Scientific Computing WS 2018/2019

Lecture 17

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Reference finite element

• Let $\{\widehat{P}, \widehat{K}, \widehat{\Sigma}\}$ be a fixed finite element

- Let T_K be some affine transformation and $K = T_K(\widehat{K})$
- There is a linear bijective mapping ψ_K between functions on K and functions on \widehat{K} :

$$\psi_{\mathcal{K}}: \mathcal{V}(\mathcal{K}) \to \mathcal{V}(\widehat{\mathcal{K}})$$

 $f \mapsto f \circ T_{\mathcal{K}}$

I et

$$K = T_K(K)$$

$$P_{\mathcal{K}} = \{\psi_{\mathcal{K}}(p); p \in P\},\$$

$$P_{K} = \{ \psi_{K}^{-1}(\widehat{p}); \widehat{p} \in \widehat{P} \},$$

$$\Sigma_{K} = \{ \sigma_{K,i}, i = 1 \dots s : \sigma_{K,i}(p) = \widehat{\sigma}_{i}(\psi_{K}(p)) \}$$

Then $\{K, P_K, \Sigma_K\}$ is a finite element.

This construction allows to develop theory for a reference element and to lift it later to an arbitrary element.

Commutativity of interpolation and reference mapping

• $\mathcal{I}_{\hat{K}} \circ \psi_{K} = \psi_{K} \circ \mathcal{I}_{K}$, i.e. the following diagram is commutative:

$$V(K) \xrightarrow{\psi_{K}} V(\widehat{K})$$

$$\downarrow^{\mathcal{I}_{K}} \qquad \qquad \downarrow^{\mathcal{I}_{\hat{K}}}$$

$$P_{K} \xrightarrow{\psi_{K}} P_{\widehat{K}}$$

 \blacktriangleright = Interpolation and reference mapping are interchangeable

Affine transformation estimates I

- \widehat{K} : reference element
- Let $K \in \mathcal{T}_h$. Affine mapping described by matrix J_K and shift vertor b_K :

$$egin{aligned} & T_{\mathcal{K}}:\widehat{\mathcal{K}}
ightarrow \mathcal{K}\ & \widehat{x}\mapsto J_{\mathcal{K}}\widehat{x}+b_{\mathcal{K}} \end{aligned}$$

with $J_{\mathcal{K}} \in \mathbb{R}^{d,d}, b_{\mathcal{K}} \in \mathbb{R}^{d}$, $J_{\mathcal{K}}$ nonsingular

- ▶ Diameter of K: $h_K = \max_{x_1, x_2 \in K} ||x_1 x_2||$ ≡ longest edge if K is triangular
- ρ_K diameter of largest ball that can be inscribed into K

•
$$\sigma_K = \frac{h_K}{\rho_K}$$
: local shape regularity measure $\sigma_K = 2\sqrt{3}$ for equilateral triangle $\sigma_K \to \infty$ if largest angle approaches π .

Affine transformation estimates II

Lemma T:

$$\begin{array}{l} \bullet \quad |\det J_{K}| = \frac{meas(K)}{meas(\widehat{K})} \\ \bullet \quad ||J_{K}|| \leq \frac{h_{K}}{\rho_{\widehat{K}}}, \ ||J_{K}^{-1}|| \leq \frac{h_{\widehat{K}}}{\rho_{K}} \\ \bullet \quad \Rightarrow \quad ||J_{K}|| \cdot ||J_{K}^{-1}|| \leq c_{\widehat{K}}\sigma_{K} \end{array}$$

Proof:

►
$$|\det J_K| = \frac{meas(K)}{meas(\widehat{K})}$$
: basic property of affine mappings

► Further:

$$||J_{\mathcal{K}}|| = \sup_{\hat{x} \neq 0} \frac{||J_{\mathcal{K}}\hat{x}||}{||\hat{x}||} = \frac{1}{\rho_{\hat{K}}} \sup_{||\hat{x}|| = \rho_{\hat{K}}} ||J_{\mathcal{K}}\hat{x}||$$

Set $\hat{x} = \hat{x}_1 - \hat{x}_2$ with $\hat{x}_1, \hat{x}_2 \in \widehat{K}$. Then $J_K \hat{x} = T_K \hat{x}_1 - T_K \hat{x}_2$ and one can estimate $||J_K \hat{x}|| \leq h_K$.

