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Nonlinear problems: motivation

» Assume nonlinear dependency of some coefficients of the equation on
the solution. E.g. nonlinear diffusion problem

—V(-D(u)Vu)=f inQ
u = upondfd

» FE+FV discretization methods lead to large nonlinear systems of
equations




Nonlinear problems: caution!

This is a significantly more complex world:
» Possibly multiple solution branches
» Weak formulations in LP spaces
» No direct solution methods

» Narrow domains of definition (e.g. only for positive solutions)




Finite element discretization for nonlinear diffusion

» Find up € V), such that for all wy, € Vj:
/ D(up)Vup - Vwy dx = / fwy, dx
Q Q

» Use appropriate quadrature rules for the nonlinear integrals

» Discrete system
A(un) = F(un)




Finite volume discretization for nonlinear diffusion

0:/ (=V - D(u)Vu — F) dw
Wk
= —/ D(u)Vu-nkdfy—/ fdw (Gauss)
Owy Wk
== Z/ u)Vu - ngdy — / D(u)Vu-nd’y—/ fdw
LeN, Yk Wk
~ Z %Hgk/(uk, up) + |veloux — wi) — Jwlfe

LEN

with
DGk + ) (uk — )
g (U, ur) = {or 2D(uk) —D(u)

where D(u fo (&) d¢ (exact solution ansatz at discretization edge)

» Discrete system
A(uh) = F(u;,)




Iterative solution methods: fixed point iteration

> Let u e R".
Problem: A(u) =

v

operator.
> lIteration scheme:
Choose ug, i + 0;
while not converged do
Solve M(uj)uiy1 = f;
i+~ i+1;
end
» Convergence criteria:
> residual based: ||A(u) — f|| < e
> update based ||uit1 — ui|| < €
» Large domain of convergence
Convergence may be slow
» Smooth coefficients not necessary

v

» Assume A(u) = M(u)u, where for each u, M(u) : R"” — R" is a linear




[terative solution methods: Newton method

» Solve
A1(U1 e LI,,) f1
Ax(uy ... u,) H
A(u) = . = .| =f
A,,(ul..‘u,,) fn

> Jacobi matrix (Frechet derivative) for given u: A’(u) = (ax) with

0
il = %Ak(ul e U,,)

» lteration scheme:

Choose ug, i < 0;

while not converged do
Calculate residual r; = A(u;) — f;
Calculate Jacobi matrix A’(y;);
Solve update problem A’(u;)h; = r;;
Update solution: v+ = u; — hj;
i+~ i+1;

end




Newton method Il

» Convergence criteria: - residual based: ||r;|| < € - update based
[Ihil] < e

» Limited domain of convergence

» Slow initial convergence

» Fast (quadratic) convergence close to solution




Damped Newton method
» Remedy for small domain of convergence: damping

Choose ug, i + 0, damping parameter d < 1;
while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A’(y;);
Solve update problem A'(u;)h; = r;;
Update solution: uj11 = u; — dh;;
i+~ i+1;
end
» Damping slows convergence down from quadratic to linear
» Better way: increase damping parameter during iteration:

Choose ug, i + 0,damping d < 1, growth factor § > 1;
while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A’(y;);
Solve update problem A'(u;)h; = r;;
Update solution: u;11 = u; — dh;;
Update damping parameter: d; 11 = min(1,0d;) ;
i+~ i+1;
end




Newton method: further issues

» Even if it converges, in each iteration step we have to solve linear
system of equations

> Can be done iteratively, e.g. with the LU factorization of the Jacobi
matrix from first solution step

> lterative solution accuracy my be relaxed, but this may diminuish
quadratic convergence

» Quadratic convergence yields very accurate solution with no large
additional effort: once we are in the quadratic convergence region,
convergence is very fast

» Monotonicity test: check if residual grows, this is often an sign that
the iteration will diverge anyway.




Newton method: embedding

» Embedding method for parameter dependent problems.
> Solve A(ux,\) = f for A= 1.
» Assume A(up, 0) can be easily solved.

