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Matrix equation
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A matrix norm estimate
Lemma: Assume A has positive main diagonal entries, nonpositive
off-diagonal entries and row sum zero. Then, ||(/ + A) ™} |eo < 1

Proof: Assume that ||(/ + A)7!|o > 1. [+ A'is a irreducible M-matrix,
thus (/ 4+ A)~! has positive entries. Then for a; being the entries of
(I+ AL,
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Let k be a row where the maximum is reached. Let e = (1...1)7. Then
for v = (I + A)~le we have that v > 0, v, > 1 and v, > v; for all j # k.
The kth equation of e = (/ + A)v then looks like
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This contradiction enforces ||(/ + A) 7} |o < 1. O




Stability estimate
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From the lemma we have ||(/ + 7"M~*0A)"||sc < 1 and
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In any case, by > 0 for k # I. If bg > 0, one estimates

bl
Blloo = rpf?Z by
=1

But

N
Zbk/:].Jr(@*l)
I=1

[1Blloc = 1.

<akk +) ak/> =1

Tn
m
kk 1ENK




Stability conditions

» For a shape regular triangulation in R?, we can assume that
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» Method stability:
> Implicit Euler: § = 1 = unconditional stability !
» Explicit Euler: § = 0 = CFL condition 7 < Ch?

» Crank-Nicolson: § = 2 = CFL condition 7 < 2Ch’
Tradeoff stability vs. accuracy.




Stability discussion

» 7 < Ch? CFL == “Courant-Friedrichs-Levy”

» Explicit (forward) Euler method can be applied on very fast systems
(GPU), with small time step comes a high accuracy in time.

» Implicit Euler: unconditional stability — helpful when stability is of
utmost importance, and accuracy in time is less important

» For hyperbolic systems (pure convection without diffusion), the CFL
conditions is 7 < Ch, thus in this case explicit computations are
ubiquitous

» Comparison for a fixed size of the time interval. Assume for implicit
Euler, time accuracy is less important, and the number of time steps
is independent of the size of the space discretization.

1D 2D 3D
# unknowns N =0(h"1) N=0(h"2) N=0(h3)
#steps M=O(N>) M=O(N) M= O(N?3)
complexity M= O(N3) M= O(N?) M = O(N°/3)




Backward Euler: discrete maximum principle
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» Provided, the right hand side is zero, the solution in a given node is
bounded by the value from the old timestep, and by the solution in
the neigboring points.

» No new local maxima can appear during time evolution

» There is a continuous counterpart which can be derived from weak
solution

» Sign pattern is crucial for the proof.




Backward Euler: Nonnegativity
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» (I +7"M~1A) is an M-Matrix

> If up >0, then u” >0Vn>0




Mass conservation

» Equivalent of [, V- xVudx = [, kVu-ndy = 0:
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» = Equivalent of [, u"dx = [, u" ldx:
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Weak formulation of time step problem

v

Weak formulation: search u € H*(Q) such that Vv € H(Q)
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Matrix formulation
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» M: mass matrix, A: stiffness matrix.

v

With FEM, Mass matrix lumping important for getting the previous
estimates




Examination dates

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Mon Apr 29.(7)
Tue Apr 30.(7)

Time: 10:00-13:00 (6 slots per examination date)

Please inscribe yourself into the corresponding sheets. (See also the back
sides).

Room: t.b.a. (MA, third floor)
Prof. Nabben answers all administrative questions.

