 5 ) ;

beta [ 1 ] [ j +1]=4∗(pow( c e l l r , 3 ) / 9 . ) ∗(pow( g r id [ j +1]−2∗ g r id [ j ]+ gr id [ j
−2] ,3)+pow(2∗ g r id [ j+1]−g r id [ j−2]−g r id [ j ] , 3 ) ) ;

229 beta [ 1 ] [ j +1]=(beta [ 1 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 1 ] [ j −2] ,2) ;
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beta [ 2 ] [ j +1]=(4∗pow( c e l l r , 3 ) / 9 . ) ∗(pow( g r id [ j+1]+gr id [ j−2]−3∗ g r id [ j
]+ gr id [ j −1] ,3)+pow(2∗ g r id [ j+1]−g r id [ j−1]−g r id [ j −2] ,3) ) ;

232 beta [ 2 ] [ j +1]=(beta [ 2 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 2 ] [ j −2] ,2) ;

beta [ 3 ] [ j +1]=(4∗pow( c e l l r , 3 ) / 9 . ) ∗(pow(3∗ g r id [ j+1]−g r id [ j ]− g r id [ j
−2]−g r id [ j −1] ,3)−pow(2∗ g r id [ j ]− g r id [ j−1]−g r id [ j −2] ,3) ) ;

235 beta [ 3 ] [ j +1]=(beta [ 3 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 3 ] [ j −2] ,2) ;

beta [ 7 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j ]− g r id [ j
−1]) ∗ ( ( g r id [ j ]− g r id [ j −2])+(g r id [ j+1]−g r id [ j −2]) )+pow( g r id [ j+1]−
g r id [ j −2] ,2)+pow( g r id [ j+1]−g r id [ j ] , 2 )+pow( g r id [ j ]− g r id [ j −2] ,2) )
;

238 beta [ 7 ] [ j +1]=2∗( beta [ 7 ] [ j+1]+b [ 0 ] ) ∗a [ 1 ] [ j −2]∗a [ 2 ] [ j −2] ;

beta [ 8 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j+1]−g r id [ j
−1]) ∗ ( ( g r id [ j+1]−g r id [ j −2])+(g r id [ j ]− g r id [ j −2]) )+pow( g r id [ j ]−
g r id [ j −2] ,2)+pow( g r id [ j+1]−g r id [ j ] , 2 )+pow( g r id [ j+1]−g r id [ j
−2] ,2) ) ;

241 beta [ 8 ] [ j +1]=2∗( beta [ 8 ] [ j+1]+b [ 0 ] ) ∗a [ 1 ] [ j −2]∗a [ 3 ] [ j −2] ;

beta [ 9 ] [ j +1]=4∗(( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) / 2 . ) ∗ (3∗ ( g r id [ j ]−
g r id [ j −2]) ∗( g r id [ j ]− g r id [ j −1])+2∗pow( g r id [ j+1]−g r id [ j −1] ,2)+pow
( g r id [ j+1]−g r id [ j −2] ,2) ) ;

244 beta [ 9 ] [ j+1]=beta [ 9 ] [ j +1]+4∗(( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) / 2 . )
∗ ( ( g r id [ j ]− g r id [ j −2]) ∗( g r id [ j+1]−g r id [ j −2])+(g r id [ j+1]−g r id [ j
−1]) ∗( g r id [ j ]− g r id [ j −2]) ) ;

beta [ 9 ] [ j +1]=2∗( beta [ 9 ] [ j+1]+b [ 0 ] ) ∗a [ 2 ] [ j −2]∗a [ 3 ] [ j −2] ;

247 beta [ 1 1 ] [ j +1]=(4∗pow( c e l l r , 3 ) / 9 . ) ∗(pow(2∗ g r id [ j+1]−g r id [ j−1]−g r id [
j +2] ,3)+pow( g r id [ j+2]+gr id [ j+1]+gr id [ j−1]−3∗ g r id [ j ] , 3 ) ) ;

beta [ 1 1 ] [ j +1]=(beta [ 1 1 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 1 ] [ j −1] ,2) ;

250 beta [ 1 2 ] [ j +1]=(4∗pow( c e l l r , 3 ) / 9 . ) ∗(pow(2∗ g r id [ j+1]−g r id [ j−1]−g r id [
j +2] ,3)+pow( g r id [ j+2]+gr id [ j+1]+gr id [ j−1]−3∗ g r id [ j ] , 3 ) ) ;

beta [ 1 2 ] [ j +1]=(beta [ 1 2 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 2 ] [ j −1] ,2) ;

