Scientific Computing WS 2018/2019

Lecture 16

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- For computer representations we need finite dimensional approximations
- The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations
- ► Finite dimensional subspaces of Hilbert spaces are the spans of a set of basis functions, and are Hilbert spaces as well ⇒ e.g. the Lax-Milgram lemma is valid there as well

The Galerkin method II

- Let V be a Hilbert space. Let $a : V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- Continuous problem: search $u \in V$ such that

$$a(u,v) = f(v) \ \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \; \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad (\text{Coercivity}) \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad (\text{Galerkin Orthogonality}) \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad (\text{Boundedness}) \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

▶ Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h.

From the Galerkin method to the matrix equation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{j=1}^n u_j \phi_j$
- ▶ In order to search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with
$$A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$$

Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

• Let
$$\Omega = (a, b) \subset \mathbb{R}^1$$

• Let
$$a(u, v) = \int_{\Omega} \lambda(x) \nabla u \nabla v d\mathbf{x}$$
.

- ► Analysis I provides a finite dimensional subspace: the space of sin/cos functions up to a certain frequency ⇒ spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients – e.g. "Spectral Einstein Code"

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $\blacktriangleright\ {\cal K} \subset {\mathbb R}^d :$ compact, connected Lipschitz domain with non-empty interior
- ▶ *P*: finite dimensional vector space of functions $p: K \to \mathbb{R}$
- Σ = {σ₁...σ_s} ⊂ L(P, ℝ): set of linear forms defined on P called local degrees of freedom such that the mapping

$$egin{aligned} & \Lambda_{\Sigma}: P o \mathbb{R}^s \ & p \mapsto (\sigma_1(p) \dots \sigma_s(p)) \end{aligned}$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P, \mathbb{R})$.

Local shape functions

Due to bijectivity of Λ_Σ, for any finite element {K, P, Σ}, there exists a basis {θ₁...θ_s} ⊂ P such that

$$\sigma_i(\theta_j) = \delta_{ij} \quad (1 \le i, j \le s)$$

Elements of such a basis are called *local shape functions*

Unisolvence

 \blacktriangleright Bijectivity of Λ_{Σ} is equivalent to the condition

 $\forall (\alpha_1 \dots \alpha_s) \in \mathbb{R}^s \exists ! p \in P \text{ such that } \sigma_i(p) = \alpha_i \quad (1 \leq i \leq s)$

i.e. for any given tuple of values $a = (\alpha_1 \dots \alpha_s)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p) = a$.

Equivalent to unisolvence:

$$\begin{cases} \dim P = |\Sigma| = s \\ \forall p \in P : \sigma_i(p) = 0 (i = 1 \dots s) \Rightarrow p = 0 \end{cases}$$

Lagrange finite elements

A finite element {K, P, Σ} is called Lagrange finite element (or nodal finite element) if there exist a set of points {a₁...a_s} ⊂ K such that

$$\sigma_i(p) = p(a_i) \quad 1 \leq i \leq s$$

$$heta_j(a_i) = \delta_{ij} \quad (1 \leq i, j \leq s)$$

Local interpolation operator

• Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\{\theta_1 \dots \theta_s\}$. Let V(K) be a normed vector space of functions $v : K \to \mathbb{R}$ such that

•
$$P \subset V(K)$$

- The linear forms in Σ can be extended to be defined on V(K)
- local interpolation operator

$$egin{aligned} \mathcal{I}_{\mathcal{K}} &: \mathcal{V}(\mathcal{K}) o \mathcal{P} \ & & \quad v \mapsto \sum_{i=1}^s \sigma_i(v) heta_i \end{aligned}$$

