
Free University of Berlin
Department of Mathematics and Computer Science

Institute of Mathematics

THE FIXED PIVOT TECHNIQUE FOR
POPULATION BALANCE EQUATIONS

A thesis presented for the
Bachelor of Science

in
Mathematics

Student Max Rütten
Matriculation number: 5172946

Submission Date 19.02.2025

Supervisor Prof. Dr. Volker John,
PD Dr. Alfonso Caiazzo





Contents

1 Introduction 3

2 Notation 5

3 Continuous model for aggregation and breakage 7

4 Fixed pivot method 9
4.1 The fixed pivot method . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Grid and pivot allocation . . . . . . . . . . . . . . . . . . . . . 9
4.2 Discretization of the population balance equation . . . . . . . . . . . 10

5 Aggregation 13
5.1 Death term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Birth term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Pure aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Aggregation kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Breakage 17
6.1 Death term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Birth term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Pure breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Breakage frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5 Binary breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Numerical methods 24

8 Implementation 26
8.1 Pure aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Pure breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Simultaneous breakage and aggregation . . . . . . . . . . . . . . . . . 41

9 Outlook 45

10 Code 47

2



Chapter 1

Introduction

Many natural and industrial processes involve systems of particles that interact
dynamically, changing in size or structure over time. Understanding and predicting
how these particle distributions evolve is crucial in fields ranging from chemical
engineering to environmental science.

To describe these complex interactions mathematically, we use population bal-
ance equations (PBEs). PBEs capture the time evolution of a particle population
distributed across a continuous range of sizes. The processes of interest, breakage
and aggregation, cause particles to either fragment into smaller pieces or combine
to form larger clusters. These equations provide a framework for quantifying how
the number and size of particles change under these competing mechanisms. While
PBEs can be extended to include additional effects like particle growth, this work
focuses specifically on breakage and aggregation.

The continuous form of a PBE is expressed as a integro-partial differential equa-
tion (IPDE), which represents the number density of particles as a function of time
and particle size. However, the continuous nature of the equation makes it challeng-
ing to solve directly, especially for complex systems. To overcome this, numerical
methods are employed to discretize the problem. An approach, based on the work
of Kumar and Ramkrishna [KR96a], involves converting the continuous IPDE into
a system of integro-ordinary differential equations (IODEs) by dividing the size do-
main into discrete intervals or cells.

The method we will use for this discretization is the fixed pivot method. Instead
of treating the particle distribution as continuous, this method concentrates the mass
of particles at specific representative points, known as pivots, within each interval.
These pivots serve as anchor points for mass conservation and allow the equations to
be solved with greater numerical stability. The concept of number density is crucial
in this framework, providing a way to calculate the distribution of particles across
the cells accurately.

This thesis presents a comprehensive exploration of the fixed pivot method for
solving PBEs, focusing on its application to systems governed by breakage and
aggregation. We begin by introducing the continuous IPDE form of the PBE and
its discretization into a system of IODEs, as developed in prior research. We then
detail the construction of the fixed pivot method and explain how it enables accurate
simulations by concentrating the mass only at the pivots. Various factors that
influence the evolution of the particle system are analyzed, including the aggregation

3



kernel, which describes the likelihood of particle collisions, the breakage frequency,
which governs the rate at which particles fragment, and the nature of the breakage
process, with a particular emphasis on binary breakage.

Following this theoretical foundation, the thesis delves into the numerical meth-
ods used to solve the resulting system of IODEs, highlighting techniques for ensuring
stability and accuracy. We also outline the implementation process, discussing key
challenges and the strategies employed to maintain mass conservation throughout
the simulation. To validate the model, we present numerical studies that test both
the conservation of mass and the logical physical behavior of the particle system.
Finally, we address some known limitations of the fixed pivot method, such as its
potential loss of accuracy under certain conditions, and briefly mention future di-
rections for refining and improving the method.

4



Chapter 2

Notation

5



Symbol Description

v, v′ volume of particles

vi grid points

xi center of grid intervals

x1 lower bound pivot

xM upper bound pivot

t time

T end time

n(v, t) number density of volume v at time t

N(t) total number of particles at time t

Ni(t) number of particles at time t of volume xi

M number of grid intervals

Q(v, v′) aggregation frequency of particles v, v′

Γk = Γ(xk) breakage frequency of xk

γ(v) number of daughter particles from breakage of mass v

h grid step length

a(v, xi) portion of volume v distributed to xi

b(v, xi+1) portion of volume v distributed to xi+1

η combination of a(v, xi) and b(v, xi+1)

RDa death term due to aggregation

RBa birth term due to aggregation

RA combined aggregation term

RDb death term due to breakage

RBb birth term due to breakage

RB combined breakage term

δk,i Kronecker delta

β(v, v′) number of particles born in [v, v + dv] due to v′ breaking

6



Chapter 3

Continuous model for aggregation
and breakage

In this chapter, we focus on the mathematical formulation of population balance
equations and their role in describing particle systems. Specifically, we are interested
in the evolution of the number density n(v, t) over time t and particle volume v. The
number density n(v, t) represents the distribution of particles within a system, where
n(v, t)dv denotes the number of particles with volumes in the interval [v, v + dv] at
time t.

The formulation is based on the work of [KR96a], whose approach introduces a
continuous integro-partial differential equation to describe the dynamics of particle
systems. The PBE for simultaneous aggregation and breakage is given as

∂n(v, t)

∂t
=
1

2

∫ v

0

n(v − v′, t)n(v′, t)Q(v − v′, v′) dv′

−
∫ ∞

0

n(v, t)n(v′, t)Q(v, v′) dv′

+

∫ ∞

v

β(v, v′)Γ(v′)n(v′, t) dv′

− Γ(v)n(v, t).

(3.1)

This equation models the time evolution of the number density n(v, t) due to the
aggregation and breakage processes across the continuous particle volume space over
time in (0, T ], with final time T . In the following, we provide a brief introduction
to the variables and functions that appear in this equation.

• n(v, t): The number density function, representing the distribution of particles
as a function of their volume v and time t.

• Q(v, v′): The aggregation kernel, which describes the rate at which two par-
ticles of volumes v and v′ combine to form a larger particle. The kernel can
depend on the physical properties of the system, such as the size of the particles
and the interaction forces.

• β(v, v′): The daughter distribution function, which describes the fraction of
particles of volume v formed as a result of the breakage of a volume parent

7



particle v′.

• Γ(v): The breakage rate, which determines the frequency with which particles
of volume v undergo breakage.

The terms in Equation (3.1) correspond to distinct physical processes:

1. The first term represents the birth of particles of volume v due to the aggre-
gation of smaller particles.

2. The second term accounts for the death of particles of volume v as they ag-
gregate with others to form larger particles.

3. The third term describes the birth of particles of volume v as a result of the
breakage of larger particles.

4. The fourth term represents the death of particles of volume v as they undergo
breakage.

Solving the IPDE numerically is challenging in part because of its integral terms
that couple the number density across the particle volume space. To address this, we
rely on the fixed pivot method, a numerical discretization technique that transforms
the continuous equation into a system of integro-ordinary differential equations:

dNi

dt
= RBa −RDa +RBb −RDb, (3.2)

where RBa, RDa, RBb, RDb represent the birth and death terms due to aggregation
and breakage, respectively.
The next section develops the fixed pivot method in detail, explaining how the
volume domain is discretized, how pivot points are chosen, and how birth/death
terms are computed.

8



Chapter 4

Fixed pivot method

4.1 The fixed pivot method

4.1.1 Grid and pivot allocation

The fixed pivot method is a numerical method for discretizing the population balance
equations. Instead of treating the particle distribution as continuous, this method
concentrates the volumes of particles at specific representative points, known as
pivots, within each interval. These pivots serve as anchor points for volume con-
servation and allow equations to be solved with greater numerical stability. The
concept of number density is crucial in this framework, providing a way to calculate
the distribution of particles across cells accurately.

Grids

To apply the fixed pivot method, we partition the continuous domain into a finite
number of grid points, each representing the volume values of the particles. The grid
serves as the basis for defining intervals within which we calculate the distribution
of particles.

One of the simplest grids is the equidistant grid, where the grid points vi are
evenly spaced with a fixed step length h. The grid points are defined as:

vi = ih.

Another type is the geometrical grid, where the grid points are spaced such that
the distance between them increases (or decreases) exponentially according to the
step ratio h. The grid points are defined as:

vi+1 = hvi.

The geometrical grid is particularly useful for scenarios where particle size dis-
tributions follow an exponential pattern.

Pivots

Within the intervals defined by the grid points [vi, vi+1], the pivots xi are intro-
duced to represent the midpoint of each interval. These pivots act as representative

9



volumes for their cells. The pivot xi is defined as:

xi =
vi + vi+1

2
.

For instance, if v1 = 1 and v2 = 3, then the pivot is calculated as:

x1 =
1 + 3

2
= 2.

Volume allocation functions

To distribute a given volume v across adjacent pivots, we introduce the allocation
functions a(v, xi) and b(v, xi), which proportionally distribute the volume v between
the pivots xi and xi+1. These functions are defined as:

a(v, xi) =
xi+1 − v

xi+1 − xi

, and a(v, xi) = 0 for v /∈ [xi;xi+1],

b(v, xi+1) =
v − xi

xi+1 − xi

, and b(v, xi+1) = 0 for v /∈ [xi;xi+1].
(4.1)

These fractions sum up to one, ensuring that the entire volume is allocated
correctly:

a(v, xi) + b(v, xi) =
xi+1 − v

xi+1 − xi

+
v − xi

xi+1 − xi

= 1.

For example, if v = 3, x1 = 0, and x2 = 10, the allocations are:

a(3, x1) =
10− 3

10− 0
=

7

10
, b(3, x2) =

3− 0

10− 0
=

3

10
.

