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Recapitulation I: Finite Elements

» Strong formulation of PDE

» Problems with strong formulation

» Weak formulation of PDE, solvability
» Galerkin ansatz

» Matrix form

» Matrix element calculation

» Matrix properties

» Solution of matrix problem



Second order elliptic PDEs

Stationary case: 0;u = 0 = second order elliptic PDE

=V (6Vu(x)) = f(x)

» Stationary heat conduction, stationary diffusion

» Incompressible flow in saturated porous media: u: pressure
0 = k: permeability, flux=—kVu: “Darcy’s law”

» Electrical conduction: u: electric potential
0 = o: electric conductivity
flux=—oVu = current density: “Ohms’s law"

» Poisson equation (electrostatics in a constant magnetic field):
u: electrostatic potential, Vu: electric field,
0 = e: dielectric permittivity, f: charge density




Second order PDEs: boundary conditions

» Combine PDE in the interior with boundary conditions on variable u
and/or or normal flux §Vu - n

» Assume 00 = u{V:rlr,- is the union of a finite number of
non-intersecting subsets I'; which are locally Lipschitz.

» On each I;, specify one of
> Dirichlet (“first kind"): let g; : i — R (homogeneous for g; = 0)

u(x) = ur;(x) forxeT;

> Neumann (“second kind"): Let gj : [ — R (homogeneus for gj = 0)

dVu(x)-n=gi(x) forxerl;

> Robin (“third kind"): let aj, gi : i = R

OVu(x)-n+ ai(x) (u(x) —gi(x)) =0 forxerTl;

» Boundary functions may be time dependent.




Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

» & may not be continuous — what is then V - (§Vu)?

» Approximation of solution u e.g. by piecewise linear functions what
does Vu mean ?

» Spaces of twice, and even once continuously differentiable functions is
not well suited:

» Favorable approximation functions (e.g. piecewise linear ones) are not
contained

> Though they can be equipped with norms (= Banach spaces) they
have no scalar product = no Hilbert spaces

» Not complete: Cauchy sequences of functions may not converge to
elements in these spaces




Derivation of weak formulation

» Sobolev space theory provides a convenient framework to formulate
existence, uniqueness and approximations of solutions of PDEs.

» Stationary heat conduction equation with homogeneous Dirichlet
boundary conditions:

—V - AVu(x) = f(x) in Q
u=00n09d0N

Multiply and integrate with an arbitrary test function v € C§°(2) and
apply Green's theorem using v = 0 on 9Q

—/(V~)\Vu)vdx=/ fv dx
Q Q

/)\Vqudx:/ fv dx
Q Q




Weak formulation of homogeneous Dirichlet problem
» Search u € H}(Q) (here, tr u = 0) such that
/ AVuVvdx = / fvdx Vv € H3(Q)
Q Q
» Then,
a(u, v) ::/)\VUVvdx
Q

is a self-adjoint bilinear form defined on the Hilbert space H} ().
> It is bounded due to Cauchy-Schwarz:

|a(u, V)| = [A]- I/QVqudX\ <|ullmye) - [VIlHy@

» f(v) = [, fvdx is a linear functional on H3(S2). For Hilbert spaces V
the dual space V'’ (the space of linear functionals) can be identified
with the space itself.




The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

Ja>0:Vue V, a(u,u) > 04||U||%/~

Then the problem: find u € V such that

a(u,v) =f(v)VveV

admits one and only one solution with an a priori estimate

1
< |||
llullv < —IIfllv




Coercivity of weak formulation

Theorem: Assume A > 0. Then the weak formulation of the heat
conduction problem: search u € H3(Q) such that

/)\Vqudx:/ fv dx Vv € Hy(Q)
Q Q

has an unique solution.

Proof: a(u,v) is cocercive:

a(u,v) = / AVuVudx = )\Hqu_,l(Q)
Q 0




Weak formulation of inhomogeneous Dirichlet problem

-V - AVu=finQ
u=gondf2

» If g is smooth enough, there exists a lifting u, € H'(S2) such that
uglog = g. Then, we can re-formulate:

—V - AV(u—ug)=f+V-AVug in Q
u— ug =00n0Q

» Search u € H*(Q) such that
u=ug+¢

/AV¢Vvdx=/fvdx+//\Vung Vv € HY(Q)
Q Q Q

Here, necessarily, ¢ € H(Q2) and we can apply the theory for the
homogeneous Dirichlet problem.




