
Lecture 22 Slide 1

Scientific Computing WS 2018/2019

Lecture 22

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 21 Slide 21

Matrix equation

1
τn
(
Mun −Mun−1)+ Auθ = 0

1
τn Mun + θAun = 1

τn Mun−1 + (θ − 1)Aun−1

un + τnM−1θAun = un−1 + τnM−1(θ − 1)Aun−1

M = (mkl), A = (akl) with

akl =

∑
l′∈Nk

κ |σkl′ |
hkl′

l = k
−κσkl

hkl
, l ∈ Nk

0, else

mkl =
{
|ωk | l = k
0, else

Lecture 22 Slide 2

Lecture 21 Slide 22

A matrix norm estimate
Lemma: Assume A has positive main diagonal entries, nonpositive
off-diagonal entries and row sum zero. Then, ||(I + A)−1||∞ ≤ 1
Proof: Assume that ||(I + A)−1||∞ > 1. I + A is a irreducible M-matrix,
thus (I + A)−1 has positive entries. Then for αij being the entries of
(I + A)−1,

nmax
i=1

n∑

j=1
αij > 1.

Let k be a row where the maximum is reached. Let e = (1 . . . 1)T . Then
for v = (I + A)−1e we have that v > 0, vk > 1 and vk ≥ vj for all j 6= k.
The kth equation of e = (I + A)v then looks like

1 = vk + vk
∑

j 6=k
|akj | −

∑

j 6=k
|akj |vj

≥ vk + vk
∑

j 6=k
|akj | −

∑

j 6=k
|akj |vk

= vk

> 1
This contradiction enforces ||(I + A)−1||∞ ≤ 1. �

Lecture 22 Slide 3

Lecture 21 Slide 23

Stability estimate

un + τnM−1θAun = un−1 + τnM−1(θ − 1)Aun−1 =: Bnun−1

un = (I + τnM−1θA)−1Bnun−1

From the lemma we have ||(I + τnM−1θA)n||∞ ≤ 1 and
||un||∞ ≤ ||Bnun−1||∞.
For the entries bn

kl of Bn, we have

bn
kl =

{
1 + τn

mkk
(θ − 1)akk , k = l

τn

mkk
(θ − 1)akl , else

In any case, bkl ≥ 0 for k 6= l . If bkk ≥ 0, one estimates

||B||∞ = Nmax
k=1

N∑

l=1
bkl .

But
N∑

l=1
bkl = 1 + (θ − 1) τ

n

mkk

(
akk +

∑

l∈Nk

akl

)
= 1

||B||∞ = 1.
Lecture 22 Slide 4

Lecture 21 Slide 24

Stability conditions
I For a shape regular triangulation in Rd , we can assume that

mkk = |ωk | ∼ hd , and akl = |σkl |
hkl
∼ hd−1

h = hd−2, thus akk
mkk
≤ 1

Ch2

I bkk ≥ 0 gives

(1− θ) τ
n

mkk
akk ≤ 1

I A sufficient condition is

C(1− θ) τ
n

Ch2 ≤ 1

(1− θ)τn ≤ Ch2

I Method stability:
I Implicit Euler: θ = 1 ⇒ unconditional stability !
I Explicit Euler: θ = 0 ⇒ CFL condition τ ≤ Ch2

I Crank-Nicolson: θ = 1
2 ⇒ CFL condition τ ≤ 2Ch2

Tradeoff stability vs. accuracy.

Lecture 22 Slide 5

Lecture 21 Slide 25

Stability discussion
I τ ≤ Ch2 CFL == “Courant-Friedrichs-Levy”
I Explicit (forward) Euler method can be applied on very fast systems

(GPU), with small time step comes a high accuracy in time.
I Implicit Euler: unconditional stability – helpful when stability is of

utmost importance, and accuracy in time is less important
I For hyperbolic systems (pure convection without diffusion), the CFL

conditions is τ ≤ Ch, thus in this case explicit computations are
ubiquitous

I Comparison for a fixed size of the time interval. Assume for implicit
Euler, time accuracy is less important, and the number of time steps
is independent of the size of the space discretization.