Dirac delta distribution

The fixed pivot method assumes that the volume of particles within each cell is
concentrated at the pivot xi. To mathematically model this concentration, we use
the Dirac delta distribution, δ(v − x), which is defined as:∫ ∞

−∞
δ(v − x) dv = 1, and δ(v − x) = 0 for v ̸= x.

Using the Dirac delta distribution, the number density n(v, t) within a cell can be
represented as a point located at the pivot xi. This assumption aligns with the goal
of the fixed pivot method of simplifying the continuous distribution into discrete
representative points.

4.2 Discretization of the population balance equa-

tion

Having defined the grid and pivot points in the previous section, we now focus on
transitioning from the continuous problem (3.1) to a discrete one. This involves
discretizing the PBE to compute particle dynamics numerically.

10



The key quantity we are interested in is the number density, n(v, t), which de-
scribes the concentration of particles around a given volume v at time t. By under-
standing n(v, t), we can derive important properties of the system, such as the total
number of particles, their total volume, and the distribution of particle volumes.
These quantities are obtained using the moments of the number density.

Moments of the number density

The k-th moment of the number density is defined as:

Mk =

∫ ∞

0

vkn(v, t) dv.

The zeroth moment, M0, gives the total number of particles in the system. The first
moment, M1, represents the total volume of particles. Higher moments, such as the
second moment, M2, can describe other system properties, such as the distribution’s
variance.

Using the zeroth moment, we define Ni(t) to be the number of particles at time
t within the volume range [vi, vi+1]:

Ni(t) =

∫ vi+1

vi

n(v, t) dv. (4.2)

Here, Ni(t) quantifies the number of particles associated with the i-th cell in the
grid.

Total number of particles

By summing over all grid intervals, we obtain the total number of particles in the
system:

N(t) =
M∑
i=1

Ni(t),

where M is the total number of grid intervals. This provides a discrete measure of
the system’s size over time.

Instead of observing changes in the number density over the entire continuous
domain, we now focus on the dynamics of particle numbers at discrete pivot points
xi within intervals [vi, vi+1]. This leads to the discrete form of the population balance
equation:

dNi(t)

dt
=

1

2

∫ vi+1

vi

∫ v

0

n(v − v′, t)n(v′, t)Q(v − v′, v′) dv′ dv

−
∫ vi+1

vi

n(v, t)

∫ ∞

0

n(v′, t)Q(v, v′) dv′ dv

+

∫ vi+1

vi

∫ ∞

v

β(v, v′)Γ(v′)n(v′, t) dv′ dv

−
∫ vi+1

vi

Γ(v)n(v, t) dv.

(4.3)

This equation accounts for particle interactions such as aggregation and breakage.
In later sections, we will discuss each term in detail and derive discrete formulations
suitable for computation.

11



Discrete number density

To compute the discrete form of the PBE, we need a discrete representation of
the number density n(v, t). Using the fixed pivot method, the number density is
assumed to be concentrated at the pivot points xk, resulting in the following discrete
formulation:

n(v, t) =
M∑
k=1

Nk(t)δ(v − xk), (4.4)

where δ(v − xk) is the Dirac delta distribution. The Dirac delta ensures that
the number density is only non-zero at the pivot points, reflecting the fixed pivot
method’s assumption of concentrated volume and ensuring that all particle proper-
ties are evaluated solely at the pivot points.

In this section, we introduced the moments of the number density and their
role in characterizing the system. We defined Ni(t), the number of particles in
each interval, and derived the discrete form of the population balance equation.
Furthermore, we introduced the discrete representation of n(v, t) using the Dirac
delta distribution.

In the following chapters, we will explore each term of the discrete PBE, adapt
them for computational purposes, and ensure volume conservation.

12



Chapter 5

Aggregation

In the context of population balance equations, aggregation refers to the process by
which two or more particles combine to form a larger particle. We need to observe
two different results to understand the aggregation. First, the birth of a new bigger
particle due to the combination of smaller particles. Secondly, the death of the
smaller particles involved in the aggregation process. We will introduce a discrete
formulation of both cases and combine them to acquire the final set of equations
that model the pure aggregation.

5.1 Death term

Firstly we discuss the discretization of the loss term due to the aggregation of two
particles. The second term in (4.3):∫ vi+1

vi

n(v, t)dv

∫ ∞

0

n(v′, t)Q(v, v′)dv′.

Substituting (4.4) into it yields:∫ vi+1

vi

M∑
k=1

Nk(t)δ(v − xk)dv

∫ ∞

0

M∑
k=1

Nk(t)δ(v
′ − xk)Q(v, v′)dv′.

The inner integrand is only non-zero exactly at every cell center v′ = xk. For the
outer integrand we even have a more strict situation. With v = xi being the only
possibility for volume to be concentrated in the cell [vi, vi+1] the only summand in
the outer integrand that is non-zero is Ni(t). With this, we can reduce the integrals
to this discrete version of the death term due to breakage:

RDa := Ni(t)
M∑
k=1

Nk(t)Q(xi, xk). (5.1)

5.2 Birth term

Now we are interested in the birth term of aggregation. We discuss the birth of a
particle of volume v from aggregation of two particles of volume v′ and v − v′. The

13



first term in (4.3):

1

2

∫ vi+1

vi

dv

∫ v

0

n(v − v′, t)n(v′, t)Q(v − v′, v′)dv′.

Things to notice are the necessity for the 1
2
to prevent double counting, since for

every pair (v′, v − v′) the for our purposes equal pair (v − v′, v′) is also calculated.
Also, in contrast to the loss term, the inner integral does not need to be evaluated
up to ∞, since v′ and v − v′ that aggregate to v can only lie between zero and v.
The first step to discretize this term is to use our idea of splitting the volumes to
the center points nearby introduced in (4.1). For this, we replace the first integral
by two integrals. With this we define:

RBa :=
1

2

∫ xi+1

xi

a(v, xi)dv

∫ v

0

n(v − v′, t)n(v′, t)Q(v − v′, v′)dv′

+
1

2

∫ xi

xi−1

b(v, xi)dv

∫ v

0

n(v − v′, t)n(v′, t)Q(v − v′, v′)dv′.

Now we introduce a new function ηi(j, k) with the following properties:

ηi(j, k) =


a(xj + xk, xi), v ∈ [xi, xi+1],

b(xj + xk, xi), v ∈ [xi−1, xi],

0, else.

(5.2)

With this I can substitute the a(v, xi) and b(v, xi) with ηi(j, k) and again with
substitution of (4.4) we obtain:

RBa =
1

2

∫ xi+1

xi

ηi(j, k)dv

∫ v

0

Q(v − v′, v′)
M∑
k=1

Nk(t)δ((v − v′)− xk)
M∑
j=1

Nj(t)δ(v
′ − xj)dv

′

+
1

2

∫ xi

xi−1

ηi(j, k)dv

∫ v

0

Q(v − v′, v′)
M∑
k=1

Nk(t)δ((v − v′)− xk)
M∑
j=1

Nj(t)δ(v
′ − xj)dv

′.

Adding the outer integrals and combining the sums in the inner integral yields:

RBa =
1

2

∫ xi+1

xi−1

ηi(j, k)dv

∫ v

0

Q(v−v′, v′)
∑

k,j∈[1,M ]

Nk(t)Nj(t)δ((v−v′)−xk)δ(v
′−xj)dv

′.

To simplify the expression for RBa, we begin by considering the specific properties
of our volumes of interest. The outer integral considers values v in the interval
[xi−1, xi+1] and calculates the expected contribution due to aggregation for each of
these values. In this context, in the inner integrand, we are only interested in volumes
v′ = xj for some index j, and simultaneously (v−v′) = xk for a corresponding index
k. Every other combination yields 0 in the inner integrand. Additionally, we can
eliminate the outer integral by only taking into account the pairs of interest that
match the interval around our pivot. We do this under the condition that the
sum of these volumes xk+xj must be within the interval [xi−1, xi+1]. This condition
ensures that we only consider combinations of volumes that contribute to the volume

14



v withing its range of influence. Consequently, we can express the RBa without the
need of integration as:

RBa =
1

2

∑
k,j∈[1,M ]

ηi(j, k)Q(xk, xj)Nk(t)Nj(t), xi−1 ≤ (xk + xj) ≤ xi+1.

This equation captures the rate of birth of new particles due to aggregation by
summing over all feasible pairs of indices k and j, weighted by the aggregation
kernel Q(xk, xj), their number distributions Nk(t) and Nj(t) and their contribution
to the pivot elements calculated by ηi(j, k). The factor 1

2
still accounts for the

symmetric nature of v′ and v − v′.
However, we can eliminate the factor 1

2
by limiting the indices of our sum to k ≥ j,

thus eliminating the symmetric cases. To address the cases where k = j, which
would still be double counted, we introduce the term 1− 1

2
δk,j into the sum. Here,

δk,j is the Kronecker delta, which equals 1 when k = j and is 0 otherwise. This
ensures that the cases which we are double counting are contributing half. Thus the
final expression for our RBa becomes:

RBa =

j≥k∑
k,j∈[1,M ]

(
1− 1

2
δk,i

)
ηi(j, k)Q(xk, xj)Nk(t)Nj(t), xi−1 ≤ (xk + xj) ≤ xi+1.

(5.3)

5.3 Pure aggregation

We achieve the term for the rate of pure aggregation by combining (5.1) and (5.3):

RA := RBa −RDa

=

j≥k∑
k,j∈[1,M ]

xi−1≤(xk+xj)≤xi+1

(
1− 1

2
δk,i

)
ηi(j, k)Q(xk, xj)Nk(t)Nj(t)

−Ni(t)
M∑
k=1

Nk(t)Q(xi, xk).