The Galerkin method I

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive
with coercivity constant «, and continuity constant +.

» Continuous problem: search u € V such that
a(u,v)=f(v)V¥veV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search u, € V), such that

a(u;” Vh) = f(v;,) Yvhp € Vy

By Lax-Milgram, this problem has a unique solution as well.




Céa's lemma

» What is the connection between u and u, ?

> Let v, € V), be arbitrary. Then

allu— up|? < a(u — up, u— up)  (Coercivity)

a(u— up,u—vp) + a(u — up, vy — up)
= a(u — up,u—vy) (Galerkin Orthogonality)
< Allu—up|| - ||lu — va|| (Boundedness)

> As a result

o,
— < — inf -
= upll < 2 inf 1w = v

» Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace V.




From the Galerkin method to the matrix equation

> Let ¢1...¢, be a set of basis functions of V.
» Then, we have the representation u, = Zf:1 ujp;
» In order to search u, € V), such that

a(uh, Vh) = f(vh) Yvp € Vy

it is actually sufficient to require

a(up, di) = (i) (i=1...n)

a (Z uj¢jv¢i> =f(¢))(i=1...n)

> a(¢, ¢y = £(¢7) (i=1...n)

Jj=1

AU=F

Wlth A = (a,-j), a,-j = a(¢,-,gbj), F = (ﬁ), ﬁ = F(¢,), U = (U,').
» Matrix dimension is n x n. Matrix sparsity 7




The finite element idea

» Choose basis functions with local support. In this case, the matrix
becomes sparse, as only integrals of basis function pairs with
overlapping support contribute to the matrix.

» Linear finite elements in Q = (a, b) C R®:
» Partitiona=x1 <x <.---<x,=0>b

» Basis functions (for i =1...n)

i > Lx e (xii1,x)
$i(x) = § =5, 1< nx € (xi,%41)
0, else

» Any function up € Vj, = span{¢s ... d,} is piecewise linear, and the
coefficients in the representation up = 27:1 uj¢p; are the values
U/—,(X,‘).

» Fortunately, we are working with a weak formulation, and weak
derivatives are well defined !




Simplices

v

Let {ap...aq4} C R? such that the d vectors a; — ag ... aq — ag are
linearly independent. Then the convex hull K of ag... ay is called
simplex, and ag . .. ay are called vertices of the simplex.

Unit simplex: ap = (0...0),a; = (0,1...0)...a;=(0...0,1).

v

d
K—{xe]Rd:x,-ZO(i—l...d)and Zx,-g1}
i=1

> A general simplex can be defined as an image of the unit simplex
under some affine transformation

» F;: face of K opposite to a;

» n;: outward normal to F;




Barycentric coordinates
> Let K be a simplex.
» Functions \; (i =0...d):
A:RI SR
X (x) =1 Xz
(aj —ai) - i

where a; is any vertex of K situated in F;.
» For x € K, one has
(x—a)-n;  (a—a)-n— (xfa) n;
1— =
(aj —ai) - i (aj—ai)-n
(g =x)-m; dlst( F)
~(aj—a)-n; dist(a;, F)
_ dist(x, F)|Fi|/d
~ dist(a;, F)|Fi|/d
 dist(x, F)|Fi
K|

i.e. A\j(x) is the ratio of the volume of the simplex K;(x) made up of

x and the vertices of F; to the volume of K.




Barycentric coordinates |l

> Ai(aj) = 0y

» \i(x)=0Vx € F;

> Z,io Ai(x) =1Vx € RY
(just sum up the volumes)

> S N(X)(x — ai) = 0 Vx € RY
(due to > \i(x)x = x and Y A\;a; = x as the vector of linear
coordinate functions)

» Unit simplex:

> do(x)=1-— 27:1 Xi
» Ai(x)=x for1 <i<d




Polynomial space Py
» Space of polynomials in xy ...xy of total degree < k with real
coefficients vy, i,

i i

Py =< p(x) = E Qi igX) - Xy
0<iy...ig<k
it tig <k

» Dimension:

d K k41,
dimIPk:( B ): 2(k+1)(k +2),
F(k+1)(k+2)(k +3),
dimP; =d+1
3, d
dmP, =4¢6, d
10, d

