
Lecture 24 Slide 1

Scientific Computing WS 2018/2019

Lecture 24

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 22 Slide 15

TOP 500 2018 rank 1-6
Based on linpack benchmark: solution of dense linear system. Typical
desktop computer: Rmax ≈ 100 . . . 1000GFlop/s

[Source:www.top500.org]

Lecture 24 Slide 2

Lecture 23 Slide 18

Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω
I ⇒ global coupling: any solution algorithm needs global

communication

Lecture 24 Slide 3

Lecture 23 Slide 19

Structured and unstructured grids

Structured grid

I Easy next neighbor access via
index calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based

access to next neighbors
I Hardly feasible fo SIMD/GPU

Lecture 24 Slide 4

Lecture 23 Slide 20

Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑

K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn

Lecture 24 Slide 5

Lecture 23 Slide 21

Mesh partitioning
Partition set of cells in Th, and color the graph of the partitions.
Result: C: set of colors, Pc : set of partitions of given color. Then:
Th =

⋃
c∈C

⋃
p∈Pc

p
I Sample algorithm:

I Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) → Partitions of color 1

I Create separators along boundaries → Partitions of color 2
I “triple points” → Partitions of color 3

I No interference between assembly loops for partitions of the same
color

I Immediate parallelization without critical regions

Lecture 24 Slide 6

Lecture 23 Slide 22

Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

I Prevent write conflicts by loop organization
I No need for critical sections
I Similar structure for Voronoi finite volumes, nonlinear operator

evaluation, Jacobi matrix assembly

Lecture 24 Slide 7

Lecture 23 Slide 23

Linear system solution

I Sparse matrices
I Direct solvers are hard to parallelize though many efforts are

undertaken, e.g. Pardiso
I Iterative methods easier to parallelize

I partitioning of vectors + coloring inherited from cell partitioning
I keep loop structure (first touch principle)
I parallelize

I vector algebra
I scalar products
I matrix vector products
I preconditioners

Lecture 24 Slide 8

Lecture 23 Slide 24

MPI - Message passing interface

I library, can be used from C,C++, Fortran, python
I de facto standard for programming on distributed memory systems

(since ≈ 1995)
I highly portable
I support by hardware vendors: optimized communication speed
I based on sending/receiving messages over network

I instead, shared memory can be used as well
I very elementary programming model, need to hand-craft

communications

Lecture 24 Slide 9

Lecture 23 Slide 25

How to install

I OpenMP/C++11 threads come along with compiler
I MPI needs to be installed in addition
I Can run on multiple systems
I openmpi available for Linux/Mac (homebrew)/ Windows (cygwin)

I https://www.open-mpi.org/faq/?category=mpi-apps
I Compiler wrapper mpic++

I wrapper around (configurable) system compiler
I proper flags + libraries to be linked

I Process launcher mpirun
I launcher starts a number of processes which execute statements

independently, ocassionally waiting for each other

Lecture 24 Slide 10

Lecture 23 Slide 26

Threads vs processes

I MPI is based on processes, C++11 threads and OpenMP are based
on threads.

I Processes are essentially like commands launched from the command
line and require large bookeeping, each process has its own address
space

I Threads are created within a process and share its address space,
require significantly less bookeeping and resources

I Multithreading requires careful programming since threads share data
structures that should only be modified by one thread at a time.
Unlike threads, with processes there can be no write conflicts

I When working with multiple processes, one becomes responsible for
inter-process communication

Lecture 24 Slide 11

Lecture 23 Slide 27

MPI Programming Style

I Generally, MPI allows to work with completely different programs
I Typically, one writes one program which is started in multiple

incarnations on different hosts in a network or as different processes
on one host

I MPI library calls are used to determine the identiy of a running
program and the region of the data to work on

I Communication + barriers have to be programmed explicitely.

Lecture 24 Slide 12

Lecture 23 Slide 28

MPI Hello world
// Initialize MPI.
MPI_Init (&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM_WORLD, &nproc);

// Determine the rank (number, identity) of this process.
MPI_Comm_rank (MPI_COMM_WORLD, &iproc);

if (iproc == 0)
{

cout << "Number of available processes: " << nproc << "\n";
}
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ();

I Compile with mpic++ mpi-hello.cpp -o mpi-hello
I All MPI programs begin with MPI_Init() and end with

MPI_Finalize()
I the communicator MPI_COMM_WORLD designates all processes in the

current process group, there may be other process groups etc.
I The whole program is started N times as system process, not as

thread: mpirun -np N mpi-hello
Lecture 24 Slide 13

Lecture 23 Slide 29

MPI hostfile

host1 slots=n1
host2 slots=n2

...

