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The Galerkin method I

I Weak formulations “live” in Hilbert spaces which essentially are
infinite dimensional

I For computer representations we need finite dimensional
approximations

I The Galerkin method and its modifications provide a general scheme
for the derivation of finite dimensional appoximations

I Finite dimensional subspaces of Hilbert spaces are the spans of a set
of basis functions, and are Hilbert spaces as well ⇒ e.g. the
Lax-Milgram lemma is valid there as well
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The Galerkin method II
I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint

bilinear form, and f a linear functional on V . Assume a is coercive
with coercivity constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma
I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)
= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace Vh.
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From the Galerkin method to the matrix equation
I Let φ1 . . . φn be a set of basis functions of Vh.
I Then, we have the representation uh =

∑n
j=1 ujφj

I In order to search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

it is actually sufficient to require

a(uh, φi ) = f (φi ) (i = 1 . . . n)

a
( n∑

j=1
ujφj , φi

)
= f (φi ) (i = 1 . . . n)

n∑

j=1
a(φj , φi )uj = f (φi ) (i = 1 . . . n)

AU = F

with A = (aij), aij = a(φi , φj), F = (fi ), fi = F (φi ), U = (ui ).
I Matrix dimension is n × n. Matrix sparsity ?
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Obtaining a finite dimensional subspace

I Let Ω = (a, b) ⊂ R1

I Let a(u, v) =
∫

Ω λ(x)∇u∇vdx.
I Analysis I provides a finite dimensional subspace: the space of sin/cos

functions up to a certain frequency ⇒ spectral method
I Ansatz functions have global support ⇒ full n × n matrix
I OTOH: rather fast convergence for smooth data
I Generalization to higher dimensions possible
I Big problem in irregular domains: we need the eigenfunction basis of

some operator. . .
I Spectral methods are successful in cases where one has regular

geometry structures and smooth/constant coefficients – e.g.
“Spectral Einstein Code”
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Definition of a Finite Element (Ciarlet)

Triplet {K ,P,Σ} where
I K ⊂ Rd : compact, connected Lipschitz domain with non-empty

interior
I P: finite dimensional vector space of functions p : K → R
I Σ = {σ1 . . . σs} ⊂ L(P,R): set of linear forms defined on P called

local degrees of freedom such that the mapping

ΛΣ : P → Rs

p 7→ (σ1(p) . . . σs(p))

is bijective, i.e. Σ is a basis of L(P,R).
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Local shape functions

I Due to bijectivity of ΛΣ, for any finite element {K ,P,Σ}, there exists
a basis {θ1 . . . θs} ⊂ P such that

σi (θj) = δij (1 ≤ i , j ≤ s)

I Elements of such a basis are called local shape functions
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Unisolvence

I Bijectivity of ΛΣ is equivalent to the condition

∀(α1 . . . αs) ∈ Rs ∃!p ∈ P such that σi (p) = αi (1 ≤ i ≤ s)

i.e. for any given tuple of values a = (α1 . . . αs) there is a unique
polynomial p ∈ P such that ΛΣ(p) = a.

I Equivalent to unisolvence:

{
dim P = |Σ| = s
∀p ∈ P : σi (p) = 0 (i = 1 . . . s) ⇒ p = 0
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Lagrange finite elements

I A finite element {K ,P,Σ} is called Lagrange finite element (or nodal
finite element) if there exist a set of points {a1 . . . as} ⊂ K such that

σi (p) = p(ai ) 1 ≤ i ≤ s

I {a1 . . . as}: nodes of the finite element
I nodal basis: {θ1 . . . θs} ⊂ P such that

θj(ai ) = δij (1 ≤ i , j ≤ s)

Lecture 16 Slide 10



Lecture 15 Slide 31

Local interpolation operator
I Let {K ,P,Σ} be a finite element with shape function bases
{θ1 . . . θs}. Let V (K ) be a normed vector space of functions
v : K → R such that

I P ⊂ V (K)
I The linear forms in Σ can be extended to be defined on V (K)

I local interpolation operator

IK : V (K )→ P

v 7→
s∑

i=1
σi (v)θi

I P is invariant under the action of IK , i.e. ∀p ∈ P, IK (p) = p:
I Let p =

∑s
j=1 αjθj Then,

IK (p) =
s∑

i=1

σi (p)θi =
s∑

i=1

s∑

j=1

αjσi (θj )θi

=
s∑

i=1

s∑

j=1

αjδijθi =
s∑

j=1

αjθj
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Local Lagrange interpolation operator

I Let V (K ) = (C0(K ))

IK : V (K )→ P

v 7→ IK v =
s∑

i=1
v(ai )θi
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Simplices

I Let {a0 . . . ad} ⊂ Rd such that the d vectors a1 − a0 . . . ad − a0 are
linearly independent. Then the convex hull K of a0 . . . ad is called
simplex, and a0 . . . ad are called vertices of the simplex.

