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Chapter 1

Introduction

There is a strong interest in studying nonlinear partial differential equations and
nowadays computer capacities allow to compute approximations for such problems.
Burgers’ equation is one famous example for a nonlinear partial differential equation
which is suitable for the application in various important areas in physics as well
as in applied mathematics such as fluid mechanics, gas dynamics or traffic flow, see
[BAM18].
In 1915, the english mathematician Harry Bateman firstly introduced the equation
in [Bat15]. Later in 1948, the Dutch physicist Johannes Martinus Burgers models
mathematically the theory of turbulence under the use of this equation in [Bur48].
Afterwards it was named in the honor of him as “Burgers’ equation”.

For better understanding, the equation is mathematically analyzed in Chapter 2.
Research looks at two versions of the differential equation: the viscid Burgers’ equa-
tion, which is studied in Chapter 2.1 and the inviscid Burgers’ equation, which is
studied in Chapter 2.2.
For the viscid equation Eberhard Hopf and Julian David Cole independently in-
troduced a transformation to convert Burgers’ equation into a linear heat equation
and solved it exactly for an arbitrary initial condition. Hence, the transformation is
famously known as the Hopf–Cole transformation and studied in Section 2.1.1. In
Section 2.1.2 there will be presented two methods to solve the heat equation and
thus the Hopf-Cole-converted initial value problem of the viscid Burgers’ equation.
For the inviscid equation one can partly solve it with the method of characteris-
tics, which is studied in Section 2.2.1. In some cases there will arise shocks, which
we will analyze in Section 2.2.2 considering the breaking time, weak solutions, the
Rankine-Hugoniot jump condition, the entropy condition, the Riemann problem and
the vanishing viscosity approach.

Another important aspect of Burger’s equation is that it allows us to compare the
quality of numerical methods applied to a nonlinear equation. In Chapter 3 we will
therefore have a look at the basics of finite difference methods and try to approxi-
mately solve the two versions of Burgers’ equation.

Goals of this thesis are thus to present a survey on the mathematical analysis and
look at the existence, construction and (non-)uniqueness and features of solutions
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Chapter 1

and to introduce some selected finite difference methods for computing an approxi-
mate solution of Burgers’ equation.
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Chapter 2

Mathematical Analysis

To better understand Burgers’ equation we will start by analyzing the two versions
mathematically.

2.1 Viscid Burgers’ Equation

The viscid Burgers’ equation is the following nonlinear parabolic equation of second
order and in one space dimension

ut + uux =
∂u

∂t
+ u

∂u

∂x
= ϵ

d2u

dx2
= ϵuxx (2.1.1)

with x ∈ R, t > 0 and the diffusion coefficient ϵ ∈ R. The diffusion coefficient must
be positive (i.e., ϵ > 0) in order that the initial value problem with initial condition

u(x, 0) = u0(x) (2.1.2)

will be well-posed in forward time. On the left-hand side of (2.1.1) we find a non-
linear advection term uux and a time-dependent term ut. The right-hand side of
(2.1.1) models the effect of linear diffusion or viscosity. The nonlinear advection
term has a shocking up effect, which causes waves to break, but the viscid diffu-
sion term suppresses the wave-breaking and smoothes out shock discontinuities, see
[Sal16, p.1, 4].
Therefore Burgers’ equation is also known as a 1D-version of the incompressible
Navier-Stokes equation, see [Olv14, p.315].

Like with any other differential equation the question how to solve it is present.

2.1.1 Hopf-Cole Transformation

The Hopf-Cole transformation converts the nonlinear viscous Burgers’ equation to
the linear heat equation, which can be explicitly solved then.
We follow Olver [Olv14, p.318-319] in his approach to construct the famous trans-
formation.

Remark 2.1.1. To convert a nonlinear differential equation into a linear one is
quite challenging and in most cases impossible. The reverse is trivial and achieved
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Chapter 2

by simply changing the dependent variables nonlinearly. Indeed, we can convert the
nonlinear Burgers’ equation into the linear heat equation and vice versa.

To understand, how the Hopf-Cole transformation is constructed, we start by looking
at the linear heat equation

vt = ϵvxx (2.1.3)

with ϵ > 0. The simplest possible nonlinear change of the dependent variable is an
exponential one, i.e.,

v(x, t) = eαϕ(x,t),

so

ϕ(x, t) =
1

α
ln v(x, t)

with α in R, α ̸= 0 as a constant.
We now see that ϕ(x, t) is real, if and only if v(x, t) is a positive solution to the heat
equation.
Therefore the initial data v(x, 0) has to be positive, i.e., v(x, 0) > 0.
Because if v(x, 0) > 0 it follows via the Maximum Principle that v(x, t) > 0 for all
t > 0, see [MUS06, p.17].
To find now the partial differential equation which is satisfied by ϕ we use the
product and chain rule to differentiate. We get

vt = αϕte
αϕ, vx = αϕxe

αϕ, vxx = (αϕxx + α2ϕx
2)eαϕ.

We now substitute the first and last expression into the heat equation (2.1.3) and
cancel the common exponential factor out

αϕte
αϕ = ϵ(αϕxx + α2ϕx

2)eαϕ,

ϕt = ϵϕxx + ϵαϕx
2. (2.1.4)

We conclude that ϕ(x, t) satisfies the potential Burgers’ equation (2.1.4).
The second step is now to differentiate the potential Burgers’ equation with respect
to x

ϕtx = ϵϕxxx + 2ϵαϕxxϕx. (2.1.5)

Now set
ϕx = u. (2.1.6)

It follows that
ut = ϵuxx + 2ϵαuux,

which is Burgers’ equation for α = − 1
2ϵ
.

With this process, we have found the Hopf-Cole transformation.

Theorem 2.1.2 (Hopf-Cole transformation). If v(x, t) > 0 is any possible solution
to the linear heat equation vt = ϵvxx, then

u(x, t) =
∂

∂x
[−2ϵ ln v(x, t)] = −2ϵ

vx
v

solves Burgers’ equation ut + uux = ϵuxx.
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Now, one has to check if indeed all solutions to the Burgers’ equation arise in this
way. We have to run the argument in reverse, compare [Olv14, p.319]. We choose a
potential function which satisfies (2.1.6)

ϕ̃(x, t) =

x∫
0

u(y, t) dy.

If u(x, t) is a solution to Burgers’ equation, ϕ̃(x, t) satisfies (2.1.5)

ϕ̃tx = ϵϕ̃xxx + 2ϵαϕ̃xxϕ̃x.

We integrate both sides with respect to x and substitute in the process z = ϕ̃x and
dz = ϕ̃xxdx and get ∫

ϕ̃txdx =

∫
ϵϕ̃xxx + 2ϵαϕ̃xxϕ̃xdx =⇒

ϕ̃t = ϵϕ̃xx + ϵαϕ̃2
x + c(t),

with c(t) as an integration constant.
Now we see a problem. Unless c(t) ≡ 0, our potential function ϕ̃ does not satisfy
the potential Burgers’ equation (2.1.4). We have to modify the potential function

ϕ(x, t) = ϕ̃(x, t)− C(t),

where C ′(t) = c(t).
Then, it follows

ϕt = ϕ̃t − c(t) = ϵϕ̃xx + ϵαϕ̃2
x = ϵϕxx + ϵαϕx

2

and ϕ(x, t) is a solution to the potential Burgers’ equation (2.1.4). It follows that

v(x, t) = e
−ϕ(x,t)

2ϵ

is a positive solution to the heat equation and therefore the solution u(x, t) of Burg-
ers’ equation can be obtained through Theorem 2.1.2. In [Olv14, p. 319], it is
summed up: “We conclude that every solution to Burgers’ equation comes from a
positive solution to the heat equation via the Hopf–Cole transformation.”

Example 2.1.3. [Olv14, p.320] As an example let us look at the following solution
of the heat equation

v(x, t) = a+ be−ϵω2t cosωx

and let a > |b| in order that v(x, t) > 0 for t ≥ 0. We find the solution u(x, t) of
Burgers’ equation via the Hopf-Cole transformation 2.1.2 as follows.

We compute
vx(x, t) = −bωe−ϵω2t sinωx.
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Then

u(x, t) =
∂

∂x
[−2ϵ ln v(x, t)]

= −2ϵ
vx
v

=
2ϵbω sinωx

aeϵω2t + b cosωx

is the solution.

