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Recapitulation II: Finite Volumes

I Strong formulation of PDE
I Voronoi cells as control volumes
I Gauss theorem in control volumes
I Derivation of discrete system from fluxes between cells
I Matrix form
I Matrix element calculation
I Matrix properties
I Solution of matrix problem
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and v : Ω→ Rd be a
continuously differentiable vector function. Let n be the outward normal to
Ω. Then, ∫

Ω
∇ · v dx =

∫

∂Ω
v · n ds

�
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Species balance over an REV
I Let u(x, t) : Ω× [0,T ]→ R be the local amount of some species.
I Assume representative elementary volume (REV) ω ⊂ Ω
I Subinterval in time (t0, t1) ⊂ (0,T )
I −δ∇u · n describes the flux of these species trough ∂ω, where δ is

some transfer coefficient
I Let f (x, t) be some local source of species. Then the flux through the

boundary is balanced by the change of the amount of species in ω
and the source strength:

0 =
∫

ω

(u(x, t1)− u(x, t0)) dx−
∫ t1

t0

∫

∂ω

δ∇u · n ds dt −
∫ t1

t0

∫

ω

f (x, t) ds

I Using Gauss’ theorem, rewrite this as

0 =
∫ t1

t0

∫

ω

∂tu(x, t) dx dt −
∫ t1

t0

∫

ω

∇ · (δ∇u) dx dt −
∫ t1

t0

∫

ω

f (x, t) ds

I True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒ parabolic second order PDE

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)
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Second order elliptic PDEs

Stationary case: ∂tu = 0 ⇒ second order elliptic PDE

−∇ · (δ∇u(x)) = f (x)

I Stationary heat conduction, stationary diffusion
I Incompressible flow in saturated porous media: u: pressure
δ = k: permeability, flux=−k∇u: “Darcy’s law”

I Electrical conduction: u: electric potential
δ = σ: electric conductivity
flux=−σ∇u ≡ current density: “Ohms’s law”

I Poisson equation (electrostatics in a constant magnetic field):
u: electrostatic potential, ∇u: electric field,
δ = ε: dielectric permittivity, f : charge density
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Second order PDEs: boundary conditions
I Combine PDE in the interior with boundary conditions on variable u

and/or or normal flux δ∇u · n
I Assume ∂Ω = ∪NΓ

i=1Γi is the union of a finite number of
non-intersecting subsets Γi which are locally Lipschitz.

I On each Γi , specify one of
I Dirichlet (“first kind”): let gi : Γi → R (homogeneous for gi = 0)

u(x) = uΓi (x) for x ∈ Γi

I Neumann (“second kind”): Let gi : Γi → R (homogeneus for gi = 0)

δ∇u(x) · n = gi (x) for x ∈ Γi

I Robin (“third kind”): let αi , gi : Γi → R

δ∇u(x) · n + αi (x) (u(x)− gi (x)) = 0 for x ∈ Γi

I Boundary functions may be time dependent.
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Constructing control volumes I

I Assume Ω is a polygon
I Subdivide the domain Ω into a finite number of control volumes :

Ω̄ =
⋃

k∈N ω̄k such that
I ωk are open (not containing their boundary) convex domains
I ωk ∩ ωl = ∅ if ωk 6= ωl
I σkl = ω̄k ∩ ω̄l are either empty, points or straight lines
I we will write |σkl | for the length
I if |σkl | > 0 we say that ωk , ωl are neighbours
I neighbours of ωk : Nk = {l ∈ N : |σkl | > 0}

I To each control volume ωk assign a collocation point: xk ∈ ω̄k such
that

I admissibility condition:
if l ∈ Nk then the line xkxl is orthogonal to σkl

I placement of boundary unknowns:
if ωk is situated at the boundary, i.e. for |∂ωk ∩ ∂Ω| > 0, then
xk ∈ ∂Ω, and ∂ωk ∩ ∂Ω = ∪NΓ

i=1γi,k ( where γi,k = ∅ is possible).
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Constructing control volumes II

xk xl
σklωk

ωlnkl

We know how to construct such a partitioning:
I obtain a boundary conforming Delaunay triangulation with vertices xk
I construct restricted Voronoi cells ωk with xk ∈ ωk
I Delaunay triangulation gives connected neigborhood graph of Voronoi

cells
I Admissibility condition fulfilled in a natural way
I Boundary placement of triangle nodes
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Voronoi diagrams

