Scientific Computing WS 2018/2019

Lecture 20

Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de

Nonlinear problems: motivation

 Assume nonlinear dependency of some coefficients of the equation on the solution. E.g. nonlinear diffusion problem

$$-\nabla(\cdot D(u)\nabla u) = f \quad \text{in } \Omega$$
$$u = u_D \text{on } \partial\Omega$$

 FE+FV discretization methods lead to large nonlinear systems of equations

Nonlinear problems: caution!

This is a significantly more complex world:

- Possibly multiple solution branches
- ▶ Weak formulations in *L^p* spaces
- ▶ No direct solution methods
- ▶ Narrow domains of definition (e.g. only for positive solutions)

Finite element discretization for nonlinear diffusion

▶ Find $u_h \in V_h$ such that for all $w_h \in V_h$:

$$\int_{\Omega} D(u_h) \nabla u_h \cdot \nabla w_h \ dx = \int_{\Omega} f w_h \ dx$$

- Use appropriate quadrature rules for the nonlinear integrals
- Discrete system

$$A(u_h)=F(u_h)$$

Finite volume discretization for nonlinear diffusion

$$0 = \int_{\omega_{k}} (-\nabla \cdot D(u)\nabla u - f) d\omega$$

$$= -\int_{\partial\omega_{k}} D(u)\nabla u \cdot \mathbf{n}_{k} d\gamma - \int_{\omega_{k}} fd\omega \qquad (Gauss)$$

$$= -\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{kl}} D(u)\nabla u \cdot \mathbf{n}_{kl} d\gamma - \int_{\gamma_{k}} D(u)\nabla u \cdot \mathbf{n} d\gamma - \int_{\omega_{k}} fd\omega$$

$$\approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{kl}}{h_{kl}} g_{kl}(u_{k}, u_{l}) + |\gamma_{k}| \alpha(u_{k} - w_{k}) - |\omega_{k}| f_{k}$$

with

$$g_{kl}(u_k, u_l) = \begin{cases} D(\frac{1}{2}(u_k + u_l))(u_k - u_l) \\ \text{or} \quad \mathcal{D}(u_k) - \mathcal{D}(u_l) \end{cases}$$

where $\mathcal{D}(u) = \int_0^u D(\xi) \ d\xi$ (exact solution ansatz at discretization edge)

Discrete system

$$A(u_h) = F(u_h)$$

ecture 19 Slide 40

Iterative solution methods: fixed point iteration

- ▶ Let $u \in \mathbb{R}^n$.
- ▶ Problem: A(u) = f:
- Assume A(u) = M(u)u, where for each u, M(u): $\mathbb{R}^n \to \mathbb{R}^n$ is a linear operator.
- ► Iteration scheme: Choose u_0 , $i \leftarrow 0$; **while** not converged **do** Solve $M(u_i)u_{i+1} = f$; $i \leftarrow i + 1$;

end

- Convergence criteria:
 - ▶ residual based: $||A(u) f|| < \varepsilon$
 - ▶ update based $||u_{i+1} u_i|| < \varepsilon$
- ► Large domain of convergence
- ► Convergence may be slow
- Smooth coefficients not necessary

Iterative solution methods: Newton method

Solve

$$A(u) = \begin{pmatrix} A_1(u_1 \dots u_n) \\ A_2(u_1 \dots u_n) \\ \vdots \\ A_n(u_1 \dots u_n) \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = f$$

▶ Jacobi matrix (Frechet derivative) for given u: $A'(u) = (a_{kl})$ with

$$a_{kl} = \frac{\partial}{\partial u_l} A_k(u_1 \dots u_n)$$

▶ Iteration scheme:

```
Choose u_0, i \leftarrow 0; while not converged do

Calculate residual r_i = A(u_i) - f;
Calculate Jacobi matrix A'(u_i);
Solve update problem A'(u_i)h_i = r_i;
Update solution: u_{i+1} = u_i - h_i; i \leftarrow i+1;
```

