Scientific Computing WS 2018/2019

Lecture 26

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recapitulation I: Finite Elements

- Strong formulation of PDE
- Problems with strong formulation
- Weak formulation of PDE, solvability
- Galerkin ansatz
- Matrix form
- Matrix element calculation
- Matrix properties
- Solution of matrix problem

Second order elliptic PDEs

Stationary case: $\partial_{t} u=0 \Rightarrow$ second order elliptic PDE

$$
-\nabla \cdot(\delta \nabla u(x))=f(x)
$$

- Stationary heat conduction, stationary diffusion
- Incompressible flow in saturated porous media: u : pressure $\delta=k$: permeability, flux $=-k \nabla u$: "Darcy's law"
- Electrical conduction: u: electric potential $\delta=\sigma$: electric conductivity flux $=-\sigma \nabla u \equiv$ current density: "Ohms's law"
- Poisson equation (electrostatics in a constant magnetic field): u : electrostatic potential, ∇u : electric field, $\delta=\varepsilon$: dielectric permittivity, f : charge density

Second order PDEs: boundary conditions

- Combine PDE in the interior with boundary conditions on variable u and/or or normal flux $\delta \nabla u \cdot \mathbf{n}$
- Assume $\partial \Omega=\cup_{i=1}^{N_{\Gamma}} \Gamma_{i}$ is the union of a finite number of non-intersecting subsets Γ_{i} which are locally Lipschitz.
- On each Γ_{i}, specify one of
- Dirichlet ("first kind"): let $g_{i}: \Gamma_{i} \rightarrow \mathbb{R}$ (homogeneous for $g_{i}=0$)

$$
u(x)=u_{\Gamma_{i}}(x) \quad \text { for } x \in \Gamma_{i}
$$

- Neumann ("second kind"): Let $g_{i}: \Gamma_{i} \rightarrow \mathbb{R}$ (homogeneus for $g_{i}=0$)

$$
\delta \nabla u(x) \cdot \mathbf{n}=g_{i}(x) \quad \text { for } x \in \Gamma_{i}
$$

- Robin ("third kind"): let $\alpha_{i}, g_{i}: \Gamma_{i} \rightarrow \mathbb{R}$

$$
\delta \nabla u(x) \cdot \mathbf{n}+\alpha_{i}(x)\left(u(x)-g_{i}(x)\right)=0 \quad \text { for } x \in \Gamma_{i}
$$

- Boundary functions may be time dependent.

Problems with "strong formulation"

Writing the PDE with divergence and gradient assumes smoothness of coefficients and at least second derivatives for the solution.

- δ may not be continuous - what is then $\nabla \cdot(\delta \nabla u)$?
- Approximation of solution u e.g. by piecewise linear functions what does ∇u mean ?
- Spaces of twice, and even once continuously differentiable functions is not well suited:
- Favorable approximation functions (e.g. piecewise linear ones) are not contained
- Though they can be equipped with norms (\Rightarrow Banach spaces) they have no scalar product \Rightarrow no Hilbert spaces
- Not complete: Cauchy sequences of functions may not converge to elements in these spaces

Derivation of weak formulation

- Sobolev space theory provides a convenient framework to formulate existence, uniqueness and approximations of solutions of PDEs.
- Stationary heat conduction equation with homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u(x) & =f(x) \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function $v \in C_{0}^{\infty}(\Omega)$ and apply Green's theorem using $v=0$ on $\partial \Omega$

$$
\begin{aligned}
-\int_{\Omega}(\nabla \cdot \lambda \nabla u) v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x} \\
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x}
\end{aligned}
$$

Weak formulation of homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ (here, $\operatorname{tr} u=0$) such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x} \forall v \in H_{0}^{1}(\Omega)
$$

- Then,

$$
a(u, v):=\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}
$$

is a self-adjoint bilinear form defined on the Hilbert space $H_{0}^{1}(\Omega)$.

