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Recapitulation I: Finite Elements

I Strong formulation of PDE
I Problems with strong formulation
I Weak formulation of PDE, solvability
I Galerkin ansatz
I Matrix form
I Matrix element calculation
I Matrix properties
I Solution of matrix problem
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Second order elliptic PDEs

Stationary case: ∂tu = 0 ⇒ second order elliptic PDE

−∇ · (δ∇u(x)) = f (x)

I Stationary heat conduction, stationary diffusion
I Incompressible flow in saturated porous media: u: pressure
δ = k: permeability, flux=−k∇u: “Darcy’s law”

I Electrical conduction: u: electric potential
δ = σ: electric conductivity
flux=−σ∇u ≡ current density: “Ohms’s law”

I Poisson equation (electrostatics in a constant magnetic field):
u: electrostatic potential, ∇u: electric field,
δ = ε: dielectric permittivity, f : charge density
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Second order PDEs: boundary conditions
I Combine PDE in the interior with boundary conditions on variable u

and/or or normal flux δ∇u · n
I Assume ∂Ω = ∪NΓ

i=1Γi is the union of a finite number of
non-intersecting subsets Γi which are locally Lipschitz.

I On each Γi , specify one of
I Dirichlet (“first kind”): let gi : Γi → R (homogeneous for gi = 0)

u(x) = uΓi (x) for x ∈ Γi

I Neumann (“second kind”): Let gi : Γi → R (homogeneus for gi = 0)

δ∇u(x) · n = gi (x) for x ∈ Γi

I Robin (“third kind”): let αi , gi : Γi → R

δ∇u(x) · n + αi (x) (u(x)− gi (x)) = 0 for x ∈ Γi

I Boundary functions may be time dependent.
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Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

I δ may not be continuous – what is then ∇ · (δ∇u)?
I Approximation of solution u e.g. by piecewise linear functions what

does ∇u mean ?
I Spaces of twice, and even once continuously differentiable functions is

not well suited:
I Favorable approximation functions (e.g. piecewise linear ones) are not

contained
I Though they can be equipped with norms (⇒ Banach spaces) they

have no scalar product ⇒ no Hilbert spaces
I Not complete: Cauchy sequences of functions may not converge to

elements in these spaces
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Derivation of weak formulation
I Sobolev space theory provides a convenient framework to formulate

existence, uniqueness and approximations of solutions of PDEs.
I Stationary heat conduction equation with homogeneous Dirichlet

boundary conditions:

−∇ · λ∇u(x) = f (x) in Ω
u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function v ∈ C∞0 (Ω) and
apply Green’s theorem using v = 0 on ∂Ω

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx
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Weak formulation of homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) (here, tr u = 0) such that
∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

I Then,

a(u, v) :=
∫

Ω
λ∇u∇v dx

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

I It is bounded due to Cauchy-Schwarz:

|a(u, v)| = |λ| · |
∫

Ω
∇u∇v dx| ≤ ||u||H1

0 (Ω) · ||v ||H1
0 (Ω)

I f (v) =
∫

Ω fv dx is a linear functional on H1
0 (Ω). For Hilbert spaces V

the dual space V ′ (the space of linear functionals) can be identified
with the space itself.
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The Lax-Milgram lemma
Theorem: Let V be a Hilbert space. Let a : V × V → R be a self-adjoint
bilinear form, and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤
1
α
||f ||V ′

�
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Coercivity of weak formulation

Theorem: Assume λ > 0. Then the weak formulation of the heat
conduction problem: search u ∈ H1

0 (Ω) such that

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

has an unique solution.
Proof: a(u, v) is cocercive:

a(u, v) =
∫

Ω
λ∇u∇u dx = λ||u||2H1

0 (Ω)

�
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Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ∇u = f in Ω
u = g on ∂Ω

I If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that
ug |∂Ω = g . Then, we can re-formulate:

−∇ · λ∇(u − ug ) = f +∇ · λ∇ug in Ω
u − ug = 0 on ∂Ω

I Search u ∈ H1(Ω) such that

u = ug + φ∫

Ω
λ∇φ∇v dx =

∫

Ω
fv dx +

∫

Ω
λ∇ug∇v ∀v ∈ H1

0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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The Galerkin method II
I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint

bilinear form, and f a linear functional on V . Assume a is coercive
with coercivity constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma
I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)
= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace Vh.
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From the Galerkin method to the matrix equation
I Let φ1 . . . φn be a set of basis functions of Vh.
I Then, we have the representation uh =

∑n
j=1 ujφj

I In order to search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

it is actually sufficient to require

a(uh, φi ) = f (φi ) (i = 1 . . . n)

a
( n∑

j=1
ujφj , φi

)
= f (φi ) (i = 1 . . . n)

n∑

j=1
a(φj , φi )uj = f (φi ) (i = 1 . . . n)

AU = F

with A = (aij), aij = a(φi , φj), F = (fi ), fi = F (φi ), U = (ui ).
I Matrix dimension is n × n. Matrix sparsity ?
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The finite element idea
I Choose basis functions with local support. In this case, the matrix

becomes sparse, as only integrals of basis function pairs with
overlapping support contribute to the matrix.

I Linear finite elements in Ω = (a, b) ⊂ R1:
I Partition a = x1 ≤ x2 ≤ · · · ≤ xn = b
I Basis functions (for i = 1 . . . n)

φi (x) =





x−xi−1
xi−xi−1

, i > 1, x ∈ (xi−1, xi )
xi+1−x
xi+1−xi

, i < n, x ∈ (xi , xi+1)
0, else

I Any function uh ∈ Vh = span{φ1 . . . φn} is piecewise linear, and the
coefficients in the representation uh =

∑n
i=1 uiφi are the values

uh(xi ).
I Fortunately, we are working with a weak formulation, and weak

derivatives are well defined !
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Simplices

I Let {a0 . . . ad} ⊂ Rd such that the d vectors a1 − a0 . . . ad − a0 are
linearly independent. Then the convex hull K of a0 . . . ad is called
simplex, and a0 . . . ad are called vertices of the simplex.

I Unit simplex: a0 = (0...0), a1 = (0, 1 . . . 0) . . . ad = (0 . . . 0, 1).

K =
{

x ∈ Rd : xi ≥ 0 (i = 1 . . . d) and
d∑

i=1
xi ≤ 1

}

I A general simplex can be defined as an image of the unit simplex
under some affine transformation

I Fi : face of K opposite to ai

I ni : outward normal to Fi
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Barycentric coordinates
I Let K be a simplex.
I Functions λi (i = 0 . . . d):

λi : Rd → R

x 7→ λi (x) = 1− (x − ai ) · ni
(aj − ai ) · ni

where aj is any vertex of K situated in Fi .
I For x ∈ K , one has

1− (x − ai ) · ni
(aj − ai ) · ni

= (aj − ai ) · ni − (x − ai ) · ni
(aj − ai ) · ni

= (aj − x) · ni
(aj − ai ) · ni

= dist(x ,Fi )
dist(ai ,Fi )

= dist(x ,Fi )|Fi |/d
dist(ai ,Fi )|Fi |/d

= dist(x ,Fi )|Fi |
|K |

i.e. λi (x) is the ratio of the volume of the simplex Ki (x) made up of
x and the vertices of Fi to the volume of K .
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Barycentric coordinates II

I λi (aj) = δij

I λi (x) = 0 ∀x ∈ Fi

I
∑d

i=0 λi (x) = 1 ∀x ∈ Rd

(just sum up the volumes)
I
∑d

i=0 λi (x)(x − ai ) = 0 ∀x ∈ Rd

(due to
∑
λi (x)x = x and

∑
λiai = x as the vector of linear

coordinate functions)
I Unit simplex:

I λ0(x) = 1−
∑d

i=1 xi
I λi (x) = xi for 1 ≤ i ≤ d
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Polynomial space Pk
I Space of polynomials in x1 . . . xd of total degree ≤ k with real

coefficients αi1...id :

