Scientific Computing WS 2018/2019

Lecture 19

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

P1 FEM stiffness matrix condition number

- Homogeneous dirichlet boundary value problem

$$
\begin{gathered}
-\nabla \cdot \kappa \nabla u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{gathered}
$$

- Lagrange degrees of freedom $a_{1} \ldots a_{N}$ corresponding to global basis functions $\phi_{1} \ldots \phi_{N}$ such that $\left.\phi_{i}\right|_{\partial \Omega}=0$ aka $\phi_{i} \in V_{h} \subset H_{0}^{1}(\Omega)$
- Stiffness matrix $A=\left(a_{i j}\right)$:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \kappa \nabla \phi_{i} \nabla \phi_{j} d \mathbf{x}
$$

- bilinear form $a(\cdot, \cdot)$ is self-adjoint, therefore A is symmetric, positive definite
- Condition number estimate for P^{1} finite elements on quasi-uniform triangulation:

$$
\kappa(A) \leq c h^{-2}
$$

The problem with Dirichlet boundary conditions

- Homogeneous Dirichlet $\mathrm{BC} \Rightarrow$ include boundary condition into set of basis functions
- Inhomogeneous Dirichlet, may be only at a part of the boundary
- Use exact approach from as in continous formulation (with lifting u_{g} etc) \Rightarrow highly technical
- Eliminate Dirichlet BC algebraically after building of the matrix, i.e. fix "known unknowns" at the Dirichlet boundary \Rightarrow highly technical
- Modifiy matrix such that equations at boundary exactly result in Dirichlet values \Rightarrow loss of symmetry of the matrix
- Penalty method

Dirichlet BC: Algebraic manipulation

- Assume 1D situation with $\mathrm{BC} u_{1}=g$
- From integration in H^{1} regardless of boundary values:

$$
A U=\left(\begin{array}{ccccc}
\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- Fix u_{1} and eliminate:

$$
A^{\prime} U=\left(\begin{array}{cccc}
\frac{2}{h} & -\frac{1}{h} & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& \ddots & \ddots & \ddots .
\end{array}\right)\left(\begin{array}{c}
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{2}+\frac{1}{h} g \\
f_{3} \\
\vdots
\end{array}\right)
$$

- A^{\prime} becomes idd and stays symmetric
- operation is quite technical

Dirichlet BC: Modify boundary equations

- From integration in H^{1} regardless of boundary values:

$$
A U=\left(\begin{array}{ccccc}
\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- Modify equation at boundary to exactly represent Dirichlet values

$$
A^{\prime} U=\left(\begin{array}{ccccc}
\frac{1}{h} & 0 & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{h} g \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- A^{\prime} becomes idd
- loses symmetry \Rightarrow problem e.g. with CG method

Dirichlet BC: Discrete penalty trick

- From integration in H^{1} regardless of boundary values:

$$
A U=\left(\begin{array}{ccccc}
\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- Add penalty terms

$$
A^{\prime} U=\left(\begin{array}{ccccc}
\frac{1}{\varepsilon}+\frac{1}{h} & -\frac{1}{h} & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{1}+\frac{1}{\varepsilon} g \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right)
$$

- A^{\prime} becomes idd, keeps symmetry, and the realization is technically easy.
- If ε is small enough, $u_{1}=g$ will be satisfied exactly within floating point accuracy.
- Iterative methods should be initialized with Dirichlet values.
- Works for nonlinear problems, finite volume methods

Dirichlet penalty trick, general formulation

- Dirichlet boundary value problem

$$
\begin{aligned}
& -\nabla \cdot \kappa \nabla u=f \quad \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=g
\end{aligned}
$$

- We discussed approximation of Dirichlet problem by Robin problem
- Practical realization uses discrete approach for Lagrange degrees of freedom $a_{1} \ldots a_{N}$ corresponding to global basis functions $\phi_{1} \ldots \phi_{N}$:
- Search $u_{h}=\sum_{i=1}^{N} u_{i} \phi_{i} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{N}\right\}$ such that

$$
A U+\Pi U=F+\Pi G
$$

where

- $U=\left(u_{1} \ldots u_{N}\right)$
- $A=\left(a_{i j}\right)$: stiffness matrix with $a_{i j}=\int_{\Omega} \kappa \nabla \phi_{i} \nabla \phi_{j} d \mathbf{x}$
- $F=\int_{\Omega} f \nabla \phi_{i} d \mathbf{x}$
- $G=\left(g_{i}\right)$ with $g_{i}= \begin{cases}g\left(a_{i}\right), & a_{i} \in \partial \Omega \\ 0, & \text { else }\end{cases}$
- $\Pi=\left(\pi_{i j}\right)$ is a diagonal matrix with $\pi_{i j}= \begin{cases}\frac{1}{\varepsilon}, & i=j, a_{i} \in \partial \Omega \\ 0, & \text { else }\end{cases}$