» Parameter embedding method:

Solve A(up,0) = f;

Choose initial step size §;

Set A =0;

while A < 1 do
Solve A(uxis, A+ 0) = 0 with initial valuel uy;
A AN+

end

» Possibly decrease stepsize if Newton's method does not converge,
increase it later

» Parameter embedding + damping + update based convergence
control go a long way to solve even strongly nonlinear problems!




Inhomogeneous Dirichlet problem: strong formulation

V- AXNVu="finQ
u=gondf2

» What can we say about minimum and maximum of the solution ?
» u has local local extremum in xp € Q if

> xo is a critical point: V|, =0

» The matrix of second derivatives in xp is definite

> This is linked to the sign of the right hand side: if f =0 the main
diagonal entries have different signs (as their sum is zero), so perhaps
we would get a saddle point



Inhomogeneous Dirichlet problem: weak formulation

» Search u € H}(Q) such that
u=ug+o
/AV(vadx:/fvdx—/)\Vung Vv € Hy(Q)
Q Q Q

Here, necessarily, ¢ € H:(€) and we can apply the theory for the
homogeneous Dirichlet problem.
» if uis a solution, we also have

/)\Vqudx:/fvdx Vv € H3(Q)
Q Q

as we can add fQ AVugVv on left and right side



Inhomogeneous Dirichlet problem: minimum principle

Let f > 0.

Let g* = infong.

Let w = (u—g°)~ = min{u—g°,0} € H}(Q)

Consequently, w < 0

As Vu = V(u—g°) and Vw = 0 where w # u — g°, one has

OZ/fwdx:/)\VUVde
Q Q

= / AVwVwdx >0
Q

vVvyvyyy

Therefore: (u—g”)~ =0and u>g°

v



Inhomogeneous Dirichlet problem: maximum principle

Let f <O0.

Let g% = supyq &

Let w = (u—g%)* = max{u — g%,0} € H}(Q)

Consequently, w > 0

As Vu=V(u—g*) and Vw = 0 where w # u — g¥, one has

OZ/deX://\VUVWdX
Q Q

= / AVwVwdx >0
Q

vVvyvyyvVyy

Therefore: (u—g#)~ =0 and u < g

v



Inhomogeneous Dirichlet problem: minmax principle

Theorem: The weak solution of the inhomogeneous Dirichlet problem

-V - AXNVu="finQ
u=gondf2
fulfills the global minimax principle: it attains its maximum at the

boundary if f < 0 and attains its minimum at the boundary if f > 0.

Corollary: If f = 0 then v attains both its minimum and its maximum at
the boundary.

Corolloary: Local minimax principle: This is true of any subdomain
wC Q.



Convection-Diffusion problem

Green's theorem: If w = 0 on 0Q:

/V~VWdXI*/WV~VdX
Q Q

Let V -v = 0. Search function u: Q — R such that

—V-(DVu—uw)=1f inQ
u=g ondf)

From weak formulation (with Dirichlet lifting trick):

/(DVu—uv)~dex:/fwdx Yw € Hy(Q)
Q Q



Coercivity of bilinear form

Regard the convection contribution to the coercivity estimate:
— /Q uv-Vudx = /uV -(uv) dx  Green's theorem
/Q u?V - vdx + /Q uv-Vudx = /uV - (uv) dx  Product rule
/Q PV - vdx + 2/Q uv-Vudx =0 Equation difference
/Q uv-Vudx =0 Divergence conditionV -v =10
Then

/Q(DVU—uv)-Vudx:/QDVu-Vudxz Cllullme

One could allow for fixed sign of V - v.



Convection diffusion problem: maximum principle

Let f <0, V-v=0

Let g = supyq &

Let w = (u—g*)* = max{u — g*,0} € H}(Q)

Consequently, w > 0

As Vu=V(u—g*) and Vw = 0 where w # u — g¥, one has

vvyvyyvyy

OZ/fwdx:/D(Vu—uv)dex
Q Q

:/D(vw—wv)vwdx—ogﬂ/v-dex
Q Q

:/DVW-dex—i—Dgﬁ/WV-vdx
Q Q

= ClIwll e

» Therefore: w = (u—gf)~ =0and u < g
» Similar for minimum part



Mimimax for convection-diffusion

Theorem: If V- v =0, the weak solution of the inhomogeneous Dirichlet
problem

-V - (DVu—uw)=f inQ
u=g ondf2
fulfills the global minimax principle: it attains its maximum at the

boundary if f < 0 and attains its minimum at the boundary if f > 0.