- It is bounded due to Cauchy-Schwarz:

$$
|a(u, v)|=|\lambda| \cdot\left|\int_{\Omega} \nabla u \nabla v d \mathbf{x}\right| \leq\|u\|_{H_{0}^{1}(\Omega)} \cdot\|v\|_{H_{0}^{1}(\Omega)}
$$

- $f(v)=\int_{\Omega} f v d \mathbf{x}$ is a linear functional on $H_{0}^{1}(\Omega)$. For Hilbert spaces V the dual space V^{\prime} (the space of linear functionals) can be identified with the space itself.

The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$
\exists \alpha>0: \forall u \in V, a(u, u) \geq \alpha\|u\|_{V}^{2}
$$

Then the problem: find $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

admits one and only one solution with an a priori estimate

$$
\|u\|_{v} \leq \frac{1}{\alpha}\|f\|_{v^{\prime}}
$$

Coercivity of weak formulation

Theorem: Assume $\lambda>0$. Then the weak formulation of the heat conduction problem: search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x} \forall v \in H_{0}^{1}(\Omega)
$$

has an unique solution.
Proof: $a(u, v)$ is cocercive:

$$
a(u, v)=\int_{\Omega} \lambda \nabla u \nabla u d \mathbf{x}=\lambda\|u\|_{H_{0}^{1}(\Omega)}^{2}
$$

Weak formulation of inhomogeneous Dirichlet problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

- If g is smooth enough, there exists a lifting $u_{g} \in H^{1}(\Omega)$ such that $\left.u_{g}\right|_{\partial \Omega}=g$. Then, we can re-formulate:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla\left(u-u_{g}\right) & =f+\nabla \cdot \lambda \nabla u_{g} \text { in } \Omega \\
u-u_{g} & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \\
\int_{\Omega} \lambda \nabla \phi \nabla v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x}+\int_{\Omega} \lambda \nabla u_{g} \nabla v \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Here, necessarily, $\phi \in H_{0}^{1}(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

The Galerkin method II

- Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α, and continuity constant γ.
- Continuous problem: search $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

- Let $V_{h} \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_{h} ?
- Let $v_{h} \in V_{h}$ be arbitrary. Then

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (Coercivity) } \\
& =a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}\right) \quad \text { (Galerkin Orthogonality) } \\
& \leq \gamma\left\|u-u_{h}\right\| \cdot\left\|u-v_{h}\right\| \quad \text { (Boundedness) }
\end{aligned}
$$

- As a result

$$
\left\|u-u_{h}\right\| \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|
$$

- Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_{h}.

From the Galerkin method to the matrix equation

- Let $\phi_{1} \ldots \phi_{n}$ be a set of basis functions of V_{h}.
- Then, we have the representation $u_{h}=\sum_{j=1}^{n} u_{j} \phi_{j}$
- In order to search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

it is actually sufficient to require

$$
\begin{aligned}
a\left(u_{h}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
a\left(\sum_{j=1}^{n} u_{j} \phi_{j}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
\sum_{j=1}^{n} a\left(\phi_{j}, \phi_{i}\right) u_{j} & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
A U & =F
\end{aligned}
$$

with $A=\left(a_{i j}\right), a_{i j}=a\left(\phi_{i}, \phi_{j}\right), F=\left(f_{i}\right), f_{i}=F\left(\phi_{i}\right), U=\left(u_{i}\right)$.

- Matrix dimension is $n \times n$. Matrix sparsity ?

The finite element idea

- Choose basis functions with local support. In this case, the matrix becomes sparse, as only integrals of basis function pairs with overlapping support contribute to the matrix.
- Linear finite elements in $\Omega=(a, b) \subset \mathbb{R}^{1}$:
- Partition $a=x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$
- Basis functions (for $i=1 \ldots n$)

$$
\phi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & i>1, x \in\left(x_{i-1}, x_{i}\right) \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}}, & i<n, x \in\left(x_{i}, x_{i+1}\right) \\ 0, & \text { else }\end{cases}
$$

- Any function $u_{h} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{n}\right\}$ is piecewise linear, and the coefficients in the representation $u_{h}=\sum_{i=1}^{n} u_{i} \phi_{i}$ are the values $u_{h}\left(x_{i}\right)$.
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined !

Simplices

- Let $\left\{a_{0} \ldots a_{d}\right\} \subset \mathbb{R}^{d}$ such that the d vectors $a_{1}-a_{0} \ldots a_{d}-a_{0}$ are linearly independent. Then the convex hull K of $a_{0} \ldots a_{d}$ is called simplex, and $a_{0} \ldots a_{d}$ are called vertices of the simplex.
- Unit simplex: $a_{0}=(0 \ldots 0), a_{1}=(0,1 \ldots 0) \ldots a_{d}=(0 \ldots 0,1)$.

$$
K=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0(i=1 \ldots d) \text { and } \sum_{i=1}^{d} x_{i} \leq 1\right\}
$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_{i} : face of K opposite to a_{i}
- \mathbf{n}_{i} : outward normal to F_{i}

Barycentric coordinates

- Let K be a simplex.
- Functions $\lambda_{i}(i=0 \ldots d)$:

$$
\begin{aligned}
\lambda_{i}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \lambda_{i}(x)=1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}
\end{aligned}
$$

where a_{j} is any vertex of K situated in F_{i}.

- For $x \in K$, one has

$$
\begin{aligned}
1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} & =\frac{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}-\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} \\
& =\frac{\left(a_{j}-x\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}=\frac{\operatorname{dist}\left(x, F_{i}\right)}{\operatorname{dist}\left(a_{i}, F_{i}\right)} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right| / d}{\operatorname{dist}\left(a_{i}, F_{i}\right)\left|F_{i}\right| / d} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right|}{|K|}
\end{aligned}
$$

i.e. $\lambda_{i}(x)$ is the ratio of the volume of the simplex $K_{i}(x)$ made up of x and the vertices of F_{i} to the volume of K.

Barycentric coordinates II

- $\lambda_{i}\left(a_{j}\right)=\delta_{i j}$
- $\lambda_{i}(x)=0 \forall x \in F_{i}$
- $\sum_{i=0}^{d} \lambda_{i}(x)=1 \forall x \in \mathbb{R}^{d}$
(just sum up the volumes)
- $\sum_{i=0}^{d} \lambda_{i}(x)\left(x-a_{i}\right)=0 \forall x \in \mathbb{R}^{d}$
(due to $\sum \lambda_{i}(x) x=x$ and $\sum \lambda_{i} a_{i}=x$ as the vector of linear coordinate functions)
- Unit simplex:
- $\lambda_{0}(x)=1-\sum_{i=1}^{d} x_{i}$
- $\lambda_{i}(x)=x_{i}$ for $1 \leq i \leq d$

Polynomial space \mathbb{P}_{k}

- Space of polynomials in $x_{1} \ldots x_{d}$ of total degree $\leq k$ with real coefficients $\alpha_{i_{1} \ldots i_{d}}$:

$$
\mathbb{P}_{k}=\left\{p(x)=\sum_{\substack{0 \leq i_{1} \ldots i_{d_{d}} \leq k \\ i_{1}+\cdots+i_{d} \leq k}} \alpha_{i_{1} \ldots i_{d}} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}\right\}
$$

- Dimension:

$$
\begin{aligned}
\operatorname{dim} \mathbb{P}_{k}=\binom{d+k}{k} & = \begin{cases}k+1, & d=1 \\
\frac{1}{2}(k+1)(k+2), & d=2 \\
\frac{1}{6}(k+1)(k+2)(k+3), & d=3\end{cases} \\
\operatorname{dim} \mathbb{P}_{1} & =d+1 \\
\operatorname{dim} \mathbb{P}_{2} & = \begin{cases}3, & d=1 \\
6, & d=2 \\
10, & d=3\end{cases}
\end{aligned}
$$

\mathbb{P}_{1} simplex finite elements

- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{1}$, such that $s=d+1$
- Nodes \equiv vertices
- Basis functions \equiv barycentric coordinates