• For
$$||J_{\mathcal{K}}^{-1}||$$
 regard the inverse mapping \Box

Estimate of derivatives under affine transformation

• For $w \in H^{s}(K)$ recall the H^{s} seminorm $|w|_{s,K}^{2} = \sum_{|\beta|=s} ||\partial^{\beta}w||_{L^{2}(K)}^{2}$

Lemma D: Let $w \in H^{s}(K)$ and $\widehat{w} = w \circ T_{K}$. There exists a constant c such that

$$\begin{split} |\hat{w}|_{s,\hat{K}} &\leq c ||J_{K}||^{s} |\det J_{K}|^{-\frac{1}{2}} |w|_{s,K} \\ |w|_{s,K} &\leq c ||J_{K}^{-1}||^{s} |\det J_{K}|^{\frac{1}{2}} |\hat{w}|_{s,\hat{K}} \end{split}$$

Proof: Let $|\alpha| = s$. By affinity and chain rule one obtains

$$||\partial^{\alpha}\hat{w}||_{L^{2}(\hat{K})} \leq c||J_{\mathcal{K}}||^{s} \sum_{|\beta|=s} ||\partial^{\beta}w \circ T_{\mathcal{K}}||_{L^{2}(\mathcal{K})}$$

Changing variables in the right hand side yields

$$||\partial^lpha \hat{w}||_{L^2(\hat{K})} \leq c ||J_K||^s |\det J_K|^{-rac{1}{2}} |w|_{s,K}$$

Summation over α yields the first inequality. Regarding the inverse mapping yields the second estimate. \Box

Local interpolation error estimate I

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume there exists k such that

$$\mathbb{P}_{K} \subset \widehat{P} \subset H^{k+1}(\widehat{K}) \subset V(\widehat{K})$$

and

$$H^{l+1}(\widehat{K}) \subset V(\widehat{K}) \quad ext{for} \quad 0 \leq l \leq k$$

Then there exists c > 0 such that for all $m = 0 \dots l + 1$, $K \in \mathcal{T}_h$, $v \in H^{l+1}(K)$:

$$|\mathbf{v} - \mathcal{I}_{K}^{k}\mathbf{v}|_{m,K} \leq ch_{K}^{l+1-m}\sigma_{K}^{m}|\mathbf{v}|_{l+1,K}.$$

I.e. the the local interpolation error can be estimated through h_K , σ_K and the norm of a higher derivative.

Local interpolation error estimate II

Draft of Proof

• Estimate on reference element \hat{K} using deeper results from functional analysis:

$$\left|\hat{w} - \mathcal{I}_{\hat{K}}^{k}\hat{w}
ight|_{m,\hat{K}} \leq c\left|\hat{w}
ight|_{l+1,\hat{K}}$$
 (*)

(From Poincare like inequality, e.g. for $v \in H_0^1(\Omega)$, $c||v||_{L^2} \le ||\nabla v||_{L^2}$: under certain circumstances, we can can estimate the norms of lower derivatives by those of the higher ones)

▶ Derive estimate on *K* from estimate on \hat{K} : Let $v \in H^{l+1}(K)$ and set $\hat{v} = v \circ T_K$. We know that $(\mathcal{I}_K^k v) \circ T_K = \mathcal{I}_{\hat{K}}^k \hat{v}$.

$$\begin{aligned} |v - \mathcal{I}_{K}^{k}v|_{m,K} &\leq c||J_{K}^{-1}||^{m}|\det J_{K}|^{\frac{1}{2}}|\hat{v} - \mathcal{I}_{\hat{K}}^{k}\hat{v}|_{m,\hat{K}} & (\text{Lemma E}) \\ &\leq c||J_{K}^{-1}||^{m}|\det J_{K}|^{\frac{1}{2}}|\hat{v}|_{l+1,\hat{K}} & (*) \\ &\leq c||J_{K}^{-1}||^{m}||J_{K}||^{l+1}|v|_{l+1,K} & (\text{Lemma E}) \\ &= c(||J_{K}|| \cdot ||J_{K}^{-1}||)^{m}||J_{K}||^{l+1-m}|v|_{l+1,K} \\ &\leq ch_{K}^{l+1-m}\sigma_{K}^{m}|v|_{l+1,K} & (\text{Lemma T}) \end{aligned}$$

Local interpolation: special cases for Lagrange finite elements

General condition

$$\mathbb{P}_{K} \subset \widehat{P} \subset H^{k+1}(\widehat{K}) \subset V(\widehat{K})$$