P1 FEM Stiffness matrix row sums

Row sums:

$$
\begin{aligned}
\sum_{j=1}^{N} a_{i j} & =\sum_{j=1}^{N} \int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x=\int_{\Omega} \nabla \phi_{i} \nabla\left(\sum_{j=1}^{N} \phi_{j}\right) d x \\
& =\int_{\Omega} \nabla \phi_{i} \nabla(1) d x \\
& =0
\end{aligned}
$$

P1 FEM stiffness matrix entry signs

Local stiffness matrix S_{K}

$$
s_{i j}=\int_{K} \nabla \lambda_{i} \nabla \lambda_{j} d x=\frac{|K|}{2|K|^{2}}\left(y_{i+1}-y_{i+2}, x_{i+2}-x_{i+1}\right)\binom{y_{j+1}-y_{j+2}}{x_{j+2}-x_{j+1}}
$$

- Main diagonal entries positive
- Local contributions from element stiffness matrices: Scalar products of vectors orthogonal to edges. These are nonpositive if the angle between the edges are $\leq 90^{\circ}$
- weakly acute triangulation: all triangle angles are less than $\leq 90^{\circ}$
- In fact, for constant coefficients, in 2D, Delaunay is sufficient, as contributions from opposite angles compensate each other
- All row sums are zero $\Rightarrow A$ is singular
- Matrix becomes irreducibly diagonally dominant if we add at least one positive value to the main diagonal, e.g. from Dirichlet BC

Stationary linear reaction-diffusion

- Assume additional process in each REV which produces or destroys species depending on the amount of species present with given rate r. Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla \cdot \kappa \nabla u+r u & =f & & \operatorname{in} \Omega \\
\kappa \nabla u \cdot \mathbf{n}+\alpha(u-g) & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

- Coercivity guaranteed e.g. for $\alpha \geq 0, r>0$ which means species destruction FEM formulation: search $u_{h} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{N}\right\}$ such that

$$
\begin{aligned}
\underbrace{\int_{\Omega} \kappa \nabla u_{h} \nabla v_{h} d \mathbf{x}}_{\text {"stiffness matrix" }} & +\underbrace{\int_{\Omega} r u_{h} v_{h} d \mathbf{x}}_{\text {"mass matrix" }}+\underbrace{\int_{\partial \Omega} \alpha u_{h} v_{h} d s}_{\text {"boundary mass matrix" }} \\
& =\int_{\Omega} f v_{h} d \mathbf{x}+\int_{\partial \Omega} \alpha g v_{h} d s \forall v_{h} \in V_{h}
\end{aligned}
$$

- Coercivity + symmetry \Rightarrow positive definiteness

Mass matrix properties

- Mass matrix (for $r=1$): $M=\left(m_{i j}\right)$:

$$
m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x
$$

- Self-adjoint, coercive bilinear form $\Rightarrow M$ is symmetric, positiv definite
- For a family of quasi-uniform, shape-regular triangulations, for every eigenvalue μ one has the estimate

$$
c_{1} h^{d} \leq \mu \leq c_{2} h^{d}
$$

$\mathrm{T} \Rightarrow$ condition number $\kappa(M)$ bounded by constant independent of h :

$$
\kappa(M) \leq c
$$

- How to see this ? Let $u_{h}=\sum_{i=1}^{N} U_{i} \phi_{i}$, and μ an eigenvalue (positive,real!) Then

$$
\left\|u_{h}\right\|_{0}^{2}=(U, M U)_{\mathbb{R}^{N}}=\mu(U, U)_{\mathbb{R}^{N}}=\mu\|U\|_{\mathbb{R}^{N}}^{2}
$$

From quasi-uniformity we obtain

$$
c_{1} h^{d}\|U\|_{\mathbb{R}^{N}}^{2} \leq\left\|u_{h}\right\|_{0}^{2} \leq c_{2} h^{d}\|U\|_{\mathbb{R}^{N}}^{2}
$$

Mass matrix M-Property (P1 FEM) ?