(5.4)

5.4 Aggregation kernel

The aggregation kernel, denoted as Q(v − v′, v′), describes the rate at which a
particle of volume v forms from the aggregation of two smaller particles, one with
volume v − v′ and the other with volume v′. Similarly to breakage, aggregation
plays a crucial role in particle systems and directly influences the evolution of the
particle size distribution. The aggregation kernel captures how likely two particles of
different sizes are to combine and form a new particle, thus controlling the frequency
and outcome of aggregation events.
In general, kernel functions such as Q(v − v′, v′) are mathematical representations
that describe interaction rates in a variety of processes, such as particle aggregation.

15



These kernels can take on various forms, depending on the physical assumptions of
the system, with each form corresponding to different types of interaction mechanism
between particles. Depending on the assumed system behavior, we can model Q(v−
v′, v′) using different forms of kernel functions. In the following, we explore three
common choices for the aggregation kernel and discuss their physical implications.
Firstly, the constant kernel:

Q(v − v′, v′) = c,

for some constant c ∈ R. This kernel assumes that the rate of aggregation is inde-
pendent of particle size, which means that all particles, regardless of their volume,
are equally likely to aggregate. Physically, this implies that the probability of ag-
gregation depends solely on the concentration of particles, with no preference for
the size of the interacting particles.
Secondly, the sum kernel:

Q(v − v′, v′) = (v − v′) + v′ = v.

This kernel assumes that the aggregation rate depends linearly on the size of the
particles involved. Larger particles are more likely to aggregate compared to smaller
particles, as the interaction rate is proportional to the combined volume of the two
particles.
Lastly, the multiplicative kernel:

Q(v − v′, v′) = (v − v′)v′.

This kernel models the situation where the aggregation rate depends on the product
of the volumes of the two particles. This implies that larger particles are exponen-
tially more likely to aggregate, leading to rapid aggregation of the largest particles
in the system.

16



Chapter 6

Breakage

Breakage is a fundamental phenomenon encountered in a wide range of scientific
and engineering fields. It describes the process by which a larger particle splits into
smaller fragments due to various external forces such as mechanical stress, chemical
reactions, or thermal effects. To study the breakage in our model, we need to observe
again two different terms. The death term represents the rate at which particles of
a given size are lost from the system due to breakage. Larger particles break into
smaller ones, and as a result, the number of particles in the original size class
decreases over time. This is the ”death” of particles in a specific size class. For the
birth term we are interested in the rate that new particles enter our system. When
a particle breaks, it produces smaller fragments that fall into different size classes.
This process is captured by the birth term in the population balance equation, which
accounts for the rate at which new particles are created in specific size classes as
a result of breakage. As with the aggregation, the interaction between these birth
and death terms defines the evolution of the number density in the system.

6.1 Death term

We again start with the discretization of the death term. The death term accounts
for the rate at which particles of size v are lost as they break into smaller fragments,
depending on their frequency they may break and depending on how many particles
are able to break. In a discrete interval between two points in the grid vi and vi+1

the rate of death is given by the fourth term in in (4.3):∫ vi+1

vi

Γ(v)n(v, t)dv.

Here Γ(v) is the frequency a particle of volume v breaks. Choices for Γ(v) will be
discussed later, especially for binary breakage. To acquire our equations we again
substitute (4.4) into the integral to obtain:∫ vi+1

vi

Γ(v)
M∑
k=1

Nk(t)δ(v − xk)dv.

Thanks to the Dirac delta distribution, the only value of k where the summand
is non-zero is k = i. And again with the Dirac delta distribution, the only v in

17



the given interval where the integrals does not vanish is at our pivot xi. And this
is indeed the only valid pivot because it is the only pivot in the interval [vi, vi+1]
Therefore the expression simplifies to:

RDb :=

∫ vi+1

vi

Γ(v)
M∑
k=1

Nk(t)δ(v − xk)dv

=

∫ vi+1

vi

Γ(v)Ni(t)δ(v − xi)dv

= Γ(xi)Ni(t).

(6.1)

And thus we arrived at a equation that only depends on our breakage frequency at
our pivot and the number of particles at our pivot. Note that the death term does
not depend on how many new particles are born due to the death. Unfortunately,
our final equation for the birth term will not be as simple, due to the allocation of
the new born particles in our system.

6.2 Birth term

To study the birth term, we need a way to account for the fact that a particle
of volume v′ can split into an arbitrary amount of daughter particles each with a
volume smaller than v′. To conserve the volume in our system we also need to make
sure that the volumes of the daughter particles sum up to the volume v′. The rate
of birth in a discrete interval between two grid points vi and vi+1 is given by the
third term in (4.3): ∫ vi+1

vi

∫ ∞

v

β(v, v′)Γ(v′)n(v′, t)dv′dv.

Here, β(v, v′)dv describes the number of daughter particles in the range from v to
v + dv that are born due to breakage of a particle of volume v′. The outer integral
ranges from vi to vi+1, because we are interested in the rate that new particles
are born in this interval. The inner integral ranges from v to ∞, because for each
interval [v, v + dv] only particles of volume v′ with v′ ≥ v could break into volumes
[v, v + dv]. Because we only want to the study the values at our pivots, we need
again to distribute any new particles partial to the nearest pivots. Therefore, we
split the outer integral in two parts, one for the distribution of volumes between
xi and xi+1 and one for the distribution of volumes between xi−1 and xi. We here
make use of our functions a(v, xi) for the first case and b(v, xi) for the second one.
We define the new expression as:

RBb :=

∫ xi+1

xi

a(v, xi)

∫ ∞

v

β(v, v′)Γ(v′)n(v′, t)dv′dv

+

∫ xi

xi−1

b(v, xi)

∫ ∞

v

β(v, v′)Γ(v′)n(v′, t)dv′dv.

18



As always, to reduce the equation to just take values at our pivot points, we substi-
tute (4.4):

RBb =

∫ xi+1

xi

a(v, xi)

∫ ∞

v

β(v, v′)Γ(v′)
M∑
k=1

Nk(t)δ(v − xk)dv
′dv

+

∫ xi

xi−1

b(v, xi)

∫ ∞

v

β(v, v′)Γ(v′)
M∑
k=1

Nk(t)δ(v − xk)dv
′dv.

Our strategy here involves the following steps. Firstly, we pull the β(v, v′) and the
Γ(v′) into the sum. Then we notice that the sum and therefore the inner integrand
vanishes for each v′ ̸= xk for any k. Also, since we are only taking v′ from [xi−1,∞),
it is sufficient to only consider k ≥ i, because for k < i we always have v′ > xk.
With that the inner integral sign disappears and we factor everything that does not
depend on v out of the outer integral. With these steps we derive our final equation
for the birth term due to breakage:

RBb =

∫ xi+1

xi

a(v, xi)

∫ ∞

v

β(v, v′)Γ(v′)
M∑
k=1

Nk(t)δ(v − xk)dv
′dv

+

∫ xi

xi−1

b(v, xi)

∫ ∞

v

β(v, v′)Γ(v′)
M∑
k=1

Nk(t)δ(v − xk)dv
′dv

=

∫ xi+1

xi

a(v, xi)

∫ ∞

v

M∑
k=1

β(v, v′)Γ(v′)Nk(t)δ(v − xk)dv
′dv

+

∫ xi

xi−1

b(v, xi)

∫ ∞

v

M∑
k=1

β(v, v′)Γ(v′)Nk(t)δ(v − xk)dv
′dv

=

∫ xi+1

xi

a(v, xi)
M∑
k≥i

β(v, xk)Γ(xk)Nk(t)dv

+

∫ xi

xi−1

b(v, xi)
M∑
k≥i

β(v, xk)Γ(xk)Nk(t)dv

=
M∑
k≥i

Γ(xk)Nk(t)

∫ xi+1

xi

a(v, xi)β(v, xk)dv

+
M∑
k≥i

Γ(xk)Nk(t)

∫ xi

xi−1

b(v, xi)β(v, xk)dv.

19



To combine the two sums we introduce the term ni,k, which is defined as following:

ni,k =

∫ xi+1

xi

a(v, xi)β(v, xk)dv

+

∫ xi

xi−1

b(v, xi)β(v, xk)dv

=

∫ xi+1

xi

xi+1 − v

xi+1 − xi

β(v, xk)dv

+

∫ xi

xi−1

v − xi−1

xi − xi−1

β(v, xk)dv.

(6.2)

We can interpret ni,k as the quantification of how much of the broken volume from
larger particles xk ends up in the population of smaller particles xi. For example,
if we have ni,k = 1

2
for some i and k, that means that half of the volume from the

breakage of xk would end up as volume at xi. Unlike to the aggregation term, it is
not helpful to use the introduced ηi(j, k) term, because the integrals would need to
be handled independently anyways. With this simplification we get:

RBb =
M∑
k=i

ni,kΓ(xk)Nk(t). (6.3)

Again, unlike all the other terms we discussed until now, this final expression
did not remove all the integral signs. Therefore, it is in general required to solve
them with an appropriate numerical method such as the trapezoidal rule.

6.3 Pure breakage

We achieve the term for the rate of pure breakage by combining (6.1) and (6.3):

RB = RBb −RDb

=
M∑
k=i

ni,kΓ(xk)Nk(t)

− Γ(xi)Ni(t).

(6.4)

6.4 Breakage frequency

The breakage frequency, denoted as Γ(v′), describes how often a particle of volume
v′ undergoes breakage. To accurately mode a population balance equation, it is
important to make an appropriate choice for Γ(v′). Depending on the assumptions
of our system, different choices seem logical. We will briefly cover some choices
and compare them in our numerical studies. The first option would be a constant
breakage frequency, i.e., for some constant c ∈ R:

Γ(v′) = c.

This represents a breakage frequency that does not depend on the volume of the
given particle. That is, every particle independently of their volume has the same

20



probability of breaking into new smaller particles.
Another option to consider is a linear dependently breakage frequency, i.e.:

Γ(v′) = v′.