I Distribute code execution over several hosts
I MPI gets informed how many independent processes can be run on

which node and distributes the required processes accordingly
I MPI would run more processes than slots available. Avoid this

situation !
I Need ssh public key access and common file system access for proper

execution
I Telling mpi to use host file:

mpirun --hostfile hostfile -np N mpi-hello

Lecture 24 Slide 14

Lecture 23 Slide 30

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

I Send data to other process(es)
I The message buffer is described by (start, count, datatype):

I start: Start address
I count: number of items
I datatype: data type of one item

I The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm

I When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

I The tag codes some type of message

Lecture 24 Slide 15

Lecture 23 Slide 31

MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

I Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

I source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

I status contains further information
I Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

Lecture 24 Slide 16

Lecture 23 Slide 32

MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm)

I Broadcasts a message from the process with rank “root” to all other
processes of the communicator

I Root sends, all others receive.

Lecture 24 Slide 17

Lecture 23 Slide 33

Differences with OpenMP

I Programmer has to care about all aspects of communication and data
distribution, even in simple situations

I In simple situations (regularly structured data) OpenMP provides
reasonable defaults. For MPI these are not available

I For PDE solvers (FEM/FVM assembly) on unstructured meshes, in
both cases we have to care about data distribution

I We need explicit handling of data at interfaces with MPI, while with
OpenMP, possible communication is hidden behind the common
address space

Lecture 24 Slide 18

Lecture 22 Slide 16

TOP 500 2018 rank 7-13

[Source:www.top500.org]

Lecture 24 Slide 19

Lecture 22 Slide 17

Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs

Lecture 24 Slide 20

Lecture 22 Slide 21

Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}
int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc; long t;
for(t=0; t<NUM_THREADS; t++)
{

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}

}
pthread_exit(NULL);

}

Source: computing.llnl.gov/tutorials

I compile and link with

gcc -pthread -o pthreads pthreads.c

Lecture 24 Slide 21

Lecture 24 Slide 22

SIMD Hardware: Graphics Processing Units (GPU)

[Source: computing.llnl.gov/tutorials]

I Principle useful for highly structured data
I Example: textures, triangles for 3D graphis rendering
I During the 90’s, Graphics Processing Units (GPUs) started to contain

special purpose SIMD hardware for graphics rendering
I 3D Graphic APIs (DirectX, OpenGL) became transparent to

programmers: rendering could be influenced by “shaders” which
essentially are programs which are compiled on the host and run on
the GPU

[Source: wikipedia]

Lecture 24 Slide 23

General Purpose Graphics Processing Units (GPGPU)
I Graphics companies like NVIDIA saw an opportunity to market GPUs

for computational purposes
I Emerging APIs which allow to describe general purpose computing

tasks for GPUs: CUDA (Nvidia specific), OpenCL (ATI/AMD
designed, general purpose), OpenACC based on compiler directives

I GPGPUs are accelerator cards added to a computer with own memory,
many vector processing pipelines and special bus interconnect (NVidia
Quadro GV100: 32GB +5120 units, NVLink; Tensor cores)

I CPU-GPU connection via mainbord bus / special link

[Source: amd-dev.wpengine.netdna-cdn.com]

Lecture 24 Slide 24

GPU Programming paradigm

I CPU:
I Sets up data
I Triggers compilation of “kernels”: the heavy duty loops to be

executed on GPU
I Sends compiled kernels (“shaders”) to GPU
I Sends data to GPU, initializes computation
I Receives data back from GPU

I GPU:
I Receive data from host CPU
I Run the heavy duty loops in local memory
I Send data back to host CPU

I For high performance one needs explicit management of these steps
I Bottleneck: Data transfer CPU ↔ GPU
I High effiency only with good match between data structure and

layout of GPU memory (2D rectangular grid)