I Unit simplex: a0 = (0...0), a1 = (0, 1 . . . 0) . . . ad = (0 . . . 0, 1).

K =
{

x ∈ Rd : xi ≥ 0 (i = 1 . . . d) and
d∑

i=1
xi ≤ 1

}

I A general simplex can be defined as an image of the unit simplex
under some affine transformation

I Fi : face of K opposite to ai

I ni : outward normal to Fi

Lecture 16 Slide 13



Lecture 15 Slide 34

Barycentric coordinates
I Let K be a simplex.
I Functions λi (i = 0 . . . d):

λi : Rd → R

x 7→ λi (x) = 1− (x − ai ) · ni
(aj − ai ) · ni

where aj is any vertex of K situated in Fi .
I For x ∈ K , one has

1− (x − ai ) · ni
(aj − ai ) · ni

= (aj − ai ) · ni − (x − ai ) · ni
(aj − ai ) · ni

= (aj − x) · ni
(aj − ai ) · ni

= dist(x ,Fi )
dist(ai ,Fi )

= dist(x ,Fi )|Fi |/d
dist(ai ,Fi )|Fi |/d

= dist(x ,Fi )|Fi |
|K |

i.e. λi (x) is the ratio of the volume of the simplex Ki (x) made up of
x and the vertices of Fi to the volume of K .
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Barycentric coordinates II

I λi (aj) = δij

I λi (x) = 0 ∀x ∈ Fi

I
∑d

i=0 λi (x) = 1 ∀x ∈ Rd

(just sum up the volumes)
I
∑d

i=0 λi (x)(x − ai ) = 0 ∀x ∈ Rd

(due to
∑
λi (x)x = x and

∑
λiai = x as the vector of linear

coordinate functions)
I Unit simplex:

I λ0(x) = 1−
∑d

i=1 xi
I λi (x) = xi for 1 ≤ i ≤ d
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Polynomial space Pk
I Space of polynomials in x1 . . . xd of total degree ≤ k with real

coefficients αi1...id :

Pk =





p(x) =
∑

0≤i1...id≤k
i1+···+id≤k

αi1...id x i1
1 . . . x id

d





I Dimension:

dimPk =
(

d + k
k

)
=





k + 1, d = 1
1
2 (k + 1)(k + 2), d = 2
1
6 (k + 1)(k + 2)(k + 3), d = 3

dimP1 = d + 1

dimP2 =





3, d = 1
6, d = 2
10, d = 3
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Pk simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = Pk , such that s = dim Pk
I For 0 ≤ i0 . . . id ≤ k , i0 + · · ·+ id = k , let the set of nodes be defined

by the points ai1...id ;k with barycentric coordinates ( i0
k . . .

id
k ).

Define Σ by σi1...id ;k(p) = p(ai1...id ;k).
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P1 simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = P1, such that s = d + 1
I Nodes ≡ vertices
I Basis functions ≡ barycentric coordinates
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P2 simplex finite elements
I K : simplex spanned by a0 . . . ad in Rd

I P = P2, Nodes ≡ vertices + edge midpoints
I Basis functions:

λi (2λi − 1),(0 ≤ i ≤ d); 4λiλj , (0 ≤ i < j ≤ d) (”edge bubbles”)
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General finite elements

I Simplicial finite elements can be defined on triangulations of
polygonal domains. During the course we will stick to this case.

I For vector PDEs, one can define finite elements for vector valued
functions

I A curved domain Ω may be approximated by a polygonal domain Ωh
which is then triangulated. During the course, we will ignore this
difference.

I As we have seen, more general elements are possible: cuboids, but
also prismatic elements etc.