 $H^{l+1}(\widehat{K}) \subset V(\widehat{K}) \quad \text{for} \quad 0 \leq l \leq k$

▶ *k* = 1:

$$\mathbb{P}_{\mathcal{K}} \subset \widehat{\mathcal{P}} \subset \mathcal{H}^2(\widehat{\mathcal{K}}) \subset \mathcal{V}(\widehat{\mathcal{K}}) \ \mathcal{H}^1(\widehat{\mathcal{K}}) \subset \mathcal{V}(\widehat{\mathcal{K}})$$

▶
$$k = 1, l = 1, m = 0$$
: $|v - \mathcal{I}_{K}^{k}v|_{0,K} \le ch_{K}^{2}|v|_{2,K}$
▶ $k = 1, l = 1, m = 1$: $|v - \mathcal{I}_{K}^{k}v|_{1,K} \le ch_{K}\sigma_{K}|v|_{2,K}$

Shape regularity

- Now we discuss a family of meshes T_h for h → 0. We want to estimate global interpolation errors and see how they possibly diminuish
- For given \mathcal{T}_h , assume that $h = \max_{K \in \mathcal{T}_h} h_j$
- A family of meshes is called shape regular if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = rac{h_K}{
ho_K} \leq \sigma_0$$

▶ In 1D, $\sigma_K = 1$ ▶ In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Global interpolation error estimate

Theorem Let Ω be polyhedral, and let \mathcal{T}_h be a shape regular family of affine meshes. Then there exists *c* such that for all *h*, $v \in H^{l+1}(\Omega)$,

$$||v - \mathcal{I}_{h}^{k}v||_{L^{2}(\Omega)} + \sum_{m=1}^{l+1} h^{m} \left(\sum_{K \in \mathcal{T}_{h}} |v - \mathcal{I}_{h}^{k}v|_{m,K}^{2}\right)^{\frac{1}{2}} \leq ch^{l+1} |v|_{l+1,\Omega}$$

and

$$\lim_{h\to 0} \left(\inf_{v_h \in V_h^k} ||v - v_h||_{L^2(\Omega)} \right) = 0$$

Global interpolation error estimate for Lagrangian finite elements, k = 1

Assume v ∈ H²(Ω), e.g. if problem coefficients are smooth and the domain is convex

$$\begin{split} |v - \mathcal{I}_h^k v||_{0,\Omega} + h|v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch^2 |v|_{2,\Omega} \\ |v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch|v|_{2,\Omega} \\ \lim_{h \to 0} \left(\inf_{v_h \in V_h^k} |v - v_h|_{1,\Omega} \right) &= 0 \end{split}$$

- If v ∈ H²(Ω) cannot be guaranteed, estimates become worse. Example: L-shaped domain.
- These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

• Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda
abla u
abla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, orall v \in H^1_0(\Omega)$$

Then, $\lim_{h\to 0} ||u - u_h||_{1,\Omega} = 0$. If $u \in H^2(\Omega)$ (e.g. on convex domains) then

 $\begin{aligned} ||u - u_h||_{1,\Omega} &\leq ch|u|_{2,\Omega} \\ ||u - u_h||_{0,\Omega} &\leq ch^2|u|_{2,\Omega} \end{aligned}$

Under certain conditions (convex domain, smooth coefficients) one also has

$$||u - u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

("Aubin-Nitsche-Lemma")

H^2 -Regularity

- $u \in H^2(\Omega)$ may be *not* fulfilled e.g.
 - if Ω has re-entrant corners
 - if on a smooth part of the domain, the boundary condition type changes
 - if problem coefficients (λ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
 - Deterioration of convergence rate
 - Remedy: local refinement of the discretization mesh
 - using a priori information
 - using a posteriori error estimators + automatic refinement of discretizatiom mesh

Higher regularity

- If u ∈ H^s(Ω) for s > 2, convergence order estimates become even better for P^k finite elements of order k > 1.
- Depending on the regularity of the solution the combination of grid adaptation and higher oder ansatz functions may be successful

Quadrature rules

Quadrature rule:

$$\int_{\mathcal{K}} g(x) \, d\mathbf{x} \approx |\mathcal{K}| \sum_{l=1}^{l_q} \omega_l g(\xi_l)$$

- ξ_I : nodes, Gauss points
- $\blacktriangleright \omega_l$: weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_q of the quadrature rule, i.e.