Newton method II

- ▶ Convergence criteria: residual based: $||r_i|| < \varepsilon$ update based $||h_i|| < \varepsilon$
- ► Limited domain of convergence
- ► Slow initial convergence
- ► Fast (quadratic) convergence close to solution

Damped Newton method

▶ Remedy for small domain of convergence: damping

```
Choose u_0, i \leftarrow 0, damping parameter d < 1;
```

while not converged do

```
Calculate residual r_i = A(u_i) - f;
Calculate Jacobi matrix A'(u_i);
Solve update problem A'(u_i)h_i = r_i;
Update solution: u_{i+1} = u_i - dh_i;
i \leftarrow i + 1;
```

end

- Damping slows convergence down from quadratic to linear
- ▶ Better way: increase damping parameter during iteration:

```
Choose u_0, i \leftarrow 0,damping d < 1, growth factor \delta > 1; while not converged do
```

```
Calculate residual r_i = A(u_i) - f;
Calculate Jacobi matrix A'(u_i);
Solve update problem A'(u_i)h_i = r_i;
Update solution: u_{i+1} = u_i - dh_i;
Update damping parameter: d_{i+1} = \min(1, \delta d_i); i \leftarrow i+1;
```

end

Newton method: further issues

- Even if it converges, in each iteration step we have to solve linear system of equations
 - Can be done iteratively, e.g. with the LU factorization of the Jacobi matrix from first solution step
 - Iterative solution accuracy my be relaxed, but this may diminuish quadratic convergence
- Quadratic convergence yields very accurate solution with no large additional effort: once we are in the quadratic convergence region, convergence is very fast
- Monotonicity test: check if residual grows, this is often an sign that the iteration will diverge anyway.

Newton method: embedding

- ▶ Embedding method for parameter dependent problems.
- ▶ Solve $A(u_{\lambda}, \lambda) = f$ for $\lambda = 1$.
- ▶ Assume $A(u_0, 0)$ can be easily solved.
- ► Parameter embedding method:

```
Solve A(u_0,0)=f;
Choose initial step size \delta;
Set \lambda=0;
while \lambda<1 do \Big| Solve A(u_{\lambda+\delta},\lambda+\delta)=0 with initial value1 u_{\lambda};
\lambda\leftarrow\lambda+\delta;
```

- Possibly decrease stepsize if Newton's method does not converge, increase it later
- Parameter embedding + damping + update based convergence control go a long way to solve even strongly nonlinear problems!

Inhomogeneous Dirichlet problem: strong formulation

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

- ▶ What can we say about minimum and maximum of the solution ?
- ▶ u has local local extremum in $x_0 \in \Omega$ if
 - x_0 is a critical point: $\nabla_u|_{x_0} = 0$
 - ▶ The matrix of second derivatives in x_0 is definite
 - This is linked to the sign of the right hand side: if f=0 the main diagonal entries have different signs (as their sum is zero), so perhaps we would get a saddle point

Inhomogeneous Dirichlet problem: weak formulation

▶ Search $u \in H^1(\Omega)$ such that

$$u = u_g + \phi$$

$$\int_{\Omega} \lambda \nabla \phi \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} - \int_{\Omega} \lambda \nabla u_g \nabla v \; \forall v \in H_0^1(\Omega)$$

Here, necessarily, $\phi \in H_0^1(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

 \blacktriangleright if u is a solution, we also have

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \quad \forall v \in H_0^1(\Omega)$$

as we can add $\int_{\Omega} \lambda \nabla u_g \nabla v$ on left and right side

Inhomogeneous Dirichlet problem: minimum principle

- ▶ Let f > 0.
- Let $g^{\flat} = \inf_{\partial \Omega} g$.
- ▶ Let $w = (u g^{\flat})^- = \min\{u g^{\flat}, 0\} \in H_0^1(\Omega)$
- ► Consequently, $w \le 0$
- As $\nabla u = \nabla (u g^{\flat})$ and $\nabla w = 0$ where $w \neq u g^{\flat}$, one has

$$0 \ge \int_{\Omega} f w \, d\mathbf{x} = \int_{\Omega} \lambda \nabla u \nabla w \, d\mathbf{x}$$
$$= \int_{\Omega} \lambda \nabla w \nabla w \, d\mathbf{x} \ge 0$$

