[1]
J. Fuhrmann, B. Gaudeul, and Ch. Keller,
“Two entropic finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints,” in
Proc. Finite Volumes for Complex Applications X, 2023. DOI:
https://doi.org/10.1007/978-3-031-40864-9_23.
[2]
C. Chainais-Hillairet, R. Eymard, and J. Fuhrmann,
“An approximate two-point Dirichlet flux for quasilinear convection diffusion equations,” in
Proc. Finite Volumes for Complex Applications X, 2023. DOI:
https://doi.org/10.1007/978-3-031-40864-9_17.
[3]
J. Fuhrmann, D. H. Doan, A. Glitzky, M. Liero, and and G. Nika,
“Unipolar drift-diffusion simulation of s-shaped current-voltage relations for organic semiconductor devices,” in
Finite Volumes for Complex Applications IX, Bergen (Norway), June 2020, R. Klöfkorn, F. Radu, E. Keijgavlen, and J. Fuhrmann, Eds. Springer, 2020. DOI:
10.1007/978-3-030-43651-3_59.
[4]
C. Cancès, C. Chainais-Hillairet, J. Fuhrmann, and B. Gaudeul,
“On four numerical schemes for a unipolar degenerate drift-diffusion model,” in
Finite Volumes for Complex Applications IX, Bergen (Norway), June 2020, R. Klöfkorn, F. Radu, E. Keijgavlen, and J. Fuhrmann, Eds. Springer, 2020. DOI:
10.1007/978-3-030-43651-3_13.
[5]
S. Kayser, N. Rotundo, J. Fuhrmann, N. Dropka, and P. Farrell,
“The lateral photovoltage scanning method (LPS): Understanding doping variations in silicon crystals,” in
2020 international conference on numerical simulation of optoelectronic devices (NUSOD), 2020, pp. 49–50. DOI:
10.1109/NUSOD49422.2020.9217779.
[6]
J. Fuhrmann, C. Guhlke, A. Linke, Ch. Merdon, and R. Müller,
“Models and numerical methods for electrolyte flows,” in
Topics in applied analysis and optimisation, 2019, pp. 183–209. DOI:
10.1007/978-3-030-33116-0_8.
[7]
J. Fuhrmann, C. Guhlke, A. Linke, Ch. Merdon, and R. Müller,
“Voronoi finite volumes and pressure robust finite elements for electrolyte models with finite ion sizes,” in
Numerical geometry, grid generation and scientific computing, 2019, pp. 73–83. DOI:
10.1007/978-3-030-23436-2_5.
[8]
M. Radziunas, J. Fuhrmann, A. Zeghuzi, H. -. Wünsche, T. Koprucki, H. Wenzel, and U. Bandelow,
“Efficient coupling of heat-flow and electro-optical models for simulation of dynamics in high-power broad-area semiconductor lasers,” in
2018 international conference on numerical simulation of optoelectronic devices (NUSOD), 2018, pp. 91–92. DOI:
10.1109/NUSOD.2018.8570247.
[9]
M. Patriarca, P. Farrell, J. Fuhrmann, T. Koprucki, and M. A. der Maur,
“Highly accurate discretizations for non-boltzmann charge transport in semiconductors,” in
2018 international conference on numerical simulation of optoelectronic devices (NUSOD), 2018, pp. 53–54. DOI:
10.1109/NUSOD.2018.8570265.
[10]
P. Farrell, N. Rotundo, D. H. Doan, M. Kantner, J. Fuhrmann, and Th. Koprucki,
“Numerical methods for drift-diffusion models,” in
Handbook of optoelectronic device modeling and simulation: Lasers, modulators, photodetectors, solar cells, and numerical methods, vol. 2, J. Piprek, Ed. Boca Raton: CRC Press, 2017, pp. 733–771. URL:
https://www.crcpress.com/Handbook-of-Optoelectronic-Device-Modeling-and-Simulation-Two-Volume-Set/Piprek/p/book/9781498749381.
[11]
M. Radziunas, A. Zeghuzi, J. Fuhrmann, T. Koprucki, H.-J. Wünsche, H. Wenzel, and U. Bandelow,
“Efficient coupling of inhomogeneous current spreading and electro-optical models for simulation of dynamics in broad-area semiconductor lasers,” in
Proceedings of the 17th internationl conference on numerical simulation of optoelectronic devices, J. Piprek and M. Willatzen, Eds. Piscataway: IEEE Conference Publications Management Group, 2017, pp. 231–232. DOI:
10.1109/NUSOD.2017.8010076.