To solve the initial value problem (2.1.1), (2.1.2), we also have to transform the
initial condition (2.1.2) via Hopf-Cole transformation

v(x, 0) = e−
ϕ(x,0)

2ϵ = e
− 1

2ϵ

x∫
0

u(y,0) dy
= e

− 1
2ϵ

x∫
0

u0(y) dy
≡ h(x). (2.1.7)

To sum up, we have now reduced the initial value problem of the Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ϵ

d2u

dx2
, u(x, 0) = u0(x),

to the following initial value problem of the heat equation

vt = ϵvxx, v(x, 0) = e
− 1

2ϵ

x∫
0

u0(y) dy
. (2.1.8)

In the next step we will show how to solve the heat equation fundamentally and
then solve the Hopf-Cole-converted initial value problem (2.1.8).

Remark 2.1.4. We had a look at the Hopf-Cole transformation for the infinite
space. We can also solve viscid Burgers’ equation in finite space with constant or
time-dependent Dirichlet boundary conditions via the method, but, for example, in
finite space with constant total flux at one boundary and homogeneous Dirichlet at
the other we cannot solve viscid Burgers’ equation via the Hopf-Cole transformation,
see [Bes10, p.3457].

2.1.2 Heat Equation

Solving with Fourier Transform

We are going to solve the initial value problem for the heat equation

vt − ϵvxx = 0, v(x, 0) = v0(x)

with x ∈ R and t > 0 by using Fourier transforms.

Definition 2.1.5. [Olv14, p.264] We define

f̂(k) :=
1√
2π

∞∫
−∞

f(x)e−ikxdx (2.1.9)

as the Fourier transform of the function f(x) and

f̂(k) = F [f(x)] (2.1.10)

as the Fourier transform operator.
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In our case we need the definition of the Fourier transform with respect to x:

v̂(k, t) =
1

2π

∞∫
−∞

v(x, t)e−ikxdx. (2.1.11)

We now want to take the Fourier transform of each term of the heat equation.
Since we are working with derivatives, we need the “derivative theorem” for Fourier
transforms:

Theorem 2.1.6 (Derivative Theorem). [Olv14, p.275] The Fourier transform of the
derivative f ′(x) of a function is obtained by multiplication of its Fourier transform
by ik:

F [f ′(x)] = ikf̂(k). (2.1.12)

In our case this translates to

F [vx(x, t)] = ikF [v(x, t)] = ikv̂(k, t). (2.1.13)

Then by (2.1.13), we have that

F [
∂2v

∂x2
] = F [

∂

∂x
(
∂v

∂x
)] = ikF [

∂v

∂x
] = (ik)2v̂(k, t) = −k2v̂(k, t).

We also have that

F [
∂v

∂t
] =

∂v̂

∂t

because we took Fourier transforms with respect to x and not to t.

To sum up, taking Fourier transforms of vt − ϵvxx = 0 gives

∂v̂

∂t
+ ϵk2v̂(k, t) = 0. (2.1.14)

This behaves like a linear first order ordinary differential equation. We consider an
integrating factor method for solving. We choose

e
∫
ϵk2dt = eϵk

2t

as the integrating factor and multiply with (2.1.14)

eϵk
2t∂v̂

∂t
+ ϵk2eϵk

2tv̂(k, t) = 0.

The two terms on the left side are a perfect derivative. We can rewrite as

∂

∂t
[eϵk

2tv̂] = 0.

If we integrate both sides with respect to t, we get

eϵk
2tv̂ = c1(k).

By rearranging, we get
v̂(k, t) = c1(k)e

−ϵk2t.
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Now we have to apply Fourier transformation to the initial condition v(x, 0) = v0(x),
giving

v̂(k, 0) = v̂0(k).

So we get
c1(k) = v̂0(k)

and hence
v̂(k, t) = v̂0(k)e

−ϵk2t.

We can now use the definition of the inverse Fourier transform to find the function
g(x, t) whose Fourier transform is ĝ(k, t) = e−ϵk2t.

Definition 2.1.7. [Olv14, p.265] To reconstruct the function f(x), we define

f(x) :=
1√
2π

∞∫
−∞

f̂(k)eikxdk (2.1.15)

as the inverse Fourier transform and

f(x) = F−1[f̂(k)] (2.1.16)

as the inverse of the Fourier transform operator.

In our case this translates to

g(x, t) =
1

2π

∞∫
−∞

ĝ(k, t)eikxdk. (2.1.17)

Then we get

g(x, t) =
1

2π

∞∫
−∞

e−ϵk2teikxdk (2.1.18)

=
1

2π

∞∫
−∞

e−ϵt[k2− ix
ϵt
k]dk (2.1.19)

=
1

2π

∞∫
−∞

e−ϵt[(k− ix
2ϵt

)2+ x2

4ϵ2t2
]dk (2.1.20)

=
1

2π
e−

x2

4ϵt

∞∫
−∞

e−ϵt(k− ix
2ϵt

)2dk (2.1.21)

=
1

2π
e−

x2

4ϵt

∞∫
−∞

e−ϵty2dy (2.1.22)

=
1

2π
e−

x2

4ϵt
1√
ϵt

∞∫
−∞

e−z2dz (2.1.23)

=
1

2
√
ϵtπ

e−
x2

4ϵt . (2.1.24)
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In the first two steps we are just using the definition (2.1.17) and simplifying the
expression. In the third step we are completing the square in the exponent. In the
fourth step we take the factor without k in it out in front. In the fifth step we are
substituting y = k− ix

2ϵt
, hence dy = dk. In the sixth step we are going to substitute

z2 = ϵty2, so z =
√
ϵty, hence dz =

√
ϵtdy. In the seventh step, we can solve the

integral which is equal to
√
π and simplify again.

To sum up, we find that

v̂(k, t) = v̂0(k)e
−ϵk2t = v̂0(k)ĝ(k, t),

where v̂0(k) is the Fourier transform of v0(x) and ĝ(k, t) is the Fourier transform of

g(x, t) = 1
2
√
ϵtπ

e−
x2

4ϵt .
Now we can use the convolution theorem for Fourier transforms.

Definition 2.1.8. [Olv14, p.281] The convolution of scalar functions f(x) and g(x)
is the scalar function h = f ∗ g defined by the formula

h(x) = f ∗ g(x) =
∞∫

−∞

f(r)g(x− r)dr. (2.1.25)

Theorem 2.1.9. [Jam11, p.26] The Fourier transform of the convolution h(x) =
f(x) ∗ g(x) of two functions is the product of their Fourier transforms:

ĥ(k) = f̂(k)ĝ(k). (2.1.26)

In our case, this means that v̂ = F [v0 ∗ g], and so after applying inverse Fourier
transforms on both sides, we get

v(x, t) = (v0 ∗ g)(x, t) =
∞∫

−∞

1

2
√
ϵtπ

e−
(x−r)2

4ϵt v0(r)dr, (2.1.27)

which is the fundamental solution.
If we now use (2.1.7) as initial condition instead of v0(x), we get

v(x, t) =

∞∫
−∞

1

2
√
ϵtπ

e−
(x−r)2

4ϵt e
− 1

2ϵ

r∫
0

u0(y)dy
dr =

1

2
√
ϵtπ

∞∫
−∞

e
−[

(x−r)2

4ϵt
+ 1

2ϵ

r∫
0

u0(y)dy]
dr.

(2.1.28)
And so the solution for the initial value problem for viscid Burgers’ equation via the
Hopf-Cole transformation is given by Theorem 2.1.2

u(x, t) = −2ϵ
vx
v
.

Digression: Solving with Fourier Series

By using Fourier series, we present another way of computing the exact solution of
the heat equation

∂v

∂t
= ϵ

d2v

dx2

9
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with

v : [0, L]× (0, T ), v(0, t) = 0, v(L, t) = 0, v(x, 0) = v0(x).

We will follow Dawkins [Daw18] and use separation of variables. That means that
we assume

v(x, t) = w(x)G(t).

We plug that into our heat equation and get

∂

∂t
(w(x)G(t)) = ϵ

∂2

∂x2
(w(x)G(t)) =⇒

w(x)
dG

dt
= ϵG(t)

d2w

dx2
.

Notice that we have now two ordinary derivatives. Now we separate the variables
by dividing both sides by w(x)G(t), divide by ϵ and get

1

ϵG

dG

dt
=

1

w

d2w

dx2
= −λ,

where −λ is the separation constant. This means both functions of x and t are equal
only if they are the same constant. Now we split into the two ordinary differential
equations and get

dG

dt
= −ϵλG,

d2w

dx2
= −λw.