1D 2D 3D
unknowns N = O(h−1) N = O(h−2) N = O(h−3)

steps M = O(N2) M = O(N) M = O(N2/3)
complexity M = O(N3) M = O(N2) M = O(N5/3)

Lecture 22 Slide 6

Lecture 21 Slide 26

Backward Euler: discrete maximum principle

1
τn Mun + Aun = 1

τ
Mun−1

1
τn mkkun

k + akkun
k = 1

τn mkkun−1
k +

∑

k 6=l
(−akl)un

l

un
k = 1

1
τn mkk +

∑
l 6=k(−akl)

(1
τn mkkun−1

k +
∑

l 6=k
(−akl)un

l)

≤
1
τn mkk +

∑
l 6=k(−akl)

1
τn mkk +

∑
l 6=k(−akl)

max({un−1
k } ∪ {un

l }l∈Nk)

≤ max({un−1
k } ∪ {un

l }l∈Nk)

I Provided, the right hand side is zero, the solution in a given node is
bounded by the value from the old timestep, and by the solution in
the neigboring points.

I No new local maxima can appear during time evolution
I There is a continuous counterpart which can be derived from weak

solution
I Sign pattern is crucial for the proof.

Lecture 22 Slide 7

Lecture 21 Slide 27

Backward Euler: Nonnegativity

un + τnM−1Aun = un−1

un = (I + τnM−1A)−1un−1

I (I + τnM−1A) is an M-Matrix
I If u0 > 0, then un > 0 ∀n > 0

Lecture 22 Slide 8

Lecture 21 Slide 28

Mass conservation

I Equivalent of
∫

Ω∇ · κ∇udx =
∫
∂Ω κ∇u · ndγ = 0:

N∑

k=1

(
akkuk +

∑

l∈Nk

aklul

)
=

N∑

k=1

N∑

l=1,l 6=k
akl (ul − uk)

=
N∑

k=1

N∑

l=1,l<k
(akl (ul − uk) + alk(uk − ul))

= 0

I ⇒ Equivalent of
∫

Ω undx =
∫

Ω un−1dx:
I
∑N

k=1 mkkun
k =

∑N
k=1 mkkun−1

k

Lecture 22 Slide 9

Lecture 21 Slide 29

Weak formulation of time step problem

I Weak formulation: search u ∈ H1(Ω) such that ∀v ∈ H1(Ω)

1
τn

∫

Ω
unv dx + θ

∫

Ω
κ∇un∇v dx =

1
τn

∫

Ω
un−1v dx + (1− θ)

∫

Ω
κ∇un−1∇v dx

I Matrix formulation
1
τn Mun + θAun = 1

τn Mun−1 + (1− θ)Aun−1

I M: mass matrix, A: stiffness matrix.
I With FEM, Mass matrix lumping important for getting the previous

estimates

Lecture 22 Slide 10

Lecture 22 Slide 11

Examination dates

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Mon Apr 29.(?)
Tue Apr 30.(?)

Time: 10:00-13:00 (6 slots per examination date)
Please inscribe yourself into the corresponding sheets. (See also the back
sides).
Room: t.b.a. (MA, third floor)
Prof. Nabben answers all administrative questions.
Please bring your yellow sheets 3 days before the examination to Frau
Gillmeister

Lecture 22 Slide 12

Why parallelization ?

I Clock rate of processors limited due to physical limits
I ⇒ parallelization: main road to increase the amount of data processed
I Parallel systems nowadays ubiquitous: even laptops and smartphones

have multicore processors
I Amount of accessible memory per processor is limited ⇒ systems

with large memory can be created based on parallel processors

Lecture 22 Slide 13

TOP 500 2018 rank 1-6
Based on linpack benchmark: solution of dense linear system. Typical
desktop computer: Rmax ≈ 100 . . . 1000GFlop/s

[Source:www.top500.org]

Lecture 22 Slide 14

TOP 500 2018 rank 7-13

[Source:www.top500.org]

Lecture 22 Slide 15

Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs

Lecture 22 Slide 16

MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

I “Linux Cluster”
I “Commodity Hardware”
I Memory scales with number of

CPUs interconneted
I High latency for communication
I Mostly programmed using MPI

(Message passing interface)
I Explicit programming of

communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

Lecture 22 Slide 17

MIMD Hardware: Shared Memory
Symmetric Multiprocessing

(SMP)/Uniform memory acces
(UMA)

[Source: computing.llnl.gov/tutorials]

I Similar processors
I Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

I Possibly varying memory access
latencies

I Combination of SMP systems
I ccNUMA: Cache coherent

NUMA

I Shared memory: one (virtual) address space for all processors involved
I Communication hidden behind memory acces
I Not easy to scale large numbers of CPUS
I MPI works on these systems as well

Lecture 22 Slide 18

Hybrid distributed/shared memory

I Combination of shared and distributed memory approach
I Top 500 computers

[Source: computing.llnl.gov/tutorials]

I Shared memory nodes can be mixed CPU-GPU
I Need to master both kinds of programming paradigms