[12]
M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer, and S. Reineke,
“Modeling and simulation of electrothermal feedback in large-area organic LEDs,” in
Proceedings of the 17th international conference on numerical simulation of optoelectronic devices, J. Piprek and M. Willatzen, Eds. Piscataway: IEEE Conference Publications Management Group, 2017, pp. 105–106. DOI:
10.1109/NUSOD.2017.8010013.
[13]
P. Farrell, T. Koprucki, and J. Fuhrmann,
“Comparison of consistent flux discretizations for drift diffusion beyond boltzmann statistics,” in
Proceedings of the 17th international conference on numerical simulation of optoelectronic devices, J. Piprek and M. Willatzen, Eds. Piscataway: IEEE Conference Publications Management Group, 2017, pp. 219–220. DOI:
10.1109/NUSOD.2017.8010070.
[14]
J. Fuhrmann, A. Glitzky, editor="Cancès. Liero Matthias", and P. Omnes,
“Hybrid finite-volume/finite-element schemes for p(x)-Laplace thermistor models,” in
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017, Cham: Springer International Publishin, 2017, pp. 397–405. DOI:
10.1007/978-3-319-57394-6_42.
[15]
J. Fuhrmann and C. Guhlke,
“A finite volume scheme for Nernst-Planck-Poisson systems with ion size and solvation effects,” in
Finite volumes for complex applications VIII - hyperbolic, elliptic and parabolic problems: FVCA 8, Lille, France, June 2017, C. Cancès and P. Omnes, Eds. Springer, 2017, pp. 497–505. DOI:
10.1007/978-3-319-57394-6_52.
[16]
P. Farrell, Th. Koprucki, and J. Fuhrmann,
“Comparison of Scharfetter-Gummel flux discretizations under Blakemore statistics,” in
Progress in industrial mathematics at ECMI 2016, P. Quintela and others, Eds. Springer, 2017, pp. 91–97. DOI:
10.1007/978-3-319-63082-3_13.
[17]
M. Liero, A. Fischer, J. F. J., Th. Koprucki, and A. Glitzky,
“A PDE model for electrothermal feedback in organic semiconductor devices,” in
Progress in industrial mathematics at ECMI 2016, P. Quintela and others, Eds. Springer, 2017, pp. 99–106. DOI:
10.1007/978-3-319-63082-3_14.
[19]
J.Fuhrmann, A. Linke, and Ch. Merdon,
“Coupling of fluid flow and solute transport using a divergence-free reconstruction of the Crouzeix-Raviart element,” in
Finite volumes for complex applications VII, J. Fuhrmann, M. Ohlberger, and Ch. Rohde, Eds. Springer, 2014, pp. 597–605. DOI:
10.1007/978-3-319-05591-6_58.
[20]
J.Fuhrmann,
“Activity based finite volume methods for generalised Nernst-Planck-Poisson systems,” in
Finite volumes for complex applications VII, J. Fuhrmann, M. Ohlberger, and Ch. Rohde, Eds. Springer, 2014, pp. 587–595. DOI:
10.1007/978-3-319-05591-6_59.
[21]
A. Glitzky, K. Gärtner, J. Fuhrmann, Th. Koprucki, A. Fischer, B. Lüssem, K. Leo, and R. Scholz,
“Electro-thermal modeling of organic semiconductors describing negative differential resistance induced by self-heating,” in
Proc. NUSOD 2013, J. Piprek, Ed. IEEE, 2013, pp. 77–78. URL:
http://www.nusod.org/2013/nusod13_TuC2.pdf.
[22]
J. Fuhrmann, M. Hülsebrock, and U. Krewer,
“Energy storage based on electrochemical conversion of ammonia,” in
Transition to renewable energy systems: Energy process engineering, D. Stolten and V. Scherer, Eds. Wiley, 2013, pp. 691–706. DOI:
10.1002/9783527673872.ch33.
[23]
J. Fuhrmann,
“Mathematical and numerical modeling of flow, transport and reactions in porous structures of electrochemical devices,” in
Simulation of flow in porous media: Applications in energy and environment, P. Bastian, J. Kraus, R. Scheichl, and M. Wheeler, Eds. de Gruyter, 2013, pp. 139–164. DOI:
10.1515/9783110282245.139.
[24]
J. Fuhrmann, A. Linke, and H. Langmach,
“Mass conservative coupling between fluid flow and solute transport,” in
Finite volumes for complex applications VI, J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer, 2011, pp. 475–483. DOI:
10.1007/978-3-642-20671-9_50.