▶ Therefore: $(u - g^{\flat})^- = 0$ and $u \ge g^{\flat}$

Inhomogeneous Dirichlet problem: maximum principle

- ▶ Let $f \leq 0$.
- ▶ Let $g^{\sharp} = \sup_{\partial \Omega} g$.
- ▶ Let $w = (u g^{\sharp})^+ = \max\{u g^{\sharp}, 0\} \in H_0^1(\Omega)$
- ▶ Consequently, $w \ge 0$
- ▶ As $\nabla u = \nabla (u g^{\sharp})$ and $\nabla w = 0$ where $w \neq u g^{\sharp}$, one has

$$0 \ge \int_{\Omega} f w \, d\mathbf{x} = \int_{\Omega} \lambda \nabla u \nabla w \, d\mathbf{x}$$
$$= \int_{\Omega} \lambda \nabla w \nabla w \, d\mathbf{x} \ge 0$$

▶ Therefore: $(u - g^{\sharp})^- = 0$ and $u \leq g^{\sharp}$

Inhomogeneous Dirichlet problem: minmax principle

Theorem: The weak solution of the inhomogeneous Dirichlet problem

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

fulfills the global minimax principle: it attains its maximum at the boundary if $f \le 0$ and attains its minimum at the boundary if $f \ge 0$.

Corollary: If f = 0 then u attains both its minimum and its maximum at the boundary.

Corolloary: Local minimax principle: This is true of any subdomain $\omega\subset\Omega.$

Convection-Diffusion problem

Green's theorem: If w = 0 on $\partial\Omega$:

$$\int_{\Omega} \mathbf{v} \cdot \nabla w \, d\mathbf{x} = -\int_{\Omega} w \nabla \cdot \mathbf{v} \, d\mathbf{x}$$

Let $\nabla \cdot \mathbf{v} = 0$. Search function $u : \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot (D\nabla u - u\mathbf{v}) = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

From weak formulation (with Dirichlet lifting trick):

$$\int_{\Omega} (D\nabla u - u\mathbf{v}) \cdot \nabla w \, d\mathbf{x} = \int_{\Omega} fw \, d\mathbf{x} \quad \forall w \in H_0^1(\Omega)$$

Coercivity of bilinear form

Regard the convection contribution to the coercivity estimate:

$$-\int_{\Omega} u \mathbf{v} \cdot \nabla u \, d\mathbf{x} = \int u \nabla \cdot (u \mathbf{v}) \, d\mathbf{x} \quad \text{Green's theorem}$$

$$\int_{\Omega} u^2 \nabla \cdot \mathbf{v} \, d\mathbf{x} + \int_{\Omega} u \mathbf{v} \cdot \nabla u \, d\mathbf{x} = \int u \nabla \cdot (u \mathbf{v}) \, d\mathbf{x} \quad \text{Product rule}$$

$$\int_{\Omega} u^2 \nabla \cdot \mathbf{v} \, d\mathbf{x} + 2 \int_{\Omega} u \mathbf{v} \cdot \nabla u \, d\mathbf{x} = 0 \quad \text{Equation difference}$$

$$\int_{\Omega} u \mathbf{v} \cdot \nabla u \, d\mathbf{x} = 0 \quad \text{Divergence condition} \nabla \cdot \mathbf{v} = 0$$

Then

$$\int_{\Omega} (D\nabla u - u\mathbf{v}) \cdot \nabla u \, d\mathbf{x} = \int_{\Omega} D\nabla u \cdot \nabla u \, d\mathbf{x} \geq C||u||_{H_0^1(\Omega)}$$

One could allow for fixed sign of $\nabla \cdot \mathbf{v}$.