Qo Q
I
w N =

1
2
3




[P; simplex finite elements

K: simplex spanned by ag...aq in RY

P =P, suchthat s=d +1

Nodes = vertices

Basis functions = barycentric coordinates

ad

o o
o5 02 o
o8 To 8002 o o on o 0 R To 0

vyvyyvyy
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Conformal triangulations

> Let 7, be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,,, m=1...n,

» Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K:

Km = Tm(K)

» We assume that it is conformal, i.e. if K,, K, havea d —1
dimensional intersection F = K,, N K,,, then there is a face F of K
and renuTbenngs gf the vertices of K,,, K, such that
F=Tn(F)=T,(F) and Tm|? = T,,|?




Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common
vertex

» d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

» d =3 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge or a common face

» Delaunay triangulations are conformal




Global degrees of freedom

> Let {31 c. aN} = U {2K71 c. 2K75}
KETh
> Degree of freedom map

JiThx{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number

» Global shape functions ¢1,...,¢n € W), defined by

Omn if3ne{l...s}:j(K,n)=1i
0 otherwise

oilk(ak,m) = {

> Global degrees of freedom ~1,...,vy : Vi, — R defined by

i(vh) = va(a;)




P! global shape functions
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Stiffness matrix for Laplace operator for P1 FEM

» Element-wise calculation:

aj = a(¢i, ¢j) = /QV¢:'V¢J' dx :/Q Z VéilkVejlk dx

KeTh

» Standard assembly loop:
fori,j=1...N do
| seta;=0
end
for K € T, do
for m,n=0...d do

Smn :/ VAnVA, dx
K

3jor (K, m) sjaor (Kyn) = e (K,m).jsor (K,n) T Smin

end
end

» Local stiffness matrix:

SK = (SK;m,n) :/ V/\mV/\n dx
K




Error estimates for homogeneous Dirichlet problem

» Search u € H}(Q) such that

/Wuvvdx: / fvdx Vv € H3(Q)
Q Q

Then, limp_yo ||t — upl|1.0 = 0. If u € H?(Q) (e.g. on convex domains)
then

|lu— unll1,a < chlul20
||lu— uplloq < ch?|ulaq

Under certain conditions (convex domain, smooth coefficients) one also has

[lu— upllo,o < chlulio

(“*Aubin-Nitsche-Lemma")




H?-Regularity

v

u € H?(Q) may be not fulfilled e.g.

> if Q has re-entrant corners

> if on a smooth part of the domain, the boundary condition type
changes

> if problem coefficients (\) are discontinuos

» Situations differ as well between two and three space dimensions

v

Delicate theory, ongoing research in functional analysis
» Consequence for simuations

» Deterioration of convergence rate
> Remedy: local refinement of the discretization mesh
> using a priori information
> using a posteriori error estimators + automatic refinement of
discretizatiom mesh




More complicated integrals

v

Assume non-constant right hand side f, space dependent heat
conduction coefficient k.

v

Right hand side integrals
f; :/ f(x)Ai(x) dx
K

P! stiffness matrix elements

v

aj = / K(X) VA, V)\_, dx
K

v

P* stiffness matrix elements created from higher order ansatz
functions




Quadrature rules
» Quadrature rule:

[ £t e~ K| wrg()

=1

v

&) nodes, Gauss points

wy: weights

The largest number k such that the quadrature is exact for
polynomials of order k is called order kq of the quadrature rule, i.e.

vy

lq
Vk < kq,¥p € IP”‘/ p(x) dx = K| Y wip(&)
K =1

v

Error estimate:

V¢€Ck+1 |K|/¢(X dfow/g &)

<<:hk+1 sup  |0%¢(x))|

xeK,|a|=kq+1




Some common quadrature rules

Nodes are characterized by the barycentric coordinates

d | k¢ Ilqg | Nodes Weights
1|1 1 (%,%) 1
1 2| (1,0),(0,1) 303
3 2 (%+?’%7T3)’% T37é+§) %’%
1 1 31 3 (1 31 3 8
5 31G)HGHVar—vVa)G-VaitVa) |t
2 1 1 (%’%7% 1
1 3 (17070)7(07 170)7 (0707 1) %7%7%
2 3 (%7%’?)7(%1’(17 %3)’(1’ %37 %1) 311 3% s o2
3 4 (??7?)71(37573)7(57573)7(57575)7 "~ 16> 48> 48° 48
3 1 1 (1717271) 1
1 4 | (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) %,%,%,%
2 4 (5—\/5 5—\/§5f +3f) 1111
20 ' 20 20 20 1020404