We check that our product solution satisfies the boundary conditions

v(0, t) = w(0)G(t) = 0,

v(L, t) = w(L)G(t) = 0.

If G(t) = 0 for all t, then v(x, t) = 0 is the trivial solution. So we have to assume
w(0) = 0 and w(L) = 0 to avoid the trivial solution.
To sum up, we have gotten a first order differential equation and a second order
boundary value problem

dG

dt
= −ϵλG,

d2w

dx2
+ λw = 0, w(0) = 0, w(L) = 0.

Now we want to solve the spatial boundary value problem. This is an eigenvalue
problem. Since we do not know λ, we have to consider three different cases, where
λ > 0, λ = 0, λ < 0.

Let us start assuming λ > 0. The characteristic polynomial of the differential
equation is

s2 + λ = 0.

It follows that
s1,2 = ±

√
−λ
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and because λ > 0, it follows that these roots are complex and we can write

s1,2 = ±
√
λi.

The general solution of the differential equation is then

w(x) = c1 cos(
√
λx) + c2 sin(

√
λx).

Applying the first boundary condition we get

0 = w(0) = c1.

Applying the second boundary condition as well gives us

0 = w(L) = c2 sin(L
√
λ).

For a nontrivial solution we assume c2 ̸= 0. It follows that

sin(L
√
λ) = 0

and therefore
L
√
λ = nπ

for n = 1, 2, 3, . . .. So we get as eigenvalues and functions

λn =
(nπ
L

)2
, wn(x) = sin

(nπx
L

)
for n = 1, 2, 3, . . ..

For the second case, we assume λ = 0. The boundary value problem becomes

w′′ = 0, w(0) = 0, w(L) = 0.

Integrating gives as general solution

w(x) = c1 + c2x.

Applying the first boundary condition we get

0 = w(0) = c1.

Applying the second boundary condition we get

0 = w(L) = c2L.

And it follows
c2 = 0.

Together we have the trivial solution, so λ = 0 cannot be an eigenvalue.

For the third case, we assume λ < 0. The characteristic polynomial and roots
are the same as in the first case where λ > 0. Because of λ < 0 it follows that

s1,2 = ±
√
−λ

11
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are real, distinct roots. The general solution is

w(x) = c1 cosh(
√
−λx) + c2 sinh(

√
−λx).

Applying the first boundary condition gives us

0 = w(0) = c1.

Applying the second boundary condition, we get

0 = w(L) = c2 sinh(L
√
−λ).

Because we are assuming λ < 0, we know that

L
√
−λ ̸= 0

and therefore
sinh(L

√
−λ) ̸= 0.

It follows that
c2 = 0.

Together we have the trivial solution, so there are no negative eigenvalues for this
boundary value problem.
To sum up, we have only

λn = (
nπ

L
)2, wn(x) = sin(

nπx

L
)

for n = 1, 2, 3, . . . as eigenvalues and eigenfunctions.

Now we want to solve the time differential equation

dGn

dt
= −ϵλnGn.

It is a linear, first order differential equation and we know that the general solution
is

Gn(t) = ce−ϵλnt = ce−ϵ(nπ
L

)2t.

Now we can write down the overall solution

vn(x, t) = An sin(
nπx

L
)e−ϵ(nπ

L
)2t

for n = 1, 2, 3, . . . and An is an arbitrary constant.
Because of the Principle of Superposition

v(x, t) =
M∑
n=1

An sin(
nπx

L
)e−ϵ(nπ

L
)2t

is also a solution to the partial differential equation, which satisfies the boundary
conditions and the initial condition

v(x, 0) =
M∑
n=1

An sin(
nπx

L
).

12
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We can take the limit as M goes to infinity

v(x, t) =
∞∑
n=1

An sin(
nπx

L
)e−ϵ(nπ

L
)2t.

The solution satisfies any initial condition which can be written in the form

v(x, 0) = v0(x) =
∞∑
n=1

An sin(
nπx

L
).

We see it is the Fourier sine series, which we can write down for any piecewise
smooth function on 0 ≤ x ≤ L.
It follows that

An =
2

L

L∫
0

v0(x) sin(
nπx

L
)dx

for n = 1, 2, 3, . . ..

After analyzing and solving the viscid Burgers’ equation, we want to do the same
with the second version of Burgers’ equation.

2.2 Inviscid Burgers’ Equation

In Chapter 2.1 we introduced the viscid Burgers’ equation (2.1.1). If we now assume
that ϵ = 0 we get the first order quasilinear hyperbolic equation

ut + uux = 0, (2.2.1)

which is called “inviscid Burgers’ equation”. The equation can also be written in
the form of “conservation law”. Conservation laws include equations that model the
conservation laws of physics, i.e., mass, momentum, energy, et cetera, see [Sar02].

Definition 2.2.1. ([Olv14, p.38]) A conservation law, in one space dimension, is
an equation of the form

∂T

∂t
+

∂X

∂x
= 0. (2.2.2)

The function T is known as the conserved density, while X is the associated flux.

If we write inviscid Burgers’ equation as conservation law, we get

ut +

(
1

2
u2

)
x

= 0, (2.2.3)

with T = u and X = 1
2
u2.

We can solve it with the method of characteristics only for some specific initial
values, otherwise there will occur shocks.
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2.2.1 Method of Characteristics

General Idea

We follow [Sar02, p.1-2]. The method of characteristics is a method to solve partial
differential equations, which are of first order type or hyperbolic. Let us consider
the first order linear partial differential equation

a(x, t)ux + b(x, t)ut + c(x, t)u = 0 (2.2.4)

with initial condition
u(x, 0) = u0(x). (2.2.5)

The goal is to reduce the partial differential equation with a coordinate transforma-
tion from (x, t) with x ∈ R and t > 0 to (x0, s) to a system of ordinary differential
equations on hypersurfaces [x(s), t(s)] : 0 < s < ∞, which are called “characteris-
tics”. Now we choose

dx

ds
= a(x, t),

dt

ds
= b(x, t). (2.2.6)

Then we have
du

ds
=

dx

ds
ux +

dt

ds
ut = a(x, t)ux + b(x, t)ut. (2.2.7)

The partial differential equation becomes the ordinary differential equation

du

ds
+ c(x, t)u = 0.

To solve (2.2.4), we firstly have to solve (2.2.6) and find the constants of integration
by setting t(0) = 0 and x(0) = x0. We have a transformation from (x, t) to (x0, s),
x = x(x0, s) and t = t(x0, s). Then we have to solve the ordinary differential
equation (2.2.7) with initial condition u(0) = x0. We obtain the solution u(x0, s)
and can substitute to get the solution u(x, t) to the partial differential equation.

Example: Linear Transport Equation

As an easier to begin with example, we consider a conservation law ut + [f(u)]x = 0
with initial condition u(x, 0) = u0(x) and with u = u(x, t), where x ∈ R, t > 0 and
u : R × (0,∞) → R. Let f : R → R be f(u) = au with a > 0 as wave speed or
velocity of propagation.
Then after differentiating f(u) with respect to x we get for the conservation law

ut + aux = 0. (2.2.8)

Equation (2.2.8) is called the “transport equation”.

Now we want to solve this partial differential equation with the method of char-
acteristics. Assume x = x(t). Now consider the following by use of chain rule

d

dt
(u(x(t), t)) =

∂u

∂t
+

∂u

∂x

dx

dt
.

14
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If
dx

dt
= a, (2.2.9)

then
d

dt
(u(x(t), t)) =

∂u

∂t
+ a

∂u

∂x
= 0. (2.2.10)

These are now two ordinary differential equations. If we integrate (2.2.9), it follows
that

x(t) = at+ x0,

with x0 as integration constant. If we solve for t we get

t =
1

a
(x− x0)

which is a line with the slope 1
a
. So the characteristics are straight parallel lines for

any x0, see Figure 2.1.

x

t

x0

Figure 2.1: Characteristics are straight parallel lines

This means that on each of these characteristic lines the derivative of u(x(t), t) with
respect to t is zero, see (2.2.10). So the solution u(x(t), t) is constant along this line.
We can also see this by solving the other ordinary differential equation (2.2.10) by
integrating. We get

u(x(t), t) = C.

Now we want to determine C by plugging in t = 0. We get

u(x(0), 0) = u0(x(0)) = u0(x0) = C.