Convection diffusion problem: maximum principle

- ▶ Let $f \leq 0$, $\nabla \cdot \mathbf{v} = 0$
- ▶ Let $g^{\sharp} = \sup_{\partial \Omega} g$.
- ▶ Let $w = (u g^{\sharp})^+ = \max\{u g^{\sharp}, 0\} \in H_0^1(\Omega)$
- ▶ Consequently, $w \ge 0$
- lacktriangle As $abla u =
 abla (u-g^{\sharp})$ and abla w = 0 where $w
 eq u-g^{\sharp}$, one has

$$0 \ge \int_{\Omega} f w \, d\mathbf{x} = \int_{\Omega} D(\nabla u - u \mathbf{v}) \nabla w \, d\mathbf{x}$$

$$= \int_{\Omega} D(\nabla w - w \mathbf{v}) \nabla w \, d\mathbf{x} - Dg^{\sharp} \int_{\Omega} \mathbf{v} \cdot \nabla w \, d\mathbf{x}$$

$$= \int_{\Omega} D\nabla w \cdot \nabla w \, d\mathbf{x} + Dg^{\sharp} \int_{\Omega} w \nabla \cdot \mathbf{v} \, d\mathbf{x}$$

$$\ge C||w||_{H_{0}^{1}(\Omega)}$$

- ▶ Therefore: $w = (u g^{\sharp})^{-} = 0$ and $u \leq g^{\sharp}$
- ▶ Similar for minimum part

Mimimax for convection-diffusion

Theorem: If $\nabla \cdot \mathbf{v} = \mathbf{0}$, the weak solution of the inhomogeneous Dirichlet problem

$$-\nabla \cdot (D\nabla u - u\mathbf{v}) = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

fulfills the global minimax principle: it attains its maximum at the boundary if $f \le 0$ and attains its minimum at the boundary if $f \ge 0$.

Corollary: If f = 0 then u attains both its minimum and its maximum at the boundary.

Corolloary: Local minimax principle: This is true of any subdomain $\omega\subset\Omega.$

Interpretation of minimax principle

- ▶ Positive right hand side ⇒ "production" of heat, matter . . .
- ▶ No local minimum in the interior of domain if matter is produced.
- Also, positivity/nonnegativity of solutions if boundary conditions are positive/nonnegative
- ▶ Negative right hand side \Rightarrow "consumption" of heat, matter . . .
- ▶ No local maximum in the interior of domain if matter is consumed.
- Basic physical principle!

Discrete minimax principle

- ightharpoonup Au = f
- ▶ A: matrix from diffusion or convection- diffusion
- ► A irreducibly diagonally dominant, positive main diagonal entries, negative off diagonal entries

$$a_{ii}u_i = \sum_{j \neq i} -a_{ij}u_j + f_i$$
$$u_i = \sum_{j \neq i, a_{ij} \neq 0} -\frac{a_{ij}}{a_{ii}}u_j + f_i$$

- ▶ For interior points,, $a_{ii} = -\sum_{i \neq i} a_{ij}$
- Assume *i* is interior point. Assume $f_i \ge 0 \Rightarrow$

$$u_i \ge \min_{j \ne i, a_{ij} \ne 0} u_j \sum_{i \ne i, a_{ii} \ne 0} -\frac{a_{ij}}{a_{ii}} = \min_{j \ne i, a_{ij} \ne 0} u_j$$

▶ Assume *i* is interior point. Assume $f_i \le 0 \Rightarrow$

$$u_i \leq \max_{j \neq i, a_{ij} \neq 0} u_j \sum_{i \neq i, a_{ii} \neq 0} -\frac{a_{ij}}{a_{ii}} = \max_{j \neq i, a_{ij} \neq 0} u_j$$