Matching of approximation order and quadrature order

» “Variational crime”: instead of
a(uh, Vh) = f(Vh) Vv, € Vy
we solve
ah(uh, Vh) = fh(vh) Vvh S Vh
where ap, f, are derived from their exact counterparts by quadrature

> For P! finite elements, zero order quadrature for volume integrals and
first order quadrature for surface intergals is sufficient to keep the
convergence order estimates stated before

> The rule of thumb for the volume quadrature is that the highest order
terms must be evaluated exactly if the coefficients of the PDE are
constant.




P1 FEM stiffness matrix condition number

v

Homogeneous dirichlet boundary value problem

-V -kVu=f inQ

U‘(’)Q =0

> Lagrange degrees of freedom a; ... an corresponding to global basis
functions ¢ ... ¢n such that ¢;|oq = 0 aka ¢; € Vi, C HA(Q)
> Stiffness matrix A = (a;):

aj = a(¢i, ¢;) = /Q"‘V‘i’fv‘ﬁf ax

» bilinear form a(-,-) is self-adjoint, therefore A is symmetric, positive
definite
» Condition number estimate for P! finite elements on quasi-uniform
triangulation:
x(A) < ch™?




The problem with Dirichlet boundary conditions

» Homogeneous Dirichlet BC = include boundary condition into set of
basis functions

» Inhomogeneous Dirichlet, may be only at a part of the boundary

> Use exact approach from as in continous formulation (with lifting ug
etc) = highly technical

» Eliminate Dirichlet BC algebraically after building of the matrix, i.e.
fix “known unknowns” at the Dirichlet boundary = highly technical

» Modifiy matrix such that equations at boundary exactly result in
Dirichlet values = loss of symmetry of the matrix

» Penalty method




Dirichlet BC: Algebraic manipulation

» Assume 1D situation with BC u; = g
» From integration in H' regardless of boundary values:

1 1
h o h U f
o2t £
AU ho h o h ) 2 2
- ~h b Th us [T [ s
» Fix u; and eliminate:
2 1 1
5 Th 2 h+ 38
1 1
AU=|"h “h Bl =

- TIN

fs

» A’ becomes idd and stays symmetric
> operation is quite technical




Dirichlet BC: Modify boundary equations

» From integration in H! regardless of boundary values:

1 1
b h uy f
1 2 1 £
“h & h 2 2
AU = 1 2 1 = f.
“h B Th us 3

» Modify equation at boundary to exactly represent Dirichlet values

1 1
o0 sy 73
1 2 1 fa
AU — “h h h L 2 2
= ! -1 s

S

>
=TI,

» A’ becomes idd
> loses symmetry = problem e.g. with CG method




Dirichlet BC: Discrete penalty trick

» From integration in H! regardless of boundary values:

1
h

AU =

» Add penalty terms

1 1
7+7

h
1

AU = h

>

1
~h uy fi

>IN
>
(~
N
Sh

>
>IN
|
>
.5
&h

|
N
|
>
S c
N -
Sh

B

BN
|

=
.=
)
|

ooy

» A’ becomes idd, keeps symmetry, and the realization is technically

easy.

> If ¢ is small enough, u; = g will be satisfied exactly within floating

point accuracy.

» [terative methods should be initialized with Dirichlet values.
» Works for nonlinear problems, finite volume methods




Dirichlet penalty trick, general formulation

» Dirichlet boundary value problem

-V-kVu=f inQ

ulon =g

» We discussed approximation of Dirichlet problem by Robin problem
» Practical realization uses discrete approach for Lagrange degrees of

freedom a; ... ay corresponding to global basis functions ¢y ... ¢pn:
» Search up, = Z,N:l uip; € Vip = span{ey ... ¢n} such that

AU+ NU=F+ NG
where

> U:(LI1..,UN)
> A= (ay): stiffness matrix with a; = fQ KV @iV o; dx

g F:fnfv¢idx
i)y i Q
> G =(g) with g = g(a), a€d
07 else
1 i—jacon
» M = (my) is a diagonal matrix with m; = Z, I=Ja € o
0, else




Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a: R” x R" - R

n n
a(u,v) = (Au,v) = v  Au= ZZBUV{UJ

i=1 j=1

As A is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function

f(u) = %a(u, u)—bTu

What is the minimizer of  ?

fluy=Au—b=0

» Solution of SPD system = minimization of f.