Please bring your yellow sheets 3 days before the examination to Frau
Gillmeister



Why parallelization 7

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 callected and plotted by M. Horowiz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

v

Clock rate of processors limited due to physical limits

= parallelization: main road to increase the amount of data processed
Parallel systems nowadays ubiquitous: even laptops and smartphones
have multicore processors

Amount of accessible memory per processor is limited = systems
with large memory can be created based on parallel processors

vy

v



TOP 500 2018 rank 1-6

Based on linpack benchmark: solution of dense linear system. Typical

desktop computer: Ry« ~ 100...1000GFlop/s

Rank Site

1

DOE/SC/Oak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

National Supercomputing Center in
Wuxi
China

National Super Computer Center in
Guangzhou
China

Swiss National Supercomputing
Centre (CSCS)
Switzerland

DOE/NNSA/LANL/SNL
United States

System

Summit - IBM Power System
AC922, IBM POWER? 2. 07GHz,
NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband

1BM

Sierra - IBM Power System
5922LC, IBM POWERY 22C 3.1
NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniban®

IBM / NVIDIA / Mellanox

GHz,

Sunway TaihuLight - Sunway MPP,
Sunway SW26010 260C 1.456Hz,
Sunway

NRCPC

Tianhe-2A - TH-IVB-FEP Cluster,
Intel Xeon E5-2692v2 12C 2.2GHz,
TH Express-2, Matrix-2000
NUDT

Piz Daint - Cray XC50, Xeon E5-
2690v3 12C 2.6GHz, Aries
interconnect , NVIDIA Tesla P100
Cray Inc.

Trinity - Cray XC40, Xeon
2698v3 16C 2.3GHz, Intel Xeon Phi
7250 68C 1.4GHz, Aries
interconnect

Cray Inc

[Source:www.top500.0rg ]

Cores

2,397,824

1,572,480

10,649,600

4,981,760

387,872

979,072

Rmax
(TFlop/s)

143,500.0

94,640.0

93,014.6

61,4445

21,230.0

20,158.7

Rpeak
(TFlop/s)

200,794.9

125,712.0

125,435.9

100,678.7

27,1543

41,461.2

Power
(kw)

9,783

7,438

15,371

18,482

2,384

7.578



TOP 500 2018 rank 7-13

Rank Site

7

National Institute of Advanced
Industrial Science and Technology
AIST)

Japan

Leibniz Rechenzentrum
Germany

DOE/SC/Oak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

DOE/NNSA/LLNL
United States

DOE/SC/LBNL/NERSC
United States

Korea Institute of Science and
Technology Information
Korea, South

System

Al Bridging Cloud Infrastructure
(ABCI) - PRIMERGY CX2570 M4,
Xeon Gold 6148 20C 2.4GHz,
NVIDIA Tesla V100 SXM2, Infiniband
EDR

Fujitsu

SuperMUC-NG - ThinkSystem
SD530, Xeon Platinum 8174 24C
3.16Hz, Intel Omni-Path

Lenovo

Titan - Cray XK7, Opteron 6274 16C
2.200GHz, Cray Gemini
interconnect, NVIDIA K20x

Cray Inc.

Sequoia - BlueGene/Q, Power BQC
16C 1.60 GHz, Custom
1BM

Lassen - BM Power System
$922LC, IBM POWERY 22C 3.16Hz,
Dual-rail Mellanox EDR Infiniband,
NVIDIA Tesla V100

IBM / NVIDIA / Mellanox

Cori - Cray XC40, Intel Xeon Phi
7250 68C 1.4GHz, Aries
interconnect

CrayInc.

Nurion - Cray CS500, Intel Xeon

Phi 7250 68C 1.4GHz, Intel Omni-
Path

Cores

391,680

305,856

560,640

1,572,864

248,976

622,336

570,020

Rmax  Rpeak  Power
(TFlop/s) (TFlop/s) (kW)

19,880.0 32,576.6 1,649

19,476.6  26,873.9

17,590.0 27,112.5 8,209

17,173.2  20,132.7 7,890

15,430.0 19,904.4

14,0147 27,880.7 3,939

13,929.3 25,705.9

[Source:www.top500.0rg ]
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Parallel paradigms

SIMD
Single Instruction Multiple Data
prev instruct prev instruct prev instruct.
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n) -
CA=AMB()| |c@=A@B@)|  [cn)=Am)Bin) .
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

» "classical” vector systems: Cray,
Convex ...
» Graphics processing units (GPU)