Our solution is therefore

u(x(t), t) = u0(x0),

u(x, t) = u0(x− at).

Since a > 0, this is a translation of u0(x) to the right, see Figure 2.2.
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x

u(x, t)

t

u0(x)

Figure 2.2: Visualization of the solution u(x, t) of the transport equation (2.2.8)

Because of the great work of the method of characteristics for the linear transport
equation, we will try the method now for the nonlinear transport equation which is
also known as inviscid Burgers’ equation.

Use for Inviscid Burgers’ Equation

We will consider the initial value problem

∂u

∂t
+ u

∂u

∂x
= 0, u(x, 0) = u0(x), x ∈ R, t > 0.

Let x = x(t) and consider the following by use of chain rule

d

dt
(u(x(t), t)) =

∂u

∂t
+

∂u

∂x

dx

dt
.

By comparing we see that if
dx

dt
= u(x(t), t), (2.2.11)

then
d

dt
(u(x(t), t)) = 0. (2.2.12)

This is a system of differential equations, which we can solve.
If we integrate (2.2.12), it follows that u(x(t), t) is constant along the characteristic,
i.e.,

u(x(t), t) = C,

where C is a constant. For t = 0 we get

u(x(0), 0) = u(x0, 0) = u0(x0).

Therefore
u(x(t), t) = u0(x0).

16
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From (2.2.11) we now know that

dx

dt
= u0(x0).

If we integrate that, we get

x(t) = u0(x0)t+D,

where D is a constant. For t = 0 we get

x(0) = D = x0.

Therefore
x(t) = u0(x0)t+ x0. (2.2.13)

This shows that the characteristics are straight lines. The solution u(x, t) is constant
along this line. The slope 1

u0(x0)
of our line depends on the initial data x0. We can

see this by writing

t =
1

u0(x0)
(x− x0).

A point on this line is (x(t), t), see Figure 2.3.

x

t

x0

(x(t), t)

Figure 2.3: Characteristics are straight lines

Remark 2.2.2. It is important to note that the characteristics might intersect be-
cause of the variable slope. At that intersection point the solution is not unique.
There is a discontinuity and the appearance of a shock. One can have a look at weak
solutions to solve that problem.

Now we would substitute and the solution is then implicitly given by

u(x, t) = u0(x0) = u0(x− ut), x0 = x− u0(x0)t,

if the characteristics do not intersect.

Example 2.2.3. We will consider the initial value problem

∂u

∂t
+ u

∂u

∂x
= 0, u(x, 0) = u0(x) =


1, x < −1,
−x, −1 ≤ x ≤ 0,
0, x > 0.

17
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The initial condition u0(x) is pictured in Figure 2.4.

x

u0(x)

0

1

-1

Figure 2.4: Initial condition u0(x)

Let x = x(t). We follow the characteristic method and find (2.2.13). Then we con-
sider three cases.

Let x0 < −1.
Then u0(x0) = 1, x(t) = t+ x0 and u(x(t), t) = 1.

Let −1 ≤ x0 ≤ 0.
Then u0(x0) = −x0 and x(t) = −x0t + x0 which means x0 = x(t)

1−t
and u(x(t), t) =

−x0 = −x(t)
1−t

.

Let x0 > 0.
Then u0(x0) = 0, x(t) = x0 and u(x(t), t) = 0.

Our solution is

u(x(t), t) =


1, x0 < −1,

−x(t)
1−t

, −1 ≤ x0 ≤ 0,

0, x0 > 0.

=


1, x− t < −1,

−x(t)
1−t

, −1 ≤ x
1−t

≤ 0,

0, x > 0.

And rewriting a last time under the assumption that t < 1 gives

u(x, t) =


1, x < t− 1,
− x

1−t
, t− 1 ≤ x ≤ 0,

0, x > 0.

The solution u(x, t) is pictured in Figure 2.6. We can see that u(x, t) keeps moving
to the right over time and has a discontinuity at t = 1.
The characteristic lines, which are firstly crossing at t = 1 are pictured in Figure
2.5.
For the first case we have characteristics with slope one, in the third case we have
characteristics with slope zero and in the second case the slope of the characteristic
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lines is changing and blowing up to infinity as t approaches one.

We need to figure out what happens for t > 1. We will have a look at the Rie-
mann problem later.

x

t

0

1

-1

Figure 2.5: Characteristics in the (x, t) plane, which are firstly crossing at t = 1

x

u(x, t)

0

1

-1

discontinuity at t = 1

Figure 2.6: Solution u(x, t)

If the initial data is smooth, the method of characteristics can be used to determine
the solution for small enough t such that the characteristics do not intersect. For
larger t, after the characteristics have intersected, the partial differential equation
will not have a “classical solution”, because we will obtain a multi-valued solution,
or no solution at all, see [Sar02]. Because of the lack of a classical solution we will
introduce the concept of “weak solutions”, which may contain discontinuities, may
not be differentiable, and will require less smoothness to be considered a solution
than a classical solution, see [Sar02], in the following Section 2.2.2.
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2.2.2 Formation of Shocks

Breaking Time

At time Tb when the characteristics first cross, the function u(x, t) has an infinite
slope. The wave breaks and a shock forms. The time Tb is therefore called “breaking
time”. We can compute the breaking time as follows, see [Lan11, p.5].
Let us take two characteristic lines that arise from initial data x1 and x2 = x1+∆x.
Because of (2.2.13) the two characteristics will cross when

x(t) = u0(x1)t+ x1 = u0(x2)t+ x2.

We assume u0 ∈ C1(R) and solve for t. We get

t = − x1 − x2

u0(x1)− u0(x2)
=

∆x

u0(x1)− u0(x1 +∆x)
.

When now ∆x → 0 the time converges because of the differential quotient to

t = − 1

u′
0(x1)

.

To find the breaking time Tb we now search for the infimum value of t

Tb = inf
x∈R,u′

0(x)<0

[
− 1

u′
0(x)

]
=

−1

infx∈R,u′
0(x)<0 u

′
0(x)

.

If x0 produces the infimum Tb, then the slope of the solution will first become infinite
at the location Xb, with

Xb = u0(x0)Tb + x0,

where the characteristic starting at x0 is at time Tb, see [Olv14, p.37].

Example 2.2.4. [Log08, p.128] Let us consider (2.2.1) with initial condition u(x, 0) =
u0(x) = e−x2

, with x ∈ R, which is a bell-shaped curve. We compute

u′
0(x1) = −2x1e

−x2
1

u′′
0(x1) = −(4x2

1 − 2)e−x2
1

It follows
u′′
0(x1) = 0 ⇐⇒ x1 =

√
0, 5

This is where u′
0 has a minimum. Therefore, the breaking time is

Tb = − 1

u′
0(
√
0, 5)

≈ 1, 16.

The solution obtained via the characteristic method holds for t < Tb, but if we look
at u(x, t) in a physical context, a multi-valued solution is not acceptable, so we have
to find restrictions for the solution for t > Tb. This is also known as the “shock
fitting problem”, see [Lan11, p.6]. To get a solution after the breaking time we have
to allow discontinuities of u(x, t). One can have a look at weak solutions to solve
that problem.
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Weak Solutions

Before we have that look, we define “classical solutions” or sometimes referred to as
“strong solutions” of partial differential equations.

Definition 2.2.5. ([Eva10, pp.1, 7]) An expression of the form

F (x, u(x), Du(x), . . . , Dk−1u(x), Dku(x) = 0 (x ∈ U)

is called a k-th-order partial differential equation, where

F : U × R× Rn × . . .× Rnk−1 × Rnk → R

is given and
u : U → R

is the unknown.
We solve the partial differential equation if we find all u verifying the above.
We say u is a classical solution if it is at least k times continuously differentiable.

Remark 2.2.6. For an initial value problem u has also to satisfy the following initial
conditions

Diu(x0) = ui

with i = 0, . . . , k − 1.

To validate discontinuous solutions to partial differential equations, we present the
concept of weak solutions.
“Weak” therefore means that the solution holds for all appropriately chosen test
functions φ(x, t) [Joh21b, p.4], which we assume to be infinitely often differentiable
and with compact support, i.e., they are different from zero only within some com-
pact subset of space (x, t) = R× [0,∞), see [Cam, p.6].

Definition 2.2.7. ([Joh21a, p.4]) The space of infinitely often differentiable real
functions with compact (closed and bounded) support in Ω = R × [0,∞) is denoted
by

C∞
0 = {v : v ∈ C∞(Ω), supp(v) ⊂ Ω},

where
supp(v) = {x ∈ Ω : v(x) ̸= 0}.