Pk =





p(x) =
∑

0≤i1...id≤k
i1+···+id≤k

αi1...id x i1
1 . . . x id

d





I Dimension:

dimPk =
(

d + k
k

)
=





k + 1, d = 1
1
2 (k + 1)(k + 2), d = 2
1
6 (k + 1)(k + 2)(k + 3), d = 3

dimP1 = d + 1

dimP2 =





3, d = 1
6, d = 2
10, d = 3

Lecture 26 Slide 18



Lecture 15 Slide 38

P1 simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = P1, such that s = d + 1
I Nodes ≡ vertices
I Basis functions ≡ barycentric coordinates
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Conformal triangulations

I Let Th be a subdivision of the polygonal domain Ω ⊂ Rd into
non-intersecting compact simplices Km, m = 1 . . . ne :

Ω =
ne⋃

m=1
Km

I Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K̂ :

Km = Tm(K̂ )

I We assume that it is conformal, i.e. if Km, Kn have a d − 1
dimensional intersection F = Km ∩ Kn, then there is a face F̂ of K̂
and renumberings of the vertices of Kn,Km such that
F = Tm(F̂ ) = Tn(F̂ ) and Tm|F̂ = Tn|F̂
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Conformal triangulations II

I d = 1 : Each intersection F = Km ∩ Kn is either empty or a common
vertex

I d = 2 : Each intersection F = Km ∩ Kn is either empty or a common
vertex or a common edge

I d = 3 : Each intersection F = Km ∩ Kn is either empty or a common
vertex or a common edge or a common face

I Delaunay triangulations are conformal
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Global degrees of freedom
I Let {a1 . . . aN} =

⋃
K∈Th

{aK ,1 . . . aK ,s}
I Degree of freedom map

j : Th × {1 . . . s} → {1 . . .N}
(K ,m) 7→ j(K ,m) the global degree of freedom number

I Global shape functions φ1, . . . , φN ∈Wh defined by

φi |K (aK ,m) =
{
δmn if ∃n ∈ {1 . . . s} : j(K , n) = i
0 otherwise

I Global degrees of freedom γ1, . . . , γN : Vh → R defined by

γi (vh) = vh(ai )
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P1 global shape functions
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Stiffness matrix for Laplace operator for P1 FEM
I Element-wise calculation:

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx =

∫

Ω

∑

K∈Th

∇φi |K∇φj |K dx

I Standard assembly loop:
for i , j = 1 . . .N do

set aij = 0
end
for K ∈ Th do

for m,n=0. . . d do
smn =

∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn
end

end

I Local stiffness matrix:

SK = (sK ;m,n) =
∫

K
∇λm∇λn dx
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Error estimates for homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) such that

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

Then, limh→0 ||u − uh||1,Ω = 0. If u ∈ H2(Ω) (e.g. on convex domains)
then

||u − uh||1,Ω ≤ ch|u|2,Ω
||u − uh||0,Ω ≤ ch2|u|2,Ω

Under certain conditions (convex domain, smooth coefficients) one also has

||u − uh||0,Ω ≤ ch|u|1,Ω

(“Aubin-Nitsche-Lemma”)
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H2-Regularity

I u ∈ H2(Ω) may be not fulfilled e.g.
I if Ω has re-entrant corners
I if on a smooth part of the domain, the boundary condition type

changes
I if problem coefficients (λ) are discontinuos

I Situations differ as well between two and three space dimensions
I Delicate theory, ongoing research in functional analysis
I Consequence for simuations

I Deterioration of convergence rate
I Remedy: local refinement of the discretization mesh

I using a priori information
I using a posteriori error estimators + automatic refinement of

discretizatiom mesh
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More complicated integrals

I Assume non-constant right hand side f , space dependent heat
conduction coefficient κ.

I Right hand side integrals

fi =
∫

K
f (x)λi (x) dx

I P1 stiffness matrix elements

aij =
∫

K
κ(x) ∇λi ∇λj dx

I Pk stiffness matrix elements created from higher order ansatz
functions
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Quadrature rules
I Quadrature rule:

∫

K
g(x) dx ≈ |K |

lq∑

l=1
ωlg(ξl )

I ξl : nodes, Gauss points
I ωl : weights
I The largest number k such that the quadrature is exact for

polynomials of order k is called order kq of the quadrature rule, i.e.