Lecture 22 Slide 19

Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}
int main (int argc, char *argv[])
{ pthread_t threads[NUM_THREADS];

int rc; long t;
for(t=0; t<NUM_THREADS; t++){

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}
}
pthread_exit(NULL);

}
}

Source: computing.llnl.gov/tutorials

I compile and link with
gcc -pthread -o pthreads pthreads.c

Lecture 22 Slide 20

Shared memory programming: C++11 threads
I Threads introduced into C++ standard with C++11
I Quite late. . . many codes already use other approaches
I But interesting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main() {
std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {

t[i].join();
}
return 0;

}

Source: https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

I compile and link with
g++ -std=c++11 -pthread cpp11threads.cxx -o cpp11threads

Lecture 22 Slide 21

Thread programming: mutexes and locking
I If threads work with common data (write to the same memory

address, use the same output channel) access must be synchronized
I Mutexes allow to define regions in a program which are accessed by

all threads in a sequential manner.
#include <mutex>
std::mutex mtx;
void call_from_thread(int tid) {

mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()

}
int main() {

std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
for (int i = 0; i < num_threads; ++i) t[i].join();
return 0;

}

I Barrier: all threads use the same mutex for the same region
I Deadlock: two threads block each other by locking two different locks

and waiting for each other to finish

Lecture 22 Slide 22

Shared memory programming: OpenMP
I Mostly based on pthreads
I Available in C++,C,Fortran for all common compilers
I Compiler directives (pragmas) describe parallel regions

... sequential code ...
#pragma omp parallel
{

... parallel code ...
}
(implicit barrier)
... sequential code ...

[Source: computing.llnl.gov/tutorials]

Lecture 22 Slide 23

Shared memory programming: OpenMP II
#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main (int argc, char *argv[])
{

int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{

call_from_thread(i);
}
return 0;

}

I compile and link with

g++ -fopenmp -o cppomp cppomp.cxx

Lecture 22 Slide 24

Example: u = au + v und s = u · v

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)

u[i]+=a*v[i];

//implicit barrier
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I Code can be parallelized by introducing compiler directives
I Compiler directives are ignored if not in parallel mode
I Write conflict with + s: several threads may access the same variable

Lecture 22 Slide 25

Preventing conflicts in OpenMP

I Critical sections are performed only by one thread at a time

double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
#pragma omp critical
{

s+=u[i]*v[i];
}

I Expensive, parallel program flow is interrupted

Lecture 22 Slide 26

Do it yourself reduction
I Remedy: accumulate partial results per thread, combine them after

main loop
I “Reduction”

#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)

s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{

int ithread=omp_get_thread_num();
s0[ithread]+=u[i]*v[i];

}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)

s+=s0[ithread];

Lecture 22 Slide 27

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I In standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer

Lecture 22 Slide 28

OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)
u[i]+=a*u[i];

[Quelle: computing.llnl.gov/tutorials]

I Distribution of indices with thread is implicit and can be influenced by
scheduling directives

I Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads()

I First Touch Principle (NUMA): first thread which “touches” data
triggers the allocation of memory with the processeor where the
thread is running on

Lecture 22 Slide 29

Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω
I ⇒ global coupling: any solution algorithm needs global

communication

Lecture 22 Slide 30

Structured and unstructured grids

Structured grid

I Easy next neighbor access via
index calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based

access to next neighbors
I Hardly feasible fo SIMD/GPU

Lecture 22 Slide 31

Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑

K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn

Lecture 22 Slide 32

Mesh partitioning
Partition set of cells in Th, and color the graph of the partitions.
Result: C: set of colors, Pc : set of partitions of given color. Then:
Th =

⋃
c∈C

⋃
p∈Pc

p
I Sample algorithm:

I Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) → Partitions of color 1

I Create separators along boundaries → Partitions of color 2
I “triple points” → Partitions of color 3

I No interference between assembly loops for partitions of the same
color

I Immediate parallelization without critical regions

Lecture 22 Slide 33

Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

I Prevent write conflicts by loop organization
I No need for critical sections
I Similar structure for Voronoi finite volumes, nonlinear operator

evaluation, Jacobi matrix assembly

Lecture 22 Slide 34

Linear system solution

I Sparse matrices
I Direct solvers are hard to parallelize though many efforts are

undertaken, e.g. Pardiso
I Iterative methods easier to parallelize

I partitioning of vectors + coloring inherited from cell partitioning
I keep loop structure (first touch principle)
I parallelize

I vector algebra
I scalar products
I matrix vector products
I preconditioners