Conformal triangulations

- Let \mathcal{T}_{h} be a subdivision of the polygonal domain $\Omega \subset \mathbb{R}^{d}$ into non-intersecting compact simplices $K_{m}, m=1 \ldots n_{e}$:

$$
\bar{\Omega}=\bigcup_{m=1}^{n_{e}} K_{m}
$$

- Each simplex can be seen as the image of a affine transformation of a reference (e.g. unit) simplex \widehat{K} :

$$
K_{m}=T_{m}(\widehat{K})
$$

- We assume that it is conformal, i.e. if K_{m}, K_{n} have a $d-1$ dimensional intersection $F=K_{m} \cap K_{n}$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_{n}, K_{m} such that $F=T_{m}(\widehat{F})=T_{n}(\widehat{F})$ and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$

Conformal triangulations II

- $d=1$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex
- $d=2$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge

- $d=3$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

Global degrees of freedom

- Let $\left\{a_{1} \ldots a_{N}\right\}=\bigcup_{K \in \mathcal{T}_{h}}\left\{a_{K, 1} \ldots a_{K, s}\right\}$
- Degree of freedom map

$$
\begin{aligned}
j: \mathcal{T}_{h} \times\{1 \ldots s\} & \rightarrow\{1 \ldots N\} \\
(K, m) & \mapsto j(K, m) \text { the global degree of freedom number }
\end{aligned}
$$

- Global shape functions $\phi_{1}, \ldots, \phi_{N} \in W_{h}$ defined by

$$
\left.\phi_{i}\right|_{K}\left(a_{K, m}\right)= \begin{cases}\delta_{m n} & \text { if } \exists n \in\{1 \ldots s\}: j(K, n)=i \\ 0 & \text { otherwise }\end{cases}
$$

- Global degrees of freedom $\gamma_{1}, \ldots, \gamma_{N}: V_{h} \rightarrow \mathbb{R}$ defined by

$$
\gamma_{i}\left(v_{h}\right)=v_{h}\left(a_{i}\right)
$$

P^{1} global shape functions

Stiffness matrix for Laplace operator for P1 FEM

- Element-wise calculation:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d \mathbf{x}=\int_{\Omega} \sum_{K \in \mathcal{T}_{h}} \nabla \phi_{i}\left|k \nabla \phi_{j}\right|_{K} d \mathbf{x}
$$

- Standard assembly loop:

$$
\begin{aligned}
& \text { for } i, j=1 \ldots N \text { do } \\
& \text { set } a_{i j}=0 \\
& \text { end } \\
& \text { for } K \in \mathcal{T}_{h} \text { do } \\
& \text { for } m, n=0 \ldots d \text { do } \\
& s_{m n}=\int_{K} \nabla \lambda_{m} \nabla \lambda_{n} d \mathbf{x} \\
& a_{j_{d o f}(K, m), j_{d o f}(K, n)}=a_{j_{d o f}(K, m), j_{d o f}(K, n)}+s_{m n} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

- Local stiffness matrix:

$$
S_{K}=\left(s_{K ; m, n}\right)=\int_{K} \nabla \lambda_{m} \nabla \lambda_{n} d \mathbf{x}
$$

Error estimates for homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x} \forall v \in H_{0}^{1}(\Omega)
$$

Then, $\lim _{h \rightarrow 0}\left\|u-u_{h}\right\|_{1, \Omega}=0$. If $u \in H^{2}(\Omega)$ (e.g. on convex domains) then

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{1, \Omega} & \leq c h|u|_{2, \Omega} \\
\left\|u-u_{h}\right\|_{0, \Omega} & \leq c h^{2}|u|_{2, \Omega}
\end{aligned}
$$

Under certain conditions (convex domain, smooth coefficients) one also has

$$
\left\|u-u_{h}\right\|_{0, \Omega} \leq c h|u|_{1, \Omega}
$$

("Aubin-Nitsche-Lemma")

