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P1 FEM stiffness matrix condition number

v

Homogeneous dirichlet boundary value problem

-V -kVu=f inQ

U‘(’)Q =0

> Lagrange degrees of freedom a; ... an corresponding to global basis
functions ¢ ... ¢n such that ¢;|oq = 0 aka ¢; € Vi, C HA(Q)
> Stiffness matrix A = (a;):

aj = a(¢i, ¢;) = /Q"‘V‘i’fv‘ﬁf ax

» bilinear form a(-,-) is self-adjoint, therefore A is symmetric, positive
definite
» Condition number estimate for P! finite elements on quasi-uniform
triangulation:
x(A) < ch™?




The problem with Dirichlet boundary conditions

» Homogeneous Dirichlet BC = include boundary condition into set of
basis functions

» Inhomogeneous Dirichlet, may be only at a part of the boundary

> Use exact approach from as in continous formulation (with lifting ug
etc) = highly technical

» Eliminate Dirichlet BC algebraically after building of the matrix, i.e.
fix “known unknowns” at the Dirichlet boundary = highly technical

» Modifiy matrix such that equations at boundary exactly result in
Dirichlet values = loss of symmetry of the matrix

» Penalty method




Dirichlet BC: Algebraic manipulation

» Assume 1D situation with BC u; = g
» From integration in H' regardless of boundary values:
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» A’ becomes idd and stays symmetric
> operation is quite technical




Dirichlet BC: Modify boundary equations

» From integration in H! regardless of boundary values:
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» Modify equation at boundary to exactly represent Dirichlet values
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» A’ becomes idd
> loses symmetry = problem e.g. with CG method




Dirichlet BC: Discrete penalty trick

» From integration in H! regardless of boundary values:
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» Add penalty terms
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» A’ becomes idd, keeps symmetry, and the realization is technically

easy.

> If ¢ is small enough, u; = g will be satisfied exactly within floating

point accuracy.

» [terative methods should be initialized with Dirichlet values.
» Works for nonlinear problems, finite volume methods




Dirichlet penalty trick, general formulation

» Dirichlet boundary value problem

-V-kVu=f inQ

ulon =g

» We discussed approximation of Dirichlet problem by Robin problem
» Practical realization uses discrete approach for Lagrange degrees of

freedom a; ... ay corresponding to global basis functions ¢y ... ¢pn:
» Search up, = Z,N:l uip; € Vip = span{ey ... ¢n} such that

AU+ NU=F+ NG
where

> U:(LI1..,UN)
> A= (ay): stiffness matrix with a; = fQ KV @iV o; dx

g F:fnfv¢idx
i)y i Q
> G =(g) with g = g(a), a€d
07 else
1 i—jacon
» M = (my) is a diagonal matrix with m; = Z, I=Ja € o
0, else




P1 FEM Stiffness matrix row sums

Row sums:

N N N
ij = iV dx = i i d
j;aj ;/ﬂwvaﬁ, X Av¢v<;¢,) x

:/w,-vu) dx
Q
=0




P1 FEM stiffness matrix entry signs

Local stiffness matrix Sk

Yji+1 — Yj+2
Xj+2 — Xj+1

K
sj = / VAV dx = ‘7‘2 (Vit1 = Yid2s Xit2 — Xit1)
K 2|K]|

v

Main diagonal entries positive

» Local contributions from element stiffness matrices: Scalar products
of vectors orthogonal to edges. These are nonpositive if the angle
between the edges are < 90°

> weakly acute triangulation: all triangle angles are less than < 90°

» In fact, for constant coefficients, in 2D, Delaunay is sufficient, as
contributions from opposite angles compensate each other

» All row sums are zero = A is singular

» Matrix becomes irreducibly diagonally dominant if we add at least one
positive value to the main diagonal, e.g. from Dirichlet BC




Stationary linear reaction-diffusion

» Assume additional process in each REV which produces or destroys
species depending on the amount of species present with given rate r.

