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The Galerkin method |

» Weak formulations “live” in Hilbert spaces which essentially are
infinite dimensional

» For computer representations we need finite dimensional
approximations

» The Galerkin method and its modifications provide a general scheme
for the derivation of finite dimensional appoximations

» Finite dimensional subspaces of Hilbert spaces are the spans of a set
of basis functions, and are Hilbert spaces as well = e.g. the
Lax-Milgram lemma is valid there as well




The Galerkin method I

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive
with coercivity constant «, and continuity constant +.

» Continuous problem: search u € V such that
a(u,v)=f(v)V¥veV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search u, € V), such that

a(u;” Vh) = f(v;,) Yvhp € Vy

By Lax-Milgram, this problem has a unique solution as well.




Céa's lemma

» What is the connection between u and u, ?

> Let v, € V), be arbitrary. Then

allu— up|? < a(u — up, u— up)  (Coercivity)

a(u— up,u—vp) + a(u — up, vy — up)
= a(u — up,u—vy) (Galerkin Orthogonality)
< Allu—up|| - ||lu — va|| (Boundedness)

> As a result

o,
— < — inf -
= upll < 2 inf 1w = v

» Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace V.




From the Galerkin method to the matrix equation

> Let ¢1...¢, be a set of basis functions of V.
» Then, we have the representation u, = Zf:1 ujp;
» In order to search u, € V), such that

a(uh, Vh) = f(vh) Yvp € Vy

it is actually sufficient to require

a(up, di) = (i) (i=1...n)

a (Z uj¢jv¢i> =f(¢))(i=1...n)

> a(¢, ¢y = £(¢7) (i=1...n)

Jj=1

AU=F

Wlth A = (a,-j), a,-j = a(¢,-,gbj), F = (ﬁ), ﬁ = F(¢,), U = (U,').
» Matrix dimension is n x n. Matrix sparsity 7




Obtaining a finite dimensional subspace

> Let Q= (a,b) CR!
> Let a(u,v) = [ A\(x)VuVvdx.

» Analysis | provides a finite dimensional subspace: the space of sin/cos
functions up to a certain frequency = spectral method

» Ansatz functions have global support = full n x n matrix
» OTOH: rather fast convergence for smooth data
» Generalization to higher dimensions possible

» Big problem in irregular domains: we need the eigenfunction basis of
some operator. . .

> Spectral methods are successful in cases where one has regular
geometry structures and smooth/constant coefficients — e.g.
“Spectral Einstein Code”




Definition of a Finite Element (Ciarlet)

Triplet {K, P, X} where

» K C RY: compact, connected Lipschitz domain with non-empty
interior

» P: finite dimensional vector space of functions p: K — R

> Y ={01...0s} C L(P,R): set of linear forms defined on P called
local degrees of freedom such that the mapping

/\z P> TR°
p = (91(p) .. os(p))
is bijective, i.e. X is a basis of L(P,R).




Local shape functions

» Due to bijectivity of Ay, for any finite element {K, P, X}, there exists
a basis {67 ...0s} C P such that

O','(ej) = 6’] (1 S i,j S S)

» Elements of such a basis are called local shape functions




Unisolvence

» Bijectivity of Ay is equivalent to the condition

V(o ...as) € R®lp € Psuch thatoi(p) =a; (1 <i<5s)

i.e. for any given tuple of values a = (v ... as) there is a unique
polynomial p € P such that As(p) = a.
» Equivalent to unisolvence:

dmP=|X|=s
VpeP: oi(p)=0(i=1...s) = p=0




Lagrange finite elements

> A finite element {K, P, X} is called Lagrange finite element (or nodal
finite element) if there exist a set of points {a;...as} C K such that

oilp)=p(a;) 1<i<s

» {a1...as}: nodes of the finite element
» nodal basis: {0;...6s} C P such that

Gj(a,-) = (;,J (1 S I,j S S)




Local interpolation operator
> Let {K, P,X} be a finite element with shape function bases
{61 ...6s}. Let V(K) be a normed vector space of functions
v : K — R such that
» PC V(K)
> The linear forms in X can be extended to be defined on V(K)
» local interpolation operator

k:V(K)— P
Vi ZO’,’(V)Q

» P is invariant under the action of Zg, i.e. Vp € P,Zk(p) = p:
> Let p= ijl a;jf; Then,

s

Iu(p) = Y oi(P)0i = Y > ajoi(0)0

i=1 i=1 j=1

—ZZaJ(SUG 72041 )i

i=1 j=1




Local Lagrange interpolation operator

> Let V(K) = (C°(K))

Ix: V(K) > P

vV = /KV = Z v(a,-)t9,-

i=1




Simplices

v

Let {ap...aq4} C R? such that the d vectors a; — ag ... aq — ag are
linearly independent. Then the convex hull K of ag... ay is called
simplex, and ag . .. ay are called vertices of the simplex.