H^{2}-Regularity

- $u \in H^{2}(\Omega)$ may be not fulfilled e.g.
- if Ω has re-entrant corners
- if on a smooth part of the domain, the boundary condition type changes
- if problem coefficients (λ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
- Deterioration of convergence rate
- Remedy: local refinement of the discretization mesh
- using a priori information
- using a posteriori error estimators + automatic refinement of discretizatiom mesh

More complicated integrals

- Assume non-constant right hand side f, space dependent heat conduction coefficient κ.
- Right hand side integrals

$$
f_{i}=\int_{K} f(x) \lambda_{i}(x) d \mathbf{x}
$$

- P^{1} stiffness matrix elements

$$
a_{i j}=\int_{K} \kappa(x) \nabla \lambda_{i} \nabla \lambda_{j} d \mathbf{x}
$$

- P^{k} stiffness matrix elements created from higher order ansatz functions

Quadrature rules

- Quadrature rule:

$$
\int_{K} g(x) d \mathbf{x} \approx|K| \sum_{l=1}^{l_{q}} \omega_{l} g\left(\xi_{l}\right)
$$

- ξ_{1} : nodes, Gauss points
- ω_{1} : weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_{q} of the quadrature rule, i.e.

$$
\forall k \leq k_{q}, \forall p \in \mathbb{P}^{k} \int_{K} p(x) d \mathbf{x}=|K| \sum_{l=1}^{I_{q}} \omega_{l} p\left(\xi_{l}\right)
$$

- Error estimate:

$$
\begin{aligned}
\forall \phi \in \mathcal{C}^{k_{q}+1}(K), \left\lvert\, \frac{1}{|K|} \int_{K} \phi(x) d \mathbf{x}\right. & -\sum_{l=1}^{l_{q}} \omega_{l} g\left(\xi_{l}\right) \mid \\
& \leq c h_{K}^{k_{q}+1} \sup _{x \in K,|\alpha|=k_{q}+1}\left|\partial^{\alpha} \phi(x)\right|
\end{aligned}
$$

Some common quadrature rules

Nodes are characterized by the barycentric coordinates

d	k_{q}	I_{q}	Nodes	Weights
1	1	1	$\left(\frac{1}{2}, \frac{1}{2}\right)$	1
	1	2	$(1,0),(0,1)$	$\frac{1}{2}, \frac{1}{2}$
	3	2	$\left(\frac{1}{2}+\frac{\sqrt{3}}{6}, \frac{1}{2}-\frac{\sqrt{3}}{6}\right),\left(\frac{1}{2}-\frac{\sqrt{3}}{6}, \frac{1}{2}+\frac{\sqrt{3}}{6}\right)$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$\left(\frac{1}{2},\right),\left(\frac{1}{2}+\sqrt{\frac{3}{20}}, \frac{1}{2}-\sqrt{\frac{3}{20}}\right),\left(\frac{1}{2}-\sqrt{\frac{3}{20}}, \frac{1}{2}+\sqrt{\frac{3}{20}}\right)$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	1
	1	3	$(1,0,0),(0,1,0),(0,0,1)$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right)$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right),\left(\frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right),\left(\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right)$,	$-\frac{9}{16}, \frac{54}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	
	1	4	$(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3 \sqrt{5}}{20}\right) \ldots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Matching of approximation order and quadrature order

- "Variational crime": instead of

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

we solve

$$
a_{h}\left(u_{h}, v_{h}\right)=f_{h}\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

where a_{h}, f_{h} are derived from their exact counterparts by quadrature

- For P^{1} finite elements, zero order quadrature for volume integrals and first order quadrature for surface intergals is sufficient to keep the convergence order estimates stated before
- The rule of thumb for the volume quadrature is that the highest order terms must be evaluated exactly if the coefficients of the PDE are constant.