Search function v : Q — R such that
—V - -kVu+ru=7f inQ
kVu-n+alu—g)=0 ondQ

» Coercivity guaranteed e.g. for a > 0, r > 0 which means species
destruction FEM formulation: search uj € Vj, = span{¢; ... oy}
such that

//iVuthhdx+/ruhvhdx+ / aupvy ds
Q Q o0
| i — | ek —

"stiffness matrix” "mass matrix” "boundary mass matrix”

= / fvy, dx+/ agvy ds Vv, € V
Q Ele)

» Coercivity + symmetry = positive definiteness




Mass matrix properties
» Mass matrix (for r = 1): M = (my):

mjj = /S:Zqﬁ,-qu dx

» Self-adjoint, coercive bilinear form = M is symmetric, positiv definite

» For a family of quasi-uniform, shape-regular triangulations, for every
eigenvalue p one has the estimate

ah? < p < oh?
T = condition number (M) bounded by constant independent of h:
k(M) <c
» How to see this ? Let up = vazl Ui, and p an eigenvalue
(positive,real!) Then
llunllz = (U, MU)gw = (U, U)gw = pal| U] 3
From quasi-uniformity we obtain
euh? (| V|2 < [[unl 3 < c2h|| U2

and conclude




Mass matrix M-Property (P1 FEM) ?

> For P!-finite elements, all integrals m;; = [, ¢;¢; dx are zero or
positive, so we get positive off diagonal elements.

» No M-Property!




Mass matrix lumping (P1 FEM)

» Local mass matrix for P1 FEM on element K
(calculated by 2nd order exact edge midpoint quadrature rule):

1

My = |K| %
12
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» Lumping: sum up off diagonal elements to main diagonal, set off
diagonal entries to zero

My = |K|

O Owl=
oOwim O
W O O

> Interpretation as change of quadrature rule to first order exact vertex
based quadrature rule

» Loss of accuracy, gain of stability




Effect

of mass matrix lumping

For P1 FEM on weakly acute or Delaunay triangulations, mass matrix
lumping can guarantee M-Property of system matrix

Adding a mass matrix which is not lumped yields a positive definite
matrix (due to coercivity) and thus nonsingularity, but destroys
M-property unless the absolute values of its off diagonal entries are
less than those of A, i.e. for small r.

Same situation witb Robin boundary conditions and boundary mass
matrix

Introducing the Dirichlet Penalty trick at continuous level without
mass lumping would be disastrous.




Discretization ansatz for Robin boundary value problem
Given constants K >0, a; >0 (i=1...Np)

-V -kVu=~finQ
kVu-n+ai(u—g)=0onT; (i=1...N) (*)

» Given control volume wy, k € N, integrate

0= [ (-V-kVu—rf)dw
wk
:—/ kVu-nedy — | fdw (Gauss)
Owyi Wik
I—Z/ kVu-ngdy — Z/ mVu~nd’y—/ fdw
leNk Yik Wik
o
~ Z \th| (uk — uy +Z\’Y,k|a, —&ik) — |wklfi
LEN, kil %,_/ N——
bound. cond. (*) quadrature

u—uy,
Vu-nr -k
ki

> Here, ux = u(xk), g,k = &i(Xk), fc = f(xk)




Properties of discretization matrix

» N = |N| equations (one for each control volume wy)

» N = |N]| unknowns (one for each collocation point xx € wy)

> weighted connected edge graph of triangulation = N x N irreducible
sparse discretization matrix A = (ay) :

Sren B2+ M Pislen, 1=k
Ak = fn‘;:; =

0, else

> Ais irreducibly diagonally dominant if at least for one i, |v; «|a; > 0
» Main diagonal entries are positive, off diagonal entries are non-positive
» = A has the M-property.

» A is symmetric = A is positive definite




The convection - diffusion equation

Search function v : Q — R such that

—V-(DVu—uv)=f inQ
(DVu—uv) - n+afu—w)=0 onl

u(x): species concentration, temperature
J = DVu — uv: species flux
D: diffusion coefficient
v(x): velocity of medium (e.g. fluid)
» Given analytically
> Solution of free flow problem (Navier-Stokes equation)
> Flow in porous medium (Darcy equation): v = —xVp where

vyvyyvYyy

-V - (kVp)=0

v

For constant density, the divergence conditon V - v = 0 holds.




Finite volumes for convection diffusion

—-V-j=0 inQ
jn+a(u—g)=0 onT

> Integrate time discrete equation over control volume

/V deff/j'nkd'y

Owy

:—Z/J ngdy — /J-ndfy

I€ngk,

Kl
~ Z 7|gkl (uk, ur) + |y (uk — gx)
1ENK

—D
—Ag

» A=A+ D




Central Difference Flux Approximation

> gy approximates normal convective-diffusive flux between control
volumes wy,w;: gu(uxk — u)) = —(DVu — uv) - ny

> Let vy = ﬁ f OV - Ngd~y approximate the normal velocity v - ng

» Central difference flux:
1
gt (i, uy) = D(ue — up) + hk/ﬁ(“k + up) v
1 1
= (D + Ehk,vk,)uk — (D — Ehlek/)Ul

» if vy is large compared to hy, the corresponding matrix (off-diagonal)
entry may become positive

» Non-positive off-diagonal entries only guaranteed for h — 0 !

