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TOP 500 2018 rank 1-6
Based on linpack benchmark: solution of dense linear system. Typical
desktop computer: Rmax ≈ 100 . . . 1000GFlop/s

[Source:www.top500.org ]
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Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω
I ⇒ global coupling: any solution algorithm needs global

communication
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Structured and unstructured grids

Structured grid

I Easy next neighbor access via
index calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based

access to next neighbors
I Hardly feasible fo SIMD/GPU
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Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑

K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn
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Mesh partitioning
Partition set of cells in Th, and color the graph of the partitions.
Result: C: set of colors, Pc : set of partitions of given color. Then:
Th =

⋃
c∈C

⋃
p∈Pc

p
I Sample algorithm:

I Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) → Partitions of color 1

I Create separators along boundaries → Partitions of color 2
I “triple points” → Partitions of color 3

I No interference between assembly loops for partitions of the same
color

I Immediate parallelization without critical regions
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Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

I Prevent write conflicts by loop organization
I No need for critical sections
I Similar structure for Voronoi finite volumes, nonlinear operator

evaluation, Jacobi matrix assembly
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Linear system solution

I Sparse matrices
I Direct solvers are hard to parallelize though many efforts are

undertaken, e.g. Pardiso
I Iterative methods easier to parallelize

I partitioning of vectors + coloring inherited from cell partitioning
I keep loop structure (first touch principle)
I parallelize

I vector algebra
I scalar products
I matrix vector products
I preconditioners
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MPI - Message passing interface

I library, can be used from C,C++, Fortran, python
I de facto standard for programming on distributed memory systems

(since ≈ 1995)
I highly portable
I support by hardware vendors: optimized communication speed
I based on sending/receiving messages over network

I instead, shared memory can be used as well
I very elementary programming model, need to hand-craft

communications
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How to install

I OpenMP/C++11 threads come along with compiler
I MPI needs to be installed in addition
I Can run on multiple systems
I openmpi available for Linux/Mac (homebrew)/ Windows (cygwin)

I https://www.open-mpi.org/faq/?category=mpi-apps
I Compiler wrapper mpic++

I wrapper around (configurable) system compiler
I proper flags + libraries to be linked

I Process launcher mpirun
I launcher starts a number of processes which execute statements

independently, ocassionally waiting for each other
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Threads vs processes

I MPI is based on processes, C++11 threads and OpenMP are based
on threads.

I Processes are essentially like commands launched from the command
line and require large bookeeping, each process has its own address
space

I Threads are created within a process and share its address space,
require significantly less bookeeping and resources

I Multithreading requires careful programming since threads share data
structures that should only be modified by one thread at a time.
Unlike threads, with processes there can be no write conflicts

I When working with multiple processes, one becomes responsible for
inter-process communication
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MPI Programming Style

I Generally, MPI allows to work with completely different programs
I Typically, one writes one program which is started in multiple

incarnations on different hosts in a network or as different processes
on one host

I MPI library calls are used to determine the identiy of a running
program and the region of the data to work on

I Communication + barriers have to be programmed explicitely.
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MPI Hello world
// Initialize MPI.
MPI_Init ( &argc, &argv );

// Get the number of processes.
MPI_Comm_size ( MPI_COMM_WORLD, &nproc );

// Determine the rank (number, identity) of this process.
MPI_Comm_rank ( MPI_COMM_WORLD, &iproc );

if ( iproc == 0 )
{

cout << "Number of available processes: " << nproc << "\n";
}
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ( );

I Compile with mpic++ mpi-hello.cpp -o mpi-hello
I All MPI programs begin with MPI_Init() and end with

MPI_Finalize()
I the communicator MPI_COMM_WORLD designates all processes in the

current process group, there may be other process groups etc.
I The whole program is started N times as system process, not as

thread: mpirun -np N mpi-hello
Lecture 24 Slide 13
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MPI hostfile

host1 slots=n1
host2 slots=n2

...

I Distribute code execution over several hosts
I MPI gets informed how many independent processes can be run on

which node and distributes the required processes accordingly
I MPI would run more processes than slots available. Avoid this

situation !
I Need ssh public key access and common file system access for proper

execution
I Telling mpi to use host file:

mpirun --hostfile hostfile -np N mpi-hello
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MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

I Send data to other process(es)
I The message buffer is described by (start, count, datatype):

I start: Start address
I count: number of items
I datatype: data type of one item

I The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm

I When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

I The tag codes some type of message
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MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

I Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

I source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

I status contains further information
I Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.
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MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm )

I Broadcasts a message from the process with rank “root” to all other
processes of the communicator

I Root sends, all others receive.
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Differences with OpenMP

I Programmer has to care about all aspects of communication and data
distribution, even in simple situations

I In simple situations (regularly structured data) OpenMP provides
reasonable defaults. For MPI these are not available

I For PDE solvers (FEM/FVM assembly) on unstructured meshes, in
both cases we have to care about data distribution

I We need explicit handling of data at interfaces with MPI, while with
OpenMP, possible communication is hidden behind the common
address space
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TOP 500 2018 rank 7-13