$$orall k \leq k_q, orall p \in \mathbb{P}^k \int_K p(x) \ d\mathbf{x} = |K| \sum_{l=1}^{l_q} \omega_l p(\xi_l)$$

Error estimate:

$$\forall \phi \in \mathcal{C}^{k_q+1}(\mathcal{K}), \left| \frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} \phi(x) \, d\mathbf{x} - \sum_{l=1}^{l_q} \omega_l g(\xi_l) \right| \\ \leq c h_{\mathcal{K}}^{k_q+1} \sup_{x \in \mathcal{K}, |\alpha| = k_q+1} |\partial^{\alpha} \phi(x)|$$

Some common quadrature rules

Nodes are characterized by the barycentric coordinates

d	k _q	I_q	Nodes	Weights
1	1	1	$\left(\frac{1}{2},\frac{1}{2}\right)$	1
	1	2	(1,0), (0,1)	$\frac{1}{2}, \frac{1}{2}$
	3	2	$(\frac{1}{2}+\frac{\sqrt{3}}{6},\frac{1}{2}-\frac{\sqrt{3}}{6}),(\frac{1}{2}-\frac{\sqrt{3}}{6},\frac{1}{2}+\frac{\sqrt{3}}{6})$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$(rac{1}{2},),(rac{1}{2}+\sqrt{rac{3}{20}},rac{1}{2}-\sqrt{rac{3}{20}}),(rac{1}{2}-\sqrt{rac{3}{20}},rac{1}{2}+\sqrt{rac{3}{20}})$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$	1
	1	3	(1, 0, 0), (0, 1, 0), (0, 0, 1)	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{5}, \frac{1}{5}, \frac{2}{5}), (\frac{1}{5}, \frac{2}{5}, \frac{1}{5}), (\frac{3}{5}, \frac{1}{5}, \frac{1}{5}),$	$-\frac{9}{16}, \frac{25}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$\left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$	1
	1	4	(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3\sqrt{5}}{20}\right)\dots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Weak formulation of homogeneous Dirichlet problem

• Search $u \in V = H_0^1(\Omega)$ such that

$$\int_{\Omega} \kappa \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

► Then,

$$a(u,v) := \int_{\Omega} \kappa \nabla u \nabla v \, d\mathbf{x}$$

is a self-adjoint bilinear form defined on the Hilbert space $H_0^1(\Omega)$.

Galerkin ansatz

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h,v_h)=f(v_h) \ \forall v_h \in V_h$$

• E.g. V_h is the space of P1 Lagrange finite element approximations

Stiffness matrix for Laplace operator for P1 FEM

Element-wise calculation:

$$m{a}_{ij} = m{a}(\phi_i, \phi_j) = \int_\Omega
abla \phi_i
abla \phi_j \ m{d} \mathbf{x} = \int_\Omega \sum_{K \in \mathcal{T}_h}
abla \phi_i |_K
abla \phi_j |_K \ m{d} \mathbf{x}$$

Standard assembly loop:

$$\begin{array}{l} \text{for } i,j=1\ldots N \text{ do} \\ \mid \text{ set } a_{ij}=0 \\ \text{end} \\ \text{for } \mathcal{K} \in \mathcal{T}_h \text{ do} \\ \mid \text{ for } m,n=0\ldots d \text{ do} \\ \mid s_{mn}=\int_{\mathcal{K}} \nabla \lambda_m \nabla \lambda_n \ d\mathbf{x} \\ a_{j_{dof}(\mathcal{K},m),j_{dof}(\mathcal{K},n)}=a_{j_{dof}(\mathcal{K},m),j_{dof}(\mathcal{K},n)}+s_{mn} \\ \mid \text{ end} \end{array}$$

end

Local stiffness matrix:

$$S_{K} = (s_{K;m,n}) = \int_{K} \nabla \lambda_{m} \nabla \lambda_{n} \, d\mathbf{x}$$

Local stiffness matrix calculation for P1 FEM

- $a_0 \dots a_d$: vertices of the simplex K, $a \in K$.
- Barycentric coordinates: $\lambda_j(a) = \frac{|K_j(a)|}{|K|}$
- ▶ For indexing modulo d+1 we can write

$$|\mathcal{K}| = \frac{1}{d!} \det \left(a_{j+1} - a_j, \dots a_{j+d} - a_j\right)$$
$$|\mathcal{K}_j(a)| = \frac{1}{d!} \det \left(a_{j+1} - a, \dots a_{j+d} - a\right)$$