- For P^{1}-finite elements, all integrals $m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x$ are zero or positive, so we get positive off diagonal elements.
- No M-Property!

Mass matrix lumping (P1 FEM)

- Local mass matrix for P1 FEM on element K (calculated by 2 nd order exact edge midpoint quadrature rule):

$$
M_{K}=|K|\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{6}
\end{array}\right)
$$

- Lumping: sum up off diagonal elements to main diagonal, set off diagonal entries to zero

$$
\tilde{M}_{K}=|K|\left(\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right)
$$

- Interpretation as change of quadrature rule to first order exact vertex based quadrature rule
- Loss of accuracy, gain of stability

Effect of mass matrix lumping

- For P1 FEM on weakly acute or Delaunay triangulations, mass matrix lumping can guarantee M-Property of system matrix
- Adding a mass matrix which is not lumped yields a positive definite matrix (due to coercivity) and thus nonsingularity, but destroys M-property unless the absolute values of its off diagonal entries are less than those of A, i.e. for small r.
- Same situation witb Robin boundary conditions and boundary mass matrix
- Introducing the Dirichlet Penalty trick at continuous level without mass lumping would be disastrous.

Discretization ansatz for Robin boundary value problem

Given constants $\kappa>0, \alpha_{i} \geq 0\left(i=1 \ldots N_{\Gamma}\right)$

$$
\begin{align*}
-\nabla \cdot \kappa \nabla u & =f \text { in } \Omega \\
\kappa \nabla u \cdot \mathbf{n}+\alpha_{i}\left(u-g_{i}\right) & =0 \text { on } \Gamma_{i}\left(i=1 \ldots N_{\Gamma}\right) \tag{*}
\end{align*}
$$

- Given control volume $\omega_{k}, k \in \mathcal{N}$, integrate

$$
\begin{align*}
0 & =\int_{\omega_{k}}(-\nabla \cdot \kappa \nabla u-f) d \omega \\
& =-\int_{\partial \omega_{k}} \kappa \nabla u \cdot \mathbf{n}_{k} d \gamma-\int_{\omega_{k}} f d \omega \tag{Gauss}\\
& =-\sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \kappa \nabla u \cdot \mathbf{n}_{k l} d \gamma-\sum_{i=1}^{N_{\Gamma}} \int_{\gamma_{i k}} \kappa \nabla u \cdot \mathbf{n} d \gamma-\int_{\omega_{k}} f d \omega \\
& \approx \sum_{L \in \mathcal{N}_{k}} \underbrace{\kappa \frac{\left|\sigma_{k l}\right|}{h_{k l}}\left(u_{k}-u_{l}\right)}_{\nabla u \cdot \mathbf{n} \approx \frac{u_{l}-u_{k}}{h_{k l}}}+\sum_{i=1}^{N_{\Gamma}} \underbrace{\left|\gamma_{i, k}\right| \alpha_{i}\left(u_{k}-g_{i, k}\right)}_{\text {bound. cond. (*) }}-\underbrace{\left|\omega_{k}\right| f_{k}}_{\text {quadrature }}
\end{align*}
$$

- Here, $u_{k}=u\left(\mathbf{x}_{k}\right), g_{i, k}=g_{i}\left(\mathbf{x}_{k}\right), f_{k}=f\left(\mathbf{x}_{k}\right)$

Properties of discretization matrix

- $N=|\mathcal{N}|$ equations (one for each control volume ω_{k})
- $N=|\mathcal{N}|$ unknowns (one for each collocation point $x_{k} \in \omega_{k}$)
- weighted connected edge graph of triangulation $\equiv N \times N$ irreducible sparse discretization matrix $A=\left(a_{k l}\right)$:

$$
a_{k l}= \begin{cases}\sum_{l^{\prime} \in \mathcal{N}_{k}} \kappa \frac{\left|\sigma_{k k^{\prime}}\right|}{h_{k l^{\prime}}}+\sum_{i=1}^{N_{r}}\left|\gamma_{i, k}\right| \alpha_{i}, & I=k \\ -\kappa \frac{\sigma_{k}}{h_{k l}}, & I \in \mathcal{N}_{k} \\ 0, & \text { else }\end{cases}
$$