P is invariant under the action of I_K, i.e. ∀p ∈ P, I_K(p) = p:
 Let p = ∑_{j=1}^s α_jθ_j Then,

$$egin{aligned} \mathcal{I}_{\mathcal{K}}(\pmb{p}) &= \sum_{i=1}^{s} \sigma_i(\pmb{p}) heta_i = \sum_{i=1}^{s} \sum_{j=1}^{s} lpha_j \sigma_i(heta_j) heta_i \ &= \sum_{i=1}^{s} \sum_{j=1}^{s} lpha_j \delta_{ij} heta_i = \sum_{j=1}^{s} lpha_j heta_j \end{aligned}$$

Local Lagrange interpolation operator

• Let
$$V(K) = (\mathcal{C}^0(K))$$

$$\mathcal{I}_{\mathcal{K}}: \mathcal{V}(\mathcal{K}) \to \mathcal{P}$$

 $v \mapsto \mathcal{I}_{\mathcal{K}} v = \sum_{i=1}^{s} v(a_i) \theta_i$

Simplices

- Let {a₀...a_d} ⊂ ℝ^d such that the d vectors a₁ − a₀...a_d − a₀ are linearly independent. Then the convex hull K of a₀...a_d is called simplex, and a₀...a_d are called vertices of the simplex.
- Unit simplex: $a_0 = (0...0), a_1 = (0, 1...0) \dots a_d = (0...0, 1).$

$$\mathcal{K} = \left\{ x \in \mathbb{R}^d : x_i \geq 0 \; (i = 1 \dots d) \; \text{and} \; \sum_{i=1}^d x_i \leq 1
ight\}$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_i: face of K opposite to a_i
- **n**_i: outward normal to F_i

Barycentric coordinates

- ▶ Let *K* be a simplex.
- Functions λ_i ($i = 0 \dots d$):

$$egin{aligned} \lambda_{i}: \mathbb{R}^{d} &
ightarrow \mathbb{R} \ x &\mapsto \lambda_{i}(x) = 1 - rac{(x-a_{i})\cdot \mathbf{n}_{i}}{(a_{j}-a_{i})\cdot \mathbf{n}_{i}} \end{aligned}$$

where a_j is any vertex of K situated in F_i .

For $x \in K$, one has

$$1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{(a_j - a_i) \cdot \mathbf{n}_i - (x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$$
$$= \frac{(a_j - x) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{\operatorname{dist}(x, F_i)}{\operatorname{dist}(a_i, F_i)}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|/d}{\operatorname{dist}(a_i, F_i)|F_i|/d}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|}{|\mathcal{K}|}$$

i.e. $\lambda_i(x)$ is the ratio of the volume of the simplex $K_i(x)$ made up of x and the vertices of F_i to the volume of K.

Barycentric coordinates II

- $\triangleright \ \lambda_i(a_j) = \delta_{ij}$
- $\blacktriangleright \lambda_i(x) = 0 \ \forall x \in F_i$
- $\sum_{i=0}^{d} \lambda_i(x) = 1 \ \forall x \in \mathbb{R}^d$ (just sum up the volumes)
- ► $\sum_{i=0}^{d} \lambda_i(x)(x a_i) = 0 \quad \forall x \in \mathbb{R}^d$ (due to $\sum \lambda_i(x)x = x$ and $\sum \lambda_i a_i = x$ as the vector of linear coordinate functions)
- Unit simplex:

$$\lambda_0(x) = 1 - \sum_{i=1}^d x_i$$

•
$$\lambda_i(x) = x_i$$
 for $1 \le i \le d$

Polynomial space \mathbb{P}_k

Space of polynomials in x₁...x_d of total degree ≤ k with real coefficients α_{i₁...i_d}:

$$\mathbb{P}_{k} = \left\{ p(x) = \sum_{\substack{0 \le i_{1} \dots i_{d} \le k \\ i_{1} + \dots + i_{d} \le k}} \alpha_{i_{1} \dots i_{d}} x_{1}^{i_{1}} \dots x_{d}^{i_{d}} \right\}$$

Dimension:

$$\dim \mathbb{P}_{k} = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$
$$\dim \mathbb{P}_{1} = d+1$$
$$\dim \mathbb{P}_{2} = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

\mathbb{P}_k simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_k$, such that $s = \dim P_k$
- For 0 ≤ i₀...i_d ≤ k, i₀ + ··· + i_d = k, let the set of nodes be defined by the points a_{i1...id;k} with barycentric coordinates (^{i₀}/_k...^{i_d}/_k). Define Σ by σ_{i1...id;k}(p) = p(a_{i1...id;k}).