Lecture 24 Slide 25

NVIDIA Cuda

I Established by NVIDIA GPU vendor
I Works only on NVIDIA cards
I Claimed to provide optimal performance

Lecture 24 Slide 26

CUDA Kernel code
I The kernel code is the code to be executed on the GPU aka “Device”
I It needs to be compiled using special CUDA compiler

#include <cuda_runtime.h>

/*
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C.
* The 3 vectors have the same
* number of elements numElements.
*/

__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)
{

C[i] = A[i] + B[i];
}

}

Lecture 24 Slide 27

CUDA Host code I
int main(void)
{ int numElements = 50000;

size_t size = numElements * sizeof(float);

// Allocate host vectors
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{

h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;

}
// Allocate device vectors
float *d_A = NULL;
float *d_B = NULL;
float *d_C = NULL;
assert(cudaMalloc((void **)&d_A, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_B, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_C, size)==cudaSuccess);
...

Lecture 24 Slide 28

CUDA Host code II
...

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid =(numElements + threadsPerBlock - 1)

/ threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

assert(cudaGetLastError()==cudaSuccess);
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

free(h_A);
free(h_B);
free(h_C);
cudaDeviceReset();

Lecture 24 Slide 29

OpenCL

I “Open Computing Language”
I Vendor independent
I More cumbersome to code

Lecture 24 Slide 30

Example: OpenCL: computational kernel

__kernel void square(
 __global float* input, __global float* output)
{
 size_t i = get_global_id(0);
 output[i] = input[i] * input[i];
}

Declare functions with __kernel attribute
Defines an entry point or exported method in a program object

Use address space and usage qualifiers for memory
Address spaces and data usage must be specified for all memory objects

Built-in methods provide access to index within compute domain
Use get_global_id for unique work-item id, get_group_id for work-group, etc

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 24 Slide 31

OpenCL: Resource build up, kernel creation

// Fill our data set with random float values
int count = 1024 * 1024;
for(i = 0; i < count; i++)
 data[i] = rand() / (float)RAND_MAX;

// Connect to a compute device, create a context and a command queue
cl_device_id device;
clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &device, NULL);
cl_context context = clCreateContext(0, 1, & device, NULL, NULL, NULL);
cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);
!
// Create and build a program from our OpenCL-C source code
cl_program program = clCreateProgramWithSource(context, 1, (const char **) &src,
 NULL, NULL);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Create a kernel from our program
cl_kernel kernel = clCreateKernel(program, "square", NULL);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 24 Slide 32

OpenCL: Data copy to GPU

// Allocate input and output buffers, and fill the input with data
cl_mem input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count,
 NULL, NULL);

// Create an output memory buffer for our results
cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count,
 NULL, NULL);

// Copy our host buffer of random values to the input device buffer
clEnqueueWriteBuffer(queue, input, CL_TRUE, 0, sizeof(float) * count, data, 0,
 NULL, NULL);

// Get the maximum number of work items supported for this kernel on this device
size_t global = count; size_t local = 0;
clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(int),
 &local, NULL);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 24 Slide 33

OpenCL: Kernel execution, result retrieval from GPU

// Set the arguments to our kernel, and enqueue it for execution
clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);

// Force the command queue to get processed, wait until all commands are complete
clFinish(queue);

// Read back the results
clEnqueueReadBuffer(queue, output, CL_TRUE, 0, sizeof(float) * count, results, 0,
 NULL, NULL);

// Validate our results
int correct = 0;
for(i = 0; i < count; i++)
 correct += (results[i] == data[i] * data[i]) ? 1 : 0;

// Print a brief summary detailing the results
printf("Computed '%d/%d' correct values!\n", correct, count);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 24 Slide 34

OpenCL Summary

I Need good programming experience and system management skills in
order to set up tool chains with properly matching versions, vendor
libraries etc.

I (I was not able to get this running on my laptop in finite time. . .)

I Very cumbersome programming, at least as explicit as MPI
I Data structure restrictions limit class of tasks which can run

efficiently on GPUs.