- A is irreducibly diagonally dominant if at least for one $i,\left|\gamma_{i, k}\right| \alpha_{i}>0$
- Main diagonal entries are positive, off diagonal entries are non-positive
- $\Rightarrow A$ has the M -property.
- A is symmetric $\Rightarrow A$ is positive definite

The convection - diffusion equation

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla \cdot(D \nabla u-u \mathbf{v})=f & \text { in } \Omega \\
(D \nabla u-u \mathbf{v}) \cdot \mathbf{n}+\alpha(u-w)=0 & \text { on } \Gamma
\end{aligned}
$$

- $u(x)$: species concentration, temperature
- $\mathbf{j}=D \nabla u-u \mathbf{v}$: species flux
- D: diffusion coefficient
- $\mathbf{v}(x)$: velocity of medium (e.g. fluid)
- Given analytically
- Solution of free flow problem (Navier-Stokes equation)
- Flow in porous medium (Darcy equation): $\mathbf{v}=-\kappa \nabla p$ where

$$
-\nabla \cdot(\kappa \nabla p)=0
$$

- For constant density, the divergence conditon $\nabla \cdot v=0$ holds.

Finite volumes for convection diffusion

$$
\begin{aligned}
-\nabla \cdot \mathbf{j}=0 & \text { in } \Omega \\
\mathbf{j n}+\alpha(u-g)=0 & \text { on } \Gamma
\end{aligned}
$$

- Integrate time discrete equation over control volume

$$
\begin{aligned}
0 & =-\int_{\omega_{k}} \nabla \cdot \mathbf{j} d \omega=-\int_{\partial \omega_{k}} \mathbf{j} \cdot \mathbf{n}_{k} d \gamma \\
& =-\sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \mathbf{j} \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} \mathbf{j} \cdot \mathbf{n} d \gamma \\
& \approx \sum_{l \in \mathcal{N}_{k}} \underbrace{\frac{\left|\sigma_{k l}\right|}{h_{k l}} g_{k l}\left(u_{k}, u_{l}\right)}_{\rightarrow A_{0}}+\underbrace{\left|\gamma_{k}\right| \alpha\left(u_{k}-g_{k}\right)}_{\rightarrow D}
\end{aligned}
$$

- $A=A_{0}+D$

Central Difference Flux Approximation

- $g_{k l}$ approximates normal convective-diffusive flux between control volumes $\omega_{k}, \omega_{l}: g_{k l}\left(u_{k}-u_{l}\right) \approx-(D \nabla u-u \mathbf{v}) \cdot n_{k l}$
- Let $v_{k l}=\frac{1}{\left|\sigma_{k \mid}\right|} \int \sigma_{k l} \mathbf{v} \cdot \mathbf{n}_{k l} d \gamma$ approximate the normal velocity $\mathbf{v} \cdot \mathbf{n}_{k l}$
- Central difference flux:

$$
\begin{aligned}
g_{k l}\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)+h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l} \\
& =\left(D+\frac{1}{2} h_{k l} v_{k l}\right) u_{k}-\left(D-\frac{1}{2} h_{k l} v_{k l}\right) u_{l}
\end{aligned}
$$

- if $\mathbf{v}_{k l}$ is large compared to $h_{k l}$, the corresponding matrix (off-diagonal) entry may become positive
- Non-positive off-diagonal entries only guaranteed for $h \rightarrow 0$!
- Otherwise, we can prove the discrete maximum principle

Simple upwind flux discretization

- Force correct sign of convective flux approximation by replacing central difference flux approximation $h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}$ by

$$
(\left\{\begin{array}{ll}
h_{k l} u_{k} v_{k l}, & v_{k l}<0 \\
h_{k l} u_{l} v_{k l}, & v_{k l}>0
\end{array}\right)=h_{k \mid} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}+\underbrace{\frac{1}{2} h_{k l}\left|v_{k l}\right|}
$$

Artificial Diffusion \tilde{D}

- Upwind flux:

$$
\begin{aligned}
g_{k l}\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)+ \begin{cases}h_{k l} u_{k} v_{k l}, & v_{k l}>0 \\
h_{k l} u_{l} v_{k l}, & v_{k l}<0\end{cases} \\
& =(D+\tilde{D})\left(u_{k}-u_{l}\right)+h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}
\end{aligned}
$$

- M-Property guaranteed unconditonally !
- Artificial diffusion introduces error: second order approximation replaced by first order approximation