Unit simplex: ap = (0...0),a; = (0,1...0)...a;=(0...0,1).

v

d
K—{xe]Rd:x,-ZO(i—l...d)and Zx,-g1}
i=1

> A general simplex can be defined as an image of the unit simplex
under some affine transformation

» F;: face of K opposite to a;

» n;: outward normal to F;




Barycentric coordinates
> Let K be a simplex.
» Functions \; (i =0...d):
A:RI SR
X (x) =1 Xz
(aj —ai) - i

where a; is any vertex of K situated in F;.
» For x € K, one has
(x—a)-n;  (a—a)-n— (xfa) n;
1— =
(aj —ai) - i (aj—ai)-n
(g =x)-m; dlst( F)
~(aj—a)-n; dist(a;, F)
_ dist(x, F)|Fi|/d
~ dist(a;, F)|Fi|/d
 dist(x, F)|Fi
K|

i.e. A\j(x) is the ratio of the volume of the simplex K;(x) made up of

x and the vertices of F; to the volume of K.




Barycentric coordinates |l

> Ai(aj) = 0y

» \i(x)=0Vx € F;

> Z,io Ai(x) =1Vx € RY
(just sum up the volumes)

> S N(X)(x — ai) = 0 Vx € RY
(due to > \i(x)x = x and Y A\;a; = x as the vector of linear
coordinate functions)

» Unit simplex:

> do(x)=1-— 27:1 Xi
» Ai(x)=x for1 <i<d




Polynomial space Py
» Space of polynomials in xy ...xy of total degree < k with real
coefficients vy, i,

i i

Py =< p(x) = E Qi igX) - Xy
0<iy...ig<k
it tig <k

» Dimension:

d K k41,
dimIPk:( B ): 2(k+1)(k +2),
F(k+1)(k+2)(k +3),
dimP; =d+1
3, d
dmP, =4¢6, d
10, d

Qo Q
I
w N =

1
2
3




P, simplex finite elements

» K: simplex spanned by ap...aq in R?

» P =Py, such that s = dim P;

» For0<ig...ig <k, ig+---+iqg = k, let the set of nodes be defined
by the points a;, . j,.x with barycentric coordinates (’f e ’f)
Define & by O-i1~~<id;k(p) = p(ahmid;k)'

P, Py Py




[P; simplex finite elements

K: simplex spanned by ag...aq in RY

P =P, suchthat s=d +1

Nodes = vertices

Basis functions = barycentric coordinates
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P, simplex finite elements
> K: simplex spanned by ag...aq in R?
» P =P,, Nodes = vertices + edge midpoints
» Basis functions:

)\,'(2)\,' — 1),(0 <i< d), 4)\,’)\], (0 <i <j < d)

("edge bubbles”)




General finite elements

» Simplicial finite elements can be defined on triangulations of
polygonal domains. During the course we will stick to this case.

» For vector PDEs, one can define finite elements for vector valued
functions

> A curved domain 2 may be approximated by a polygonal domain €2
which is then triangulated. During the course, we will ignore this
difference.

» As we have seen, more general elements are possible: cuboids, but
also prismatic elements etc.

» Curved geometries are possible. Isoparametric finite elements use the
polynomial space to define a mapping of some polyghedral reference
element to an element with curved boundary




Conformal triangulations

> Let 7, be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,,, m=1...n,

» Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K:

Km = Tm(K)

» We assume that it is conformal, i.e. if K,, K, havea d —1
dimensional intersection F = K,, N K,,, then there is a face F of K
and renuTbenngs gf the vertices of K,,, K, such that
F=Tn(F)=T,(F) and Tm|? = T,,|?




Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common
vertex

» d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

» d =3 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge or a common face

» Delaunay triangulations are conformal




Global interpolation operator Z,
> Let {K, Px,Xk}keT, be a triangulation of Q.
» Domain:

D(Zy) = {v € (L*(Q)) such that VK € Ty, v|x € V(K)}
» For all v € D(Zy), define Zyv via

Ihvik = Ik(vlk) = ZUK,,'(V\K)QK,; VK € T,
i—1

Assuming 6k ; = 0 outside of K, one can write

S
Thv = Z ZJKJ(V|K)9K7I»

KeTy, i=1

mapping D(Z) to the approximation space

Wi = {vi € (L'(Q)) such that YK € T, va|x € Pk}




H*'-Conformal approximation using Lagrangian finite
elemenents

» Conformal subspace of W}, with zero jumps at element faces:

Vi, = {viy € Wy, : ¥Yn,m, Kpy N Ky # 0 = (Vilk,, ) knk, = (Valk, ) koK, |

» Then: V, C HY{(Q).