\mathbb{P}_1 simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_1$, such that s = d + 1
- ▶ Nodes \equiv vertices
- Basis functions \equiv barycentric coordinates

\mathbb{P}_2 simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- ▶ $P = \mathbb{P}_2$, Nodes \equiv vertices + edge midpoints
- Basis functions:

 $\lambda_i(2\lambda_i - 1), (0 \le i \le d); \quad 4\lambda_i\lambda_j, \quad (0 \le i < j \le d) \quad ("edge bubbles")$

General finite elements

- Simplicial finite elements can be defined on triangulations of polygonal domains. During the course we will stick to this case.
- For vector PDEs, one can define finite elements for vector valued functions
- A curved domain Ω may be approximated by a polygonal domain Ω_h which is then triangulated. During the course, we will ignore this difference.
- ► As we have seen, more general elements are possible: cuboids, but also prismatic elements etc.
- Curved geometries are possible. Isoparametric finite elements use the polynomial space to define a mapping of some polyghedral reference element to an element with curved boundary

Conformal triangulations

Let *T_h* be a subdivision of the polygonal domain Ω ⊂ ℝ^d into non-intersecting compact simplices *K_m*, *m* = 1...*n_e*:

$$\overline{\Omega} = \bigcup_{m=1}^{n_e} K_m$$

Each simplex can be seen as the image of a affine transformation of a reference (e.g. unit) simplex K:

$$K_m = T_m(\widehat{K})$$

• We assume that it is conformal, i.e. if K_m , K_n have a d-1 dimensional intersection $F = K_m \cap K_n$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_n , K_m such that $F = T_m(\widehat{F}) = T_n(\widehat{F})$ and $T_m|_{\widehat{F}} = T_n|_{\widehat{F}}$

Conformal triangulations II

- ▶ d = 1: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex
- ► d = 2: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge

- ► d = 3: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

Global interpolation operator \mathcal{I}_h

- Let $\{K, P_K, \Sigma_K\}_{K \in \mathcal{T}_h}$ be a triangulation of Ω .
- Domain:

$$D({\mathcal I}_h) = \{ v \in (L^1(\Omega)) ext{ such that } orall K \in {\mathcal T}_h, v ert_K \in V(K) \}$$

▶ For all $v \in D(\mathcal{I}_h)$, define $\mathcal{I}_h v$ via

$$\mathcal{I}_h \mathbf{v}|_{\mathcal{K}} = \mathcal{I}_{\mathcal{K}}(\mathbf{v}|_{\mathcal{K}}) = \sum_{i=1}^s \sigma_{\mathcal{K},i}(\mathbf{v}|_{\mathcal{K}}) \theta_{\mathcal{K},i} \ \forall \mathcal{K} \in \mathcal{T}_h,$$

Assuming $\theta_{K,i} = 0$ outside of K, one can write

$$\mathcal{I}_h \mathbf{v} = \sum_{K \in \mathcal{T}_h} \sum_{i=1}^s \sigma_{K,i}(\mathbf{v}|_K) \theta_{K,i},$$

mapping $D(\mathcal{I}_h)$ to the approximation space

$$W_h = \{v_h \in (L^1(\Omega)) \text{ such that } \forall K \in \mathcal{T}_h, v_h|_K \in P_K\}$$

H^1 -Conformal approximation using Lagrangian finite elemenents

• Conformal subspace of W_h with zero jumps at element faces:

$$V_h = \{v_h \in W_h : \forall n, m, K_m \cap K_n \neq 0 \Rightarrow (v_h|_{K_m})_{K_m \cap K_n} = (v_h|_{K_n})_{K_m \cap K_n} \}$$

• Then: $V_h \subset H^1(\Omega)$.