In particular, functions from C∞
0 vanish in this case for x → ±∞ and t → ∞.

We obtain the weak solution by multiplying the strong form of the equation with
the test function and integrating the equation on Ω = R× [0,∞) by parts as follows

0 =

∞∫
0

∞∫
−∞

(ut + [f(u)]x)φdxdt =

∞∫
−∞

uφ|∞0 dx−
∞∫
0

∞∫
−∞

uφtdxdt

+

∞∫
0

φf(u)|∞−∞ dt−
∞∫
0

∞∫
−∞

f(u)φxdxdt

= −
∞∫
0

∞∫
−∞

uφtdxdt−
∞∫
0

∞∫
−∞

f(u)φxdxdt−
∞∫

−∞

uφ|t=0 dx.
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After inserting the initial condition

u(x, 0) = u0(x)

we get
∞∫
0

∞∫
−∞

φtu+ φxf(u)dxdt+

∞∫
−∞

φ(x, 0)u(x, 0)dx = 0.

Nearly all boundary terms arisen through integration by parts drop out due to φ
having compact support, see [LeV92, p.28]. They vanish at infinity. The remaining
term holds the initial condition of the partial differential equation.

Definition 2.2.8. ([Cam, p.6]) u(x, t) is a weak solution of the conservation law
ut + [f(u)]x = 0 if for any infinitely differentiable function φ(x, t) with compact
support

∞∫
0

∞∫
−∞

φtu+ φxf(u)dxdt = −
∞∫

−∞

φ(x, 0)u(x, 0)dx (2.2.14)

holds. Such a function φ(x, t) is called “test function”.

The main aspect is, that in the weak form, the derivatives are acting only on φ(x, t),
which is smooth by assumption and not on the solution u(x, t) which now doesn’t
need to be continuous for the integral to be well-defined, see [Olv14, p.432].

Remark 2.2.9. If a classical solution to a problem exists, it also satisfies the defi-
nition of a weak solution.

But if we include discontinuous solutions, we cannot guarantee the uniqueness of
the solution. The uniqueness can be restored by using physical criteria. We need
conditions for the shock.

Rankine-Hugoniot Jump Condition

Therefore we present the “Rankine-Hugoniot jump condition”, which states that the
shock speed equals the average of the solution values on either side. It is named
after the nineteenth-century Scottish physicist William Rankine and French engineer
Pierre Hugoniot, although these conditions first appeared in a paper by George
Stokes in 1849, see [Olv14, p.40].

Definition 2.2.10. ([Cam, p.5]) For hyperbolic conservation laws ut + [f(u)]x = 0
the shock speed ds

dt
is determined by

ds

dt
=

f(uL)− f(uR)

uL − uR

. (2.2.15)

This equation is called the Rankine-Hugoniot Jump Condition.

This condition determines the position of a shock at a given time [Lan11, p.6].
The argument above is valid for a general hyperbolic conservation law of the form
ut + [f(u)]x = 0. For (2.2.3) we get the following proposition.
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Proposition 2.2.11. ([Olv14, p.41]) Let u(x, t) be a solution to the nonlinear
transport equation (inviscid Burgers’ equation) that has a discontinuity at position
x = s(t), with finite, unequal left- and right-hand limits

uL = u(s(t)−, t) = lim
x→s(t)−

u(x, t), uR = u(s(t)+, t) = lim
x→s(t)+

u(x, t)

on either side of the shock discontinuity. Then, to maintain conservation of mass,
the speed of the shock must equal the average of the solution values on either side:

ds

dt
=

uL + uR

2
. (2.2.16)

Proof. We can either use Definition 2.2.10 and insert f(u) = 1
2
u2

ds

dt
=

f(uL)− f(uR)

uL − uR

=
1
2
u2
L − 1

2
u2
R

uL − uR

=
1

2

u2
L − u2

R

uL − uR

=
uL + uR

2

or we follow Olver in his proof in [Olv14, p.41f.].

This is the first condition that the shock of our discontinuous solution will have to
satisfy.

The concept of weak solutions and the Rankine-Hugoniot jump condition are still
not enough to guarantee uniqueness. We have to single out the unique, physically
meaningful weak solution. Therefore we need an additional condition.

Entropy Condition

There exist different definitions of the “entropy condition”. We will only work with
the following.

Definition 2.2.12. ([LeV92, p.36]) A discontinuity propagating with speed ds
dt

given

by ds
dt

= f(uL)−f(uR)
uL−uR

satisfies the entropy condition if

f ′(uL) >
ds

dt
> f ′(uR). (2.2.17)

The definition is the mathematical translation of: In every physical process the en-
tropy of the system is nondecreasing, see [Lan11, p.7].
For the inviscid Burgers’ equation this means if the discontinuity propagates with
the above speed, then uL > uR.

After introducing weak solutions, the Rankine-Hugoniot jump condition and en-
tropy condition, we now want to use our new knowledge for an example.

Example: Riemann Problem

The conservation law with piecewise constant initial values and one discontinuity is
called the “Riemann problem”. In this thesis we consider the initial value problem
of the Burgers’ equation (2.2.1) with the following initial data:

23



Chapter 2

u(x, 0) =

{
uL, x < 0,
uR, x > 0.

(2.2.18)

The solution depends on the relation between uL and uR. We will consider two
cases, see [Cam, p.8-9].

Case 1: In the first case we assume that uL > uR.
The characteristics cover the whole (x, t) space and cross. At the crosspoints the
solution is multi-valued. The characteristics flow into the shock, see Figure 2.8. In
this case there exists a unique solution

u(x, t) =

{
uL, x < ds

dt
t,

uR, x > ds
dt
t,

(2.2.19)

where ds
dt

= uL+uR

2
is the shock speed, see Figure 2.9. It satisfies the entropy condition

2.2.12. This is the vanishing viscosity solution.

Proof. We will follow Cameron in her proof in [Cam, p.8-9].
Let φ(x, t) be a test function, i.e., with compact support. First suppose that the
support U of φ lies entirely in one of the sets {x < ds

dt
t} or {x > ds

dt
t}. Since u(x, t)

is constant in each of these sets, it satisfies the inviscid Burgers’ equation on the
support U of φ. It is a weak solution, because (2.2.14) holds. Now suppose that the
support U of φ is divided into two sets UL and UR by the line x = ds

dt
t, see Figure

2.7.

x

t

0 1

x = ds
dt
t

URUL

Figure 2.7: Visualization for the proof ([Cam, p.8-9])

Then we have

∞∫
0

∞∫
−∞

φtu+ φxf(u)dxdt =

∫ ∫
UL

φtu+ φxf(u)dxdt+

∫ ∫
UR

φtu+ φxf(u)dxdt.

Now we can apply the Green identity∫ ∫
D

(Px −Qt)dxdt =

∫
δD

Pdt+Qdx (2.2.20)
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by noting that u is constant within UL and UR, therefore (φu)t = φtu and (φf(u))x =
φxf(u) and continue with

=

∫
δUL

φ(
u2
L

2
dt− uLdx) +

∫
δUR

φ(
u2
R

2
dt− uRdx)

=

∫
x= ds

dt
t

φ(
u2
L

2ds
dt

− uL)dx−
∫

x= ds
dt

t

φ(
u2
R

2ds
dt

− uR)dx−
0∫

−∞

φuLdx−
∞∫
0

φuRdx

=

∫
x= ds

dt
t

φ(
u2
L − u2

R

2ds
dt

− (uL − uR))dx−
∞∫

−∞

φ(x, 0)u(x, 0)dx.

In the last equality, the first integral is zero for any test function φ if ds
dt

= uL+uR

2
.

The solution (2.2.19) is the unique weak solution for the Riemann problem in the
case uL > uR.