[Source:www.top500.org ]
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Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs
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Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}
int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc; long t;
for(t=0; t<NUM_THREADS; t++)
{

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}

}
pthread_exit(NULL);

}

Source: computing.llnl.gov/tutorials

I compile and link with

gcc -pthread -o pthreads pthreads.c
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SIMD Hardware: Graphics Processing Units ( GPU)

[Source: computing.llnl.gov/tutorials]

I Principle useful for highly structured data
I Example: textures, triangles for 3D graphis rendering
I During the 90’s, Graphics Processing Units (GPUs) started to contain

special purpose SIMD hardware for graphics rendering
I 3D Graphic APIs (DirectX, OpenGL) became transparent to

programmers: rendering could be influenced by “shaders” which
essentially are programs which are compiled on the host and run on
the GPU

[Source: wikipedia]
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General Purpose Graphics Processing Units (GPGPU)
I Graphics companies like NVIDIA saw an opportunity to market GPUs

for computational purposes
I Emerging APIs which allow to describe general purpose computing

tasks for GPUs: CUDA (Nvidia specific), OpenCL (ATI/AMD
designed, general purpose), OpenACC based on compiler directives

I GPGPUs are accelerator cards added to a computer with own memory,
many vector processing pipelines and special bus interconnect (NVidia
Quadro GV100: 32GB +5120 units, NVLink; Tensor cores)

I CPU-GPU connection via mainbord bus / special link

[Source: amd-dev.wpengine.netdna-cdn.com]
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GPU Programming paradigm

I CPU:
I Sets up data
I Triggers compilation of “kernels”: the heavy duty loops to be

executed on GPU
I Sends compiled kernels (“shaders”) to GPU
I Sends data to GPU, initializes computation
I Receives data back from GPU

I GPU:
I Receive data from host CPU
I Run the heavy duty loops in local memory
I Send data back to host CPU

I For high performance one needs explicit management of these steps
I Bottleneck: Data transfer CPU ↔ GPU
I High effiency only with good match between data structure and

layout of GPU memory (2D rectangular grid)
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NVIDIA Cuda

I Established by NVIDIA GPU vendor
I Works only on NVIDIA cards
I Claimed to provide optimal performance
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CUDA Kernel code
I The kernel code is the code to be executed on the GPU aka “Device”
I It needs to be compiled using special CUDA compiler

#include <cuda_runtime.h>

/*
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C.
* The 3 vectors have the same
* number of elements numElements.
*/

__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)
{

C[i] = A[i] + B[i];
}

}
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CUDA Host code I
int main(void)
{ int numElements = 50000;

size_t size = numElements * sizeof(float);

// Allocate host vectors
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{

h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;

}
// Allocate device vectors
float *d_A = NULL;
float *d_B = NULL;
float *d_C = NULL;
assert(cudaMalloc((void **)&d_A, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_B, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_C, size)==cudaSuccess);
...
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CUDA Host code II
...

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid =(numElements + threadsPerBlock - 1)

/ threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

assert(cudaGetLastError()==cudaSuccess);
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

free(h_A);
free(h_B);
free(h_C);
cudaDeviceReset();
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OpenCL

I “Open Computing Language”
I Vendor independent
I More cumbersome to code
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Example: OpenCL: computational kernel

__kernel void square(                                                       
   __global float* input, __global float* output)                                           
{                                                                      
   size_t i = get_global_id(0);                                           
   output[i] = input[i] * input[i];                                
}                                                                      

Declare functions with __kernel attribute
Defines an entry point or exported method in a program object

Use address space and usage qualifiers for memory
Address spaces and data usage must be specified for all memory objects

Built-in methods provide access to index within compute domain
Use get_global_id for unique work-item id, get_group_id for work-group, etc

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]
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OpenCL: Resource build up, kernel creation

// Fill our data set with random float values
int count = 1024 * 1024;
for(i = 0; i < count; i++)
    data[i] = rand() / (float)RAND_MAX;
    
// Connect to a compute device, create a context and a command queue
cl_device_id device;
clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &device, NULL);
cl_context context = clCreateContext(0, 1, & device, NULL, NULL, NULL);
cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);
!
// Create and build a program from our OpenCL-C source code
cl_program program = clCreateProgramWithSource(context, 1, (const char **) &src, 
                                               NULL, NULL);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    
// Create a kernel from our program
cl_kernel kernel = clCreateKernel(program, "square", NULL);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]
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OpenCL: Data copy to GPU

// Allocate input and output buffers, and fill the input with data
cl_mem input = clCreateBuffer(context,  CL_MEM_READ_ONLY,  sizeof(float) * count, 
                              NULL, NULL);

// Create an output memory buffer for our results
cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, 
                               NULL, NULL);

// Copy our host buffer of random values to the input device buffer
clEnqueueWriteBuffer(queue, input, CL_TRUE, 0, sizeof(float) * count, data, 0, 
                     NULL, NULL);

// Get the maximum number of work items supported for this kernel on this device
size_t global = count; size_t local = 0;
clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(int), 
                         &local, NULL);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]
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OpenCL: Kernel execution, result retrieval from GPU

// Set the arguments to our kernel, and enqueue it for execution
clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);

// Force the command queue to get processed, wait until all commands are complete
clFinish(queue);
    
// Read back the results
clEnqueueReadBuffer( queue, output, CL_TRUE, 0, sizeof(float) * count, results, 0, 
                     NULL, NULL );  
    
// Validate our results
int correct = 0;
for(i = 0; i < count; i++)
    correct += (results[i] == data[i] * data[i]) ? 1 : 0;
    
// Print a brief summary detailing the results
printf("Computed '%d/%d' correct values!\n", correct, count);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]
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OpenCL Summary

I Need good programming experience and system management skills in
order to set up tool chains with properly matching versions, vendor
libraries etc.