» Otherwise, we can prove the discrete maximum principle




Simple upwind flux discretization

» Force correct sign of convective flux approximation by replacing
central difference flux approximation hk,%(uk + uy)vi by

hiugvig,  vie <0 1
({ > :hk,%(uk—i—u/)vk/-l— Ehk/‘vkl|

hyupv, Vi >0
kiU Vil kI K , )
Artificial Diffusion D

» Upwind flux:

haukvig,  vie >0

&t (g, up) = D(ue — up) +
’ hauvig,  vie <0

= 1
= (D+ D)(uk — U/) + hk/E(Uk + U/)Vkl

» M-Property guaranteed unconditonally !
» Artificial diffusion introduces error: second order approximation

replaced by first order approximation




Exponential fitting flux |

» Project equation onto edge xxx, of length h = hyy, let v = —vy,
integrate once

v —uv=j
ulo = uk
U|hZU/

» Linear ODE
» Solution of the homogeneus problem:
v —u=0
vju=v
Inu=uy+ vx

u = Kexp(vx)




Exponential fitting Il

> Solution of the inhomogeneous problem: set K = K(x):

K’ exp(vx) + vK exp(vx) — vK exp(vx) = —j
K' = —jexp(—wx)

1
K = Ko + —j exp(—vx)
v
» Therefore,
1.
u= Kyexp(vx) + —j
1%
1
uk =Ko+ —j
v

1
uy = Kopexp(vh) + ;j




Exponential fitting Il

» Use boundary conditions

ug — uy
Ko= —k— 4
0 1 — exp(vh)
Uy 1.
ukil—exp(vh)—kvj
= ooy g e ) +
=——————(uk — ) +wu
J exp(vh) — 1 ke ,

1 v
Sy . — -7
Y (exp(vh) -1 + ) ik exp(vh) — 1 n

exp(vh) v
= (exp(vh) - 1) e exp(vh) — 1"
—v v
:exp(fvh) kT exp(vh) — 1 “
_ B(—vh)u, — B(vh)u,
h

where B(§) = exp(sﬁ: Bernoulli function




Exponential fitting IV

> General case: Du' — uv = D(u' — uf)
» Upwind flux:

Vit hig

—vih
M)uka( 5 Yur)

&ui(ui, ur) = D(B(

» Allen+Southwell 1955

» Scharfetter+Gummel 1969
> llin 1969

» Chang+Cooper 1970

» Guaranteed sign pattern, M property!




Exponential fitting: Artificial diffusion

» Difference of exponential fitting scheme and central scheme

> Use: B(—x) =B(x)+x =

B(x) + 5x = B(~x) — px = B(lx]) + 5«
Do (6 — u) :D(B(%h)uk - B(V—h)u,) ~ D(ue— w)+ hl(uk + )y
—p(ZY g ))uk _p(h B(—)u,) D(ux — ur)

2D 2D
(1|V—”| +B(|—\) 1) — w)

» Further, for x > 0:

1 1
§x>§x+B(x)—120

» Therefore




Exponential fitting: Artificial diffusion Il

1.0 T T T
— upwind
— exp. fitting
0.5t
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Comparison of artificial diffusion functions 1|x| (upwind)
and 3|x| + B(|x]) — 1 (exp. fitting)




Convection-Diffusion test problem, N=20

» Q=(0,1), -V - (DVu+uv) =0, u(0) =0, u(l) =1

» V=1 D=0.01
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— expfit
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— upwind
0.6
0.4
0.2
0.0
-0.2
-0.4
0.0 0.2 0.4

0.6

0.8

» Exponential fitting: sharp boundary layer, for this problem it is exact

» Central differences: unphysical
» Upwind: larger boundary layer




Convection-Diffusion test problem, N=40

» Q=(0,1), -V - (DVu+uv) =0, u(0) =0, u(l) =1
» V=1 D=0.01

— expfit
0.8L| — central
— upwind

- y

0.0 0.2 0.4 0.6 0.8 1.0

» Exponential fitting: sharp boundary layer, for this problem it is exact
» Central differences: unphysical, but less “'wiggles”
» Upwind: larger boundary layer




Convection-Diffusion test problem, N=80

» Q=(0,1), -V -(DVu+uv) =0, u(0) =0, u(l) =1
» V=1 D=0.01

— expfit
0.8lL| — central
— upwind
0.6
0.4 : :
0.2 : i j/
0.0
-0.2
-0.4
0.0 0.2 0.4 0.6 0.8 1.0