Remark 2.2.13. To graphically construct weak solutions to problems with shocks,
one can use the “equal area rule”, see [Sar02]. It starts with the multi-valued solution
constructed by the method of characteristics, replaces the multi-valued parts by a
vertical shock line and obtains a single-valued solution, which has the same area
under its graph, see Figure 2.10 . It is a result of the conservation law, see [Olv14,
p.40].
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x

t

0 1

1

t

dx(t)
dt

= uL

dx(t)
dt

= uR

dx(t)
dt

= ds
dt

Figure 2.8: Case 1: Characteristics in the (x, t) plane for uL = 1 > 0 = uR

x

u(x, 0)

0 1ds
dt
t

uL

uR

u(x, t)
ds
dt
t

Figure 2.9: Case 1: Solution u(x, t) for uL = 1 > 0 = uR

x

u(x, 0)

0

uL

uR

−

+

Figure 2.10: Equal area rule and solution u(x, t) with shock
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Case 2: In the second case we assume that uL < uR.
The characteristics do not cross and do not cover the whole (x, t) space. In this
case we can construct infinitely many weak solutions. There are at least two which
satisfy the Rankine-Hugoniot jump condition.
Firstly,

u1(x, t) =

{
uL, x < ds

dt
t,

uR, x > ds
dt
t,

(2.2.21)

is also a solution which satisfies the Rankine-Hugoniot jump condition, see Figure
2.12. But it is unstable and does not satisfy the entropy condition. Note that the
characteristics flow out of the shock, see Figure 2.11.

x

t

0 1

t
dx(t)
dt

= uL
dx(t)
dt

= uR

dx(t)
dt

= ds
dt

Figure 2.11: Case 2a: Characteristics in the (x, t) plane for uL = 0 < 1 = uR

x

u(x, 0)

0 1

uL

uR

u1(x, t)
ds
dt
t

Figure 2.12: Case 2a: Solution u1(x, t) for uL = 0 < 1 = uR

Secondly, we will look at the “rarefaction wave” as a solution. It is given by

u2(x, t) =


uL, x < uLt,
x
t
, uLt ≤ x ≤ uRt,

uR, x > uRt,
(2.2.22)
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and is continuous but not smooth, see Figure 2.14. It does satisfy the entropy
condition and is therefore the vanishing viscosity solution.

x

t

0 1

t
dx(t)
dt

= uL
dx(t)
dt

= uR

dx(t)
dt

= x
t

Figure 2.13: Case 2b: Characteristics in the (x, t) plane for uL = 0 < 1 = uR

x

u(x, 0)

0 1

uL

uR

u2(x, t)

Figure 2.14: Case 2b: Solution u2(x, t) for uL = 0 < 1 = uR

Vanishing Viscosity Approach

There is a more intuitive approach in constructing the discontinuous entropy solu-
tion than fitting a shock following the Rankine-Hugoniot jump condition and entropy
condition. It is called the “vanishing viscosity approach”, see [Lan11, p.9].
The inviscid Burgers’ equation (2.2.1) is a model of the viscid Burgers’ equation
(2.1.1) valid for small ϵ and smooth u(x, t), see [Duy18, p.6]. When the model
breaks down, we have to return to (2.1.1) by adding the viscosity dispersion term
ϵuxx. Adding this term suppresses the wavebreaking, because dispersion acts against
the steepening effect of the nonlinearity, see [Lan11, p.9]. If the initial data is smooth
and ϵ very small, then before the wave breaks, ϵuxx is negligible compared to the
other terms. Hence the solutions to both partial differential equations look almost
the same. As the wave begins to break, the uxx term grows much faster than the
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ux one. And it prevents the breakdown of solutions that occurs for the hyperbolic
problem, see [Duy18, p.6]. We expect to get a smooth solution of (2.1.1) even with
discontinuous data.
So the vanishing viscosity approach shows that the smooth solution of (2.1.1) ap-
proaches a shock wave and therefore becomes a discontinuous solution as ϵ → 0.
Because the inviscid Burgers’ equation (2.2.1) is some kind of idealization of a model
where there is always some degree of viscosity, the only relevant solutions are those
that we get by using this approach, see [Lan11, p.9].

For this thesis, we will stop the mathematical analysis of Burgers’ equation here,
because we also want to have a brief look at numerical methods to solve Burgers’
equation approximately.
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Finite Difference Methods

With numerical methods mathematicians try to solve equations approximately or
visualize the problems at hand.
Burgers’ equation is an interesting nonlinear partial differential equation, with which
one can test and compare the quality of different numerical methods.
In this thesis we want to introduce some finite difference methods to be a starting
point for more research and practical work, i.e., coding.

3.1 Basics of Finite Difference Methods

“The finite difference approximation is the oldest of the methods applied to obtain
numerical solutions of differential equations, and the first application is attributed
to Leonhard Euler (1707–1783) in 1768” [Hir07, p.147].

The idea of finite difference methods is to estimate a derivative at finitely many
steps by the ratio of two differences according to the definition of the derivative, see
[Hir07, p.147].
The derivative at point x for a function u(x) is defined, see [Hir07, p.147], by

ux =
∂u

∂x
= lim

∆x→0

u(x+∆x)− u(x)

∆x
.

To get a finite difference, we remove the limit. To improve the approximation, we
try to reduce ∆x.

But for any finite value of ∆x, the “truncation error” is introduced and it goes to
zero for ∆x going to zero, see [Hir07, p.147]. The “order of accuracy” of the finite
difference approximation, can be obtained from Taylor expansion and is the power
of ∆x with which this error tends to zero, see [Hir07, p.147]. We will call it “order
of consistency”.

The analysis of finite differences is based on Taylor expansion, see [Hir07, p.147].
When we expand u(x+∆x) around u(x) we get

u(x+∆x) = u(x) + ∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
+

∆x3

3!

∂3u

∂x3
+ . . . .
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We can rewrite this as

u(x+∆x)− u(x)

∆x
= ux(x) +

∆x

2
uxx(x) +

∆x2

6
uxxx(x) + . . .︸ ︷︷ ︸

truncation
error

. (3.1.1)

Now we want to have a look at some difference formulas for first derivatives. First
we have to discretize the domain. For the sake of simplicity, let us take a bounded
interval of the x-axis, i.e., [0, 1] and discretize the space into N + 1 discrete mesh
points xi, for i = 0 . . . N . The value of the function u(x) at the points xi will be
labeled by ui, i.e., ui = u(xi). Let the spacing between the discrete points be con-
stant and equal to ∆x. Without loss of generality, we can consider that xi = i∆x,
see [Hir07, p.149].

For the first derivative (ux)i = (∂u
∂x
)i we get the following finite difference approxi-

mations, see [Hir07, p.150]:

(ux)i = (
∂u

∂x
)i =

ui+1 − ui

∆x
− ∆x

2
(uxx)i −

∆x2

6
(uxxx)i + . . .

=
ui+1 − ui

∆x
+O(∆x). (3.1.2)

This is a “forward difference” approximation, since it involves the point (i+1). The
approximation is of first order consistency. By replacing ∆x with −∆x, we can also
get

(ux)i = (
∂u

∂x
)i =

ui − ui−1

∆x
+

∆x

2
(uxx)i −

∆x2

6
(uxxx)i + . . .

=
ui − ui−1

∆x
+O(∆x). (3.1.3)

This is a “backward difference” approximation, since it involves the point (i − 1).
The approximation is of first order consistency. Both are “one-sided difference”
formulas. If we add them up, we can also get

(ux)i = (
∂u

∂x
)i =

ui+1 − ui−1

2∆x
− ∆x2

6
(uxxx)i + . . .

=
ui+1 − ui−1

2∆x
+O(∆x2). (3.1.4)

This is a “central difference” approximation, since it involves the points to the left
and right of point i. The approximation is of second order consistency. These three
approximations are represented geometrically in Figure 3.1.
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∆x ∆x
x

y

xi−1 xi xi+1

y = u(x)

ui−1

ui
ui+1

backward difference

forward difference

central difference

Figure 3.1: Illustration of the finite difference approximations of first order deriva-
tives

Remark 3.1.1. A first order finite difference approximation is exact for a linear
function, because the truncation error of the approximation is proportional to the
second derivative. A second order finite difference approximation is exact for a
parabolic function, because the truncation error of the approximation is proportional
to the third derivative, see [Hir07, p.151].

Now we want to have a look at some difference formulas for second derivatives

(uxx)i = (
∂2u

∂x2
)i =

(ux)i+1 − (ux)i
∆x

=
ui+1 − 2ui + ui−1

∆x2
+O(∆x2). (3.1.5)

This is a central difference approximation, obtained by using backward difference
approximations for (ux)i+1 and (ux)i. It is of second order consistency, as can be
seen from Taylor series expansion. We get

ui+1 − 2ui + ui−1

∆x2
= (uxx)i +

∆x2

12
(
∂4u

∂x4
)i + . . . .