From this information, we can calculate explicitely ∇λ_j(x) (which are constant vectors due to linearity) and the corresponding entries of the local stiffness

$$s_{ij} = \int_{K}
abla \lambda_i
abla \lambda_j \, d\mathbf{x}$$

Local stiffness matrix calculation for P1 FEM in 2D

- a₀ = (x₀, y₀) ... a_d = (x₂, y₂): vertices of the simplex K, a = (x, y) ∈ K.
- Barycentric coordinates: $\lambda_j(x, y) = \frac{|K_j(x, y)|}{|K|}$
- ▶ For indexing modulo d+1 we can write

$$|\mathcal{K}| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x_j & x_{j+2} - x_j \\ y_{j+1} - y_j & y_{j+2} - y_j \end{pmatrix}$$
$$\mathcal{K}_j(x, y)| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x & x_{j+2} - x \\ y_{j+1} - y & y_{j+2} - y \end{pmatrix}$$

► Therefore, we have

$$|K_{j}(x,y)| = \frac{1}{2} \left((x_{j+1} - x)(y_{j+2} - y) - (x_{j+2} - x)(y_{j+1} - y) \right)$$

$$\partial_{x}|K_{j}(x,y)| = \frac{1}{2} \left((y_{j+1} - y) - (y_{j+2} - y) \right) = \frac{1}{2} (y_{j+1} - y_{j+2})$$

$$\partial_{y}|K_{j}(x,y)| = \frac{1}{2} \left((x_{j+2} - x) - (x_{j+1} - x) \right) = \frac{1}{2} (x_{j+2} - x_{j+1})$$

Local stiffness matrix calculation for P1 FEM in 2D II

$$s_{ij} = \int_{K} \nabla \lambda_{i} \nabla \lambda_{j} \, d\mathbf{x} = \frac{|K|}{4|K|^{2}} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$

So, let $V = \begin{pmatrix} x_{1} - x_{0} & x_{2} - x_{0} \\ y_{1} - y_{0} & y_{2} - y_{0} \end{pmatrix}$

Then

$$\begin{aligned} x_1 - x_2 &= V_{00} - V_{01} \\ y_1 - y_2 &= V_{10} - V_{11} \end{aligned}$$

and

$$2|\mathcal{K}| \nabla \lambda_{0} = \begin{pmatrix} y_{1} - y_{2} \\ x_{2} - x_{1} \end{pmatrix} = \begin{pmatrix} V_{10} - V_{11} \\ V_{01} - V_{00} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_{1} = \begin{pmatrix} y_{2} - y_{0} \\ x_{0} - x_{2} \end{pmatrix} = \begin{pmatrix} V_{11} \\ -V_{01} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_{2} = \begin{pmatrix} y_{0} - y_{1} \\ x_{1} - x_{0} \end{pmatrix} = \begin{pmatrix} -V_{10} \\ V_{00} \end{pmatrix}$$

Degree of freedom map representation for P1 finite elements

- List of global nodes a₀...a_N: two dimensional array of coordinate values with N rows and d columns
- ► Local-global degree of freedom map: two-dimensional array C of index values with N_{el} rows and d + 1 columns such that C(i, m) = j_{dof}(K_i, m).
- > The mesh generator triangle generates this information directly

Practical realization of boundary conditions

Robin boundary value problem

$$-\nabla \cdot \kappa \nabla u = f \quad \text{in } \Omega$$

$$\kappa \nabla u + \alpha (u - g) = 0 \quad \text{on } \partial \Omega$$

• Weak formulation: search $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \kappa \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} \alpha g v \, ds \, \forall v \in H^1(\Omega)$$

- In 2D, for P¹ FEM, boundary integrals can be calculated by trapezoidal rule without sacrificing approximation order
- Use Dirichlet penalty method to handle Dirichlet boundary conditions

More complicated integrals

- Assume non-constant right hand side f, space dependent heat conduction coefficient κ.
- Right hand side integrals

$$f_i = \int_{\mathcal{K}} f(x) \lambda_i(x) \, d\mathbf{x}$$

$$a_{ij} = \int_K \kappa(x) \
abla \lambda_i \
abla \lambda_j \ d\mathbf{x}$$

P^k stiffness matrix elements created from higher order ansatz functions

Matching of approximation order and quadrature order

"Variational crime": instead of

$$a(u_h, v_h) = f(v_h) \; \forall v_h \in V_h$$

we solve

$$a_h(u_h,v_h)=f_h(v_h) \; orall v_h \in V_h$$

where a_h , f_h are derived from their exact counterparts by quadrature

- ► For P¹ finite elements, zero order quadrature for volume integrals and first order quadrature for surface intergals is sufficient to keep the convergence order estimates stated before
- The rule of thumb for the volume quadrature is that the highest order terms must be evaluated exactly if the coefficients of the PDE are constant.