Corollary: If f =0 then u attains both its minimum and its maximum at
the boundary.

Corolloary: Local minimax principle: This is true of any subdomain
w C Q.



Interpretation of minimax principle

» Positive right hand side = “production” of heat, matter ...
» No local minimum in the interior of domain if matter is produced.

» Also, positivity/nonnegativity of solutions if boundary conditions are
positive/nonnegative

> Negative right hand side = “consumption” of heat, matter ...
» No local maximum in the interior of domain if matter is consumed.

» Basic physical principle !



Discrete minimax principle
> Au=1f
> A: matrix from diffusion or convection- diffusion
» A irreducibly diagonally dominant, positive main diagonal entries,
negative off diagonal entries

ajuj =y —aju;+ f;

J#i
uj = E ——uj +f
all
J#i,257#0
> For interior points, a; = —>_;; aj
» Assume i is interior point. Assume f; > 0 =
. ajj )
ui > min u; E ——= = _min u
J#i,2;70 At aji  Jj#i,a;#0

» Assume i is interior point. Assume f; <0 =

djj
up < max uj E —— = max uj

T j#ia#0 oo i J#i,a;7#0
29l



Discussion of discrete minimax principle |

P1 finite elements, Voronoi finite volumes: matrix graph =
triangulation of domain

v

v

The set {j # i, a; # 0} is exactly the set of neigbor nodes

v

Solution in point x; estimated by solution in neigborhood

The estimate can be propagated to the boundary of the domain

v



Discussion of discrete minimax principle |l

» Minimax principle + positivity/nonnegativity of solutions can be seen
as an important qualitative property of the physical process

» Along with good approximation quality, its preservation in the
discretization process may be necessary

» Guaranteed for irreducibly diagonally dominant matrices

» Nonnegativity for nonnegative right hand sides guaranteed by
M-Property

» Finite volume method may be preferred as it can guarantee these
properties for boundary conforming Delaunay grids.



Convection-diffusion and finite elements
Search function u : Q — R such that

—V(DVu—uwv)=f inQ

u=up on o

» Assume v is divergence-free, i.e. V-v =0.

» Then the main part of the equation can be reformulated as
—V(-DVu)+v-Vu=0 inQ

yielding a weak formulation: find u € H*(Q) such that
u—up € H}(Q) and Vw € H}(Q),

/DVU~deX+/v~Vude:/fwdx
Q Q Q

» Galerkin formulation: find u, € V}, with bc. such that Yw, € V,

/DVuh-Vthx+/v-Vuh wWh dx:/fwh dx
Q Q Q



Convection-diffusion and finite elements I

» Galerkin ansatz has similar problems as central difference ansatz in
the finite volume/finite difference case = stabilization 7

» Most popular: streamline upwind Petrov-Galerkin

/DVuh~th dx—l—/v~Vuh wy, dx + S(up, wp) :/fwh dx
Q Q Q

with

S(up, wp) = Z/ (=V(-DVup — upv) — f)okv - wy dx
< K

where 6 = %'g( |"g"v<) with £(ar) = coth(a) — X and hj; is the size of

element K in the direction of v.



Convection-diffusion and finite elements IlI

» Many methods to stabilize, none guarantees M-Property even on
weakly acute meshes ! (V. John, P. Knobloch, Computer Methods in
Applied Mechanics and Engineering, 2007)

» Comparison paper:

M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and
R. Umla, “An assessment of discretizations for convection-dominated
convection-diffusion equations,” Comp. Meth. Appl. Mech. Engrg., vol.
200, pp. 3395-3409, 2011:

o if it is necessary to compute solutions without spurious oscilla-
tions: use FVM, taking care on the construction of an appropri-
ate grid might be essential for reducing the smearing of the
layers,

o if sharpness and position of layers are important and spurious
oscillations can be tolerated: often the SUPG method is a good
choice.

» Topic of ongoing research