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- For any face F = K₁ ∩ K₂ there are renumberings of the nodes of K₁ and K₂ such that for i = 1...s[∂], a_{K1,i} = a_{K2,i}
- ► Then, v_h|_{K1} and v_h|_{K2} match at the interface K₁ ∩ K₂ if and only if they match at the common nodes

$$v_h|_{K_1}(a_{K_1,i}) = v_h|_{K_2}(a_{K_2,i}) \quad (i = 1 \dots s^{\partial})$$

Global degrees of freedom

• Let
$$\{a_1 \ldots a_N\} = \bigcup_{K \in \mathcal{T}_h} \{a_{K,1} \ldots a_{K,s}\}$$

Degree of freedom map

$$j: \mathcal{T}_h imes \{1 \dots s\} o \{1 \dots N\}$$

 $(K, m) \mapsto j(K, m)$ the global degree of freedom number

▶ Global shape functions $\phi_1, \ldots, \phi_N \in W_h$ defined by

$$\phi_i|_{\mathcal{K}}(a_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

▶ Global degrees of freedom $\gamma_1, \ldots, \gamma_N : V_h \to \mathbb{R}$ defined by

$$\gamma_i(v_h) = v_h(a_i)$$

Lagrange finite element basis

• $\{\phi_1, \ldots, \phi_N\}$ is a basis of V_h , and $\gamma_1 \ldots \gamma_N$ is a basis of $\mathcal{L}(V_h, \mathbb{R})$.

Proof:

- ► { ϕ_1, \ldots, ϕ_N } are linearly independent: if $\sum_{j=1}^N \alpha_j \phi_j = 0$ then evaluation at $a_1 \ldots a_N$ yields that $\alpha_1 \ldots \alpha_N = 0$.
- ▶ Let $v_h \in V_h$. It is single valued in $a_1 \dots a_N$. Let $w_h = \sum_{j=1}^N v_h(a_j)\phi_j$. Then for all $K \in \mathcal{T}_h$, $v_h|_K$ and $w_h|_K$ coincide in the local nodes $a_{K,1} \dots a_{K,2}$, and by unisolvence, $v_h|_K = w_h|_K$.

Finite element approximation space

$$\blacktriangleright P_{c,h}^k = P_h^k = \{ v_h \in \mathcal{C}^0(\bar{\Omega}_h) : \forall K \in \mathcal{T}_h, v_k \circ \mathcal{T}_K \in \mathbb{P}^k \}$$

 'c' for continuity across mesh interfaces. There are also discontinuous FEM spaces which we do not consider here.

d	k	$N = \dim P_h^k$
1	1	N _v
1	2	$N_v + N_{el}$
1	3	$N_v + 2N_{el}$
2	1	N _v
2	2	$N_v + N_{ed}$
2	3	$N_v + 2N_{ed} + N_{el}$
3	1	N _v
3	2	$N_v + N_{ed}$
3	3	$N_v + 2N_{ed} + N_f$

Global Lagrange interpolation operator

۱

Let
$$V_h = P_h^k$$

$$egin{aligned} &\mathcal{I}_h:\mathcal{C}^0(ar{\Omega}_h) o V_h\ &\vee\mapsto \sum_{i=1}^N v(a_i)\phi_i \end{aligned}$$

Lecture 15 Slide 51

Reference finite element

.. _ .