» Exponential fitting: sharp boundary layer, for this problem it is exact
» Central differences: grid is fine enough to yield M-Matrix property,

good approximation of boundary layer due to higher convergence order
» Upwind: “smearing” of boundary layer




1D convection diffusion summary

» Upwinding and exponential fitting unconditionally yield the
M-property of the discretization matrix

» Exponential fitting for this case (zero right hand side, 1D) yields exact
solution. It is anyway “less diffusive” as artificial diffusion is optimized

» Central scheme has higher convergence order than upwind (and
exponential fitting) but on coarse grid it may lead to unphysical
oscillations

» For 2/3D problems, sufficiently fine grids to stabilize central scheme
may be prohibitively expensive

» Local grid refinement may help to offset artificial diffusion




1D Convection-Diffusion implementation: central
differences

F=0;

U=0;

for (int k=0, 1=1;k<n-1;k++,1++)

{
double g_k1=D - 0.5%(v*h);
double g_lk=D + 0.5*(v*h);
M(k,k)+=g_kl/h;
M(k,1)-=g_kl/h;
M(1,1)+=g_lk/h;
M(1,k)-=g_lk/h;

}

M(0,0)+=1.0e30;

M(n-1,n-1)+=1.0e30;

F(n-1)=1.0e30;



1D Convection-Diffusion implementation: upwind scheme

F=0;
U=0;
for (int k=0, 1=1;k<n-1;k++,1++)
{
double g_kl1=D;
double g_1k=D;
if (v<0) g_kl-=vxh;
else g_lk+=v*h;

M(k,k)+=g_kl1l/h;

M(k,1)-=g_kl/h;

M(1,1)+=g_lk/h;

M(1,k)-=g_lk/h;
}

M(0,0)+=1.0e30;
M(n-1,n-1)+=1.0e30;
F(n-1)=1.0e30;



1D Convection-Diffusion implementation: exponential

fitting scheme

inline double B(double x)

{
if (std::fabs(x)<1.0e-10) return 1.0;
return x/(std::exp(x)-1.0);

}

F=0;

U=0;

for (int k=0, 1=1;k<n-1;k++,1++)

{
double g_kl=D* B(v*h/D);
double g_lk=D* B(-v*h/D);
M(k,k)+=g_k1/h;
M(k,1)-=g_kl/h;
M(1,1)+=g_lk/h;
M(1,k)-=g_lk/h;

¥

M(0,0)+=1.0e30;
M(n-1,n-1)+=1.0e30;
F(n-1)=1.0e30;



Convection-diffusion and finite elements
Search function u : Q — R such that

—V(DVu—uwv)=f inQ

u=up on o

» Assume v is divergence-free, i.e. V-v =0.

» Then the main part of the equation can be reformulated as
—V(-DVu)+v-Vu=0 inQ

yielding a weak formulation: find u € H*(Q) such that
u—up € H}(Q) and Vw € H}(Q),

/DVU~deX+/v~Vude:/fwdx
Q Q Q

» Galerkin formulation: find u, € V}, with bc. such that Yw, € V,

/DVuh-Vthx+/v-Vuh wWh dx:/fwh dx
Q Q Q



Convection-diffusion and finite elements I

» Galerkin ansatz has similar problems as central difference ansatz in
the finite volume/finite difference case = stabilization 7

» Most popular: streamline upwind Petrov-Galerkin

/DVuh~th dx—l—/v~Vuh wy, dx + S(up, wp) :/fwh dx
Q Q Q

with

S(up, wp) = Z/ (=V(-DVup — upv) — f)okv - wy dx
< K

where 6 = %'g( |"g"v<) with £(ar) = coth(a) — X and hj; is the size of

element K in the direction of v.



Convection-diffusion and finite elements IlI

» Many methods to stabilize, none guarantees M-Property even on
weakly acute meshes ! (V. John, P. Knobloch, Computer Methods in
Applied Mechanics and Engineering, 2007)

» Comparison paper:

M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and
R. Umla, “An assessment of discretizations for convection-dominated
convection-diffusion equations,” Comp. Meth. Appl. Mech. Engrg., vol.
200, pp. 3395-3409, 2011:

o if it is necessary to compute solutions without spurious oscilla-
tions: use FVM, taking care on the construction of an appropri-
ate grid might be essential for reducing the smearing of the
layers,

o if sharpness and position of layers are important and spurious
oscillations can be tolerated: often the SUPG method is a good
choice.