Here the frequency depends linearly on the volume of the given particle, meaning
that a larger particles tends to break more often than a smaller one.
And finally, we consider a quadratic breakage frequency, i.e.:

Γ(v′) = (v′)2.

With this choice, the breakage frequency depends even stronger on the volume of
the given particle. Meaning that larger particles are even more likely to break than
smaller ones.

6.5 Binary breakage

The function β(v, v′) represents the breakage distribution and describes how a par-
ent particle v′ breaks into smaller daughter particles. Specifically, β(v, v′)dv gives
the number of daughter particles with volumes in the range [v, v + dv] produced
when a larger particle of volume v′ undergoes the process of breaking. The choices
of this function yields many important physical properties. For our purposes, it
gives the number of daughter particles formed from each breakage and ensures the
conservation of volume. We will from now on only consider binary breakage events.
That means that any breakage of a parent particle can only result in the birth of
exactly two new smaller daughter particles. Firstly, we discuss the condition that
β(v, v′) must satisfy to model binary breakage. We need to ensure that whenever a
particle of volume v′ undergoes breakage, exactly two new particles are formed, or
in our discretization the volume of two particles are distributed between 0 and v′.
For this we introduce a normalization condition:∫ v′

0

β(v, v′)dv = 2.

The integral captures the total number of daughter particles generated from the
breakage process by adding all possible volumes of daughter particles v. So if we
were interested in the breakage into three particles for example, the integral would
need to be equal to three, The next condition will ensure that we conserve the
volume of the parent particle v′. For binary breakage where v′ breaks into v1 and
v2 we can state this with a simple equation like:

v′ = v1 + v2.

But we can also generalize this for all kinds of breakage processes. For this, we
want that the sum over all daughter particle volumes is equal to the volume of the
parent. To represent the volume of the daughter particles of volume v, weighted
by our distribution function β(v, v′), we use the expression vβ(v, v′). Summing
this expression over all possible daughter particles yields a volume conservation
condition: ∫ v′

0

vβ(v, v′)dv = v′.

21



To further refine our model of binary breakage, we now introduce the concept of uni-
form binary breakage. This assumption implies that when a parent particle breaks
into two daughter particles, the probability of the size of the daughter particles is
uniformly distributed over the possible volume range. In other words, each poten-
tial daughter particle size is equally likely to be formed, provided that the sum of
their volumes equals that of the parent particle. To mathematically express this
uniformity, we impose the condition that the breakage distribution function β(v, v′)
is constant with respect to the volume of the daughter particles v. This leads to the
conclusion that the breakage distribution is independent of the size of the daugh-
ter particles, meaning that the distribution is spread uniformly across all possible
breakage sizes.
This uniform behavior can be formulated as:

β(v, v′) =
2

v′
.

To verify that this choice for β(v, v′) satisfies the two conditions given earlier, we
substitute it into the normalization and volume conservation condition:∫ v′

0

2

v′
dv =

2

v′
· v′ = 2,

∫ v′

0

v · 2
v′

dv =
2

v′

∫ v′

0

v dv =
2

v′
· (v

′)2

2
= v′.

Thus, the form β(v, v′) = 2
v′
is the correct choice for modeling uniform binary break-

age. It not only satisfies the conditions of particle number and volume conservation,
but also ensures that the breakage process is uniformly distributed over all possible
daughter particle sizes.
With this choice for β(v, v′), we can solve ni,k analytically. Recalling the discrete
expression of ni,k:

ni,k =

∫ xi+1

xi

a(v, xi)β(v, xk)dv +

∫ xi

xi−1

b(v, xi)β(v, xk)dv.

Substituting β(v, xk) =
2
xk

and the known forms of a(v, xi) and b(v, xi):

ni,k =
2

xk

(∫ xi+1

xi

a(v, xi)dv +

∫ xi

xi−1

b(v, xi)dv

)
=

2

xk

(∫ xi+1

xi

xi+1 − v

xi+1 − xi

dv +

∫ xi

xi−1

v − xi

xi − xi−1

dv

)
.

Now we solve these integrals. Starting with the first:∫ xi+1

xi

xi+1 − v

xi+1 − xi

dv =
1

xi+1 − xi

(
x2
i+1

2
− xi+1xi +

x2
i

2

)
=

(xi+1 − xi)
2

2(xi+1 − xi)

=
xi+1 − xi

2
.

22



Next, for the second integral:∫ xi

xi−1

v − xi−1

xi − xi−1

dv =
1

xi − xi−1

(
x2
i

2
− xi−1xi +

x2
i−1

2

)
=

(xi − xi−1)
2

2(xi − xi−1)

=
xi − xi−1

2
.

Together, we have:

ni,k =
2

xk

(
xi+1 − xi

2
+

xi − xi−1

2
)

=
2

xk

xi+1 − xi−1

2

=
xi+1 − xi−1

xk

.

Thus, we have derived the analytical solution for ni,k, bypassing the need for nu-
merical methods such as the trapezoidal rule.
The analytical solution for ni,k is quite intuitive when we think about it in the con-
text of uniform binary breakage.
Since we are assuming uniform binary breakage, the distribution of daughter par-
ticles is uniform across all possible breakage sizes, meaning that the size of the
intervals where the smaller particles fall becomes a key factor. The numerator,
xi+1 − xi−1, represents the width of the interval that surrounds the particle sizes
around xi, essentially capturing how much of the volume from a broken parent par-
ticle is contributed to the population within that range.
At the same time, the denominator, xk, represents the size of the parent particle
that undergoes breakage. Since the breakage is uniform, the ratio between the size
of the interval of interest and the size of the broken particle gives us a straightfor-
ward quantification of how much of the broken volume is likely to end up in the
interval around xi. Thus, this expression captures the essence of binary breakage:
the size of the interval and the size of the broken particle are the primary factors
that determine how the volume is redistributed among the smaller particles.

23



Chapter 7

Numerical methods

In this work, two key numerical methods were employed to solve the population
balance equation, specifically to compute the breakage term and solve the resulting
system of IODEs. For the breakage term, which involves calculating integrals over
the particle volume distribution, the trapezoidal rule was used. The trapezoidal rule
is a simple and widely used method for numerical integration, where the area under
a curve is approximated by dividing the curve into trapezoids rather than rectangles.
This method provides a good balance between simplicity and accuracy, making it
well suited for handling the integral expressions in the breakage term, particularly
when using a discrete-volume grid as in the fixed pivot method.
The formula for a single interval [a, b] is given by:∫ b

a

f(x) dx ≈ b− a

2
(f(a) + f(b)) .

For n equally spaced points x0, x1, . . . , xn with h = b−a
n
, the extended form of

the trapezoidal rule is:

∫ b

a

f(x) dx ≈ h

2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)) .

To solve the system of IODEs arising from the population balance equation, we
first approximate integrals using the trapezoidal rule before applying a Runge-Kutta
method for time integration.
A Butcher tableau is a common way to represent the coefficients of a Runge-Kutta
method, summarizing how each intermediate stage is computed and combined to
advance the solution of ordinary differential equations. The general form of the
Butcher tableau is given below.

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs
b̂1 b̂2 · · · b̂s

24



In this tableau the coefficients aij determine how previous intermediate steps
influence each stage, while ci represents the time at which each stage is evaluated.
The weights bi and b̂i produce the fifth- and fourth-order solutions, respectively,
which are used for adaptive step size control.

The intermediate steps ki are computed using:

ki = f

(
t+ cih, y + h

i−1∑
j=1

aijkj

)
,

where h is the time step, t is the current time, y is the current value of the solution,
and f is the derivative function of the IODE.

Finally, the solutions are calculated by:

yn+1 = yn + h

s∑
i=1

biki,

and

ŷn+1 = yn + h
s∑

i=1

b̂iki.

This general tableau form can be used to describe any Runge-Kutta method,
including higher-order or adaptive schemes, such as the RK45 method from the
SciPy library used in this work.

RK45 (Dormand-Prince method) is an adaptive step size method, which means
that it adjusts the time step dynamically based on the local error estimate at each
step, allowing for efficient and accurate integration over time. The method combines
fourth-order and fifth-order Runge-Kutta methods, using the difference between the
fourth- and fifth-order results to estimate the local error and adapt the step size
dynamically. The underlying scheme can be represented by its Butcher tableau.

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

35
384

0 500
1113

125
192

−2187
6784

11
84

0
5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

In the Butcher tableau, the first set of coefficients represents the fourth-order
method, while the second set corresponds to the fifth-order method.
Together, these methods provide a comprehensive numerical framework: The trape-
zoidal rule ensures accurate computation of the integrals in the breakage term, while
RK45 effectively handles the temporal evolution of the particle size distribution
through the system of IODEs.

25



Chapter 8

Implementation

This chapter focuses on the implementation and testing of the methods discussed
in the previous sections. The goal is to provide a detailed account of how the fixed
pivot technique was applied to solve population balance equations and to document
the iterative process of development.
The chapter is structured as follows. We begin with the implementation of pure
aggregation, followed by pure breakage, and we finally address the simultaneous oc-
currence of breakage and aggregation.
It is important to note that my initial implementations were not always immediately
correct. Throughout this chapter, we describe the steps taken during implementa-
tion, the challenges encountered, and the corrections applied to resolve the errors.
For all tests conducted with a correctly functioning code, we provide precise details
regarding the grid, initial conditions, and kernels used. In cases where the code was
still under development and contained errors, these details are not always explicitly
stated, as they were not the primary focus during those stages of testing.

8.1 Pure aggregation

We will start with the implementation of the pure aggregation process. That means
we want to solve this system of ODEs:

dNi(t)

dt
=

j≥k∑
k,j∈[1,M ]

xi−1≤(xk+xj)≤xi+1

(
1− 1

2
δk,i

)
ηQ(xk, xj)Nk(t)Nj(t)

−Ni(t)
M∑
k=1

Nk(t)Q(xi, xk).