- Let $\{\widehat{P}, \widehat{K}, \widehat{\Sigma}\}$ be a fixed finite element
- Let T_K be some affine transformation and $K = T_K(\widehat{K})$
- There is a linear bijective mapping ψ_K between functions on K and functions on \widehat{K} :

$$\psi_{\mathcal{K}}: \mathcal{V}(\mathcal{K}) o \mathcal{V}(\widehat{\mathcal{K}})$$

 $f \mapsto f \circ \mathcal{T}_{\mathcal{K}}$

$$K = T_{K}(K)$$

$$P_{K} = \{\psi_{K}^{-1}(\widehat{p}); \widehat{p} \in \widehat{P}\},$$

$$\Sigma_{K} = \{\sigma_{K,i}, i = 1 \dots s : \sigma_{K,i}(p) = \widehat{\sigma}_{i}(\psi_{K}(p))\}$$

$$Fhen \{K, P_{K}, \Sigma_{K}\} \text{ is a finite element.}$$

This construction allows to develop theory for a reference element and to lift it later to an arbitrary element. Commutativity of interpolation and reference mapping

 \blacktriangleright \equiv Interpolation and reference mapping are interchangeable

Affine transformation estimates I

- \widehat{K} : reference element
- Let K ∈ T_h. Affine mapping described by matrix J_K and shift vertor b_K:

$$egin{aligned} &\mathcal{T}_{\mathcal{K}}:\widehat{\mathcal{K}}
ightarrow\mathcal{K}\ &\widehat{x}\mapsto\mathcal{J}_{\mathcal{K}}\widehat{x}+b_{\mathcal{K}} \end{aligned}$$

with $J_{\mathcal{K}} \in \mathbb{R}^{d,d}, b_{\mathcal{K}} \in \mathbb{R}^{d}$, $J_{\mathcal{K}}$ nonsingular

- Diameter of K: h_K = max_{x1,x2∈K} ||x1 − x2|| ≡ longest edge if K is triangular
- ρ_K diameter of largest ball that can be inscribed into K

•
$$\sigma_K = \frac{h_K}{\rho_K}$$
: local shape regularity measure $\sigma_K = 2\sqrt{3}$ for equilateral triangle $\sigma_K \to \infty$ if largest angle approaches π .

Affine transformation estimates II

Lemma T:

$$|\det J_{\mathcal{K}}| = \frac{meas(\mathcal{K})}{meas(\widehat{\mathcal{K}})} ||J_{\mathcal{K}}|| \le \frac{h_{\mathcal{K}}}{\rho_{\widehat{\mathcal{K}}}}, ||J_{\mathcal{K}}^{-1}|| \le \frac{h_{\widehat{\mathcal{K}}}}{\rho_{\mathcal{K}}} \Rightarrow ||J_{\mathcal{K}}|| \cdot ||J_{\mathcal{K}}^{-1}|| \le c_{\widehat{\mathcal{K}}} \sigma_{\mathcal{K}}$$

Proof:

►
$$|\det J_{\mathcal{K}}| = \frac{meas(\mathcal{K})}{meas(\mathcal{K})}$$
: basic property of affine mappings

► Further:

$$||J_{\mathcal{K}}|| = \sup_{\hat{x} \neq 0} \frac{||J_{\mathcal{K}}\hat{x}||}{||\hat{x}||} = \frac{1}{\rho_{\hat{K}}} \sup_{||\hat{x}||=\rho_{\hat{K}}} ||J_{\mathcal{K}}\hat{x}||$$

Set $\hat{x} = \hat{x}_1 - \hat{x}_2$ with $\hat{x}_1, \hat{x}_2 \in \widehat{K}$. Then $J_K \hat{x} = T_K \hat{x}_1 - T_K \hat{x}_2$ and one can estimate $||J_K \hat{x}|| \leq h_K$.