» Topic of ongoing research



Nonlinear problems: motivation

» Assume nonlinear dependency of some coefficients of the equation on
the solution. E.g. nonlinear diffusion problem

—V(-D(u)Vu)=f inQ
u = upondf2

» FE+FV discretization methods lead to large nonlinear systems of
equations



Nonlinear problems: caution!

This is a significantly more complex world:
» Possibly multiple solution branches
» Weak formulations in LP spaces
» No direct solution methods

» Narrow domains of definition (e.g. only for positive solutions)



Finite element discretization for nonlinear diffusion

» Find uy, € V), such that for all wy, € V:

/ D(up)Vup - Vwy, dx = / fwy, dx
Q Q

» Use appropriate quadrature rules for the nonlinear integrals

» Discrete system
A(un) = F(un)



Finite volume discretization for nonlinear diffusion

0= / (=V-D(u)Vu—f)dw
Wk
= —/ D(u)Vu - nidy — fdw (Gauss)
Owy W
== > / u)Vu - ngdy — / D(u)Vu - ndvy 7/ fdw
LEN: Tk w
~ Y7 *gk/ (uie, ur) + [vicla(uie — wic) — Jwr|fi
LeNK
with
_ ) DG (e + ) (uie = w)
aulute 1) = {or D(ux) — D(u)
where D(u) = [,/ D(£) d¢ (exact solution ansatz at discretization edge)

» Discrete system
A(un) = F(un)



Iterative solution methods: fixed point iteration

> Let u e R".
Problem: A(u) = f:
> Assume A(u) = M(u)u, where for each u, M(u) : R” — R" is a linear
operator.
> lIteration scheme:
Choose ug, i < 0;
while not converged do
Solve M(U;)U;+1 = f;
i—i+1;
end

v

» Convergence criteria:
> residual based: ||A(u) — f]| < e
> update based ||ui+1 — ui|| < e
» Large domain of convergence
Convergence may be slow
» Smooth coefficients not necessary

v



[terative solution methods: Newton method

» Solve
Al(ul...u,,) fl
Az(ul...u,,) fg
A(u) = . =| .| =f
An(uy ... up) f,

» Jacobi matrix (Frechet derivative) for given u: A'(u) = (ax) with

= —A ..Uy
=N Em k(Ul U)

> lteration scheme:

Choose ug, i < 0;

while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A'(u;);
Solve update problem A’(u;)h; = r;;
Update solution: ujy1 = u; — hj;
i< i+1;

end



Newton method I

v

Convergence criteria: - residual based: ||r;|| < & - update based
|[hil| < e

Limited domain of convergence

Slow initial convergence

Fast (quadratic) convergence close to solution

vYvyy



Damped Newton method
» Remedy for small domain of convergence: damping

Choose ug, i < 0, damping parameter d < 1;
while not converged do
Calculate residual r; = A(u;) — f;
Calculate Jacobi matrix A’(u;);
Solve update problem A’(u;)h; = r;;
Update solution: wj+1 = u; — dh;;
i+ i+1;
end
» Damping slows convergence down from quadratic to linear
» Better way: increase damping parameter during iteration:

Choose ug, i < 0,damping d < 1, growth factor § > 1;
while not converged do

Calculate residual r; = A(y;) — f;

Calculate Jacobi matrix A'(u;);

Solve update problem A'(u;)h; = r;;

Update solution: wjy1 = u; — dh;;

Update damping parameter: d;; = min(1,dd;) ;
i+ i+1;

end



Newton method: further issues

» Even if it converges, in each iteration step we have to solve linear
system of equations

» Can be done iteratively, e.g. with the LU factorization of the Jacobi
matrix from first solution step

> |terative solution accuracy my be relaxed, but this may diminuish
quadratic convergence

» Quadratic convergence yields very accurate solution with no large
additional effort: once we are in the quadratic convergence region,
convergence is very fast

» Monotonicity test: check if residual grows, this is often an sign that
the iteration will diverge anyway.



Newton method: embedding

v

Embedding method for parameter dependent problems.

Solve A(ux,\) = f for A =1.

v

v

Assume A(up, 0) can be easily solved.

v

Parameter embedding method:

Solve A(ug,0) = f;

Choose initial step size ¢;

Set A =0;

while A < 1 do
Solve A(uxts, A+ d) = 0 with initial valuel wuy;
A A+0;

end

> Possibly decrease stepsize if Newton's method does not converge,
increase it later

» Parameter embedding + damping + update based convergence
control go a long way to solve even strongly nonlinear problems!