P1 FEM stiffness matrix condition number

- Homogeneous dirichlet boundary value problem

$$
\begin{gathered}
-\nabla \cdot \kappa \nabla u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{gathered}
$$

- Lagrange degrees of freedom $a_{1} \ldots a_{N}$ corresponding to global basis functions $\phi_{1} \ldots \phi_{N}$ such that $\left.\phi_{i}\right|_{\partial \Omega}=0$ aka $\phi_{i} \in V_{h} \subset H_{0}^{1}(\Omega)$
- Stiffness matrix $A=\left(a_{i j}\right)$:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \kappa \nabla \phi_{i} \nabla \phi_{j} d \mathbf{x}
$$

- bilinear form $a(\cdot, \cdot)$ is self-adjoint, therefore A is symmetric, positive definite
- Condition number estimate for P^{1} finite elements on quasi-uniform triangulation:

$$
\kappa(A) \leq c h^{-2}
$$

The problem with Dirichlet boundary conditions

- Homogeneous Dirichlet $\mathrm{BC} \Rightarrow$ include boundary condition into set of basis functions
- Inhomogeneous Dirichlet, may be only at a part of the boundary
- Use exact approach from as in continous formulation (with lifting u_{g} etc) \Rightarrow highly technical
- Eliminate Dirichlet BC algebraically after building of the matrix, i.e. fix "known unknowns" at the Dirichlet boundary \Rightarrow highly technical
- Modifiy matrix such that equations at boundary exactly result in Dirichlet values \Rightarrow loss of symmetry of the matrix
- Penalty method

Dirichlet BC: Algebraic manipulation

- Assume 1D situation with $\mathrm{BC} u_{1}=g$
- From integration in H^{1} regardless of boundary values:

$$
A U=\left(\begin{array}{ccccc}
\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- Fix u_{1} and eliminate:

$$
A^{\prime} U=\left(\begin{array}{cccc}
\frac{2}{h} & -\frac{1}{h} & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& \ddots & \ddots & \ddots .
\end{array}\right)\left(\begin{array}{c}
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{2}+\frac{1}{h} g \\
f_{3} \\
\vdots
\end{array}\right)
$$

- A^{\prime} becomes idd and stays symmetric
- operation is quite technical

Dirichlet BC: Modify boundary equations

- From integration in H^{1} regardless of boundary values:

$$
A U=\left(\begin{array}{ccccc}
\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- Modify equation at boundary to exactly represent Dirichlet values

$$
A^{\prime} U=\left(\begin{array}{ccccc}
\frac{1}{h} & 0 & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{h} g \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- A^{\prime} becomes idd
- loses symmetry \Rightarrow problem e.g. with CG method

Dirichlet BC: Discrete penalty trick

- From integration in H^{1} regardless of boundary values:

$$
A U=\left(\begin{array}{ccccc}
\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- Add penalty terms

$$
A^{\prime} U=\left(\begin{array}{ccccc}
\frac{1}{\varepsilon}+\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1}+\frac{1}{\varepsilon} g \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- A^{\prime} becomes idd, keeps symmetry, and the realization is technically easy.
- If ε is small enough, $u_{1}=g$ will be satisfied exactly within floating point accuracy.
- Iterative methods should be initialized with Dirichlet values.
- Works for nonlinear problems, finite volume methods

Dirichlet penalty trick, general formulation

- Dirichlet boundary value problem

$$
\begin{aligned}
& -\nabla \cdot \kappa \nabla u=f \quad \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=g
\end{aligned}
$$

- We discussed approximation of Dirichlet problem by Robin problem
- Practical realization uses discrete approach for Lagrange degrees of freedom $a_{1} \ldots a_{N}$ corresponding to global basis functions $\phi_{1} \ldots \phi_{N}$:
- Search $u_{h}=\sum_{i=1}^{N} u_{i} \phi_{i} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{N}\right\}$ such that

$$
A U+\Pi U=F+\Pi G
$$

where

- $U=\left(u_{1} \ldots u_{N}\right)$
- $A=\left(a_{i j}\right)$: stiffness matrix with $a_{i j}=\int_{\Omega} \kappa \nabla \phi_{i} \nabla \phi_{j} d \mathbf{x}$
- $F=\int_{\Omega} f \nabla \phi_{i} d \mathbf{x}$
- $G=\left(g_{i}\right)$ with $g_{i}= \begin{cases}g\left(a_{i}\right), & a_{i} \in \partial \Omega \\ 0, & \text { else }\end{cases}$
- $\Pi=\left(\pi_{i j}\right)$ is a diagonal matrix with $\pi_{i j}= \begin{cases}\frac{1}{\varepsilon}, & i=j, a_{i} \in \partial \Omega \\ 0, & \text { else }\end{cases}$