▶ For $||J_{K}^{-1}||$ regard the inverse mapping \Box

Estimate of derivatives under affine transformation

• For $w \in H^s(K)$ recall the H^s seminorm $|w|_{s,K}^2 = \sum_{|\beta|=s} ||\partial^{\beta}w||_{L^2(K)}^2$

Lemma D: Let $w \in H^{s}(K)$ and $\widehat{w} = w \circ T_{K}$. There exists a constant c such that

$$\begin{split} |\hat{w}|_{s,\hat{K}} &\leq c ||J_{\mathcal{K}}||^{s} |\det J_{\mathcal{K}}|^{-\frac{1}{2}} |w|_{s,\mathcal{K}} \\ |w|_{s,\mathcal{K}} &\leq c ||J_{\mathcal{K}}^{-1}||^{s} |\det J_{\mathcal{K}}|^{\frac{1}{2}} |\hat{w}|_{s,\hat{\mathcal{K}}} \end{split}$$

Proof: Let $|\alpha| = s$. By affinity and chain rule one obtains

$$||\partial^{\alpha} \hat{w}||_{L^{2}(\hat{K})} \leq c||J_{K}||^{s} \sum_{|\beta|=s} ||\partial^{\beta} w \circ T_{K}||_{L^{2}(K)}$$

Changing variables in the right hand side yields

$$||\partial^{\alpha}\hat{w}||_{L^{2}(\hat{K})} \leq c||J_{K}||^{s}|\det J_{K}|^{-\frac{1}{2}}|w|_{s,K}$$

Summation over α yields the first inequality. Regarding the inverse mapping yields the second estimate. \Box

Local interpolation error estimate I

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume there exists k such that

$$\mathbb{P}_{K} \subset \widehat{P} \subset H^{k+1}(\widehat{K}) \subset V(\widehat{K})$$

and

$$H^{l+1}(\widehat{K}) \subset V(\widehat{K}) \quad ext{for} \quad 0 \leq l \leq k$$

Then there exists c > 0 such that for all $m = 0 \dots l + 1$, $K \in \mathcal{T}_h$, $v \in H^{l+1}(K)$:

$$|\mathbf{v} - \mathcal{I}_{K}^{k}\mathbf{v}|_{m,K} \leq ch_{K}^{l+1-m}\sigma_{K}^{m}|\mathbf{v}|_{l+1,K}.$$

I.e. the the local interpolation error can be estimated through h_K , σ_K and the norm of a higher derivative.

Local interpolation error estimate II

Draft of Proof

• Estimate on reference element \hat{K} using deeper results from functional analysis:

$$|\hat{w} - \mathcal{I}^k_{\hat{K}}\hat{w}|_{m,\hat{K}} \le c|\hat{w}|_{l+1,\hat{K}}$$
 (*)

(From Poincare like inequality, e.g. for $v \in H_0^1(\Omega)$, $c||v||_{L^2} \le ||\nabla v||_{L^2}$: under certain circumstances, we can can estimate the norms of lower derivatives by those of the higher ones)

▶ Derive estimate on *K* from estimate on \hat{K} : Let $v \in H^{l+1}(K)$ and set $\hat{v} = v \circ T_K$. We know that $(\mathcal{I}_K^k v) \circ T_K = \mathcal{I}_{\hat{K}}^k \hat{v}$.

$$\begin{split} |v - \mathcal{I}_{K}^{k} v|_{m,K} &\leq c ||J_{K}^{-1}||^{m} |\det J_{K}|^{\frac{1}{2}} |\hat{v} - \mathcal{I}_{\hat{K}}^{k} \hat{v}|_{m,\hat{K}} \qquad \text{(Lemma E)} \\ &\leq c ||J_{K}^{-1}||^{m} |\det J_{K}|^{\frac{1}{2}} |\hat{v}|_{l+1,\hat{K}} \qquad (*) \\ &\leq c ||J_{K}^{-1}||^{m} ||J_{K}||^{l+1} |v|_{l+1,K} \qquad \text{(Lemma E)} \\ &= c (||J_{K}|| \cdot ||J_{K}^{-1}||)^{m} ||J_{K}||^{l+1-m} |v|_{l+1,K} \\ &\leq c h_{K}^{l+1-m} \sigma_{K}^{m} |v|_{l+1,K} \qquad \text{(Lemma T)} \end{split}$$

Local interpolation: special cases for Lagrange finite elements

General condition

$$\mathbb{P}_{\mathcal{K}} \subset \widehat{P} \subset H^{k+1}(\widehat{\mathcal{K}}) \subset V(\widehat{\mathcal{K}})$$