(8.1)

As mentioned in the previous chapter, this will be done with the RK45 method
of the SciPy library, in particular with the solve ivp() function from that library.
This function requires a function of the right-hand side as an input. This can be
done quite easily for the most part. The only interesting part of the right-hand side
is the restriction of the first sum and the calculation of ηi(j, k) given by (5.2). We
can use the value of ηi(j, k) to handle the interval restriction. Whenever we look at a
pair of pivots that does not match the restriction we set ηi(j, k) = 0. The next thing

26



to consider are the boundary pivots, that is, x1 and xM . The fraction of volume that
is allocated to a pivot xi due to the aggregation of xj and xk is described by ηi(j, k).
The boundary at i = 1 can be problematic for the xi−1 ≤ v ≤ xi part of ηi(j, k)
since x0 is not defined. But we can just set this ηi(j, k) = 0 because the smallest
aggregation possible in our system is x1 + x1, which cannot lie in the interval of
interest. Now we consider the other boundary pivot xM . For this pivot, we cannot
calculate ηM(j, k) with xj +xk ≥ xM , since xM+1 is not defined. Here we started by
setting ηM(j, k) = 1, which in hindsight was the wrong choice. Now, to verify that
the code is working correctly, we checked the total volume in the system before and
after the calculations using the first moment of the number density. We discretize
it using the discrete version of the number density:

M1 =

∫ ∞

0

vn(v, t)dv

=

∫ ∞

0

v

M∑
k=1

Nk(t)δ(v − xk)dv

=
M∑
k=1

xkNk(t).

Testing my code with different types of grid and different aggregation kernelsQ(xk, xj)
always resulted in a significant loss in volume. To understand what went wrong, we
did a test on a geometric grid, with a multiplicative aggregation kernel and a normal
distributed initial condition. Figure 8.1 shows the initial state of my system on the
left and the solution on the right. The x-axis is the volume at the pivots, and the
y-axis is Ni(t).

(a) Initial distribution (b) End distribution

Figure 8.1: Pure aggregation with product kernel

The first thing we noticed is the pivot xM which is an extreme outlier compared
to all other pivots. But this makes a lot of sense with my current code, considering
that every aggregation process such that xk + xj ≥ xM contributes only to xM .
And, especially, the more particles are assigned to xM , the more likely it is that the
particles from xM aggregate with other particles to further increase the number of
particles in xM . That means that some kind of exponential tail is to be expected.

27



To fix this problem, we have reorganized the volume allocation to xM . My solution
is quite simple. If we have xk + xj ≥ xM , we still want this new volume assigned to
the boundary xM . But not with ηM(j, k) = 1. Instead we want to assign the ratio
of the new particle volume and xM , i.e:

ηM(j, k) =
xj + xk

xM

, xj + xk ≥ xM .

With these changes the volume is conserved for all my simulations with different
kinds of grids, step sizes, aggregation kernel, and initial conditions.
The next step of verification is to observe whether the behavior of the system mimics
the behavior found in nature. We would assume that since no breakage events can
occur in this simulation, the number of particles in xM would only increase over
time. We would also assume that the number of particles between x1 and xM−1

would decrease, since larger particles are more likely to aggregate and therefore
vanish from the system. However, we can test this behavior a little more precisely.
We changed the initial condition to be the sum of two normal distributions that
are centered around different pivots. They are centered around µ and λ. We call
the pivots, the distributions are centered around xµ and xλ, respectively, and we
have xµ < xλ. With that, the most particles are in the regions around xµ and xλ,
and therefore these are the particles that are the most likely to aggregate with each
other. Hence, at some point in the simulation, it can be expected that a lot of
particles are assigned at xi with |xi− (xα + xβ)| being minimal with α ∈ {µ, λ} and
β ∈ {µ, λ} where the cases where α and β are distinct are identical. I will use the
notation xi = xµ+λ for this pivot. To test this, I saved after each time step the three
pivots with the most particles assigned to them and plotted these results in Figure
8.2. The x-axis is for the time steps, and the y-axis is the i values of the pivots.
These pivots shown in the plot will from now on be named maximal pivots without
differentiating whether they have the most, second most, or third most particles
assigned to them.

28



Figure 8.2: Evolution of the maximal pivots over time

The interpretation of this plot matches our expectation. At the start of the sim-
ulation the pivots with the most particles are xµ, xλ, and a pivot near xλ. The first
new maximal pivot during the run-time is xλ+λ. This makes sense since xλ and xµ

have the most particles assigned to them, but xµ < xλ and therefore the particles in
xλ are more likely to aggregate with particles of the same volume than the particles
in xµ. The next maximal pivot is the expected xµ+λ. Followed by xµ+µ, which
follows the same logic as xλ+λ. The maximal pivot x2λ+µ can also be explained in
the same way. We can also see the behavior that after some time, many particles
aggregate to xM and then stay there. Another observation is that xλ stops being
a maximal pivot during the run-time while xµ stays a maximal pivot throughout
the whole simulation. This can again be explained by the fact that xµ < xλ and
therefore the particles at xλ are more likely to aggregate and disappear from the
system.
Although the approach to handling ηM(j, k) ensures volume conservation and demon-
strates some logical behavior, I am not entirely satisfied with it. Specifically, the
allocation of all newly formed particles exclusively to the pivot xM whenever a par-
ticle aggregates with one of volume xM is problematic. This behavior does not align
with the principles of the fixed pivot method, which is based on partial volume al-
location. The assignment of all aggregated particles to a single pivot oversimplifies
the system.
To address this issue, I adopted a new approach: I designed the initial condition
and the grid so that the particles do not reach the boundary xM . This was achieved
by modifying both the initial condition and the grid design. I increased the number
of pivots to provide a finer resolution near the upper boundary and set the initial
condition to zero for pivots close to xM . Furthermore, I implemented a stop event in
the solve ivp() function, which stops the simulation as soon as particles with v > xM

are formed.

29



In the following, I will conduct two tests to evaluate this new strategy, focusing on
the logic and consistency of the resulting particle distributions.

Algorithm 1 System Aggregation Computation

1: Input: t, N , x
2: Output: dN
3: M ← length of N
4: dN ← array of zeros with length M
5: for i← 0 to M − 1 do
6: agg loss← 0
7: agg birth← 0
8: for k ← 0 to M − 1 do
9: for j ← k to M − 1 do

10: η ← 0
11: δ ← 1 if j = k else 0
12: v ← x[k] + x[j]
13: if i ̸= (M − 1) and x[i] ≤ v ≤ x[i+ 1] then
14: η ← (x[i+ 1]− v)/(x[i+ 1]− x[i])
15: else if i = 0 then
16: η ← 0
17: else if i = (M − 1) and v > x[i] then
18: η ← 0
19: else if x[i− 1] ≤ v ≤ x[i] then
20: η ← (v − x[i− 1])/(x[i]− x[i− 1])
21: end if
22: agg birth← agg birth+ (1− 1

2
× δ)× η×Q(x[k], x[j])×N [j]×N [k]

23: end for
24: if k ̸= (M − 1) then
25: agg loss← agg loss+Q(x[i], x[k])×N [k]
26: end if
27: end for
28: if i ̸= (M − 1) then
29: dN [i]← −N [i]× agg loss
30: end if
31: dN [i]← dN [i] + agg birth
32: end for
33: return dN

For the first example, we perform a test where the initial condition is a sum of two
normal distributions with low variance, each centered around different pivots. My
expectation is that, similar to the previous test, during the simulation, a significant
number of particles will aggregate at pivots corresponding to the three cases of sums
of the pivots around which the normal distributions are centered.
In this test, the grid consists of 100 pivots on a geometric scale ranging from 0.01 to
1. The aggregation kernel Q(xi, xk) =

1
2
is constant, simplifying the aggregation rate

for all pairs of particles. The initial condition consists of two normal distributions

30



with µ = 1 and σ = 0.1. The first distribution is centered around the 10th pivot,
while the second is centered around the 30th pivot.
For all tests in this thesis, the maximum step size for the numerical solver is set
to 0.001. However, for this particular test, I chose a small end time of t = 0.2, to
focus on the behavior of the system shortly after aggregation began. This allows
us to analyze how the system evolves in its early stages and to verify that particle
aggregation behaves as expected.
Due to the aggregation process, the particles initially centered at the 10th and 30th
pivots are expected to combine and form larger particles. Based on the aggregation
behavior under the peaks of the normal distributions, the following volumes are
significant.

• Aggregation of two particles at x10 produces a volume closest to x25,

• Aggregation of a particle at x10 with one at x30 produces a volume closest to
x37,

• Aggregation of two particles at x30 produces a volume closest to x45.

These pivots are colored red.

(a) Initial distribution (b) End distribution

Figure 8.3: Pure aggregation with constant kernel

From the plots in Figure 8.3, we observe that, as expected in aggregation-
dominated systems, the average particle volume increases over time, while the total
number of particles in the system decreases. In addition, distinct peaks appear at
the red-marked pivots. This indicates that a comparatively large number of parti-
cles have aggregated and accumulated at these specific pivots. These peaks confirm
that particles tend to aggregate around the volumes corresponding to the sums of
the initial peaks, as predicted.

In the second test, the focus is to observe the influence of the aggregation ker-
nel on the dynamics of the system. Similarly to the first test, the geometric grid

31



spans 0.01 to 1 with 100 pivots. However, in this case, the end time is extended to
t = 1 to observe the longer-term behavior of the system.
The initial condition for this test is simple: the values of Ni(0) for the first 40 pivots
are set to 1.5, while all remaining pivots are initialized to 0. This ensures that the
majority of particles start concentrated at smaller volumes, and we do not reach our
right boundary.
To analyze the effect of the aggregation kernel, the test is performed twice: first,
using a constant kernel Q(xi, xk) =

1
2
. Second, using a product kernel Q(xi, xk) =

1000xixk.
The expectation is that the behavior of the system will differ significantly be-

tween the two kernels. For the constant kernel, aggregation occurs uniformly across
all pair of particles, regardless of their size. In contrast, the product-based kernel
amplifies the aggregation rate for larger particles due to its dependence on the prod-
uct of their volumes. As a result, it is anticipated that with the product kernel, more
particles with smaller volumes will remain in the system compared to the constant
kernel. The results can be seen in Figure 8.4.