I (I was not able to get this running on my laptop in finite time. . . )

I Very cumbersome programming, at least as explicit as MPI
I Data structure restrictions limit class of tasks which can run

efficiently on GPUs.
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Compiler directive based GPU programming

I OpenMP
I OpenMP4.0
I Implentation in commercial compilers
I GCC, Clang implementations under development

I OpenACC
I Idea similar to OpenMP: use compiler directives
I Future merge with OpenMP initially intended, now they seem to be

competitors
I Intended for different accelerator types (Nvidia GPU . . .)
I Commercial compiler vendors, e.g. PGI (with free academic license

valid one year)
I GCC, Clang implementations under development
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OpenACC code
I “Shader”:

void vecaddgpu( float *restrict r, float *a, float *b, int n, int nrepeat)
{

int irepeat;
#pragma acc kernels loop present(r,a,b)
for (irepeat=0;irepeat<nrepeat; irepeat++)
for( int i = 0; i < n; ++i ) r[i] = a[i] + b[i] + irepeat;

}

I Invocation from CPU

a = (float*)malloc( n*sizeof(float) );
b = (float*)malloc( n*sizeof(float) );
r = (float*)malloc( n*sizeof(float) );
e = (float*)malloc( n*sizeof(float) );
#pragma acc data copyin(a[0:n],b[0:n]) copyout(r[0:n])
{

vecaddgpu( r, a, b, n, nrepeat );
}

I Compile with PGI compiler (https://www.pgroup.com/)

pgcc -ta=tesla -fast -o add2 add2.c
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Other ways to program GPU

I Directly use graphics library
I Modern OpenGL with shaders
I WebGL: OpenGL in the browser. Uses html and javascript.
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WebGL Example
I Gray-Scott model for Reaction-Diffusion: two species.

I U is created with rate f and decays with rate f
I U reacts wit V to more V
I V deacays with rate f + k.
I U, V move by diffusion

1 f→ U

U + 2V 1→ 3V

V f +k→ 0

F f→ 0

I Stable states:
I No V
I “ Much of V , then it feeds on U and re-creates itself

I Reaction-Diffusion equation from mass action law:
∂tu − Du∆u + uv2 − f (1− u) = 0
∂tv − Dv ∆v − uv2 + (f + k)v = 0
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Discretization

I . . . GPUs are fast so we choose the explicit Euler method:

1
τ

(un+1 − un)− Du∆un + unv2
n − f (1− un) = 0

1
τ

(vn+1 − uv )− Dv ∆vn − unv2
n + (f + k)vn = 0

I Finite difference/finite volume discretization on grid of size h

−∆u ≈ 1
h2 (4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1)
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The shader
<script type="x-webgl/x-fragment-shader" id="timestep-shader">
precision mediump float;
uniform sampler2D u_image;
uniform vec2 u_size;
const float F = 0.05, K = 0.062, D_a = 0.2, D_b = 0.1;
const float TIMESTEP = 1.0;
void main() {
vec2 p = gl_FragCoord.xy,

n = p + vec2(0.0, 1.0),
e = p + vec2(1.0, 0.0),
s = p + vec2(0.0, -1.0),
w = p + vec2(-1.0, 0.0);

vec2 val = texture2D(u_image, p / u_size).xy,
laplacian = texture2D(u_image, n / u_size).xy

+ texture2D(u_image, e / u_size).xy
+ texture2D(u_image, s / u_size).xy
+ texture2D(u_image, w / u_size).xy
- 4.0 * val;

vec2 delta = vec2(D_a * laplacian.x - val.x*val.y*val.y + F * (1.0-val.x),
D_b * laplacian.y + val.x*val.y*val.y - (K+F) * val.y);

gl_FragColor = vec4(val + delta * TIMESTEP, 0, 0);
}
</script>

I Embedded as script into html page
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Why does this work so well here ?

I Data structure fits very well to topology of GPU
I rectangular grid
I 2 unknowns to be stored in x,y components of vec2

I No communication with CPU in the first place
I GPU speed allows to “break” time step limitation of explicit Euler
I Data stay within the graphics card: once we loaded the initial value,

all computations, and rendering use data which are in the memory of
the graphics card.

I Depending on the application, choose the best way to proceed
I e.g. deep learning (especially training speed)
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Examinations

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Mon Apr 29.(?)
Tue Apr 30.(?)
I Due to illness of Prof. Nabben, I can confirm new dates only next

week.
I 13:00 times do not work! Please reschedule (sorry).