[25]
R. Eymard, J. Fuhrmann, and A. Linke,
“MAC schemes on triangular Delaunay meshes,” in
Finite volumes for complex applications VI, J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer, 2011, pp. 399–407. DOI:
10.1007/978-3-642-20671-9_42.
[26]
A. Bradji and J. Fuhrmann,
“Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes,” in
Proceedings of the 7th international conference on numerical methods and applications, 2011, pp. 369–376. URL:
http://dl.acm.org/citation.cfm?id=1945690.1945741.
[27]
A. Erdmann, F. Shao, J. Fuhrmann, A. Fiebach, G. P. Patsis, and P. Trefonas,
“Modeling of double patterning interactions in litho-cure-litho-etch (LCLE) processes,” in
Proc. SPIE optical microlithography XXIII, vol. 7640, 2010, p. 76400B. DOI:
10.1117/12.845849.
[28]
J. Fuhrmann, A. Fiebach, and G. P. Patsis,
“Macroscopic and stochastic modeling approaches to pattern doubling by acid catalyzed cross-linking,” in
Proc. SPIE advances in resist materials and processing technology XXVII, vol. 7639, 2010, p. 76392I. DOI:
10.1117/12.846491.
[29]
J. Fuhrmann and K. Gärtner,
“Modeling of two-phase flow and catalytic reaction kinetics for DMFCs,” in
Device and materials modeling in PEM fuel cells, vol. 113, S. Paddison and K. Promislow, Eds. Springer Topics in Applied Physics, 2009, pp. 297–316. DOI:
10.1007/978-0-387-78691-9_9.
[30]
A. Bradji and J. Fuhrmann,
“Some error estimates in finite volume methods of parabolic problems,” in
Finite volumes for complex application v, R. Eymard and J.-M. Herard, Eds. ISTE Ltd, ISBN 978-1-84821-035-6, 2008, pp. 233–241. URL:
http://www.iste.co.uk/index.php?p=a&ACTION=View&id=220.
[31]
J. Fuhrmann, H. Zhao, H. Langmach, and E. Holzbecher,
“Modeling and simulation of coupled species transport, porous electrode effects and catalytic reactions in a rectangular flow cell,” in
Finite volumes for complex applications v, proc. aussois, R. Eymard and J.-M. Herard, Eds. ISTE Ltd, ISBN 978-1-84821-035-6, 2008, pp. 423–431. URL:
http://www.iste.co.uk/book.php?id=220.
[32]
Th. Koprucki, H.-Ch. Kaiser, and J. Fuhrmann,
“Electronic states in semiconductor nanostructures and upscaling to semi-classical models,” in
Analysis, modeling and simulation of multiscale problems, A. Mielke, Ed. Springer, 2006, pp. 365–394. DOI:
10.1007/3-540-35657-6_13.
[33]
J. Fuhrmann,
“Evaluation of numerical fluxes for a locally exact finite volume scheme using hypergeometric functions,” in
Finite volumes in complex applications IV: Proc. marrakech, F. Benkhaldoun, D. Ouazar, and S. Raghay, Eds. Paris: HERMES, ISBN 905209-48-7, 2005, pp. 337–344. URL:
http://www.iste.co.uk/book.php?id=67.
[34]
J. Fuhrmann and M. Petzoldt,
“Robust error estimators for interface problems occuring in transport processes in porous media,” in
Mathematics — key technology for the future, W. Jäger and H. J. Krebs, Eds. Springer, 2003, pp. 127–136. DOI:
10.1007/978-3-642-55753-8_10.
[35]
J. Fuhrmann, “Multiphysics systems solution by time-implicit Voronoi box finite volumes,” in Finite volumes in complex applications III: Proc. porquerolles, R. Herbin and D. Kröner, Eds. Paris: HERMES, ISBN 1-9039-9634-1, 2002, pp. 551–559.
[36]
J. Fuhrmann, D. Hömberg, and J. Sokolowski,
“Modeling, simulation and control of laser heat treatments,” in
Optimal control of complex structures (oberwolfach, 2000), vol. 139, Birkh
äuser, 2002, pp. 71–82. DOI:
10.1007/978-3-0348-8148-7_6.