Finite difference approximations of higher order derivatives can be obtained by re-
peatedly using approximations for first order derivatives, see [Hir07, p.151].

For any partial differential equation of a mathematical model, we will have a large
number of possible numerical schemes, see [Hir07, p.145]. For instance, for time-
dependent problems there exist “explicit” and “implicit” methods. A method is
explicit if the discretized equation contains only one unknown at level (i + 1) and
implicit if it contains more than one unknowns at level (i + 1) see [Hir07, p.156].
These methods differ regarding accuracy, stability and error properties, see [Hir07,
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p.157].

For example, for a partial differential equation like Burgers’ equation, we discretize
the solution domain, fulfill the equation at discrete time points, replace derivatives
by finite differences, and formulate an algorithm.

3.2 FDMs for the Inviscid Burgers’ Equation

Finding a numerical solution to the inviscid Burgers’ equation is challenging based
on the allowed discontinuities for solutions of the equation, see [Lan11, p.12]. Even
consistent and stable schemes might propagate discontinuities with wrong speeds
and the methods might converge to the wrong weak solution, see [Cam, p.9]. We
need some conditions to avoid that to happen.

Let us consider (2.2.1) with x ∈ R, t > 0 and u(x, 0) = u0(x). We discretize the
solution domain {(x, t) : x ∈ [0, 1], t ∈ [0,∞)} into cells described by the node set
(xi, tj) in which xi = ih, tj = jk and i = 0 : 1 : N ; j = 0 : 1 : M,Nh = 1,Mk = tf ,
see Figure 3.2. The spatial mesh size is h ≡ ∆x, the time step is k ≡ ∆t and tf is
the final time, see [KBÖ98, p.253].

x

t

0

i− 1

xi = ih

i i+ 1

j − 1

tj = jk j

j + 1

h = ∆x

k = ∆t

Figure 3.2: Discretization of the (x, t) space, where x is space and t is time

Burgers’ equation is nonlinear. Since it is time-dependent, there are three possibil-
ities in solving. We can handle the nonlinear term implicitly. Then we need a fix
point iteration, i.e., Newton’s method, to solve the nonlinear equation in the new
time step, which is quite expensive, see [Lar17].
We can handle the nonlinear term semi-implicitly, which means we take u for one
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factor from the old time step. Then we only have to solve a linear problem in the
new time step.
We can handle the nonlinear term explicitly. Then we also only have to solve a
linear problem in the new time step.
For the sake of simplicity, we will only focus on the last possibility.

A natural finite difference method obtained by a forward in time and backward in
space discretization of the derivatives is

U j+1
i = U j

i −
k

h
U j
i (U

j
i − U j

i−1). (3.2.1)

It is an “up-wind nonconservative” scheme, see [Lan11, p.12]
This method will in general not converge to a discontinuous weak solution of (2.2.1)
with a more fine mesh, although it can be shown that it is consistent with (2.2.1)
and sufficient for smooth solutions, see [Lan11, p.12].

Example 3.2.1. ([Cam, p.10], [LeV92, p.123]) Consider Burgers’ equation (2.2.1)
with the initial data

u(x, 0) = u0(x) =

{
1, x < 0,
0, x ≥ 0,

which gives U0
i = 1 for i < 0 and U0

i = 0 for i ≥ 0 for (3.2.1). Then

U1
i =

{
1− k

h
1(1− 1) = 1, i < 0,

0− k
h
0(0− U0

i−1) = 0, i ≥ 0,

which means U1
i = U0

i . This happens in every step, therefore, U j
i = U0

i for all i,
regardless of the step sizes h and k. The method propagates the discontinuity with
a wrong speed ds

dt
= 0. The numerical solution converges to the function u(x, t) =

u0(x). This is not a weak solution.

We conclude, a non-conservative method can give a solution, where the shock prop-
agates at a wrong speed.

To resolve this issue, we have a short look at what it means to be a hyperbolic
conservation law ut + [f(u)]x = 0. The conserved quantity

R∫
L

u(x, t)dx

can only change through the boundaries, see [Cam, p.11]. This is because of the
flux.

R∫
L

u(x, t+ b)dx−
R∫

L

u(x, t)dx =

b∫
0

f(u(L, t+ τ))dτ −
b∫

0

f(u(R, t+ τ))dτ.

We impose a condition on our numerical method, to prevent the method from con-
verging to non-solutions. The method will have to be in “conservation form”.
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Definition 3.2.2. ([Cam, p.11], [LeV92, p.124]) A numerical method is in a con-
servation form if it can be rewritten in the form

U j+1
i = U j

i −
k

h
[F (U j

i−p, . . . , U
j
i+q)− F (U j

i−p−1, . . . , U
j
i+q−1)] (3.2.2)

for some function F which is called the “numerical flux”. A method that can be
written in a conservation form is called “conservative”.

With a conservative method the problem with non-conservative methods cannot
occur, because a wrong shock speed would lead to an incorrect flux and thus con-
servation would not be maintained.
The easiest way to write a numerical method, i.e., finite difference method, in con-
servation form is to use the conservative form of the partial differential equation
rather than the quasilinear one, see [LeV92, p.125].

A method in conservation form (3.2.2) is “consistent” with the conservation law if
the following consistency conditions hold, see [Cam, p.12]:

F (ū, . . . , ū) = f(ū), (3.2.3)

|F (v1, . . . , vr)− F (ū, . . . , ū)| ≤ Kmax{|v1 − ū|, . . . , |vr − ū|} (3.2.4)

where K ≥ 0 is the Lipschitz constant.
The numerical flux function F reduces to the flux function f for the case of constant
flow, see [LeV92, p.126]. Also F should approach f(ū) smoothly, if the arguments
of F approach some constant value ū, see [LeV92, p.126]. Therefore we need the
Lipschitz continuity of F .

If we consider the conservation law ut+[f(u)]x = 0 and a finite difference discretiza-
tion, we get the “up-wind conservative” method

U j+1
i = U j

i −
k

h
[f(U j

i )− f(U j
i−1)]. (3.2.5)

This is the form of (3.2.2) for p = 0, q = 0, F (U, V ) = f(U), see [Lan11, p.13].
The upwind flux is consistent, see [LeV92, p.126]. For (2.2.3) we have

U j+1
i = U j

i −
k

h
[
1

2
(U j

i )
2 − 1

2
(U j

i−1)
2]. (3.2.6)

The “Lax-Friedrichs method” is a forward in time, centered in space finite difference
scheme, which is named after the two mathematicians Peter David Lax and Kurt
Otto Friedrichs:

U j+1
i =

1

2
(U j

i−1 + U j
i+1)−

k

2h
[f(U j

i+1)− f(U j
i−1)]. (3.2.7)

This is the form of (3.2.2) for p = 0, q = 1, F (U, V ) = h
2k
(U − V ) + 1

2
(f(U) + f(V )),

see [Lan11, p.13].
One can show that the method is consistent, see [Cam, p.12].
For (2.2.3) we have

U j+1
i =

1

2
(U j

i−1 + U j
i+1)−

k

2h
[
1

2
(U j

i+1)
2 − 1

2
(U j

i−1)
2]. (3.2.8)
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All methods from above are of first order. Now we consider the “Lax-Wendroff
method” which is of second order. It takes the form

U j+1
i =U j

i −
k

2h
(f(U j

i+1)− f(U j
i−1))+

k2

2h2
[Ai+ 1

2
(f(U j

i+1)− f(U j
i ))− Ai− 1

2
(f(U j

i )− f(U j
i−1))] (3.2.9)

where Ai± 1
2
denotes the Jacobian matrix A(u) = f ′(u) evaluated at 1

2
(U j

i + Ui±1).

Since we have to evaluate the Jacobian matrix it is more expansive, see [LeV92,
p.127].
For (2.2.3) we have f ′(u) = u, so

U j+1
i = U j

i −
k

2h
(
1

2
(U j

i+1)
2 − 1

2
(U j

i−1)
2)+

k2

2h2
[(
1

2
(U j

i + U j
i+1))(

1

2
(U j

i+1)
2 − 1

2
(U j

i )
2)−

(
1

2
(U j

i + U j
i−1))(

1

2
(U j

i )
2 − 1

2
(U j

i−1)
2)]. (3.2.10)

We can also rewrite the Lax-Wendroff method in conservative form, see [LeV92,
p.127].