MIMD
Multiple Instruction Multiple Data
prev instruct prev instruct prev instruct
load A(1) call funcD do10i=1,N
load B(1) x=y*z alpha=w**3 o
(C(1)y=A(1)*B(1) sum=x"2 zeta=C(j) 3
store C(1) call sub(i,jy 10 continue
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

> Shared memory systems
» IBM Power, Intel Xeon, AMD
Opteron ...
> Smartphones ...
» Xeon Phi R.I.P.
» Distributed memory systems
> interconnected CPUs



MIMD Hardware: Distributed memory

— I“I‘—

[Source: computing.linl.gov/tutorials]

v

“Linux Cluster”

“Commodity Hardware”
Memory scales with number of
CPUs interconneted

High latency for communication
Mostly programmed using MPI
(Message passing interface)
Explicit programming of
communications:

gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)



MIMD Hardware: Shared Memory

Symmetric Multiprocessing )
(SMP),/Uniform memory acces Nonuniform Memory Access (NUMA)

(UMA) W

[Source: computing.linl.gov/tutorials]

- » Possibly varying memory access
latencies
[Source: computing.linl.gov/tutorials] > Comblnatlon Of SMP Systems
» Similar processors
o P . » ccNUMA: Cache coherent
» Similar memory access times NUMA

v

Shared memory: one (virtual) address space for all processors involved

v

Communication hidden behind memory acces

» Not easy to scale large numbers of CPUS

v

MPI works on these systems as well



Hybrid distributed /shared memory

v

Combination of shared and distributed memory approach
Top 500 computers

v

[Source: computing.linl.gov/tutorials]
Shared memory nodes can be mixed CPU-GPU
Need to master both kinds of programming paradigms

vy



Shared memory programming: pthreads

>

>
>
>

>

Thread: lightweight process which can run parallel to others
pthreads (POSIX threads): widely distributed

cumbersome tuning + syncronization

basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;
printf("Hello World! It's me, thread #)1d!\n", tid);
pthread_exit (NULL) ;
}
int main (int argc, char xargv[])
{ pthread_t threads[NUM_THREADS] ;
int rc; long t;
for (t=0; t<NUM_THREADS; t++){
printf("In main: creating thread %1d\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc) {printf("ERROR; return code from pthread_create() is %d\n"
}

pthread_exit (NULL) ;

Source: computing.linl.gov/tutorials

compile and link with

, I



Shared memory programming: C++11 threads
» Threads introduced into C++ standard with C+-+11
» Quite late... many codes already use other approaches
» But interesting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;
}

int main() {

std::thread t[num_threads];

for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);

}

std::cout << "Launched from main\n";

//Join the threads with the main thread

for (int i = 0; i < num_threads; ++i) {
t[i].join();

}

return O;

Source: https://solarianprogrammer.com/2011/12/16 /cpp-11-thread-tutorial /



Thread programming: mutexes and locking

» If threads work with common data (write to the same memory
address, use the same output channel) access must be synchronized

» Mutexes allow to define regions in a program which are accessed by
all threads in a sequential manner.

#include <mutex>
std: :mutex mtx;
void call_from_thread(int tid) {
mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()
}
int main() {
std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
for (int i = 0; i < num_threads; ++i) t[il.join();
return O;

}

» Barrier. all threads use the same mutex for the same region
» Deadlock: two threads block each other by locking two different locks

Aand wAaiting fAr aacrh Arhar +A finich



Shared memory programming: OpenMP
» Mostly based on pthreads
» Available in C++,C,Fortran for all common compilers

» Compiler directives (pragmas) describe parallel regions

. sequential code ...
#pragma omp parallel

. parallel code ...
}
(implicit barrier)
. sequential code ...

master thread I- ‘ J 1
— AR ‘-,_. B . threads
threads y threads
parallel region parallel region parallel region

[Source: computing.linl.gov/tutorials]