Exponential fitting flux I

- Project equation onto edge $x_{K} x_{L}$ of length $h=h_{k l}$, let $v=-v_{k l}$, integrate once

$$
\begin{aligned}
u^{\prime}-u v & =j \\
\left.u\right|_{0} & =u_{k} \\
\left.u\right|_{h} & =u_{l}
\end{aligned}
$$

- Linear ODE
- Solution of the homogeneus problem:

$$
\begin{array}{r}
u^{\prime}-u v=0 \\
u^{\prime} / u=v \\
\ln u=u_{0}+v x \\
u=K \exp (v x)
\end{array}
$$

Exponential fitting II

- Solution of the inhomogeneous problem: set $K=K(x)$:

$$
\begin{aligned}
K^{\prime} \exp (v x)+v K \exp (v x)-v K \exp (v x) & =-j \\
K^{\prime} & =-j \exp (-v x) \\
K & =K_{0}+\frac{1}{v} j \exp (-v x)
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
u & =K_{0} \exp (v x)+\frac{1}{v} j \\
u_{k} & =K_{0}+\frac{1}{v} j \\
u_{I} & =K_{0} \exp (v h)+\frac{1}{v} j
\end{aligned}
$$

Exponential fitting III

- Use boundary conditions

$$
\begin{aligned}
K_{0} & =\frac{u_{k}-u_{l}}{1-\exp (v h)} \\
u_{k} & =\frac{u_{k}-u_{l}}{1-\exp (v h)}+\frac{1}{v} j \\
j & =\frac{v}{\exp (v h)-1}\left(u_{k}-u_{l}\right)+v u_{k} \\
& =v\left(\frac{1}{\exp (v h)-1}+1\right) u_{k}-\frac{v}{\exp (v h)-1} u_{l} \\
& =v\left(\frac{\exp (v h)}{\exp (v h)-1}\right) u_{k}-\frac{v}{\exp (v h)-1} u_{l} \\
& =\frac{-v}{\exp (-v h)-1} u_{k}-\frac{v}{\exp (v h)-1} u_{l} \\
& =\frac{B(-v h) u_{k}-B(v h) u_{l}}{h}
\end{aligned}
$$

where $B(\xi)=\frac{\xi}{\exp (\xi)-1}$: Bernoulli function

Exponential fitting IV

- General case: $D u^{\prime}-u v=D\left(u^{\prime}-u \frac{v}{D}\right)$
- Upwind flux:

$$
g_{k l}\left(u_{k}, u_{l}\right)=D\left(B\left(\frac{-v_{k l} h_{k l}}{D}\right) u_{k}-B\left(\frac{v_{k l} h_{k l}}{D}\right) u_{l}\right)
$$

- Allen+Southwell 1955
- Scharfetter+Gummel 1969
- Ilin 1969
- Chang+Cooper 1970
- Guaranteed sign pattern, M property!

Exponential fitting: Artificial diffusion

- Difference of exponential fitting scheme and central scheme
- Use: $B(-x)=B(x)+x \Rightarrow$

$$
\begin{aligned}
& B(x)+\frac{1}{2} x=B(-x)-\frac{1}{2} x=B(|x|)+\frac{1}{2}|x| \\
& D_{\text {art }}\left(u_{k}-u_{l}\right)=D\left(B\left(\frac{-v h}{D}\right) u_{k}-B\left(\frac{v h}{D}\right) u_{l}\right)-D\left(u_{k}-u_{l}\right)+h \frac{1}{2}\left(u_{k}+u_{l}\right) v \\
&=D\left(\frac{-v h}{2 D}+B\left(\frac{-v h}{D}\right)\right) u_{k}-D\left(\frac{v h}{2 D}+B\left(\frac{v h}{D}\right) u_{l}\right)-D\left(u_{k}-u_{l}\right) \\
&=D\left(\frac{1}{2}\left|\frac{v h}{D}\right|+B\left(\left|\frac{v h}{D}\right|\right)-1\right)\left(u_{k}-u_{l}\right)
\end{aligned}
$$

- Further, for $x>0$:

$$
\frac{1}{2} x \geq \frac{1}{2} x+B(x)-1 \geq 0
$$

- Therefore

$$
\frac{|v h|}{2} \geq D_{a r t} \geq 0
$$

Exponential fitting: Artificial diffusion II

Comparison of artificial diffusion functions $\frac{1}{2}|x|$ (upwind) and $\frac{1}{2}|x|+B(|x|)-1$ (exp. fitting)