32



(a) Initial distribution
(b) Final distribution with the constant
kernel at t = 1

(c) Final distribution with the product
kernel at t = 1

Figure 8.4: Pure aggregation with different kernels

For the product kernel, the aggregation rate increases with particle size, since
larger particles have a higher probability of aggregating. This results in the following
observations: the number of particles decreases from left to right in the size distri-
bution. This is because larger particles aggregate more frequently, while smaller
particles are less reactive and persist longer in the system.
Since the system allows only pure aggregation (no breakage), particles can only be
removed by merging into larger ones. Consequently, the distribution contains still
many particles of smaller size.

For the constant kernel, the aggregation probability is independent of particle
size. Every particle pair has the same likelihood of merging, leading to a signifi-
cantly different distribution pattern. Unlike the product kernel, there is no clear
monotonic decrease in particle number toward larger sizes. Instead, the distribution
appears more uniform.

33



8.2 Pure breakage

For the pure breakage process we want to solve this system of IODEs:

dNi(t)

dt
=

M∑
k=i

ni,kΓ(xk)Nk(t)− Γ(xi)Ni(t).

We started by firstly just implementing and testing the ODEs for the death term:

dNi(t)

dt
= −Γ(xi)Ni(t).

This implementation is very straightforward and does not involve any interesting
choices for boundary pivots. Also, there is a really intuitive behavior when the
breaking particles leave the system. We wanted to first test this behavior and then
expand the ODEs with the birth term of breakage to get the system of IODEs for
the pure breakage. Of course, without the birth term, no conservation of volume is
to be expected.
The behavior we wanted to test is that with longer simulations more and more
particles vanish from the system, especially the larger ones. For this we chose a
linear dependent breakage frequency Γ, a uniform initial condition where each pivot
starts with 10 particles of their given volume and plotted the results at t = 3, t = 10
and t = 100.

34



(a) Distribution at t=3 (b) Distribution at t=10

(c) Distribution at t=100

Figure 8.5: Pure breakage death term

We can see the expected behavior in Figure 8.5. The breakage frequency de-
pends on the volume of the particles, and therefore the population in our system
should decrease from right to left. The number of particles at our first pivots remain
almost untouched, while over time the number of particles in the larger pivots start
to vanish completely.

Now we expand the breakage process with the birth term. The only new factor
introduced into the system is the ni,k term given in (6.2). Recall its definition:

ni,k =

∫ xi+1

xi

xi+1 − v

xi+1 − xi

β(v, xk)dv

+

∫ xi

xi−1

v − xi−1

xi − xi−1

β(v, xk)dv.

We started the implementation without the analytical solution and instead used the
trapezoidal rule for general β(v, xk). Here are two interesting cases to consider. The
first is n1,k. This describes the contribution of the breakage of a particle at xk to
the first pivot x1. Since in this case we are only interested in particles that break
into the interval [x1, x2], we can set the second integral to be equal to zero.
Similar for the other boundary pivot xM . It is not possible for a particle of size xM

35



or less to break into (xM ,∞). Hence, we set the first integral from nM,k to be equal
to zero. With these assumptions, the volume is conserved completely.

Algorithm 2 System Breakage Computation

1: Input: t, N , x
2: Output: dN
3: M ← length of N
4: dN ← array of zeros with length M
5: for i← 0 to M − 1 do
6: break sum← 0
7: for k ← 0 to M − 1 do
8: if k ≥ i then
9: break sum← break sum+ n(i, k)× Γ(k)×N [k]

10: end if
11: end for
12: dN [i]← break sum− (Γ(i)×N [i])
13: end for
14: return dN

36



To further analyze the behavior of pure breakage, we examine the system under
a unit initial condition with varying breakage frequencies. The grid consists of
1000 pivots, geometrically spaced between 1× 10−4 and 10. The initial condition is
uniform, with a value of 0.2 at each pivot and T = 1.

We evaluated four distinct breakage frequencies:

• Γ(xk) = 1

• Γ(xk) = 2

• Γ(xk) = x

• Γ(xk) = 2x

These tests serve two purposes: first, to compare the effects of constant versus
linearly dependent breakage frequencies, and second, to investigate the impact of
the additional factor of 2 in both cases.

For constant breakage frequencies (Γ(xk) = 1 and Γ(xk) = 2), we expect a
uniform reduction in particle concentration at all pivots, with the higher frequency
leading to faster depletion. In contrast, linear breakage frequencies (Γ(xk) = x
and Γ(xk) = 2x) introduce a size-dependent variation, where larger particles break
more frequently, resulting in a redistribution of volume towards smaller pivots. The
additional factor of two in Γ(xk) is anticipated to amplify these effects, accelerating
both the depletion of larger particles and the accumulation at smaller pivots.

37



Figure 8.6: Binary breakage with uniform initial condition

For constant breakage frequencies Γ(xk) = 1 and Γ(xk) = 2, the breakage prob-
ability is independent of the particle size, which means that all particles break at
the same rate, regardless of their size. This leads to the following observation seen
in Figure 8.6:

Since breakage always results in smaller fragments, large particles can only lose
volume, while small particles accumulate volume from breakage events.
A significant outlier is observed at the first pivot, where the particle concentration
is much higher than in neighboring pivots. The first pivot has a value of about 30
and 100 respectively. This can be explained by three effects.

• All breakage processes have a probability of producing fragments that fall into
the smallest pivot.

• The smaller the breaking particle, the higher the probability that at least one
fragment lands in the smallest pivot.

38



• Particles in the smallest pivot cannot undergo further breakage, leading to
accumulation over time.

Increasing the frequency of breakage from Γ(xk) = 1 to Γ(xk) = 2 strengthens
these effects, accelerating the redistribution of particles and making accumulation
at small sizes even more pronounced.

For linear breakage frequencies Γ(xk) = x and Γ(xk) = 2x, the breakage probabil-
ity increases with particle size. Unlike in the constant case, the resulting distribution
does not monotonically increase toward smaller particles. Instead, we observe a peak
at an intermediate particle size, leading to the following insights:

• Small particles have low breakage rates due to their small Γ(xk) values, result-
ing in fewer breakage events and lower accumulation in this region.

• Larger pivots represent wider size intervals, increasing the probability that
breakage fragments land in them.

The first pivot is still a small outlier, but its relative prominence is greatly re-
duced. The total volume of the system is dominated by large particles, and the
reduced breakage rate in small sizes prevents excessive accumulation at the smallest
pivot.

The transition from constant to linear breakage frequencies results in a shift in
the particle concentration from small to intermediate sizes. Furthermore, increasing
the breakage factor from Γ(xk) = x to Γ(xk) = 2x amplifies all trends: In both
the constant and linear cases, higher breakage rates accelerate the redistribution of
particles and intensify the observed effects.

In the previous test, we observed that for linear breakage frequencies, the re-
sulting particle distributions exhibited a shape similar to a normal distribution.
Furthermore, we noted that for higher breakage frequencies, the peak of the distri-
bution was both higher and shifted further to the left compared to lower breakage
frequencies. In the following test, we investigate this behavior in more detail.

The computational grid consists of 1000 pivots, logarithmically spaced between
10−5 and 10. The simulation runs until a final time of T = 1. The initial condition
is given by a normal distribution centered around the 500th pivot with parameters
µ = 1 and σ = 1

2
.

The breakage frequency is defined as a linear function Γ(xk) = a · xk,
where we conduct the test for different values of a, specifically:

a = 1, a = 5, a = 10, a = 100.

Since higher values of a lead to increased breakage rates, we anticipate a stronger
shift of the distribution peak toward smaller particle sizes. Additionally, because of
the geometric spacing of the grid, this shift is expected to result in a higher peak,
as smaller pivots correspond to lower volume fractions.

39



Figure 8.7: Binary breakage at t = 1 with normal distributed initial condition

We can see in Figure 8.7 that with different values for a the peak of the distribu-
tions indeed changes. Increasing the value of a increases the frequency of breakage.
Therefore, with more particles breaking, the amount of smaller particles increases
faster and the peak of the distribution shifts more to the left.
Not only does the position of the peak change, but also the number of particles at
the peak. With more breakage processes happening and the volume being conserved,
it only makes sense that a left shift also implies more particles at the peak, and a
right shift implies less particles in comparison. This can be seen in Table 8.1.

40



a max pivot Nmax interval

initial condition 500 1 [0.0100;0.1020]
1 500 1.0191 [0.0100;0.1020]
5 499 1.0979 [0.0099;0.0100]
10 498 1.9998 [0.0097;0.0099]
100 430 3.1569 [0.0059;0.0060]

Table 8.1: Peaks of distributions with different values of a

8.3 Simultaneous breakage and aggregation

In this section, we extend our previous analysis by considering the simultaneous oc-
currence of breakage and aggregation. Unlike the separate cases of pure aggregation
or pure breakage, here both processes interact dynamically, influencing the evolution
of the particle size distribution.

From an implementation standpoint, this extension was straightforward as it
only required combining the already established aggregation and breakage codes.
No additional modifications or special cases were necessary.
To examine the interaction between aggregation and breakage, we performed a cou-
ple of simulations with slightly different aggregation kernels and breakage frequen-
cies. We chose

Γ(xk) = axk,

where a is a scaling parameter that determines the rate at which larger particles
break apart. This choice favors the breakage of larger particles.
For the aggregation kernel we chose:

Q(xk, xj) =
1

bxkxj

,

where b controls the strength of aggregation. The larger b is, the weaker is the
aggregation. This kernel favors smaller particles aggregating, as interactions between
large particles become increasingly rare.
The grid consists of 50 pivots, geometrically spaced between 10−3 and 10. The
initial condition is normal distributed around pivot 25 with µ = 1 and σ = 0.3. The
simulation ran until T = 1.
In Figure 8.8 one can see the initial condition and three different combinations of
breakage frequencies and aggregation kernels.