[1]
J. Fuhrmann,
“Zur Verwendung von Mehrgitterverfahren bei der numerischen Behandlung elliptischer partieller Differentialgleichungen zweiter Ordnung mit variablen Koeffizienten,” PhD thesis, Technische Universit
ät Chemnitz-Zwickau; Verlag Shaker, Aachen, ISBN 3-8265-0522-0, 1994. URL:
http://www.shaker.de/shop/978-3-8265-0522-5.
[2]
Ю. Фурман, “Конечная порожденность плюриканонического кольца многообразий общего типа размерностей 2 и 3.” Diploma Thesis, Московский Госурарственный Университет им. М.В.Ломоносова., 1984.
[1]
J. Fuhrmann, A. Linke, Ch. Merdon, M. Khodayari, and H. Baltruschat,
“Modellbasierte ermittlung von transport-, reaktions- und löslichkeitsdaten aus dünnschichtzellexperimenten,” in
Symposium elektrochemische methoden in der batterieforschung, A. Michaelis and M. Schneider, Eds. Fraunhofer Verlag, 2014, pp. 105–111. URL:
http://publica.fraunhofer.de/eprints?urn:nbn:de:0011-n-3180289.pdf.
[2]
M. Ehrhardt, J. Fuhrmann, A. Linke, and E. Holzbecher, “Mathematical modeling of channel-porous layer interfaces in PEM fuel cells,” in Fundamentals and developments of fuel cells, B. Davat and D. Hissel, Eds. Proc. Nancy, Dec. 10--12, 2008.
[3]
E. Holzbecher, J. Fuhrmann, H. Zhao, H. Langmach, and K. Gärtner, “Modelling of direct methanol fuel cells for microelectronical applications,” in World hydrogen technologies convention (WHTC2007), Montecatine Terme, Italy, 2007.
[4]
E. Holzbecher, J. Fuhrmann, H. Zhao, and H. Langmach, “A model of thin layer flow cells aimed at kinetic parameter estimation,” in European fuel cell technology and applications conference (EFC2007), Rome, Italy, 2007.
[5]
J. Divisek, R. Jung, K. Gärtner, and J. Fuhrmann, “Numerical Simulation of Direct Methanol Fuel Cells (DMFC),” in Proceedings 3rd european congress of chemical engineering, nuremberg, 26.–28. June 2001, 2001.
[6]
J. Fuhrmann and H. Langmach, “Mass conservative numerical solution of subsurface transport problems,” in Proceedings of the 3rd international conference on hydroscience and engineering, BTU cottbus, 31.8.-3.9.1998, vol. 3, K. P. Holz, W. Bechteler, S. S. Y. Wang, and M. Kawahara, Eds. Cottbus, 1998.
[7]
J. Fuhrmann, “Finite volume methods for the discretization of flow and transport phenomena,” in Fachtagung grafikgestützte grundwassermodellierung, 27.-28. Mai 1998, Berlin: WASY GmbH (Hrsg.), 1998, pp. 25–31.
[8]
J. Fuhrmann, Th. Koprucki, and H. Langmach, “Pdelib: An open modular tool box for the numerical solution of partial differential equations. Design Patterns,” in Proceedings of the 14th GAMM seminar kiel on concepts of numerical software, january 23-25, 1998, W. Hackbusch and G. Wittum;, Eds. Kiel, 2001.
[9]
J. Fuhrmann, “Algebraic multigrid methods — a comparision,” in Iterative methods in scientific computing (proc. Jackson hole WY, july 9-12 1997), vol. 4, J. Wang, M. B. Allen, B. M. Chen, and T. Mathew, Eds. 1997, pp. 155–161.
[10]
J. Fuhrmann, “Numerical solution schemes for nonlinear diffusion problems based on Newton’s method,” in ALGORITMY ’97, 14th conference on scientific computing, zuberec, slovakia, september 2-5, 1997, contributed papers and posters, K. M. A. Handlovičovaá M.Komorníková, Ed. Slovak Technical University, Bratislava, 1997, pp. 32–42.
[11]
J. Fuhrmann, “Outlines of a modular algebraic multigrid method,” in Proceedings of the conference on algebraic multilevel iteration methods, nijmegen, 13.-15.6.1996, O. Axelsson and B. Polman, Eds. Nijmegen: Kath. Univ. Nijmegen, 1996, pp. 141–153.
[12]
J. Fuhrmann,
“On numerical solution methods for nonlinear parabolic problems,” in
Modeling and computation in environmental sciences. Proceedings of the first GAMM-seminar at ICA stuttgart, october 12-13,1995, vol. 59, R. Helmig, W. Jäger, W. Kinzelbach, P. Knabner, and G. Wittum, Eds. Braunschweig: Vieweg, 1997, pp. 170–180. DOI:
10.1007/978-3-322-89565-3_15.