I Curved geometries are possible. Isoparametric finite elements use the
polynomial space to define a mapping of some polyghedral reference
element to an element with curved boundary
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Conformal triangulations

I Let Th be a subdivision of the polygonal domain Ω ⊂ Rd into
non-intersecting compact simplices Km, m = 1 . . . ne :

Ω =
ne⋃

m=1
Km

I Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K̂ :

Km = Tm(K̂ )

I We assume that it is conformal, i.e. if Km, Kn have a d − 1
dimensional intersection F = Km ∩ Kn, then there is a face F̂ of K̂
and renumberings of the vertices of Kn,Km such that
F = Tm(F̂ ) = Tn(F̂ ) and Tm|F̂ = Tn|F̂
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Conformal triangulations II

I d = 1 : Each intersection F = Km ∩ Kn is either empty or a common
vertex

I d = 2 : Each intersection F = Km ∩ Kn is either empty or a common
vertex or a common edge

I d = 3 : Each intersection F = Km ∩ Kn is either empty or a common
vertex or a common edge or a common face

I Delaunay triangulations are conformal
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Global interpolation operator Ih
I Let {K ,PK ,ΣK}K∈Th be a triangulation of Ω.
I Domain:

D(Ih) = {v ∈ (L1(Ω)) such that ∀K ∈ Th, v |K ∈ V (K )}
I For all v ∈ D(Ih), define Ihv via

Ihv |K = IK (v |K ) =
s∑

i=1
σK ,i (v |K )θK ,i ∀K ∈ Th,

Assuming θK ,i = 0 outside of K , one can write

Ihv =
∑

K∈Th

s∑

i=1
σK ,i (v |K )θK ,i ,

mapping D(Ih) to the approximation space

Wh = {vh ∈ (L1(Ω)) such that ∀K ∈ Th, vh|K ∈ PK}
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H1-Conformal approximation using Lagrangian finite
elemenents

I Conformal subspace of Wh with zero jumps at element faces:

Vh = {vh ∈Wh : ∀n,m,Km ∩ Kn 6= 0⇒ (vh|Km )Km∩Kn = (vh|Kn )Km∩Kn}

I Then: Vh ⊂ H1(Ω).
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Zero jump at interfaces with Lagrangian finite elements

I Assume geometrically conformal mesh
I Assume all faces of K̂ have the same number of nodes s∂

I For any face F = K1 ∩ K2 there are renumberings of the nodes of K1
and K2 such that for i = 1 . . . s∂ , aK1,i = aK2,i

I Then, vh|K1 and vh|K2 match at the interface K1 ∩ K2 if and only if
they match at the common nodes

vh|K1 (aK1,i ) = vh|K2 (aK2,i ) (i = 1 . . . s∂)
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Global degrees of freedom
I Let {a1 . . . aN} =

⋃
K∈Th

{aK ,1 . . . aK ,s}
I Degree of freedom map

j : Th × {1 . . . s} → {1 . . .N}
(K ,m) 7→ j(K ,m) the global degree of freedom number

I Global shape functions φ1, . . . , φN ∈Wh defined by

φi |K (aK ,m) =
{
δmn if ∃n ∈ {1 . . . s} : j(K , n) = i
0 otherwise

I Global degrees of freedom γ1, . . . , γN : Vh → R defined by

γi (vh) = vh(ai )
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Lagrange finite element basis

I {φ1, . . . , φN} is a basis of Vh, and γ1 . . . γN is a basis of L(Vh,R).
Proof:

I {φ1, . . . , φN} are linearly independent: if
∑N

j=1 αjφj = 0 then
evaluation at a1 . . . aN yields that α1 . . . αN = 0.

I Let vh ∈ Vh. It is single valued in a1 . . . aN . Let wh =
∑N

j=1 vh(aj)φj .
Then for all K ∈ Th, vh|K and wh|K coincide in the local nodes
aK ,1 . . . aK ,2, and by unisolvence, vh|K = wh|K .
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Finite element approximation space

I Pk
c,h = Pk

h = {vh ∈ C0(Ω̄h) : ∀K ∈ Th, vk ◦ TK ∈ Pk}
I ‘c’ for continuity across mesh interfaces. There are also discontinuous

FEM spaces which we do not consider here.

d k N = dim Pk
h

1 1 Nv
1 2 Nv + Nel
1 3 Nv + 2Nel
2 1 Nv
2 2 Nv + Ned
2 3 Nv + 2Ned + Nel
3 1 Nv
3 2 Nv + Ned
3 3 Nv + 2Ned + Nf
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P1 global shape functions
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P2 global shape functions

Node based Edge based

Lecture 16 Slide 30



Lecture 15 Slide 51

Global Lagrange interpolation operator

Let Vh = Pk
h

Ih : C0(Ω̄h)→ Vh

v 7→
N∑

i=1
v(ai )φi
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Reference finite element