Zero jump at interfaces with Lagrangian finite elements

> Assume geometrically conformal mesh

» Assume all faces of K have the same number of nodes s?

» For any face F = K1 N K5 there are renumberings of the nodes of Kj
and K, such that for i =1...s9, aK,,i = aK,i

» Then, vp|k, and vp|k, match at the interface K1 N Ky if and only if
they match at the common nodes

valki (aKi) = vhlio(ak,) (i=1...5°)




Global degrees of freedom

> Let {31 c. aN} = U {2K71 c. 2K75}
KETh
> Degree of freedom map

JiThx{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number

» Global shape functions ¢1,...,¢n € W), defined by

Omn if3ne{l...s}:j(K,n)=1i
0 otherwise

oilk(ak,m) = {

> Global degrees of freedom ~1,...,vy : Vi, — R defined by

i(vh) = va(a;)




Lagrange finite element basis

> {¢1,...,Pn} is a basis of Vj, and 41 ...y is a basis of L(V}, R).
Proof:

> {¢1,...,pn} are linearly independent: if ZJN:1 aj¢; = 0 then
evaluation at a; ... apy yields that a; ...ay = 0.

> Let v, € V. It is single valued in a;...ay. Let wy = ZJNZI vh(aj)o;.

Then for all K € Th, valk and wy|k coincide in the local nodes
ak,1-..akz2, and by unisolvence, vh|k = wh|k.




Finite element approximation space

> 'Dé(,h = P,I; = {Vh S CO(Qh) VK € Tpyveo Tk € Pk}

» ‘c’ for continuity across mesh interfaces. There are also discontinuous
FEM spaces which we do not consider here.

d k N=dimP

1 1 N,

1 2 N, +Ngy

1 3 N,+2Ny

2 1 N,

2 2 N, + Ney

2 3 Nv + 2Ned + Ne/
3 1 N,

3 2 N,+ Ney

3 3 N, +2Ney + Nf




P! global shape functions
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P? global shape functions

N

Node based Edge based
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Global Lagrange interpolation operator

Let V, = Pk

Ih : CO(Qh) — Vh

N
vV — Z V(B,’)(ﬁ,’
i=1




Reference finite element

> Let {P,K,%} be a fixed finite element

> Let Tk be some affine transformation and K = Tk (K)

» There is a linear bijective mapping 1k between functions on K and
functions on K:

~

Yk V(K) = V(K)

f—=fo Tk
> Let N
» K = Tx(K)
» Pk ={¢x'(p):p € P}, R
» Yk ={oki,i=1...s:0ki(p) = oi(vk(p))}

Then {K, Px,Xk} is a finite element.
» This construction allows to develop theory for a reference element and
to lift it later to an arbitrary element.



Commutativity of interpolation and reference mapping

> If( O'(/)K = ’l/)K OIK,
i.e. the following diagram is commutative:

V(K) —2 v(K)

|2« 2

Pc —2 P

» = Interpolation and reference mapping are interchangeable



Affine transformation estimates |

» K: reference element

» Let K € Tj,. Affine mapping described by matrix Jx and shift vertor
bKZ

Te:K— K
X = kX + bk

with Jx € R%9 by € RY, Ji nonsingular

» Diameter of K: hx = maxy, ek ||X1 — x2|]
= longest edge if K is triangular

> pk diameter of largest ball that can be inscribed into K

> oK = Z—i: local shape regularity measure

ok = 24/3 for equilateral triangle
ok — oo if largest angle approaches 7.



Affine transformation estimates Il

Lemma T:
> |detJK| = %ﬁg
_ hy
> [1Jkll < B, 1t < e

> = [kl IR < cgowe

Proof:
> |det J| = %(%;: basic property of affine mappings
» Further:

k%l 1 .
||JK||:§UP ||A|| :7’\ sup HJKXH
0 |1% K 11%11=px

Set X = X1 — % with X¢,% € K. Then JxXx = TkXy — TkX> and one
can estimate ||JxX|| < hk.