[13]
J. Fuhrmann,
“On the numerical solution of the equation of saturated/unsaturated flow in porous media,” in
Computational methods in water resources x, A. Peters and others, Eds. Dordrecht: Kluwer, 1994. URL:
http://www.springer.com/978-0-7923-2937-4.
[14]
J. Fuhrmann and K. Gärtner,
“On matrix data structures and the stability of multigrid algorithms,” in
Contributions to multigrid. A selection of contributions to the fourth european multigrid conference, amsterdam, july 6-9, 1993, P. W. Hemker and P. Wesseling, Eds. Amsterdam: CWI, 1994, pp. 55–65. URL:
http://oai.cwi.nl/oai/asset/13126/13126A.pdf.
[15]
J. Fuhrmann and K. Gärtner,
“Multigrid becomes a competitive algorithm for some 3D device simulation problems,” in
Proceedings of SISDEP, wien 1993, S. Selberherr, H. Stippel, and E. Strasser, Eds. Wien: springer, 1993, pp. 421–424. DOI:
10.1007/978-3-7091-6657-4_104.
[16]
J. Fuhrmann, “Calculation of saturated-unsaturated flow in porous media with a Newton-multigrid method,” in GAMM-seminar on multigrid methods, gosen, september 1992, S. Hengst, Ed. Berlin: Institut für Angewandte Analysis und Stochastik, 1993.
[17]
J. Fuhrmann and K. Gärtner, “Incomplete factorizations and linear multigrid algorithms for the semiconductor device equations,” in Proccedings of the IMACS international symposium on iterative methods in linear algebra, R. Beauwens and P. de Groen, Eds. Amsterdam: Elsevier, 1992, pp. 493–503.
[18]
J. Fuhrmann and K. Gärtner,
“A multigrid method for the solution of a convection — diffusion equation with rapidly varying coefficients,” in
Proceedings of the third european multigrid conference, october 1 - 4,1990, bonn, germany, vol. 98, W. Hackbusch and U. Trottenberg, Eds. Basel: Birkh
äuser Verlag, 1991, pp. 179–190. DOI:
10.1007/978-3-0348-5712-3_12.
[19]
J. Fuhrmann, “An interpretation of the Scharfetter-Gummel scheme as a mixed finite element discretization,” in Fourth multigrid seminar, unterwirbach, may 1989, G. Telschow, Ed. Berlin: Karl-Weierstraß-Institut für Mathematik, 1990.
[20]
J. Fuhrmann, “Multigrid FAS methods for the solution of systems of nonlinear partial differential equations occuring in semiconductor device simulation,” in Third multigrid seminar, biesenthal, may 2-6,1988, G. Telschow, Ed. Berlin: Karl-Weierstraß-Institut für Mathematik, 1989.
[1]
K. Scheliga, H. Pampel, E. Bernstein, C. Bruch, W. zu Castell, M. Diesmann, B. Fritzsch, J. Fuhrmann, H. Haas, M. Hammitzsch, D. Lähnemann, A. McHardy, U. Konrad, G. Schamberg, A. Schreiber, and D. Steglich,
“Helmholtz Open Science Workshop “Zugang zu und Nachnutzung von wissenschaftlicher Software #hgfos16, Report; November 2016.” Potsdam : Deutsches GeoForschungsZentrum GFZ, 2016. DOI:
10.2312/lis.17.01.
[2]
J. Fuhrmann, B. Haasdonk, E. Holzbecher, and M. Ohlberger,
“Guest editorial: Modelling and simulation of PEM fuel cells,” Journal of Fuel Cell Science and Technology, vol. 5, no. 2, p. 020301, 2008. DOI:
10.1115/1.2822881.
[5]
V. Clausnitzer, U. Bayer, and J. Fuhrmann, “Large-scale thermal convective instability in sedimentary basins,” Eur. Geophys. Soc., Geophys. Res. Abstracts, vol. HS02–2, 2001.
[7]
J. Fuhrmann, “On the convergence of algebraically defined multigrid methods,” Institut für Angewandte Analysis und Stochastik, 1992.
[8]
K. Gärtner, G. Telschow, F. Grund, H. Langmach, J. Fuhrmann, H. Szillat, and C. Keusch, “MEDEA-Anwendungsbeschreibung,” Karl-Weierstraß-Institut für Mathematik, Berlin, technical documentation, 1989.