253 beta [ 1 3 ] [ j +1]=4∗(pow( c e l l r , 3 ) / 9 . ) ∗(pow( g r id [ j +1]−2∗ g r id [ j ]+ gr id [ j
−1] ,3)+pow(2∗ g r id [ j+1]−g r id [ j−1]−g r id [ j ] , 3 ) ) ;

beta [ 1 3 ] [ j +1]=(beta [ 1 3 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 3 ] [ j −1] ,2) ;

256 beta [ 1 7 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ (3∗ ( g r id [ j ]− g r id [
j +2]) ∗( g r id [ j ]− g r id [ j −1])+2∗pow( g r id [ j+1]−g r id [ j −1] ,2)+pow( g r id
[ j+1]−g r id [ j +2] ,2) ) ;

beta [ 1 7 ] [ j+1]=beta [ 1 7 ] [ j +1]+2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( (
g r id [ j ]− g r id [ j +2]) ∗( g r id [ j+1]−g r id [ j +2])+(g r id [ j+1]−g r id [ j −1])
∗( g r id [ j ]− g r id [ j +2]) ) ;

beta [ 1 7 ] [ j +1]=2∗( beta [ 1 7 ] [ j+1]+b [ 0 ] ) ∗a [ 1 ] [ j −1]∗a [ 2 ] [ j −1] ;
259

beta [ 1 8 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j ]− g r id [ j
+2]) ∗ ( ( g r id [ j ]− g r id [ j −1])+(g r id [ j+1]−g r id [ j −1]) )+pow( g r id [ j+1]−
g r id [ j ] , 2 )+pow( g r id [ j ]− g r id [ j −1] ,2)+pow( g r id [ j+1]−g r id [ j −1] ,2) )
;

beta [ 1 8 ] [ j +1]=2∗( beta [ 1 8 ] [ j+1]+b [ 0 ] ) ∗a [ 1 ] [ j −1]∗a [ 3 ] [ j −1] ;
262

beta [ 1 9 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j+1]−g r id [
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j +2]) ∗ ( ( g r id [ j ]− g r id [ j −1])+(g r id [ j+1]−g r id [ j −1]) )+pow( g r id [ j
+1]−g r id [ j ] , 2 )+pow( g r id [ j ]− g r id [ j −1] ,2)+pow( gr id [ j+1]−g r id [ j
−1] ,2) ) ;

beta [ 1 9 ] [ j +1]=2∗( beta [ 1 9 ] [ j+1]+b [ 0 ] ) ∗a [ 2 ] [ j −1]∗a [ 3 ] [ j −1] ;
265

beta [ 2 0 ] [ j +1]=4∗(pow( c e l l r , 3 ) / 9 . ) ∗(pow( g r id [ j ]−2∗ g r id [ j+1]+gr id [ j
+2] ,3)−pow(2∗ g r id [ j ]− g r id [ j+1]−g r id [ j +2] ,3) ) ;

beta [ 2 0 ] [ j +1]=(beta [ 2 0 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 3 ] [ j ] , 2 ) ;
268

beta [ 2 1 ] [ j +1]=4∗(pow( c e l l r , 3 ) / 9 . ) ∗(pow( g r id [ j +1]−2∗ g r id [ j ]+ gr id [ j
+3] ,3)+pow(2∗ g r id [ j+1]−g r id [ j+3]−g r id [ j ] , 3 ) ) ;

beta [ 2 1 ] [ j +1]=(beta [ 2 1 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 2 ] [ j ] , 2 ) ;
271

beta [ 2 2 ] [ j +1]=4∗(pow( c e l l r , 3 ) / 9 . ) ∗(pow(3∗ g r id [ j+1]−g r id [ j ]− g r id [ j
+3]−g r id [ j +2] ,3)−pow(2∗ g r id [ j ]− g r id [ j+2]−g r id [ j +3] ,3) ) ;

beta [ 2 2 ] [ j +1]=(beta [ 2 2 ] [ j+1]+b [ 0 ] ) ∗pow( a [ 1 ] [ j ] , 2 ) ;
274

beta [ 2 5 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j+1]−g r id [
j +2]) ∗( g r id [ j ]− g r id [ j +3])+(g r id [ j ]− g r id [ j +2]) ∗( g r id [ j+1]−g r id [ j
+3])+2∗pow( g r id [ j+1]−g r id [ j ] , 2 ) ) ;

beta [ 2 5 ] [ j +1]=2∗( beta [ 2 5 ] [ j+1]+b [ 0 ] ) ∗a [ 3 ] [ j ]∗ a [ 2 ] [ j ] ;
277