∀k ≤ kq,∀p ∈ Pk
∫

K
p(x) dx = |K |

lq∑

l=1
ωlp(ξl )

I Error estimate:

∀φ ∈ Ckq+1(K ),

∣∣∣∣∣∣
1
|K |

∫

K
φ(x) dx−

lq∑

l=1
ωlg(ξl )

∣∣∣∣∣∣

≤ chkq+1
K sup

x∈K ,|α|=kq+1
|∂αφ(x)|
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Some common quadrature rules

Nodes are characterized by the barycentric coordinates
d kq lq Nodes Weights
1 1 1 ( 1

2 ,
1
2 ) 1

1 2 (1, 0), (0, 1) 1
2 ,

1
2

3 2 ( 1
2 +

√
3

6 ,
1
2 −

√
3

6 ), ( 1
2 −

√
3

6 ,
1
2 +

√
3

6 ) 1
2 ,

1
2

5 3 ( 1
2 , ), (

1
2 +
√

3
20 ,

1
2 −
√

3
20 ), ( 1

2 −
√

3
20 ,

1
2 +
√

3
20 ) 8

18 ,
5

18 ,
5

18
2 1 1 ( 1

3 ,
1
3 ,

1
3 ) 1

1 3 (1, 0, 0), (0, 1, 0), (0, 0, 1) 1
3 ,

1
3 ,

1
3

2 3 ( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 ), (0, 1

2 ,
1
2 ) 1

3 ,
1
3 ,

1
3

3 4 ( 1
3 ,

1
3 ,

1
3 ), ( 1

5 ,
1
5 ,

3
5 ), ( 1

5 ,
3
5 ,

1
5 ), ( 3

5 ,
1
5 ,

1
5 ), − 9

16 ,
25
48 ,

25
48 ,

25
48

3 1 1 ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) 1

1 4 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) 1
4 ,

1
4 ,

1
4 ,

1
4

2 4 ( 5−
√

5
20 , 5−

√
5

20 , 5−
√

5
20 , 5+3

√
5

20 ) . . . 1
4 ,

1
4 ,

1
4 ,

1
4
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Matching of approximation order and quadrature order

I “Variational crime”: instead of

a(uh, vh) = f (vh) ∀vh ∈ Vh

we solve
ah(uh, vh) = fh(vh) ∀vh ∈ Vh

where ah, fh are derived from their exact counterparts by quadrature
I For P1 finite elements, zero order quadrature for volume integrals and

first order quadrature for surface intergals is sufficient to keep the
convergence order estimates stated before

I The rule of thumb for the volume quadrature is that the highest order
terms must be evaluated exactly if the coefficients of the PDE are
constant.
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P1 FEM stiffness matrix condition number

I Homogeneous dirichlet boundary value problem

−∇ · κ∇u = f in Ω
u|∂Ω = 0

I Lagrange degrees of freedom a1 . . . aN corresponding to global basis
functions φ1 . . . φN such that φi |∂Ω = 0 aka φi ∈ Vh ⊂ H1

0 (Ω)
I Stiffness matrix A = (aij):

aij = a(φi , φj) =
∫

Ω
κ∇φi∇φj dx

I bilinear form a(·, ·) is self-adjoint, therefore A is symmetric, positive
definite

I Condition number estimate for P1 finite elements on quasi-uniform
triangulation:

κ(A) ≤ ch−2
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The problem with Dirichlet boundary conditions

I Homogeneous Dirichlet BC ⇒ include boundary condition into set of
basis functions

I Inhomogeneous Dirichlet, may be only at a part of the boundary
I Use exact approach from as in continous formulation (with lifting ug

etc) ⇒ highly technical
I Eliminate Dirichlet BC algebraically after building of the matrix, i.e.

fix “known unknowns” at the Dirichlet boundary ⇒ highly technical
I Modifiy matrix such that equations at boundary exactly result in

Dirichlet values ⇒ loss of symmetry of the matrix
I Penalty method
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Dirichlet BC: Algebraic manipulation

I Assume 1D situation with BC u1 = g
I From integration in H1 regardless of boundary values:

AU =




1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .







u1
u2
u3
...


 =




f1
f2
f3
...




I Fix u1 and eliminate:

A′U =




2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .







u2
u3
...


 =




f2 + 1
h g

f3
...