Shared memory programming: OpenMP Il

#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;
}

int main (int argc, char *argv[])
{
int num_threads=1;
if (argc>1) num_threads=atoi(argv([1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{
call_from_thread(i);
¥

return O;

» compile and link with

g++ —fopenmp -o cppomp cppomp.cxx



Example: u=au+vunds=u-v

double uln],vin];
#pragma omp parallel for
for(int i=0; i<n ; i++)
ulil+=axv[il;
//implicit barrier
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
s+=u[il*v[i];

» Code can be parallelized by introducing compiler directives
» Compiler directives are ignored if not in parallel mode

» Write conflict with + s: several threads may access the same variable



Preventing conflicts in OpenMP

» Critical sections are performed only by one thread at a time

double s=0.0;

#pragma omp parallel for
for(int i=0; i<mn ; i++)
#pragma omp critical

s+=ulil*v[i];

}

» Expensive, parallel program flow is interrupted



Do it yourself reduction

» Remedy: accumulate partial results per thread, combine them after
main loop

» “Reduction”

#include <omp.h>

int maxthreads=omp_get_max_threads();

double sO[maxthreads];

double ul[n],v[n];

for (int ithread=0;ithread<maxthreads; ithread++)
sO[ithread]=0.0;

#pragma omp parallel for

for(int i=0; i<mn ; i++)

{
int ithread=omp_get_thread_num();
sO[ithread]+=ulil*v[i];

I

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)
s+=s0[ithread] ;



OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<mn ; i++)

st=ul[il*v[il;

» |n standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer



OpenMP: further aspects

double uln],v[n]; Bus Interconnect

#pragma omp parallel for
for(int i=0; i<n ; i++)
uli]+=ax*uli];

[Quelle: computing.linl.gov/tutorials]

» Distribution of indices with thread is implicit and can be influenced by
scheduling directives

» Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads ()

» First Touch Principle (NUMA): first thread which “touches” data
triggers the allocation of memory with the processeor where the
thread is running on



Parallelization of PDE solution

Au=finQ, ulpa =0

:>U=/Qf(}/)G(X7Y)dy'

» Solution in x € Q is influenced by values of f in all points in Q

» = global coupling: any solution algorithm needs global
communication



Structured and unstructured grids

Structured grid Unstructured grid

» Easy next neighbor access via
index calculation
» Efficient implementation on

SIMD/GPU access to next neighbors
» Strong limitations on geometry » Hardly feasible fo SIMD/GPU

[Quelle: tetgen.org]
» General geometries
» lrregular, index vector based



Stiffness matrix assembly for Laplace operator for P1 FEM

ajj = 3(¢i,¢j) = /qus,v% dx
:/ > Véilk Vi dx

KeTh
Assembly loop:
Set a; = 0.

For each K € Tp:
For each m,n=20...d:

Smn :/ VAnVA, dx
K

3o (K,m) o (K1) = Qjgor (K,m) juor (K,n) T Smn



Mesh partitioning

Partition set of cells in 75, and color the graph of the partitions.

Result: C: set of colors, P.: set of partitions of given color. Then:
77’ = UCEC UpEPc P
» Sample algorithm:

» Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) — Partitions of color 1

> Create separators along boundaries — Partitions of color 2

> “triple points” — Partitions of color 3
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Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set a; = 0.

For each color c € C
#£pragma omp parallel for
For each p € P,:
For each K € p:
For each m,n=20...d:
Smn = Jic VAV A, dx
ajdof(K7m)yjdof(Kan)+ = Smn

» Prevent write conflicts by loop organization

» No need for critical sections

» Similar structure for Voronoi finite volumes, nonlinear operator
evaluation, Jacobi matrix assembly



Linear system solution

» Sparse matrices

» Direct solvers are hard to parallelize though many efforts are
undertaken, e.g. Pardiso

> lterative methods easier to parallelize

> partitioning of vectors + coloring inherited from cell partitioning
> keep loop structure (first touch principle)
» parallelize

>

>
>
>

vector algebra

scalar products

matrix vector products
preconditioners