beta [ 2 6 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j+1]−g r id [
j +3]) ∗ ( ( g r id [ j ]− g r id [ j +2])+(g r id [ j+1]−g r id [ j +2]) )+pow( g r id [ j
+1]−g r id [ j ] , 2 )+pow( g r id [ j ]− g r id [ j +2] ,2)+pow( gr id [ j+1]−g r id [ j
+2] ,2) ) ;

beta [ 2 6 ] [ j +1]=2∗( beta [ 2 6 ] [ j+1]+b [ 0 ] ) ∗a [ 1 ] [ j ]∗ a [ 3 ] [ j ] ;
280

beta [ 2 7 ] [ j +1]=2∗( g r id [ j+1]−g r id [ j ] ) ∗pow( c e l l r , 3 ) ∗ ( ( g r id [ j+1]−g r id [
j +2]) ∗ ( ( g r id [ j+1]−g r id [ j +3])+(g r id [ j ]− g r id [ j +3]) )+pow( g r id [ j ]−
g r id [ j +3] ,2)+pow( g r id [ j+1]−g r id [ j ] , 2 )+pow( g r id [ j+1]−g r id [ j
+3] ,2) ) ;

beta [ 2 7 ] [ j +1]=2∗( beta [ 2 7 ] [ j+1]+b [ 0 ] ) ∗a [ 1 ] [ j ]∗ a [ 2 ] [ j ] ;
283

j++;
286 }

289 /∗ Ca lcu l a t i on o f the node va lue s o f the used aux i l i a r y−i n t e g r a l
f unc t i on U ∗/

j =2;
292 whi le ( j < n−2){

295 value0 [ 0 ] [ j −2]=0;
value0 [ 1 ] [ j −2]=( g r id [ j−1]−g r id [ j −2])∗ ava l [ j −2] ;
va lue0 [ 2 ] [ j−2]=value0 [ 1 ] [ j −2]+( g r id [ j ]− g r id [ j −1])∗ ava l [ j −1] ;

298 value0 [ 3 ] [ j−2]=value0 [ 2 ] [ j −2]+( g r id [ j+1]−g r id [ j ] ) ∗ ava l [ j ] ;

va lue1 [ 0 ] [ j −1]=0;
301 value1 [ 1 ] [ j −1]=( g r id [ j ]− g r id [ j −1])∗ ava l [ j −1] ;

va lue1 [ 2 ] [ j−1]=value1 [ 1 ] [ j −1]+( g r id [ j+1]−g r id [ j ] ) ∗ ava l [ j ] ;
va lue1 [ 3 ] [ j−1]=value1 [ 2 ] [ j −1]+( g r id [ j+2]−g r id [ j +1])∗ ava l [ j +1] ;

304
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value2 [ 0 ] [ j ]=0;
value2 [ 1 ] [ j ]=( g r id [ j+1]−g r id [ j ] ) ∗ ava l [ j ] ;

307 value2 [ 2 ] [ j ]= value2 [ 1 ] [ j ]+( g r id [ j+2]−g r id [ j +1])∗ ava l [ j +1] ;
va lue2 [ 3 ] [ j ]= value2 [ 2 ] [ j ]+( g r id [ j+3]−g r id [ j +2])∗ ava l [ j +2] ;

310

j++;
}

313

/∗ Computing o f the va lue s with the WENO method − Boundries are
neg l e c t ed ∗/

316

j =2;
whi l e ( j < n−3){

319

322 b [0 ]= value0 [ 1 ] [ j −2]∗ value0 [ 1 ] [ j −2]∗ beta [ 1 ] [ j+1]+value0 [ 2 ] [ j
−2]∗ value0 [ 2 ] [ j −2]∗ beta [ 2 ] [ j+1]+value0 [ 3 ] [ j −2]∗ value0 [ 3 ] [ j
−2]∗ beta [ 3 ] [ j +1] ;

b [0 ]=b [0 ]+ value0 [ 1 ] [ j −2]∗ value0 [ 2 ] [ j −2]∗ beta [ 7 ] [ j+1]+value0
[ 1 ] [ j −2]∗ value0 [ 3 ] [ j −2]∗ beta [ 8 ] [ j+1]+value0 [ 2 ] [ j −2]∗ value0
[ 3 ] [ j −2]∗ beta [ 9 ] [ j +1] ;