I Let {P̂, K̂ , Σ̂} be a fixed finite element
I Let TK be some affine transformation and K = TK (K̂ )
I There is a linear bijective mapping ψK between functions on K and

functions on K̂ :

ψK : V (K )→ V (K̂ )
f 7→ f ◦ TK

I Let
I K = TK (K̂)
I PK = {ψ−1

K (p̂); p̂ ∈ P̂},
I ΣK = {σK ,i , i = 1 . . . s : σK ,i (p) = σ̂i (ψK (p))}

Then {K ,PK ,ΣK} is a finite element.
I This construction allows to develop theory for a reference element and

to lift it later to an arbitrary element.
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Commutativity of interpolation and reference mapping

I IK̂ ◦ ψK = ψK ◦ IK ,
i.e. the following diagram is commutative:

V (K ) ψK−−−−→ V (K̂ )
yIK

yIK̂

PK
ψK−−−−→ PK̂

I ≡ Interpolation and reference mapping are interchangeable
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Affine transformation estimates I
I K̂ : reference element
I Let K ∈ Th. Affine mapping described by matrix JK and shift vertor

bK :

TK : K̂ → K
x̂ 7→ JK x̂ + bK

with JK ∈ Rd,d , bK ∈ Rd , JK nonsingular
I Diameter of K : hK = maxx1,x2∈K ||x1 − x2||
≡ longest edge if K is triangular

I ρK diameter of largest ball that can be inscribed into K
I σK = hK

ρK
: local shape regularity measure

σK = 2
√

3 for equilateral triangle
σK →∞ if largest angle approaches π.
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Affine transformation estimates II
Lemma T:

I | det JK | = meas(K)
meas(K̂)

I ||JK || ≤ hK
ρK̂

, ||J−1
K || ≤

hK̂
ρK

I ⇒ ||JK || · ||J−1
K || ≤ cK̂σK

Proof:
I | det JK | = meas(K)

meas(K̂)
: basic property of affine mappings

I Further:

||JK || = sup
x̂ 6=0

||JK x̂ ||
||x̂ || = 1

ρK̂
sup
||x̂ ||=ρK̂

||JK x̂ ||

Set x̂ = x̂1 − x̂2 with x̂1, x̂2 ∈ K̂ . Then JK x̂ = TK x̂1 − TK x̂2 and one
can estimate ||JK x̂ || ≤ hK .

I For ||J−1
K || regard the inverse mapping �
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Estimate of derivatives under affine transformation
I For w ∈ Hs(K ) recall the Hs seminorm |w |2s,K =

∑
|β|=s ||∂βw ||2L2(K)

Lemma D: Let w ∈ Hs(K ) and ŵ = w ◦ TK . There exists a constant c
such that

|ŵ |s,K̂ ≤ c||JK ||s | det JK |−
1
2 |w |s,K

|w |s,K ≤ c||J−1
K ||s | det JK |

1
2 |ŵ |s,K̂

Proof: Let |α| = s. By affinity and chain rule one obtains

||∂αŵ ||L2(K̂) ≤ c||JK ||s
∑

|β|=s
||∂βw ◦ TK ||L2(K)

Changing variables in the right hand side yields

||∂αŵ ||L2(K̂) ≤ c||JK ||s | det JK |−
1
2 |w |s,K

Summation over α yields the first inequality. Regarding the inverse
mapping yields the second estimate. �
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Local interpolation error estimate I
Theorem: Let {K̂ , P̂, Σ̂} be a finite element with associated normed
vector space V (K̂ ). Assume there exists k such that

PK ⊂ P̂ ⊂ Hk+1(K̂ ) ⊂ V (K̂ )

and

H l+1(K̂ ) ⊂ V (K̂ ) for 0 ≤ l ≤ k

Then there exists c > 0 such that for all m = 0 . . . l + 1, K ∈ Th,
v ∈ H l+1(K ):

|v − Ik
K v |m,K ≤ chl+1−m

K σm
K |v |l+1,K .