 $H^{l+1}(\widehat{\mathcal{K}}) \subset V(\widehat{\mathcal{K}}) \quad \text{for} \quad 0 \leq l \leq k$

▶ *k* = 1:

$$\mathbb{P}_{K} \subset \widehat{P} \subset H^{2}(\widehat{K}) \subset V(\widehat{K})$$

 $H^{1}(\widehat{K}) \subset V(\widehat{K})$

►
$$k = 1, l = 1, m = 0$$
: $|v - \mathcal{I}_{K}^{k}v|_{0,K} \le ch_{K}^{2}|v|_{2,K}$
► $k = 1, l = 1, m = 1$: $|v - \mathcal{I}_{K}^{k}v|_{1,K} \le ch_{K}\sigma_{K}|v|_{2,K}$

Shape regularity

- Now we discuss a family of meshes T_h for h → 0. We want to estimate global interpolation errors and see how they possibly diminuish
- ▶ For given T_h , assume that $h = \max_{K \in T_h} h_j$
- > A family of meshes is called *shape regular* if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = \frac{h_K}{\rho_K} \leq \sigma_0$$

- ► In 1D, $\sigma_K = 1$
- ▶ In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Global interpolation error estimate

Theorem Let Ω be polyhedral, and let \mathcal{T}_h be a shape regular family of affine meshes. Then there exists *c* such that for all *h*, $v \in H^{l+1}(\Omega)$,

$$||v - \mathcal{I}_{h}^{k}v||_{L^{2}(\Omega)} + \sum_{m=1}^{l+1} h^{m} \left(\sum_{K \in \mathcal{T}_{h}} |v - \mathcal{I}_{h}^{k}v|_{m,K}^{2} \right)^{\frac{1}{2}} \leq ch^{l+1} |v|_{l+1,\Omega}$$

1

and

$$\lim_{h\to 0} \left(\inf_{v_h \in V_h^k} ||v - v_h||_{L^2(\Omega)} \right) = 0$$

Global interpolation error estimate for Lagrangian finite elements, k = 1

Assume v ∈ H²(Ω), e.g. if problem coefficients are smooth and the domain is convex

$$\begin{split} |v - \mathcal{I}_h^k v||_{0,\Omega} + h|v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch^2 |v|_{2,\Omega} \\ |v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch|v|_{2,\Omega} \\ \lim_{h \to 0} \left(\inf_{v_h \in V_h^k} |v - v_h|_{1,\Omega} \right) &= 0 \end{split}$$

- If v ∈ H²(Ω) cannot be guaranteed, estimates become worse.
 Example: L-shaped domain.
- These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

• Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} \mathsf{f} v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

Then, $\lim_{h\to 0} ||u - u_h||_{1,\Omega} = 0$. If $u \in H^2(\Omega)$ (e.g. on convex domains) then

$$\begin{aligned} ||u - u_h||_{1,\Omega} &\leq ch|u|_{2,\Omega} \\ ||u - u_h||_{0,\Omega} &\leq ch^2|u|_{2,\Omega} \end{aligned}$$

Under certain conditions (convex domain, smooth coefficients) one also has

$$||u - u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

("Aubin-Nitsche-Lemma")

H^2 -Regularity

- $u \in H^2(\Omega)$ may be *not* fulfilled e.g.
 - if Ω has re-entrant corners
 - if on a smooth part of the domain, the boundary condition type changes
 - if problem coefficients (λ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
 - Deterioration of convergence rate
 - Remedy: local refinement of the discretization mesh
 - using a priori information
 - using a posteriori error estimators + automatic refinement of discretizatiom mesh

Higher regularity

- If u ∈ H^s(Ω) for s > 2, convergence order estimates become even better for P^k finite elements of order k > 1.
- Depending on the regularity of the solution the combination of grid adaptation and higher oder ansatz functions may be successful