325 b [1 ]= value1 [ 1 ] [ j −1]∗ value1 [ 1 ] [ j −1]∗ beta [ 1 1 ] [ j+1]+value1 [ 2 ] [ j
−1]∗ value1 [ 2 ] [ j −1]∗ beta [ 1 2 ] [ j+1]+value1 [ 3 ] [ j −1]∗ value1 [ 3 ] [ j
−1]∗ beta [ 1 3 ] [ j +1] ;

b [1 ]=b [1 ]+ value1 [ 1 ] [ j −1]∗ value1 [ 2 ] [ j −1]∗ beta [ 1 7 ] [ j+1]+value1
[ 1 ] [ j −1]∗ value1 [ 3 ] [ j −1]∗ beta [ 1 8 ] [ j+1]+value1 [ 2 ] [ j −1]∗ value1
[ 3 ] [ j −1]∗ beta [ 1 9 ] [ j +1] ;

328 b [2 ]= value2 [ 3 ] [ j ]∗ value2 [ 3 ] [ j ]∗ beta [ 2 0 ] [ j+1]+value2 [ 2 ] [ j ]∗
value2 [ 2 ] [ j ]∗ beta [ 2 1 ] [ j+1]+value2 [ 1 ] [ j ]∗ value2 [ 1 ] [ j ]∗ beta
[ 2 2 ] [ j +1] ;

b [2 ]=b [2 ]+ value2 [ 3 ] [ j ]∗ value2 [ 2 ] [ j ]∗ beta [ 2 5 ] [ j+1]+value2 [ 3 ] [ j
]∗ value2 [ 1 ] [ j ]∗ beta [ 2 6 ] [ j+1]+value2 [ 2 ] [ j ]∗ value2 [ 1 ] [ j ]∗ beta
[ 2 7 ] [ j +1] ;

331 x [0 ]= pco e f f [ 0 ] [ j +1]∗ ava l [ j−2]+pco e f f [ 1 ] [ j +1]∗ ava l [ j−1]+pco e f f
[ 2 ] [ j +1]∗ ava l [ j ] ;

x [1 ]= pco e f f [ 3 ] [ j +1]∗ ava l [ j−1]+pco e f f [ 4 ] [ j +1]∗ ava l [ j ]+ p co e f f
[ 5 ] [ j +1]∗ ava l [ j +1] ;

x [2 ]= pco e f f [ 6 ] [ j +1]∗ ava l [ j ]+ p co e f f [ 7 ] [ j +1]∗ ava l [ j+1]+pco e f f
[ 8 ] [ j +1]∗ ava l [ j +2] ;

334

alpha [0 ]= c [ 0 ] [ j +1]/pow(pow(10 ,−6)+b [ 0 ] , 2 ) ;
337 alpha [1 ]= c [ 1 ] [ j +1]/pow(pow(10 ,−6)+b [ 1 ] , 2 ) ;

alpha [2 ]= c [ 2 ] [ j +1]/pow(pow(10 ,−6)+b [ 2 ] , 2 ) ;
alpha [3 ]= alpha [0 ]+ alpha [1 ]+ alpha [ 2 ] ;

340

343 r e s u l t [ j +1]=(alpha [ 0 ] / alpha [ 3 ] ) ∗x [0 ]+( alpha [ 1 ] / alpha [ 3 ] ) ∗x
[1 ]+( alpha [ 2 ] / alpha [ 3 ] ) ∗x [ 2 ] ;
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346 j++;
}

349 /∗ Boundary va lue s are cont inued as l i n e a r func t i on ∗/

352 x [0 ]=( r e s u l t [4]− r e s u l t [ 3 ] ) / fabs ( g r id [4]− g r id [ 3 ] ) ;
x [ 1 ]=( r e s u l t [ n−3]− r e s u l t [ n−4]) / fabs ( g r id [ n−4]−g r id [ n−3]) ;

355 r e s u l t [2 ]= r e s u l t [3]− f abs ( ( g r id [3]− g r id [ 2 ] ) ) ∗x [ 0 ] ;
r e s u l t [1 ]= r e s u l t [2]− f abs ( ( g r id [2]− g r id [ 1 ] ) ) ∗x [ 0 ] ;
r e s u l t [0 ]= r e s u l t [1]− f abs ( ( g r id [0]− g r id [ 1 ] ) ) ∗x [ 0 ] ;

358 r e s u l t [ n−2]= r e s u l t [ n−3]+ fabs ( ( g r id [ n−3]−g r id [ n−2]) ) ∗x [ 1 ] ;
r e s u l t [ n−1]= r e s u l t [ n−2]+ fabs ( ( g r id [ n−1]−g r id [ n−2]) ) ∗x [ 1 ] ;

361

}
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