I.e. the the local interpolation error can be estimated through hK , σK and
the norm of a higher derivative.
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Local interpolation error estimate II
Draft of Proof

I Estimate on reference element K̂ using deeper results from functional
analysis:

|ŵ − Ik
K̂ ŵ |m,K̂ ≤ c|ŵ |l+1,K̂ (∗)

(From Poincare like inequality, e.g. for v ∈ H1
0 (Ω), c||v ||L2 ≤ ||∇v ||L2 :

under certain circumstances, we can can estimate the norms of lower
derivatives by those of the higher ones)

I Derive estimate on K from estimate on K̂ : Let v ∈ H l+1(K ) and set
v̂ = v ◦ TK . We know that (Ik

K v) ◦ TK = Ik
K̂ v̂ .

|v − Ik
K v |m,K ≤ c||J−1

K ||m| det JK |
1
2 |v̂ − Ik

K̂ v̂ |m,K̂ (Lemma E)

≤ c||J−1
K ||m| det JK |

1
2 |v̂ |l+1,K̂ (∗)

≤ c||J−1
K ||m||JK ||l+1|v |l+1,K (Lemma E)

= c(||JK || · ||J−1
K ||)m||JK ||l+1−m|v |l+1,K

≤ chl+1−m
K σm

K |v |l+1,K (Lemma T)
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Local interpolation: special cases for Lagrange finite
elements

I General condition

PK ⊂ P̂ ⊂ Hk+1(K̂ ) ⊂ V (K̂ )
H l+1(K̂ ) ⊂ V (K̂ ) for 0 ≤ l ≤ k

I k = 1:

PK ⊂ P̂ ⊂ H2(K̂ ) ⊂ V (K̂ )
H1(K̂ ) ⊂ V (K̂ )

I k = 1, l = 1,m = 0: |v − Ik
K v |0,K ≤ ch2

K |v |2,K
I k = 1, l = 1,m = 1: |v − Ik

K v |1,K ≤ chKσK |v |2,K
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Shape regularity

I Now we discuss a family of meshes Th for h→ 0. We want to
estimate global interpolation errors and see how they possibly
diminuish

I For given Th, assume that h = maxK∈Th hj

I A family of meshes is called shape regular if

∀h,∀K ∈ Th, σK = hK
ρK
≤ σ0

I In 1D, σK = 1
I In 2D, σK ≤ 2

sin θK
where θK is the smallest angle
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Global interpolation error estimate

Theorem Let Ω be polyhedral, and let Th be a shape regular family of
affine meshes. Then there exists c such that for all h, v ∈ H l+1(Ω),

||v − Ik
h v ||L2(Ω) +

l+1∑

m=1
hm

(∑

K∈Th

|v − Ik
h v |2m,K

) 1
2

≤ chl+1|v |l+1,Ω

and

lim
h→0

(
inf

vh∈V k
h

||v − vh||L2(Ω)

)
= 0



Lecture 16 Slide 42

Global interpolation error estimate for Lagrangian finite
elements, k = 1

I Assume v ∈ H2(Ω), e.g. if problem coefficients are smooth and the
domain is convex

||v − Ik
h v ||0,Ω + h|v − Ik

h v |1,Ω ≤ ch2|v |2,Ω
|v − Ik

h v |1,Ω ≤ ch|v |2,Ω

lim
h→0

(
inf

vh∈V k
h

|v − vh|1,Ω
)

= 0

I If v ∈ H2(Ω) cannot be guaranteed, estimates become worse.
Example: L-shaped domain.

I These results immediately can be applied in Cea’s lemma.
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Error estimates for homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) such that

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

Then, limh→0 ||u − uh||1,Ω = 0. If u ∈ H2(Ω) (e.g. on convex domains)
then

||u − uh||1,Ω ≤ ch|u|2,Ω
||u − uh||0,Ω ≤ ch2|u|2,Ω

Under certain conditions (convex domain, smooth coefficients) one also has

||u − uh||0,Ω ≤ ch|u|1,Ω

(“Aubin-Nitsche-Lemma”)
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H2-Regularity

I u ∈ H2(Ω) may be not fulfilled e.g.
I if Ω has re-entrant corners
I if on a smooth part of the domain, the boundary condition type

changes
I if problem coefficients (λ) are discontinuos

I Situations differ as well between two and three space dimensions
I Delicate theory, ongoing research in functional analysis
I Consequence for simuations

I Deterioration of convergence rate
I Remedy: local refinement of the discretization mesh

I using a priori information
I using a posteriori error estimators + automatic refinement of

discretizatiom mesh
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Higher regularity

I If u ∈ Hs(Ω) for s > 2, convergence order estimates become even
better for Pk finite elements of order k > 1.

I Depending on the regularity of the solution the combination of grid
adaptation and higher oder ansatz functions may be successful