I A′ becomes idd and stays symmetric
I operation is quite technical
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Dirichlet BC: Modify boundary equations

I From integration in H1 regardless of boundary values:

AU =




1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .







u1
u2
u3
...


 =




f1
f2
f3
...




I Modify equation at boundary to exactly represent Dirichlet values

A′U =




1
h 0
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .







u1
u2
u3
...


 =




1
h g
f2
f3
...




I A′ becomes idd
I loses symmetry ⇒ problem e.g. with CG method
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Dirichlet BC: Discrete penalty trick
I From integration in H1 regardless of boundary values:

AU =




1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .







u1
u2
u3
...


 =




f1
f2
f3
...




I Add penalty terms

A′U =




1
ε + 1

h − 1
h

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .







u1
u2
u3
...


 =




f1 + 1
εg

f2
f3
...




I A′ becomes idd, keeps symmetry, and the realization is technically
easy.

I If ε is small enough, u1 = g will be satisfied exactly within floating
point accuracy.

I Iterative methods should be initialized with Dirichlet values.
I Works for nonlinear problems, finite volume methods

Lecture 26 Slide 35



Lecture 18 Slide 15

Dirichlet penalty trick, general formulation
I Dirichlet boundary value problem

−∇ · κ∇u = f in Ω
u|∂Ω = g

I We discussed approximation of Dirichlet problem by Robin problem
I Practical realization uses discrete approach for Lagrange degrees of

freedom a1 . . . aN corresponding to global basis functions φ1 . . . φN :
I Search uh =

∑N
i=1 uiφi ∈ Vh = span{φ1 . . . φN} such that

AU + ΠU = F + ΠG

where
I U = (u1 . . . uN)
I A = (aij ): stiffness matrix with aij =

∫
Ω κ∇φi∇φj dx

I F =
∫

Ω f∇φi dx

I G = (gi ) with gi =
{

g(ai ), ai ∈ ∂Ω
0, else

I Π = (πij ) is a diagonal matrix with πij =
{ 1

ε
, i = j, ai ∈ ∂Ω

0, else
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Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑

j=1
aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.
For a given vector b, regard the function

f (u) = 1
2a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .
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Method of steepest descent

I Given some vector ui , look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui ).
I So look for ui+1 in the direction of −f ′(ui ) = ri = b − Aui such that

it minimizes f in this direction, i.e. set ui+1 = ui +αri with α choosen
from

0 = d
dα f (ui + αri ) = f ′(ui + αri ) · ri

= (b − A(ui + αri ), ri )
= (b − Aui , ri )− α(Ari , ri )
= (ri , ri )− α(Ari , ri )

α = (ri , ri )
(Ari , ri )
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Method of steepest descent: iteration scheme

ri = b − Aui

αi = (ri , ri )
(Ari , ri )

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û, then ri = −Aei

Let ||u||A = (Au, u) 1
2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.
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Method of steepest descent: advantages

I Simple Richardson iteration uk+1 = uk − α(Auk − f ) needs good
eigenvalue estimate to be optimal with α = 2

λmax +λmin

I In this case, asymptotic convergence rate is ρ = κ−1
κ+1

I Steepest descent has the same rate without need for spectral estimate

Lecture 26 Slide 40



Lecture 10 Slide 25

Conjugate directions
For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.
So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j .

I Look for ui+1 in the direction of di such that it minimizes f in this
direction, i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα f (ui + αdi ) = f ′(ui + αdi ) · di

= (b − A(ui + αdi ), di )
= (b − Aui , di )− α(Adi , di )
= (ri , di )− α(Adi , di )

αi = (ri , di )
(Adi , di )
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Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0

I Define

di = vi +
i−1∑

k=0
βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +
i−1∑

k=0
βik(Adk , dj)

0 = (Avi , dj) + βij(Adj , dj)

βij = − (Avi , dj)
(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory
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Conjugate gradients IV - The algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri )
(Adi , di )

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri )

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.
Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.
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Preconditioned CG II

Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri )
(Adi , di )

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri )

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.
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Examinations

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Thu Mar 28.
Wed May 8. 14:00-17:00
I 13:00 times do not work! Please reschedule (sorry).