Lecture 24 Slide 35

Compiler directive based GPU programming

I OpenMP
I OpenMP4.0
I Implentation in commercial compilers
I GCC, Clang implementations under development

I OpenACC
I Idea similar to OpenMP: use compiler directives
I Future merge with OpenMP initially intended, now they seem to be

competitors
I Intended for different accelerator types (Nvidia GPU . . .)
I Commercial compiler vendors, e.g. PGI (with free academic license

valid one year)
I GCC, Clang implementations under development

Lecture 24 Slide 36

OpenACC code
I “Shader”:

void vecaddgpu(float *restrict r, float *a, float *b, int n, int nrepeat)
{

int irepeat;
#pragma acc kernels loop present(r,a,b)
for (irepeat=0;irepeat<nrepeat; irepeat++)
for(int i = 0; i < n; ++i) r[i] = a[i] + b[i] + irepeat;

}

I Invocation from CPU

a = (float*)malloc(n*sizeof(float));
b = (float*)malloc(n*sizeof(float));
r = (float*)malloc(n*sizeof(float));
e = (float*)malloc(n*sizeof(float));
#pragma acc data copyin(a[0:n],b[0:n]) copyout(r[0:n])
{

vecaddgpu(r, a, b, n, nrepeat);
}

I Compile with PGI compiler (https://www.pgroup.com/)

pgcc -ta=tesla -fast -o add2 add2.c

Lecture 24 Slide 37

Other ways to program GPU

I Directly use graphics library
I Modern OpenGL with shaders
I WebGL: OpenGL in the browser. Uses html and javascript.

Lecture 24 Slide 38

WebGL Example
I Gray-Scott model for Reaction-Diffusion: two species.

I U is created with rate f and decays with rate f
I U reacts wit V to more V
I V deacays with rate f + k.
I U, V move by diffusion

1 f→ U

U + 2V 1→ 3V

V f +k→ 0

F f→ 0

I Stable states:
I No V
I “ Much of V , then it feeds on U and re-creates itself

I Reaction-Diffusion equation from mass action law:
∂tu − Du∆u + uv2 − f (1− u) = 0
∂tv − Dv ∆v − uv2 + (f + k)v = 0

Lecture 24 Slide 39

Discretization

I . . . GPUs are fast so we choose the explicit Euler method:

1
τ

(un+1 − un)− Du∆un + unv2
n − f (1− un) = 0

1
τ

(vn+1 − uv)− Dv ∆vn − unv2
n + (f + k)vn = 0

I Finite difference/finite volume discretization on grid of size h

−∆u ≈ 1
h2 (4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1)

Lecture 24 Slide 40

The shader
<script type="x-webgl/x-fragment-shader" id="timestep-shader">
precision mediump float;
uniform sampler2D u_image;
uniform vec2 u_size;
const float F = 0.05, K = 0.062, D_a = 0.2, D_b = 0.1;
const float TIMESTEP = 1.0;
void main() {
vec2 p = gl_FragCoord.xy,

n = p + vec2(0.0, 1.0),
e = p + vec2(1.0, 0.0),
s = p + vec2(0.0, -1.0),
w = p + vec2(-1.0, 0.0);

vec2 val = texture2D(u_image, p / u_size).xy,
laplacian = texture2D(u_image, n / u_size).xy

+ texture2D(u_image, e / u_size).xy
+ texture2D(u_image, s / u_size).xy
+ texture2D(u_image, w / u_size).xy
- 4.0 * val;

vec2 delta = vec2(D_a * laplacian.x - val.x*val.y*val.y + F * (1.0-val.x),
D_b * laplacian.y + val.x*val.y*val.y - (K+F) * val.y);

gl_FragColor = vec4(val + delta * TIMESTEP, 0, 0);
}
</script>

I Embedded as script into html page

Lecture 24 Slide 41

Why does this work so well here ?

I Data structure fits very well to topology of GPU
I rectangular grid
I 2 unknowns to be stored in x,y components of vec2

I No communication with CPU in the first place
I GPU speed allows to “break” time step limitation of explicit Euler
I Data stay within the graphics card: once we loaded the initial value,

all computations, and rendering use data which are in the memory of
the graphics card.

I Depending on the application, choose the best way to proceed
I e.g. deep learning (especially training speed)

Lecture 24 Slide 42

Examinations

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Mon Apr 29.(?)
Tue Apr 30.(?)
I Due to illness of Prof. Nabben, I can confirm new dates only next

week.
I 13:00 times do not work! Please reschedule (sorry).