Convection-Diffusion test problem, $\mathrm{N}=20$

- $\Omega=(0,1),-\nabla \cdot(D \nabla u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: unphysical
- Upwind: larger boundary layer

Convection-Diffusion test problem, $\mathrm{N}=40$

- $\Omega=(0,1),-\nabla \cdot(D \nabla u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: unphysical, but less "'wiggles"
- Upwind: larger boundary layer

Convection-Diffusion test problem, $\mathrm{N}=80$

- $\Omega=(0,1),-\nabla \cdot(D \nabla u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: grid is fine enough to yield M-Matrix property, good approximation of boundary layer due to higher convergence order
- Upwind: "smearing" of boundary layer

1D convection diffusion summary

- Upwinding and exponential fitting unconditionally yield the M-property of the discretization matrix
- Exponential fitting for this case (zero right hand side, 1D) yields exact solution. It is anyway "less diffusive" as artificial diffusion is optimized
- Central scheme has higher convergence order than upwind (and exponential fitting) but on coarse grid it may lead to unphysical oscillations
- For 2/3D problems, sufficiently fine grids to stabilize central scheme may be prohibitively expensive
- Local grid refinement may help to offset artificial diffusion

1D Convection-Diffusion implementation: central differences

```
F=0;
U=0;
for (int k=0, l=1;k<n-1;k++,l++)
{
    double g_kl=D - 0.5*(v*h);
    double g_lk=D + 0.5*(v*h);
    M(k,k)+=g_kl/h;
    M(k,l)-=g_kl/h;
    M(l,l)+=g_lk/h;
    M(l,k)-=g_lk/h;
}
M(0,0)+=1.0e30;
M(n-1,n-1)+=1.0e30;
F}(n-1)=1.0e30
```


1D Convection-Diffusion implementation: upwind scheme

```
F=0;
U=0;
for (int k=0, l=1;k<n-1;k++,l++)
{
    double g_kl=D;
    double g_lk=D;
    if (v<0) g_kl-=v*h;
    else g_lk+=v*h;
    M(k,k)+=g_kl/h;
    M(k,l)-=g_kl/h;
    M(l,1)+=g_lk/h;
    M(l,k)-=g_lk/h;
}
M(0,0)+=1.0e30;
M(n-1,n-1)+=1.0e30;
F(n-1)=1.0e30;
```


1D Convection-Diffusion implementation: exponential

 fitting scheme```
inline double B(double x)
{
 if (std::fabs(x)<1.0e-10) return 1.0;
 return x/(std::exp(x)-1.0);
}
```