> For ||J,!|| regard the inverse mapping O



Estimate of derivatives under affine transformation

> For w € H*(K) recall the H* seminorm |w|3 = 37 5 1107 w|[2:

Lemma D: Let w € H°(K) and w = w o Tk. There exists a constant ¢
such that

N 1
Wl g < cll k|| det Ji |~ 2w

s,K

- 1.
[wlsi < cllJicH[*] det Jic |2 4
Proof: Let |a| = s. By affinity and chain rule one obtains

0%l 2y < clliell® 32 110%w o Tl luague
|Bl=s

Changing variables in the right hand side yields
10| 2y < €l ][] det Jic| =% wls i

Summation over « yields the first inequality. Regarding the inverse
mapping yields the second estimate. [



Local interpolation error estimate |

Theorem: Let {R, P, f} be a finite element with associated normed
vector space V(K). Assume there exists k such that

Px C P c H*1(K) c V(K)
and

HFY(K) c V(K) for 0<I<k

Then there exists ¢ > 0 such that forall m=0.../+1, K € T,
v e HHY(K):

|v —I,’Qv|m7K < ch?l_maﬂ V]i41,k-

l.e. the the local interpolation error can be estimated through hx, ok and
the norm of a higher derivative.



Local interpolation error estimate |l
Draft of Proof

» Estimate on reference element K using deeper results from functional
analysis:

W — Txil, g < clW]y g (%)

(From Poincare like inequality, e.g. for v € H3(Q), c||v||z < ||V V]|2:
under certain circumstances, we can can estimate the norms of lower
derivatives by those of the higher ones)

» Derive estimate on K from estimate on K: Let v € H"1(K) and set
¥ = vo Tk. We know that (ZXv) o Tk :Iﬁ\?.

|V = Tfv]mk < cl[Jt||™] det Jx| 3]0 — ZE 0], 4 (Lemma E)
_ ERIN

< cf[Jic M| det Jx| (914 & (+)

< el [ Mk Vi (Lemma E)

([ kel [ D™ 12 V]

Cl Ok |V|I+1 K emma
R Mo v, L T

IN



Local interpolation: special cases for Lagrange finite
elements

» General condition

» k=1,1=1,m=0: |v—Zkv|ok < ch¥|v|ak

> k= 1,/2 1,m =1: |V*I;<<V|17K < ChKO'K|V‘2,K



Shape regularity

» Now we discuss a family of meshes 7, for h — 0. We want to
estimate global interpolation errors and see how they possibly
diminuish

» For given Tj, assume that h = maxkeT; hj

A family of meshes is called shape regular if

v

h
VhVK € Th,ox = — < a9
PK
» In1D, ok =1

2 .
> In 2D, ok < S where O is the smallest angle




Global interpolation error estimate

Theorem Let Q2 be polyhedral, and let 7, be a shape regular family of
affine meshes. Then there exists ¢ such that for all h, v € H'*1(Q),

[N

KeTh

I+1
Iv = Zivllea + 3247 (Z v—Tk, ) < ch*|vlii1a
and

lim ( inf ||v—vh||,_z(9)> 0

h—0



Global interpolation error estimate for Lagrangian finite
elements, kK =1

» Assume v € H?(Q), e.g. if problem coefficients are smooth and the
domain is convex

lv — Z¥vlloa + hlv — Zfviia < ch’|v]zq

lv—Tivlia < chlvla
lim inf [v—wil10] =0
h—0 \ vye vy

> If v € H?(Q) cannot be guaranteed, estimates become worse.
Example: L-shaped domain.

» These results immediately can be applied in Cea’s lemma.



Error estimates for homogeneous Dirichlet problem

» Search u € H3(Q) such that

/Wqudx:/fvdxvve H3 ()
Q Q

Then, limy_0 ||u — uh|l1.0 = 0. If u € H*(Q) (e.g. on convex domains)
then

[|u— unll10 < chlula

[lu = |

0.0 < ch?lulaq

Under certain conditions (convex domain, smooth coefficients) one also has

[lu = unllo,0 < chlulr0

(“Aubin-Nitsche-Lemma")



H?-Regularity

» u € H?(2) may be not fulfilled e.g.
> if Q has re-entrant corners
> if on a smooth part of the domain, the boundary condition type
changes
> if problem coefficients (\) are discontinuos
» Situations differ as well between two and three space dimensions
» Delicate theory, ongoing research in functional analysis
» Consequence for simuations

> Deterioration of convergence rate
> Remedy: local refinement of the discretization mesh
> using a priori information
> using a posteriori error estimators + automatic refinement of
discretizatiom mesh



Higher regularity

> If ue H°(Q) for s > 2, convergence order estimates become even
better for Pk finite elements of order k > 1.

» Depending on the regularity of the solution the combination of grid
adaptation and higher oder ansatz functions may be successful