Method of steepest descent

» Given some vector u;, look for a new iterate ujy;.
» The direction of steepest descend is given by —f'(u;).

» So look for uj1 in the direction of —f'(u;) = r; = b — Au; such that
it minimizes f in this direction, i.e. set uj11 = u; + ar; with a choosen
from

0= %f(u,— + Oéf,') = f’(u,- + ar;) e

=(b—A(ui + ar),n)

= (b— Auj, r;) — a(Ari, 1)

= (ri,r;) — a(Ar, ri)
(ri, i)

(AI’,‘,I’,‘)




Method of steepest descent: iteration scheme

r,':b*AU,'
_ (riari)
4= (Ar,-,r,-)

Uiyl = Ui + ol

Let & the exact solution. Define e = u; — @I, then r; = —Aeg;
Let ||u||a = (Au, u)? be the energy norm wrt. A.

Theorem The convergence rate of the method is

€illA S % €A
Whee R = A X( )

A is the spectral condition number.




Method of steepest descent: advantages

» Simple Richardson iteration w1 = ux — a(Aug — f) needs good

eigenvalue estimate to be optimal with a = ﬁ
max+ A min

r—1

> In this case, asymptotic convergence rate is p = oy

> Steepest descent has the same rate without need for spectral estimate




Conjugate directions

For steepest descent, there is no guarantee that a search direction
d; = r; = —Ae; is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let dy, d; ... d,—1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Ad;, d;) =0, i # .

» Look for u;11 in the direction of d; such that it minimizes f in this
direction, i.e. set u;11 = u; + «;d; with o choosen from

0= %f(u,- +ad) = f'(u; + ad;) - d;
=(b—A(ui + ad,), d;)
= (b — AU,‘, d,) — Oé(Ad,', d,)
= (I‘,‘7 d,) — a(Ad;, d,)
ri, di
= (,(L\d,-7c1'),-)




Gram-Schmidt Orthogonalization
» Assume we have been given some linearly independent vectors
Vo, V1...Vp—1.

» Set dy = vy

> Define
i—1
di=vi+ Y Bud
k=0
» For j < i, A-project onto d; and require orthogonality:

i—1

(Ad;, d;) = (Avi, dj) + Y _ Bix(Adk, d;)

k=0
0 = (Av;, d;) + B;(Ad;, d))
5__ — (AVi? dj)
/ (Ad;, d;)

» If v; are the coordinate unit vectors, this is Gaussian elimination!

» If v; are arbitrary, they all must be kept in the memory




Conjugate gradients IV - The algorithm
Given initial value ug, spd matrix A, right hand side b.
do =Irn = b— AUO
(ri7 ri)

o =

(Ad;, d;)
Uit1 = Ui + oid;
liy1 = ri — Oé,‘Ad,'

Bir1 = (rit1, riv1)
' (ri7ri)

dit1 = fiy1 + Biy1di

At the i-th step, the algorithm yields the element from ey + KC; with the
minimum energy error.

Theorem The convergence rate of the method is

VE—1Y'
N Ileol |
max (A)

A . .
where Kk = () 1S the spectral condition number.

lefla <2 (




Preconditioned CG Il

Assume F; = E~'r;, di = E7 d;, we get the equivalent algorithm

hh = b— AUO

do = M_lro
(M~tri,n)

qf = —F—F————
(Adiadi)

Uiyl = Ui + a;d;

riv1 = ri — a;Ad;

Biuy = (M~ trig, rig)
i+1 — (rhri)

diy1 = M7ty + Biad;

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.




Examinations

Tue Feb 26.

Wed Feb 27.

Wed Mar 14.

Thu Mar 15.

Tue Mar 26.

Wed Mar 27.

Thu Mar 28.

Wed May 8. 14:00-17:00

> 13:00 times do not work! Please reschedule (sorry).