After G. F. Voronoi, 1868-1908
Definition Let p,q ∈ Rd . The set of points
Hpq =

{
x ∈ Rd : ||x− p|| ≤ ||x− q||

}
is the half space of points x closer

to p than to q.
Definition Given a finite set of points S ⊂ Rd , the Voronoi region
(Voronoi cell) of a point p ∈ S is the set of points x closer to p than to
any other point q ∈ S:

Vp =
{

x ∈ Rd : ||x− p|| ≤ ||x− q|| ∀q ∈ S
}

The Voronoi diagram of S is the collection of the Voronoi regions of the
points of S.
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Voronoi diagrams II

I The Voronoi diagram subdivides the whole space into “nearest
neigbor” regions

I Being intersections of half planes, the Voronoi regions are convex sets

Voronoi diagram of 8 points in
the plane
(H. Si)

Interactive example: http://homepages.loria.fr/BLevy/GEOGRAM/
geogram_demo_Delaunay2d.html
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Delaunay triangulation

After B.N. Delaunay (Delone), 1890-1980
I Assume that the points of S are in general position, i.e. no d + 2

points of S are on one sphere (in 2D: no 4 points on one circle)
I Connect each pair of points whose Voronoi regions share a common

edge with a line
I ⇒ Delaunay triangulation of the convex hull of S

Delaunay triangulation of the
convex hull of 8 points in the
plane
(H. Si)
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Delaunay triangulation II

I The circumsphere (circumcircle in 2D) of a d-dimensional simplex is
the unique sphere containing all vertices of the simplex

I The circumball (circumdisc in 2D) of a simplex is the unique (open)
ball which has the circumsphere of the simplex as boundary

Definition A triangulation of the convex hull of a point set S has the
Delaunay property if each simplex (triangle) of the triangulation is
Delaunay, i.e. its circumsphere (circumcircle) is empty wrt. S, i.e. it does
not contain any points of S.

I The Delaunay triangulation of a point set S, where all points are in
general position is unique

I Otherwise there is an ambiguity - if e.g. 4 points are one circle, there
are two ways to connect them resulting in Delaunay triangles
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Edge flips and locally Delaunay edges (2D only)

I For any two triangles abc and adb sharing a common edge ab, there
is the edge flip operation which reconnects the points in such a way
that two new triangles emerge: adc and cdb.

I An edge of a triangulation is locally Delaunay if it either belongs to
exactly one triangle, or if it belongs to two triangles, and their
respective circumdisks do not contain the points opposite wrt. the
edge

I If an edge is locally Delaunay and belongs to two triangles, the sum
of the angles opposite to this edge is less or equal to π.

I If all edges of a triangulation of the convex hull of S are locally
Delaunay, then the triangulation is the Delaunay triangulation

I If an edge is not locally Delaunay and belongs to two triangles, the
edge emerging from the corresponding edge flip will be locally
Delaunay
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Edge flip algorithm (Lawson)

Input: A stack L of edges of a given triangulation of S;
while L 6= ∅ do

pop an edge ab from L;
if ab is not locally Delaunay then

flip ab to cd;
push edges ac, cb,db,da onto L;

end
end

I This algorithm is known to terminate. After termination, all edges will
be locally Delaunay, so the output is the Delaunay triangulation of S.

I Among all triangulations of a finite point set S, the Delaunay
triangulation maximises the minimum angle

I All triangulations of S are connected via a flip graph
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Radomized incremental flip algorithm (2D only)

I Create Delaunay triangulation of point set S by inserting points one
after another, and creating the Delaunay triangulation of the
emerging subset of S using the flip algorithm

I Estimated complexity: O(n log n)
I In 3D, there is no simple flip algorithm, generalizations are active

research subject
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Triangulations of finite domains

I So far, we discussed triangulations of point sets, but in practice, we
need triangulations of domains

I Create Delaunay triangulation of point set, “Intersect” with domain
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Boundary conforming Delaunay triangulations
Definition: An admissible triangulation of a polygonal Domain Ω ⊂ Rd

has the boundary conforming Delaunay property if
(i) All simplices are Delaunay
(ii) All boundary simplices (edges in 2D, facets in 3d) have the Gabriel

property, i.e. their minimal circumdisks are empty
I Equivalent definition in 2D: sum of angles opposite to interior edges
≤ π, angle opposite to boundary edge ≤ π

2

I Creation of boundary conforming Delaunay triangulation description
may involve insertion of Steiner points at the boundary

Delaunay grid of Ω Boundary conforming Delaunay grid of Ω
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Domain blendend Voronoi cells

I For Boundary conforming Delaunay triangulations, the intersection of
the Voronoi diagram with the domain yields a well defined dual
subdivision
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Boundary conforming Delaunay triangulations II

I Weakly acute triangulations are boundary conforming Delaunay, but
not vice versa!