41



Figure 8.8: Simultaneous breakage and aggregation with normal distributed initial
condition

To understand the differences of the final distributions, one can look at the
results in Table 8.2. There, one can see, for each combination of a and b used, the
respective peak, the average volume of particles, and the number of total particles
left in the system.
When setting a = 1 and b = 1000, the final distribution remains close to the initial
condition, with only a minor shift of the peak from pivot 25 to pivot 27. This
slight movement to the right indicates that while breakage and aggregation are both
active, they nearly counterbalance each other, leading to only a small change in the
overall particle distribution. The number of particles remains relatively stable, with
only a slight decrease due to aggregation outpacing breakage a little bit.

Increasing the aggregation strength by reducing b to 100 leads to a more pro-
nounced shift in the distribution peak, which now moves further to the right, settling
around the pivot 30. This is expected as a stronger aggregation kernel causes smaller
particles to combine more rapidly, leading to a net increase in the number of larger
particles. Consequently, the average particle size increases, and the peak broadens

42



slightly, reflecting a redistribution of mass towards larger sizes.
In contrast, when the breakage rate is increased by setting a = 100 while keeping

b = 1000, the peak shifts in the opposite direction, moving from pivot 25 to pivot 22.
With larger particles now breaking apart much more frequently, the overall particle
population shifts towards smaller sizes, increasing the total number of particles in
the system. Due to the conservation of volume, this increase in particle count must
correspond to a decrease in the average particle size. The higher breakage rate
prevents the particles from growing too large, ensuring that the mass remains more
concentrated in the smaller size range.
Overall, these behaviors match what we previously saw in the simulation of pure
breakage and pure aggregation.

a b max pivot average volume total particles

initial condition initial condition 25 0.15379 9.94
1 1000 27 0.188110 8.09674
1 100 30 0.32275 4.73661
100 1000 22 0.07124 21.457633

Table 8.2: Peaks and average volume of distributions with different kernels

To further analyze the behavior of simultaneous breakage and aggregation, we
extend our study to an initial condition consisting of two distinct peaks rather than
a single normal distribution. The goal is to observe whether these two peaks remain
separate over time or merge into a single dominant peak.
For this simulation, we used the same geometric grid, but with 85 pivots instead of
50. This allows for a wider separation between the two initial peaks.
We use the same aggregation kernel and breakage frequency as before, with param-
eters a = 10 and b = 1000.
The initial condition is defined as the sum of two normal distributions, centered at
pivots 30 and 50, each with σ1 = σ2 = 0.2 and with µ1 = 4 and µ2 = 0.5. These
normal distributions contain roughly the same volume.
The simulation runs until a final time of T = 1, and the results can be seen in Figure
8.9

43



Figure 8.9: Simultaneous breakage and aggregation with the sum of two normal
distributions as initial condition

The results indicate that the two initially separate peaks rapidly merge into
a single peak. Shortly after the simulation begins, the distributions shift toward
each other, forming a single dominant peak. From that point onward, the system
behaves exactly as in the first test case, with aggregation and breakage shaping the
final steady-state distribution in the same manner.
This can be explained by different factors:

• The aggregation kernel strongly favors the combination of small particles,
which means that the mass is naturally redistributed across the grid.

• Additionally, breakage contributes to this merging effect by constantly redis-
tributing the mass to smaller sizes. Since larger particles are more likely to
break, they generate fragments that populate the size range between the two
original peaks.

• Furthermore, due to uniform breakage, there is no bias for particles to break
nearby peaks.

The simulations conducted in this thesis have demonstrated that the combined ef-
fects of breakage and aggregation behave according to physical intuition and theo-
retical expectations.
In every simulation, the volume was conserved almost exactly, ensuring the numeri-
cal correctness of the implemented methods and validates the chosen discretization
and the numerical integration technique applied.
However, despite these successful validations, potential challenges and limitations
remain. Certain special cases or extreme parameter choices may introduce numer-
ical instabilities or unexpected behaviors that were not encountered in the tested
scenarios.

44



Chapter 9

Outlook

The fixed pivot technique, as demonstrated in this thesis, provides an effective and
volume-conserving method for solving population balance equations. It upholds
physical principles, as evidenced by the logical and consistent behavior observed in
various numerical scenarios discussed.

However, in [KR96b] it is highlighted that the technique can occasionally lead to
over prediction of aggregation rates. This issue is particularly evident when using a
coarse grid in which the number density between adjacent cells exhibits significant
variations. In these cases, the analytical solution shows discrepancies that underline
the limitations of the fixed pivot approach when dealing with steep gradients in
number density.

One potential solution to mitigate this overprediction is to refine the compu-
tational grid, thus reducing the sharp contrasts in number density between cells.
By employing a finer grid, the technique can better capture subtle variations and
improve accuracy. This would of course increase the computational time.

Alternatively, adapting the fixed pivot approach to the moving pivot technique
offers another promising avenue. In the moving pivot method, instead of having a
fixed pivot at the center of each cell, each cell is assigned a pivot whose position
can vary dynamically. This flexibility allows the pivot to adjust based on the local
number density distribution: for regions with gradual changes in number density,
the pivot remains near the cell center, whereas in regions with steep gradients, the
pivot shifts towards the left edge of the cell. If the number density in such a steep-
gradient cell transitions towards a more uniform distribution, due to processes like
aggregation or breakage, the pivot will naturally migrate back towards the center.

By allowing the pivot position to reflect the variations in number density more
accurately, the moving pivot technique holds the potential to enhance the represen-
tation physical behavior in population balance models.

45



Bibliography

[KR96a] Sanjeev Kumar and D. Ramkrishna. “On the solution population balance
equations by discretization - 1. A fixed pivot technique”. In: Chemical
Engineering Science 51 (1996).

[KR96b] Sanjeev Kumar and D. Ramkrishna. “On the solution population balance
equations by discretization - 2. A moving pivot technique”. In: Chemical
Engineering Science 51 (1996).

46



Chapter 10

Code

File 1: main.py

1 import numpy as np

2 import time

3 import matplotlib

4 from scipy.integrate import solve_ivp , trapezoid

5 from initialize import *

6 from plot import *

7

8 # Aggregation kernel

9 def Q(xk , xj):

10 return xk * xj

11

12 # Left interval calculation of eta

13 def eta_left(x0 , x1 , v):

14 return (v - x0)/(x1 - x0)

15

16 # Right interval calculation of eta

17 def eta_right(x0 , x1 , v):

18 return (x1 - v)/(x1 - x0)

19

20 # Breakage frequency

21 def gamma(x):

22 return 100*x

23

24 # Binary breakage

25 def beta(xk):

26 return 2 / xk

27

28 # Precomputation of nik with trapezoid rule

29 def nik_precompute(x_values , M):

30 n_ik_matrix = np.zeros ((M, M))

31

32 for i in range(M):

33 for k in range(i, M): # Only calculate when k >= i

34 x0 = x_values[i - 1] if i > 0 else 0 # Handle boundary

case for i=0

35 x1 = x_values[i]

36 x2 = x_values[i + 1] if i < M - 1 else x1 # Handle

boundary case for i=M-1

37 xk = x_values[k]

47



38

39 # Check for special cases and calculate n_ik

40 if i == k:

41 v2 = np.linspace(x0 , x1 , 20) # Values for second

integration

42 integrand2 = (v2 - x0) / (x1 - x0) * beta(xk)

43 n_ik_matrix[i, k] = trapezoid(integrand2 , v2)

44 elif i == 1:

45 v1 = np.linspace(x1 , x2 , 20) # Values for first

integration

46 integrand1 = (x2 - v1) / (x2 - x1) * beta(xk)

47 n_ik_matrix[i, k] = trapezoid(integrand1 , v1)

48 else:

49 v1 = np.linspace(x1 , x2 , 20) # Values for first

integration

50 integrand1 = (x2 - v1) / (x2 - x1) * beta(xk)

51 integral1 = trapezoid(integrand1 , v1)

52

53 v2 = np.linspace(x0 , x1 , 20) # Values for second

integration

54 integrand2 = (v2 - x0) / (x1 - x0) * beta(xk)

55 integral2 = trapezoid(integrand2 , v2)

56

57 n_ik_matrix[i, k] = integral1 + integral2

58

59 return n_ik_matrix

60

61 # Precomputation of nik with analytical solution

62 def nik_precompute_ana(x_values , M):

63 n_ik_matrix = np.zeros ((M, M))

64

65 for i in range(M):

66 for k in range(i, M): # Only calculate when k >= i

67 x0 = x_values[i - 1] if i > 0 else 0 # Handle boundary

case for i=0

68 x1 = x_values[i]

69 x2 = x_values[i + 1] if i < M - 1 else x1 # Handle

boundary case for i=M-1

70 xk = x_values[k]

71

72 # Check for special cases and calculate n_ik

73 if i == k: #second integral

74 n_ik_matrix[i, k] = (x1 - x0) / xk

75 elif i == 1: #first integral

76 n_ik_matrix[i, k] = (x2 - x0) / xk

77 else: #default case

78 n_ik_matrix[i, k] = (x2 - x0) / xk

79

80 return n_ik_matrix

81

82 # Right side of pure aggregation

83 def system_agg(t, N, x):

84 M = len(N)

85 dN = np.zeros(M)

86

87 for i in range(M):

88 agg_loss = 0

48



89 agg_birth = 0

90 for k in range(M):

91 for j in range(k, M):