Remark 3.2.3. Lax and Wendroff have proven that if a conservative and consistent
method converges to some function u(x, t), then this function is a weak solution of
the conservation law, see [LeV92, p.129f.], [Cam, p.13]. For convergence, we do
not only need consistency, but also some form of stability. But even if the method
converges to a weak solution, it is non-unique, so we would need a discrete analog of
the entropy condition, see [Cam, p.13-14], which we will not further discuss in this
thesis.

There are many more finite difference and other numerical methods for inviscid
Burgers’ equation. We want to have a look at a few methods for viscid Burgers’
equation now.

3.3 FDMs for the Viscid Burgers’ Equation

There exist a variety of numerical techniques based on finite-difference, finite-element
and boundary element methods in attempting to solve viscid Burgers’ equation
particularly for small values of the viscosity ϵ, see [KBÖ98, p.252]. In this thesis we
will only introduce some finite difference methods.

3.3.1 An Explicit Finite Difference Method

Let us consider (2.1.1) with a < x < b, t > 0, with initial condition u(x, 0) = u0(x)
and boundary conditions u(a, t) = D1(t), u(b, t) = D2(t).
For example, let us take u(x, 0) = sin(πx) as initial condition with 0 < x < 1 and
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as homogeneous boundary conditions let us take u(0, t) = u(1, t) = 0, t > 0.
Via the Hopf-Cole transformation (2.1.2)

u(x, t) = −2ϵ
vx
v

the viscid Burgers’ equation transforms into the linear heat equation

vt = ϵvxx,

with initial condition

v(x, 0) = e
− 1

2ϵ

x∫
0

u0(y) dy
= e−

1
2ϵ

1−cos(πx)
π

for 0 < x < 1 and the boundary conditions

vx(0, t) = vx(1, t) = 0.

We discretize the solution domain {(x, t) : x ∈ (0, 1), t ∈ [0,∞)} into cells described
by the node set (xi, tj) in which xi = ih, tj = jk and i = 0 : 1 : N ; j = 0 : 1 :
M,Nh = 1,Mk = tf . The spatial mesh size is h ≡ ∆x, the time step is k ≡ ∆t and
tf is the final time, see [KBÖ98, p.253].

An explicit finite difference approximation is given by, see [KBÖ98, p.253]

vj+1
i = (1− 2ϵ

k

h2
)vji + 2ϵ

k

h2
vji+1, i = 0, (3.3.1)

vj+1
i = ϵ

k

h2
vji−1 + (1− 2ϵ

k

h2
)vji + ϵ

k

h2
vji+1, i = 1 : 1 : N − 1, (3.3.2)

vj+1
i = 2ϵ

k

h2
vji−1 + (1− 2ϵ

k

h2
)vji , i = N, (3.3.3)

for j = 0 : 1 : M . For stability one can use Von Neumann’s approach, see [Smi87,
p.80 ff.] with k ≤ h2

2ϵ
. With the Hopf-Cole transformation we get the following

explicit finite difference solution for the problem above

u(xi, t
j) = − ϵ

h

(
vji+1 − vji−1

vji

)
, i = 1 : 1 : N − 1, j = 0 : 1 : M.

3.3.2 Douglas Finite Difference Method

Let us consider (2.1.1) with (x, t) ∈ (0, 1) × (0, T ], with initial condition u(x, 0) =
u0(x) and boundary conditions u(0, t) = D1(t), u(1, t) = D2(t), where u0, D1 and
D2 are sufficiently smooth functions.

Via the Hopf-Cole transformation (2.1.2)

u(x, t) = −2ϵ
vx
v

the viscid Burgers’ equation transforms into the linear heat equation

vt = ϵvxx,
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with initial condition

v(x, 0) = e
− 1

2ϵ

x∫
0

u0(y) dy

for x ∈ (0, 1) and the boundary conditions

vx(0, t) = vx(1, t) = 0,

for t ∈ (0, T ].

We discretize the solution domain into a uniform mesh dividing [0,1] in N sub-
intervals and [0,T] into M sub-intervals, described by the node set (xi, t

j) in which
xi = ih, for i = 1 : 1 : N and tj = jk, for j = 0 : 1 : M , where the spatial mesh size
is h = 1/N and the time step is k = T/M , see [PVV09, p.2207].

The Douglas finite difference approximation is given by, see [PVV09, p.2207-2208]

(1− 6r)vj+1
i−1 + (10 + 12r)vj+1

i + (1− 6r)vj+1
i+1 = (1 + 6r)vji−1+

(10− 12r)vji + (1 + 6r)vji+1, i = 0 : 1 : N, (3.3.4)

vji−1 = vji+1, i = 0, N (3.3.5)

where r = ϵ k
h2 and vji is the discrete approximation to v(xi, t

j). The approximate
solution of Burgers’ equation is then given by

uj
i (x, t) = −ϵ

vji+1 − vji−1

hvji
.

It is shown in [PVV09, p.2208] that the method is unconditionally stable and has
consistency of O(h4) +O(k2). There is no restriction on the time step.

3.3.3 An Implicit Exponential Finite Difference Method

Let us consider (2.1.1) with a < x < b, t > 0, with initial condition u(x, 0) = u0(x)
and boundary conditions u(a, t) = D1(t), u(b, t) = D2(t).
We discretize the solution domain {(x, t) : x ∈ (a, b), t ∈ [0,∞)} into cells described
by the node set (xi, tj) in which xi = ih, tj = jk and i = 0 : 1 : N ; j = 0 : 1 : M .
The spatial mesh size is h ≡ ∆x and the time step is k ≡ ∆t, see [IB13, p.548].

We rearrange (2.1.1) to obtain

∂u

∂t
= ϵ

d2u

dx2
− u

∂u

∂x
.

Dividing by u, see [AI21, p.85], gives

∂ lnu

∂t
=

1

u
(ϵ
d2u

dx2
− u

∂u

∂x
).

An implicit exponential finite difference approximation is given by, see [IB13, p.548]

U j+1
i = U j

i exp

(
ϵ∆t

(∆x)2

[
−∆xU j

i

2ϵ

(U j+1
i+1 − U j+1

i−1 )

U j
i

+
(U j+1

i−1 − 2U j+1
i + U j+1

i+1 )

U j
i

])
,

(3.3.6)
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which is valid for 1 ≤ i ≤ N−1. U j
i is the exponential finite difference approximation

to the exact solution u(x, t) of Burgers’ equation. Equation (3.3.6) is a system of
nonlinear equations. We can solve it by Newton’s method.
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Conclusion and Outlook

In the thesis at hand, we have been introducing, analyzing and approximating Burg-
ers’ equation and its solutions, which helped us in understanding the topics conserva-
tion laws, hyperbolic and parabolic partial differential equations, viscosity, diffusion,
advection, nonlinearity, shock formation and numerical approximation by finite dif-
ference methods.

By studying Burger’s equation we have found out that there exists the Hopf-Cole
transformation for converting the viscid version of Burgers’ equation in infinite space
and some finite spaces into the linear heat equation, which can be explicitly solved
then, for example by using Fourier transforms.
The inviscid version of Burgers’ equation can be solved via the method of character-
istics only for smooth initial values and small enough t, such that the characteristics
do not intersect. We can compute the breaking time, where the characteristics firstly
intersect. For larger t, after the characteristics have intersected and a shock has
formed, the partial differential equation has no classical solution and we have intro-
duced the concept of weak solutions, to allow such discontinuities. But if we include
discontinuous solutions, we cannot guarantee the uniqueness of the solution. The
uniqueness can be restored by using physical criteria, such as the Rankine-Hugoniot
jump condition and the entropy condition. We have looked at the Riemann problem
as an example, to test what we have found out by our analysis and we have also
learned about the vanishing viscosity approach as an alternative way in constructing
the discontinuous entropy solution.
Then the question presented how to approximate solutions of Burgers’ equation and
the focus of this thesis shifted to numerical methods, particularly finite difference
methods. Since we only introduced some finite difference methods in this thesis,
it would be interesting to compare them between each other in terms of stability,
accuracy and effort and actually writing some code for different examples in further
work.
One could also have a look at other numerical methods, for example, finite element
methods, finite volume methods et cetera to approximate solutions of Burgers’ equa-
tion. It would also be interesting to extend the research on an alternative for the
Hopf-Cole transformation, to fully cover every possible case of boundary conditions
and moreover, study the Navier-Stokes equations as an advanced extension.
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In summary, one can say that Burgers’ equation is indeed a very interesting ex-
ample of a partial differential equation, which serves as an easier model for more
complex problems.
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