I Working with weakly acute triangulations for general polygonal
domains is unrealistic, especially in 3D

I For boundary conforming Delaunay triangulations of polygonal
domains there are algoritms with mathematical termination proofs
valid in many relevant cases

I Code examples:
I 2D: Triangle by J.R.Shewchuk

https://www.cs.cmu.edu/˜quake/triangle.html
I 3D: TetGen by H. Si http://tetgen.org

I Features:
I polygonal geometry description
I automatic insertion of points according to given mesh size criteria
I accounting for interior boundaries
I local mesh size control for a priori refinement
I quality control
I standalone executable & library
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Discretization ansatz for Robin boundary value problem
Given constants κ > 0, αi ≥ 0 (i = 1 . . .NΓ)

−∇ · κ∇u = f in Ω
κ∇u · n + αi (u − gi ) = 0 on Γi (i = 1 . . .NΓ) (*)

I Given control volume ωk , k ∈ N , integrate

0 =
∫

ωk

(−∇ · κ∇u − f ) dω

= −
∫

∂ωk

κ∇u · nkdγ −
∫

ωk

fdω (Gauss)

= −
∑

l∈Nk

∫

σkl

κ∇u · nkldγ −
NΓ∑

i=1

∫

γik

κ∇u · ndγ −
∫

ωk

fdω

≈
∑

L∈Nk

κ
|σkl |
hkl

(uk − ul )
︸ ︷︷ ︸
∇u·n≈ ul−uk

hkl

+
NΓ∑

i=1
|γi,k |αi (uk − gi,k)︸ ︷︷ ︸

bound. cond. (*)

− |ωk |fk︸ ︷︷ ︸
quadrature

I Here, uk = u(xk), gi,k = gi (xk), fk = f (xk)
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Properties of discretization matrix

I N = |N | equations (one for each control volume ωk)
I N = |N | unknowns (one for each collocation point xk ∈ ωk)
I weighted connected edge graph of triangulation ≡ N × N irreducible

sparse discretization matrix A = (akl ) :

akl =





∑
l′∈Nk

κ |σkl′ |
hkl′

+
∑NΓ

i=1 |γi,k |αi , l = k
−κσkl

hkl
, l ∈ Nk

0, else

I A is irreducibly diagonally dominant if at least for one i , |γi,k |αi > 0
I Main diagonal entries are positive, off diagonal entries are non-positive
I ⇒ A has the M-property.
I A is symmetric ⇒ A is positive definite
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Matrix assembly – main part
I Keep list of global node numbers per triangle τ mapping local node

numbers of the triangle to the global node numbers:
{0, 1, 2} → {kτ,0, kτ,1, kτ,2}

I Loop over all triangles τ ∈ T , add up contributions
for k, l = 1 . . .N do

set akl = 0
end
for τ ∈ T do

for n,m = 0 . . . 2, n 6= m do
σ = σkτ,m,kτ,n ∩ τ

σh = κ
|σ|

hkτ,m,kτ,n

akτ,m,kτ,m + = σh

akτ,m,kτ,n− = σh

akτ,n,kτ,m− = σh

akτ,n,kτ,n + = σh

end
end
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Matrix assembly – boundary part

I Keep list of global node numbers per boundary element γ mapping
local node element to the global node numbers: {0, 1} → {kγ,0, kγ,1}

I Keep list of boundary part numbers per boundary element iγ
I Loop over all boundary elements γ ∈ G of the discretization, add up

contributions

for γ ∈ G do
for n = 0, 1 do

akγn ,kγn + = αiγ |γ ∩ ωkγn |
end

end
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RHS assembly: calculate control volumes