```
\(\mathrm{F}=0\);
\(\mathrm{U}=0\);
for (int \(k=0, l=1 ; k<n-1 ; k++, l++\))
\{
 double g_kl=D* \(B(v * h / D)\);
 double g_lk=D* \(\mathrm{B}(-\mathrm{v} * \mathrm{~h} / \mathrm{D})\);
 \(M(k, k)+=g _k l / h\);
 M(k,l)-=g_kl/h;
 \(M(l, l)+=g _l k / h\);
 \(M(l, k)-=g _l k / h\);
 \}
\(M(0,0)+=1.0 e 30\);
\(M(n-1, n-1)+=1.0 e 30\);
\(F(n-1)=1.0 e 30\);
```


## Convection-diffusion and finite elements

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla(\cdot D \nabla u-u \mathbf{v}) & =f \quad \text { in } \Omega \\
u & =u_{D} \quad \text { on } \partial \Omega
\end{aligned}
$$

- Assume $v$ is divergence-free, i.e. $\nabla \cdot v=0$.
- Then the main part of the equation can be reformulated as

$$
-\nabla(\cdot D \nabla u)+v \cdot \nabla u=0 \quad \text { in } \Omega
$$

yielding a weak formulation: find $u \in H^{1}(\Omega)$ such that $u-u_{D} \in H_{0}^{1}(\Omega)$ and $\forall w \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} D \nabla u \cdot \nabla w d x+\int_{\Omega} \mathbf{v} \cdot \nabla u w d x=\int_{\Omega} f w d x
$$

- Galerkin formulation: find $u_{h} \in V_{h}$ with bc. such that $\forall w_{h} \in V_{h}$

$$
\int_{\Omega} D \nabla u_{h} \cdot \nabla w_{h} d x+\int_{\Omega} \mathbf{v} \cdot \nabla u_{h} w_{h} d x=\int_{\Omega} f w_{h} d x
$$

## Convection-diffusion and finite elements II

- Galerkin ansatz has similar problems as central difference ansatz in the finite volume/finite difference case $\Rightarrow$ stabilization ?
- Most popular: streamline upwind Petrov-Galerkin

$$
\int_{\Omega} D \nabla u_{h} \cdot \nabla w_{h} d x+\int_{\Omega} \mathbf{v} \cdot \nabla u_{h} w_{h} d x+S\left(u_{h}, w_{h}\right)=\int_{\Omega} f w_{h} d x
$$

with

$$
S\left(u_{h}, w_{h}\right)=\sum_{K} \int_{K}\left(-\nabla\left(\cdot D \nabla u_{h}-u_{h} \mathbf{v}\right)-f\right) \delta_{K} v \cdot w_{h} d x
$$

where $\delta_{K}=\frac{h_{K}^{\nu}}{2|\mathbf{v}|} \xi\left(\frac{|\mathbf{v}| h_{K}^{\kappa}}{D}\right)$ with $\xi(\alpha)=\operatorname{coth}(\alpha)-\frac{1}{\alpha}$ and $h_{K}^{\nu}$ is the size of element $K$ in the direction of $\mathbf{v}$.

## Convection-diffusion and finite elements III

- Many methods to stabilize, none guarantees M-Property even on weakly acute meshes! (V. John, P. Knobloch, Computer Methods in Applied Mechanics and Engineering, 2007)
- Comparison paper:
M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and R. Umla, "An assessment of discretizations for convection-dominated convection-diffusion equations," Comp. Meth. Appl. Mech. Engrg., vol. 200, pp. 3395-3409, 2011:
- if it is necessary to compute solutions without spurious oscillations: use FVM, taking care on the construction of an appropriate grid might be essential for reducing the smearing of the layers,
- if sharpness and position of layers are important and spurious oscillations can be tolerated: often the SUPG method is a good choice.
- Topic of ongoing research


## Nonlinear problems: motivation

- Assume nonlinear dependency of some coefficients of the equation on the solution. E.g. nonlinear diffusion problem

$$
\begin{aligned}
-\nabla(\cdot D(u) \nabla u) & =f \quad \text { in } \Omega \\
u & =u_{D} \operatorname{on} \partial \Omega
\end{aligned}
$$

- FE+FV discretization methods lead to large nonlinear systems of equations


## Nonlinear problems: caution!

This is a significantly more complex world:

- Possibly multiple solution branches
- Weak formulations in $L^{p}$ spaces
- No direct solution methods
- Narrow domains of definition (e.g. only for positive solutions)


## Finite element discretization for nonlinear diffusion

- Find $u_{h} \in V_{h}$ such that for all $w_{h} \in V_{h}$ :

$$
\int_{\Omega} D\left(u_{h}\right) \nabla u_{h} \cdot \nabla w_{h} d x=\int_{\Omega} f w_{h} d x
$$

- Use appropriate quadrature rules for the nonlinear integrals
- Discrete system

$$
A\left(u_{h}\right)=F\left(u_{h}\right)
$$

## Finite volume discretization for nonlinear diffusion

$$
\begin{aligned}
0 & =\int_{\omega_{k}}(-\nabla \cdot D(u) \nabla u-f) d \omega \\
& =-\int_{\partial \omega_{k}} D(u) \nabla u \cdot \mathbf{n}_{k} d \gamma-\int_{\omega_{k}} f d \omega \\
& =-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{k l}} D(u) \nabla u \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} D(u) \nabla u \cdot \mathbf{n} d \gamma-\int_{\omega_{k}} f d \omega \\