Discussion of discrete minimax principle I

- \blacktriangleright P1 finite elements, Voronoi finite volumes: matrix graph \equiv triangulation of domain
- ▶ The set $\{j \neq i, a_{ij} \neq 0\}$ is exactly the set of neigbor nodes
- ▶ Solution in point *x_i* estimated by solution in neigborhood
- ▶ The estimate can be propagated to the boundary of the domain

Discussion of discrete minimax principle II

- Minimax principle + positivity/nonnegativity of solutions can be seen as an important qualitative property of the physical process
- ► Along with good approximation quality, its preservation in the discretization process may be necessary
- Guaranteed for irreducibly diagonally dominant matrices
- Nonnegativity for nonnegative right hand sides guaranteed by M-Property
- ► Finite volume method may be preferred as it can guarantee these properties for boundary conforming Delaunay grids.

Convection-diffusion and finite elements

Search function $u: \Omega \to \mathbb{R}$ such that

$$-\nabla(\cdot D\nabla u - u\mathbf{v}) = f \quad \text{in } \Omega$$
$$u = u_D \quad \text{on } \partial\Omega$$

- ▶ Assume v is divergence-free, i.e. $\nabla \cdot v = 0$.
- ▶ Then the main part of the equation can be reformulated as

$$-\nabla(\cdot D\nabla u) + v \cdot \nabla u = 0 \quad \text{in } \Omega$$

yielding a weak formulation: find $u \in H^1(\Omega)$ such that $u - u_D \in H^1_0(\Omega)$ and $\forall w \in H^1_0(\Omega)$,

$$\int_{\Omega} D\nabla u \cdot \nabla w \ dx + \int_{\Omega} \mathbf{v} \cdot \nabla u \ w \ dx = \int_{\Omega} fw \ dx$$

▶ Galerkin formulation: find $u_h \in V_h$ with bc. such that $\forall w_h \in V_h$

$$\int_{\Omega} D\nabla u_h \cdot \nabla w_h \ dx + \int_{\Omega} \mathbf{v} \cdot \nabla u_h \ w_h \ dx = \int_{\Omega} f w_h \ dx$$

Convection-diffusion and finite elements II

- ► Galerkin ansatz has similar problems as central difference ansatz in the finite volume/finite difference case ⇒ stabilization ?
- ▶ Most popular: streamline upwind Petrov-Galerkin

$$\int_{\Omega} D\nabla u_h \cdot \nabla w_h \ dx + \int_{\Omega} \mathbf{v} \cdot \nabla u_h \ w_h \ dx + S(u_h, w_h) = \int_{\Omega} f w_h \ dx$$

with

$$S(u_h, w_h) = \sum_{K} \int_{K} (-\nabla (\cdot D\nabla u_h - u_h \mathbf{v}) - f) \delta_K \mathbf{v} \cdot w_h \ d\mathbf{x}$$

where $\delta_K = \frac{h_K^{\nu}}{2|\mathbf{v}|} \xi(\frac{|\mathbf{v}|h_K^{\nu}}{D})$ with $\xi(\alpha) = \coth(\alpha) - \frac{1}{\alpha}$ and h_K^{ν} is the size of element K in the direction of \mathbf{v} .

Convection-diffusion and finite elements III

- Many methods to stabilize, none guarantees M-Property even on weakly acute meshes! (V. John, P. Knobloch, Computer Methods in Applied Mechanics and Engineering, 2007)
- Comparison paper:

M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and R. Umla, "An assessment of discretizations for convection-dominated convection-diffusion equations," Comp. Meth. Appl. Mech. Engrg., vol. 200, pp. 3395–3409, 2011:

- if it is necessary to compute solutions without spurious oscillations: use FVM, taking care on the construction of an appropriate grid might be essential for reducing the smearing of the lavers.
- if sharpness and position of layers are important and spurious oscillations can be tolerated: often the SUPG method is a good choice.
- ▶ Topic of ongoing research