Solution of SPD system as a minimization procedure

Regard $A u=f$, where A is symmetric, positive definite. Then it defines a bilinear form $a: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
a(u, v)=(A u, v)=v^{T} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Method of steepest descent

- Given some vector u_{i}, look for a new iterate u_{i+1}.
- The direction of steepest descend is given by $-f^{\prime}\left(u_{i}\right)$.
- So look for u_{i+1} in the direction of $-f^{\prime}\left(u_{i}\right)=r_{i}=b-A u_{i}$ such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha r_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha r_{i}\right)=f^{\prime}\left(u_{i}+\alpha r_{i}\right) \cdot r_{i} \\
& =\left(b-A\left(u_{i}+\alpha r_{i}\right), r_{i}\right) \\
& =\left(b-A u_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
& =\left(r_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
\alpha & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)}
\end{aligned}
$$

Method of steepest descent: iteration scheme

$$
\begin{aligned}
r_{i} & =b-A u_{i} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} r_{i}
\end{aligned}
$$

Let \hat{u} the exact solution. Define $e_{i}=u_{i}-\hat{u}$, then $r_{i}=-A e_{i}$
Let $\|u\|_{A}=(A u, u)^{\frac{1}{2}}$ be the energy norm wrt. A.
Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number.

Method of steepest descent: advantages

- Simple Richardson iteration $u_{k+1}=u_{k}-\alpha\left(A u_{k}-f\right)$ needs good eigenvalue estimate to be optimal with $\alpha=\frac{2}{\lambda_{\max }+\lambda_{\text {min }}}$
- In this case, asymptotic convergence rate is $\rho=\frac{\kappa-1}{\kappa+1}$
- Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_{i}=r_{i}=-A e_{i}$ is not used several times. If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let $d_{0}, d_{1} \ldots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $\left(A d_{i}, d_{j}\right)=0, i \neq j$.

- Look for u_{i+1} in the direction of d_{i} such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha_{i} d_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha d_{i}\right)=f^{\prime}\left(u_{i}+\alpha d_{i}\right) \cdot d_{i} \\
& =\left(b-A\left(u_{i}+\alpha d_{i}\right), d_{i}\right) \\
& =\left(b-A u_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
& =\left(r_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
\alpha_{i} & =\frac{\left(r_{i}, d_{i}\right)}{\left(A d_{i}, d_{i}\right)}
\end{aligned}
$$

Gram-Schmidt Orthogonalization

- Assume we have been given some linearly independent vectors $v_{0}, v_{1} \ldots v_{n-1}$.
- Set $d_{0}=v_{0}$
- Define

$$
d_{i}=v_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k}
$$

- For $j<i$, A-project onto d_{j} and require orthogonality:

$$
\begin{aligned}
\left(A d_{i}, d_{j}\right) & =\left(A v_{i}, d_{j}\right)+\sum_{k=0}^{i-1} \beta_{i k}\left(A d_{k}, d_{j}\right) \\
0 & =\left(A v_{i}, d_{j}\right)+\beta_{i j}\left(A d_{j}, d_{j}\right) \\
\beta_{i j} & =-\frac{\left(A v_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}
\end{aligned}
$$

- If v_{i} are the coordinate unit vectors, this is Gaussian elimination!
- If v_{i} are arbitrary, they all must be kept in the memory

Conjugate gradients IV - The algorithm

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number.

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

Examinations

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Thu Mar 28.
Wed May 8. 14:00-17:00

- 13:00 times do not work! Please reschedule (sorry).