& \approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{k l}}{h_{k l}} g_{k l}\left(u_{k}, u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-\omega_{k}\right)-\left|\omega_{k}\right| f_{k}
\end{aligned}
$$

with

$$
g_{k l}\left(u_{k}, u_{l}\right)=\left\{\begin{array}{l}
D\left(\frac{1}{2}\left(u_{k}+u_{l}\right)\right)\left(u_{k}-u_{l}\right) \\
\text { or } \quad \mathcal{D}\left(u_{k}\right)-\mathcal{D}\left(u_{l}\right)
\end{array}\right.
$$

where $\mathcal{D}(u)=\int_{0}^{u} D(\xi) d \xi$ (exact solution ansatz at discretization edge)

- Discrete system

$$
A\left(u_{h}\right)=F\left(u_{h}\right)
$$

## Iterative solution methods: fixed point iteration

- Let $u \in \mathbb{R}^{n}$.
- Problem: $A(u)=f$ :
- Assume $A(u)=M(u) u$, where for each $u, M(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator.
- Iteration scheme:

Choose $u_{0}, i \leftarrow 0$;
while not converged do
Solve $M\left(u_{i}\right) u_{i+1}=f$;
$i \leftarrow i+1 ;$
end

- Convergence criteria:
- residual based: $\|A(u)-f\|<\varepsilon$
- update based $\left\|u_{i+1}-u_{i}\right\|<\varepsilon$
- Large domain of convergence
- Convergence may be slow
- Smooth coefficients not necessary


## Iterative solution methods: Newton method

- Solve

$$
A(u)=\left(\begin{array}{c}
A_{1}\left(u_{1} \ldots u_{n}\right) \\
A_{2}\left(u_{1} \ldots u_{n}\right) \\
\vdots \\
A_{n}\left(u_{1} \ldots u_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=f
$$

- Jacobi matrix (Frechet derivative) for given $u: A^{\prime}(u)=\left(a_{k l}\right)$ with

$$
a_{k l}=\frac{\partial}{\partial u_{l}} A_{k}\left(u_{1} \ldots u_{n}\right)
$$

- Iteration scheme:

Choose $u_{0}, i \leftarrow 0$;
while not converged do
Calculate residual $r_{i}=A\left(u_{i}\right)-f$;
Calculate Jacobi matrix $A^{\prime}\left(u_{i}\right)$;
Solve update problem $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$;
Update solution: $u_{i+1}=u_{i}-h_{i}$; $i \leftarrow i+1$;
end

## Newton method II

- Convergence criteria: - residual based: $\left\|r_{i}\right\|<\varepsilon$ - update based $\left\|h_{i}\right\|<\varepsilon$
- Limited domain of convergence
- Slow initial convergence
- Fast (quadratic) convergence close to solution


## Damped Newton method

- Remedy for small domain of convergence: damping

Choose $u_{0}, i \leftarrow 0$, damping parameter $d<1$;
while not converged do
Calculate residual $r_{i}=A\left(u_{i}\right)-f$;
Calculate Jacobi matrix $A^{\prime}\left(u_{i}\right)$;
Solve update problem $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$;
Update solution: $u_{i+1}=u_{i}-d h_{i}$;
$i \leftarrow i+1 ;$
end

- Damping slows convergence down from quadratic to linear
- Better way: increase damping parameter during iteration:

Choose $u_{0}, i \leftarrow 0$, damping $d<1$, growth factor $\delta>1$;
while not converged do
Calculate residual $r_{i}=A\left(u_{i}\right)-f$;
Calculate Jacobi matrix $A^{\prime}\left(u_{i}\right)$;
Solve update problem $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$;
Update solution: $u_{i+1}=u_{i}-d h_{i}$;
Update damping parameter: $d_{i+1}=\min \left(1, \delta d_{i}\right)$;
$i \leftarrow i+1$;
end

## Newton method: further issues

- Even if it converges, in each iteration step we have to solve linear system of equations
- Can be done iteratively, e.g. with the LU factorization of the Jacobi matrix from first solution step
- Iterative solution accuracy my be relaxed, but this may diminuish quadratic convergence
- Quadratic convergence yields very accurate solution with no large additional effort: once we are in the quadratic convergence region, convergence is very fast
- Monotonicity test: check if residual grows, this is often an sign that the iteration will diverge anyway.


## Newton method: embedding

- Embedding method for parameter dependent problems.
- Solve $A\left(u_{\lambda}, \lambda\right)=f$ for $\lambda=1$.
- Assume $A\left(u_{0}, 0\right)$ can be easily solved.
- Parameter embedding method:

Solve $A\left(u_{0}, 0\right)=f$;
Choose initial step size $\delta$;
Set $\lambda=0$;
while $\lambda<1$ do
Solve $A\left(u_{\lambda+\delta}, \lambda+\delta\right)=0$ with initial value1 $u_{\lambda}$; $\lambda \leftarrow \lambda+\delta ;$
end

- Possibly decrease stepsize if Newton's method does not converge, increase it later
- Parameter embedding + damping + update based convergence control go a long way to solve even strongly nonlinear problems!