92 eta = 0

93 delta = 1 if j == k else 0

94 v = x[k] + x[j]

95

96 if i != (M - 1) and x[i] <= v <= x[i + 1]:

97 eta = eta_right(x[i], x[i + 1], v)

98 elif i == 0:

99 eta = 0

100 elif i == M - 1 and v > x[i] :

101 eta = 0

102 elif x[i - 1] <= v <= x[i]:

103 eta = eta_left(x[i - 1], x[i], v)

104 Q_value = Q(x[k], x[j])

105 agg_birth += (1 - 1/2 * delta) * eta * Q_value * N[

j] * N[k]

106

107 if k != (M-1):

108 Q_value = Q(x[i], x[k])

109 agg_loss += Q_value * N[k]

110 if i != (M-1):

111 dN[i] = -N[i] * agg_loss

112 dN[i] += agg_birth

113

114 return dN

115

116 # Right side of pure breakage

117 def system_break(t, N, x, n_ik_matrix , gamma_values):

118 M = len(N)

119 dN = np.zeros(M)

120 for i in range(M):

121 break_sum = 0

122 for k in range(M):

123 if k >= i:

124 break_sum += n_ik_matrix[i, k] * gamma_values[k] *

N[k]

125 dN[i] += break_sum - (gamma_values[i] * N[i])

126 return dN

127

128 # Right side of simul aggregation and breakage

129 def system(t, N, x, n_ik_matrix , gamma_values):

130 M = len(N)

131 dN = np.zeros(M)

132 for i in range(M):

133 break_sum = 0

134 agg_loss = 0

135 agg_birth = 0

136 for k in range(M):

137 if k >= i:

138 break_sum += n_ik_matrix[i, k] * gamma_values[k] *

N[k]

139 for j in range(k, M):

140 eta = 0

141 delta = 1 if j == k else 0

142 v = x[k] + x[j]

49



143 if i != (M - 1) and x[i] <= v <= x[i + 1]:

144 eta = eta_right(x[i], x[i + 1], v)

145 elif i == 0:

146 eta = 0

147 elif i == M - 1 and v > x[i] :

148 eta = 0

149 elif x[i - 1] <= v <= x[i]:

150 eta = eta_left(x[i - 1], x[i], v)

151 Q_value = Q(x[k], x[j])

152 agg_birth += (1 - 1/2 * delta) * eta * Q_value * N[

j] * N[k]

153

154 if k != (M-1):

155 Q_value = Q(x[i], x[k])

156 agg_loss += Q_value * N[k]

157 if i != (M-1):

158 dN[i] = -N[i] * agg_loss

159 dN[i] += agg_birth + break_sum - (gamma_values[i] * N[i])

160

161 return dN

162

163

164

165

166

167 if __name__ == ’__main__ ’:

168 # Initialize grid and pivots

169 grid = create_grid_geo (0.00001 ,10 ,50)

170 pivots = create_pivots(grid)

171 M = len(pivots)

172 init = create_initial_uniform (1,M)

173 for i in range(25,M):

174 init[i] = 0 # Set pivots near right boundary to 0

175 t_start = 0

176 t_end = 1

177

178 # Precompute nik matrix and gamma values

179 n_ik_matrix = nik_precompute_ana(pivots , M)

180 gamma_values = np.array([ gamma(x) for x in pivots ])

181

182

183 # Solve the ODE system

184 start_time = time.time()

185

186

187 # Event function to stop when last pivot accumalates volume

188 def stop_on_last_pivot(t, N, x, n_ik_matrix , gamma_values):

189 M = len(N)

190 print(f"t={t:.4f},␣N[M-1]={N[M␣-␣1]:.4e}")

191 tolerance = 1e-12

192 return N[M-1] - tolerance

193

194 # Set the event function to trigger when crossing zero

195 stop_on_last_pivot.terminal = True # Stop integration when the

event is triggered

196 stop_on_last_pivot.direction = 1 # Only trigger when crossing

zero in the positive direction

50



197

198 # Solve the system

199 solution = solve_ivp(

200 system ,

201 [t_start , t_end],

202 init ,

203 max_step = 0.2,

204 method=’RK45’,

205 args=(pivots , n_ik_matrix , gamma_values),

206 events=stop_on_last_pivot

207 )

208

209 # Extract results

210 t_event = solution.t_events [0] # Time at which the event

occurred

211 end_time = time.time()

212 elapsed_time = end_time - start_time

213 print(f"Elapsed␣time:␣{elapsed_time :.4f}␣seconds")

214 N_solution = solution.y[:, -1] # Values of the solution

215

216 # Find pivot with maximum number of particles

217 max = [0,0]

218 for i in range(len(N_solution)):

219 if N_solution[i] >= max [0]:

220 max[0] = N_solution[i]

221 max[1] = i

222 print(f"maximum␣of:␣{max [0]}␣at␣pivot:␣{max [1]}")

223

224 # Check volume conservation

225 mass_start = check_mass_conservation(init , pivots) # Volume of

the init. cond.

226 mass_end = check_mass_conservation(N_solution , pivots)

227 print(f"Init␣mass:␣{mass_start}")

228 print(f"Final␣mass:␣{mass_end}")

229 print(f"Percent␣change␣in␣mass:␣{check_mass_change(mass_start ,␣

mass_end)}%")

230 print(f"stop␣time:␣␣{t_event}")

231

232 # Plot results

233 fig , axs = plt.subplots(1, 3, figsize =(18, 6)) # 1 row , 3

columns of subplots

234 plot(axs[0], pivots , init , False) # First subplot

235 plot_log(axs[1], pivots , N_solution , False) # Second subplot

236 plot(axs[2], pivots , N_solution , False) # Third subplot

237 plt.tight_layout ()

238 plt.show()

File 2: initialize.py

1 import numpy as np

2 from scipy.integrate import solve_ivp , trapezoid

3

4

5 # Pivots are the midpoints between consecutive grid points

6 def create_pivots(v):

51



7 x = (v[:-1] + v[1:]) / 2

8 return x

9

10 # Create geometric grid , given min/max point and number of points

11 def create_grid_geo(min , max , size):

12 return np.logspace(np.log10(min), np.log10(max), size)

13

14 # Create geometric grid , given min point , number of points and

stepsize

15 def create_grid_geo_h(min , h, size):

16 grid = [min]

17 for i in range(1, size):

18 grid.append(grid[i - 1] * h)

19 return np.array(grid)

20

21 # Create equisdistant grid

22 def create_grid_equi(min , max , size):

23 return np.linspace(min , max , size)

24

25 # Creates uniform init. cond.

26 def create_initial_uniform(value , size):

27 return np.zeros(size) + value

28

29 # Creates normal distribution

30 def create_initial_normal(mu , sigma , size):

31 x = np.linspace(-3, 3, size)

32 y = (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - 0)

/ sigma) ** 2)

33 y *= mu / y[size // 2]

34 return y

35

36 # Creates normal distribution , centered around pos

37 def create_initial_normal_shifted(mu , sigma , size , pos):

38 x = np.linspace(-3, 3, size)

39 y = (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * (x /

sigma) ** 2)

40 y *= mu / y[size // 2]

41 y_shifted = np.zeros(size)

42 center_index = size // 2

43 shift_amount = pos - center_index

44 for i in range(size):

45 shifted_index = i + shift_amount

46 if 0 <= shifted_index < size:

47 y_shifted[shifted_index] = y[i]

48 return y_shifted

49

50 # Functions used to check volume conservation

51 def check_mass_conservation(N, x_values):

52 total_mass = np.sum(N * x_values)

53 return total_mass

54

55 def check_mass_conservation_int(N, pivots):

56 return trapezoid(N * pivots , pivots)

57

58 def check_mass_change(v_1 , v_2):

59 if v_1 == 0:

60 return None

52



61 change = (v_2 - v_1) / v_1 * 100

62 return change

File 3: plot.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 def plot(ax , x, y, show_line_only):

5 """

6 Plots a graph with a log -scaled x-axis and a linearly scaled y-

axis

7

8 Parameters:

9 ax: The axis to plot on

10 x: X-axis values

11 y: Y-axis values

12 show_line_only: If True , only the line is shown. If False ,

points are highlighted instead of a line

13 """

14 if show_line_only:

15 ax.semilogx(x, y, ’-’, markersize =6) # Line only

16 else:

17 ax.semilogx(x, y, ’o’, markersize =6) # Dots only

18

19 ax.set_xlabel("x", fontsize =12)

20 ax.set_ylabel("N", fontsize =12)

21 ax.set_ylim(top =4)

22 ax.set_ylim(bottom =0)

23 ax.grid(which="both", linestyle="--", linewidth =0.5)

24

25 ax.text(

26 0.5, 1.05, r"$\Gamma(x_k)=100x_k ,~Q(x_k ,x_j)=x_kx_j$",
27 transform=ax.transAxes ,

28 fontsize =14,

29 ha="center",

30 va="bottom"

31 )

32

33 def plot_log(ax , x, y, show_line_only):

34 """

35 Plots a graph with log -log scaled axis

36

37 Parameters:

38 ax: The axis to plot on

39 x: X-axis values

40 y: Y-axis values

41 show_line_only: If True , only the line is shown. If False ,

points are highlighted instead of a line

42 """

43 ax.text(

44 0.5, 1.05, r"$\Gamma(x_k)=100x_k ,~Q(x_k ,x_j)=x_kx_j$",
45 transform=ax.transAxes ,

46 fontsize =14,

47 ha="center",

53



48 va="bottom"

49 )

50 if show_line_only:

51 ax.loglog(x, y, ’-’, markersize =6)

52 else:

53 ax.loglog(x, y, ’o’, markersize =6)

54 ax.set_xlabel("x", fontsize =12)

55 ax.set_ylabel("N", fontsize =12)

56 ax.grid(which="both", linestyle="--", linewidth =0.5)

54