I Denote wk = |ωk |
I Loop over triangles, add up contributions

for k . . .N do
set wk = 0

end
for τ ∈ T do

for n = . . . 3 do
wk+ = |ωkτ,m ∩ τ |

end
end
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Matrix assembly: summary

I Sufficient to keep list of triangles, boundary segments – they typically
come out of the mesh generator

I Be able to calculate triangular contributions to form factors: |ωk ∩ τ |,
|σkl ∩ τ | – we need only the numbers, and not the construction of the
geometrical objects

I O(N) operation, one loop over triangles, one loop over boundary
elements
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Variations of the discretization ansatz

I 3D: tetrahedron based
I κ = κ(x) ⇒ κ(x)∇u ≈ κkl

ul−uk
hkl

I Non-constant αi , g
I Nonlinear dependencies . . .
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Interpretation of results

I One solution value per control volume ωk allocated to the collocation
point xk ⇒ piecewise constant function on collection of control
volumes

I But: xk are at the same time nodes of the corresponding Delaunay
mesh ⇒ representation as piecewise linear function on triangles
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Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . . )

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.
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The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aij uk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aii uk+1,i +
∑

j=1...n,j 6=i

aij uk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F )uk + D−1b
= M−1Nuk + M−1b

I Variable ordering does not matter
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The Gauss-Seidel method

I Solve for main diagonal element row by row
I Take already calculated results into account

aii uk+1,i +
∑

j<i

aij uk+1,j +
∑

j>i

aij uk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b

I May be it is faster
I Variable order probably matters
I Preconditioners: forward M = D − E , backward: M = D − F
I Splitting formulation: A = M − N

forward: N = F , backward: M = E
I Forward case:

uk+1 = (D − E)−1Fuk + (D − E)−1b
= M−1Nuk + M−1b
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Convergence

I Let û be the solution of Au = b.
I Let ek = uj − û be the error of the k-th iteration step

uk+1 = uk −M−1(Auk − b)
= (I −M−1A)uk + M−1b

uk+1 − û = uk − û −M−1(Auk − Aû)
= (I −M−1A)(uk − û)
= (I −M−1A)k (u0 − û)

resulting in

ek+1 = (I −M−1A)k e0

I So when does (I −M−1A)k converge to zero for k →∞ ?
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Spectral radius and convergence

Definition The spectral radius ρ(A) is the largest absolute value of any
eigenvalue of A: ρ(A) = maxλ∈σ(A) |λ|.

Theorem (Saad, Th. 1.10) lim
k→∞

Ak = 0 ⇔ ρ(A) < 1.

Proof, ⇒: Let ui be a unit eigenvector associated with an eigenvalue λi . Then

Aui = λi ui

A2ui = λi Ai ui = λ2ui

...
Ak ui = λk ui

therefore ||Ak ui ||2 = |λk |
and lim

k→∞
|λk | = 0

so we must have ρ(A) < 1
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Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.
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Convergence rate
Assume λ with |λ| = ρ(I −M−1A) < 1 is the largest eigenvalue and has a single
Jordan block of size l . Then the convergence rate is dominated by this Jordan
block, and therein by the term with the lowest possible power in λ which due to
E l = 0 is

λk−l+1
(

k
l − 1

)
E l−1

||(I −M−1A)k (u0 − û)|| = O
(
|λk−l+1|

(
k

l − 1

))

and the “worst case” convergence factor ρ equals the spectral radius:

ρ = lim
k→∞

(
max

u0

||(I −M−1A)k (u0 − û)||
||u0 − û||

) 1
k

= lim
k→∞

||(I −M−1A)k || 1
k

= ρ(I −M−1A)

Depending on u0, the rate may be faster, though
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The Gershgorin Circle Theorem (Semyon Gershgorin,1931)
(everywhere, we assume n ≥ 2)
Theorem (Varga, Th. 1.11) Let A be an n × n (real or complex) matrix.
Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there exists r , 1 ≤ r ≤ n such that
|λ− arr | ≤ Λr

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− aii )xi =
∑

j=1...n
j 6=i

aijxj

|λ− arr | = |
∑

j=1...n
j 6=r

arjxj | ≤
∑

j=1...n
j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�
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Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

λ ∈
⋃

i=1...n
{µ ∈ V : |µ− aii | ≤ Λi}

Corollary:

ρ(A) ≤ max
i=1...n

n∑

j=1
|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑

i=1
|aij | = ||A||1

Proof

|µ− aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =
n∑

j=1
|aij |

Furthermore, σ(A) = σ(AT ). �
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Gershgorin circles: heat example I

A =




2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h




B = (I − D−1A) =




0 1
21

2 0 1
21

2 0 1
2

. . . . . . . . . . . .
1
2 0 1

21
2 0 1

21
2 0




We have bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1
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Gershgorin circles: heat example II
Let n=11, h=0.1:

λi = cos
(

ihπ
1 + 2h

)
(i = 1 . . . n)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Re

Im

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

⇒ the Gershgorin circle theorem is too pessimistic...
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Weighted directed graph representation of matrices
Define a directed graph from the
nonzero entries of a matrix A = (aik):

I Nodes: N = {Ni}i=1...n
I Directed edges:
E = {−−−→NkNl |akl 6= 0}

I Matrix entries ≡ weights of
directed edges

A =




1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.




N1

N2

N3

N4

N5

1

2

4

3 5

6

7

8

9
10

11

12

I 1:1 equivalence between matrices and weighted directed graphs
I Convenient e.g. for sparse matrices

Lecture 27 Slide 39



Lecture 9 Slide 17

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =
(

A11 A12
0 A22

)

A is irreducible if it is not reducible.
Theorem (Varga, Th. 1.17): A is irreducible ⇔ the matrix graph is
connected, i.e. for each ordered pair (Ni ,Nj) there is a path consisting of
directed edges, connecting them.
Equivalently, for each i , j there is a sequence of consecutive nonzero matrix
entries aik1 , ak1k2 , ak2k3 . . . , akr−1kr akr j .

�
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Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue λ is a boundary point of the union of all the disks

λ ∈ ∂
⋃

i=1...n
{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi
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Taussky theorem proof
Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− arr )xr =
∑

j=1...n
j 6=r

arjxj (1)

|λ− arr | ≤
∑

j=1...n
j 6=r

|arj | · |xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr (2)

λ is boundary point ⇒ |λ− arr | =
∑

j=1...n
j 6=r

|arj | · |xj | = Λr

⇒ For all p 6= r with arp 6= 0, |xp| = 1.
Due to irreducibility there is at least one p with arp 6= 0. For this p,
|xp| = 1 and equation (2) is valid (with p in place of r) ⇒ |λ− app| = Λp

Due to irreducibility, this is true for all p = 1 . . . n. �
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Consequences for heat example from Taussky theorem

I B = I − D−1A

I We had bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

I Assume |λi | = 1. Then λi lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius 1

2 and 1 around 0.
I Contradiction ⇒ |λi | < 1, ρ(B) < 1!
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Diagonally dominant matrices
Definition Let A = (aij) be an n × n matrix.

I A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑

j=1...n
j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |
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A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.
If in addition, aii > 0 is real for i = 1 . . . n, then all real parts of the
eigenvalues of A are positive:

Reλi > 0, i = 1 . . . n
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Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.
Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.

�
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Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is

I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n× n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.
Proof: See Varga. �
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Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.
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Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.
Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is
nonsingular.
In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius (for general matrices), ρ(G) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(G)
1− ρ(G)x

Therefore 0 ≤ ρ(G) ≤ 1.
As I − G is nonsingular, ρ(G) < 1. �
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Convergence rate comparison

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(G)
1−ρ(G) �

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular
splittings. If N2 ≥ N1 ≥ 0, then 1 > ρ(M−1

2 N2) ≥ ρ(M−1
1 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1

But τ
1+τ is strictly increasing. �

Lecture 27 Slide 50



Lecture 9 Slide 35

M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if
(i) aij ≤ 0 for i 6= j
(ii) A is nonsingular
(iii) A−1 ≥ 0
Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.
Proof: See Varga. �
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Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j .
Then A is an M-Matrix.
Proof: We know that A is nonsingular, but we have to show A−1 ≥ 0.

I Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.
I We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk)
(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk)

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0
Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �
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Application

Let A be an M-Matrix. Assume A = D − E − F .
I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F

nonnegative ⇒ convergence
I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has

non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence
I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.
I More general: Block Jacobi, Block Gauss Seidel etc.
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Examinations

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Thu Mar 28.
Wed May 8. 14:00-17:00
I Please give your yellow sheets before the examinations to Frau

Gillmeister (MA370)