Practical realization of integrals

Integral over barycentric coordinate function

$$\int_{K} \lambda_i(x) \, d\mathbf{x} = \frac{1}{3} |K|$$

Right hand side integrals. Assume f(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$f_i = \int_{K} f(x) \lambda_i(x) \ d\mathbf{x} \approx \frac{1}{3} |K| f(a_i)$$

Integral over space dependent heat conduction coefficient: Assume κ(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$\mathsf{a}_{ij} = \int_{K} \kappa(\mathsf{x}) \, \nabla \lambda_i \, \nabla \lambda_j \, d\mathsf{x} = \frac{1}{3} (\kappa(\mathsf{a}_0) + \kappa(\mathsf{a}_1) + \kappa(\mathsf{a}_2)) \int_{K} \nabla \lambda_i \, \nabla \lambda_j \, d\mathsf{x}$$

Convergence tests

P1 FEM, homogeneous Dirichlet

Problem:

$$-\Delta u = f \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

• Exact solution + rhs:

$$u(x, y) = \sin(\pi x)\sin(\pi y)$$

$$f(x, y) = 2\pi \sin(\pi x)\sin(\pi y)$$

P1 FEM: error plot

► As expected:

 $||u - u_h||_{L^2} \le Ch^2$ $||u - u_h||_{H^1} \le Ch$

FVM: error plot

As with P1 FEM

$$||u - u_h||_{L^2} \le Ch^2$$
$$||u - u_h||_{H^1} \le Ch$$

Iterative solver complexity I

▶ Solve linear system iteratively until $||e_k|| = ||(I - M^{-1}A)^k e_0|| \le \epsilon$

$$\rho^{k} \mathbf{e}_{0} \leq \epsilon$$

$$k \ln \rho < \ln \epsilon - \ln \mathbf{e}_{0}$$

$$k \geq k_{\rho} = \left\lceil \frac{\ln \mathbf{e}_{0} - \ln \epsilon}{\ln \rho} \right\rceil$$

- \blacktriangleright \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- Optimal iterative solver complexity assume:
 - $\rho < \rho_0 < 1$ independent of *h* resp. *N*
 - A sparse (A · u has complexity O(N))
 - Solution of Mv = r has complexity O(N).
 - $\Rightarrow \text{Number of iteration steps } k_{\rho} \text{ independent of } N$ $\Rightarrow \text{Overall complexity } O(N)$

Iterative solver complexity II

Assume

- $\blacktriangleright \ \rho = 1 h^{\delta} \Rightarrow \ln \rho \approx -h^{\delta} \rightarrow k_{\rho} = O(h^{-\delta})$
- d: space dimension $\Rightarrow h \approx N^{-\frac{1}{d}} \Rightarrow k_{\rho} = O(N^{\frac{\delta}{d}})$
- O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
- \Rightarrow Overall complexity $O(N^{1+rac{\delta}{d}}) = O(N^{rac{d+\delta}{d}})$
- Jacobi: δ = 2
- Hypothetical "Improved iterative solver" with $\delta = 1$?
- Overview on complexity estimates

dim	$ ho = 1 - O(h^2)$	ho = 1 - O(h)	LU fact.	LU solve
1	$O(N^3)$	$O(N^2)$	O(N)	O(N)
2	$O(N^2)$	$O(N^{\frac{3}{2}})$	$O(N^{\frac{3}{2}})$	$O(N \log N)$
3	$O(N^{\frac{5}{3}})$	$O(N^{\frac{4}{3}})$	$O(N^2)$	$O(N^{\frac{4}{3}})$

Direct solvers significantly better than iterative ones

Solver complexity scaling for 2D problems

- Direct solvers better than simple iterative solvers (Jacobi etc.)
- On par with improved iterative solvers

P1 FEM + LU Factorization: timing plot

P1 FEM + Jacobi: timing plot

P1 FEM + ILU: timing plot

Next lecture

Next lecture: Jan. 8, 2019 Happy holidays!