Scientific Computing WS 2018/2019

Lecture 15

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Problems with "strong formulation"

Writing the PDE with divergence and gradient assumes smoothness of coefficients and at least second derivatives for the solution.

- δ may not be continuous - what is then $\nabla \cdot(\delta \nabla u)$?
- Approximation of solution u e.g. by piecewise linear functions what does ∇u mean ?
- Spaces of twice, and even once continuously differentiable functions is not well suited:
- Favorable approximation functions (e.g. piecewise linear ones) are not contained
- Though they can be equipped with norms (\Rightarrow Banach spaces) they have no scalar product \Rightarrow no Hilbert spaces
- Not complete: Cauchy sequences of functions may not converge to elements in these spaces

Cauchy sequences of functions

- Let Ω be a Lipschitz domain, let V be a metric space of functions $f: \Omega \rightarrow \mathbb{R}$
- Regard sequences of functions $f_{n}=\left\{f_{n}\right\}_{n=1}^{\infty} \subset V$
- A Cauchy sequence is a sequence f_{n} of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$
\forall \varepsilon>0 \exists n_{0} \in \mathbb{N}: \forall m, n>n_{0},\left\|f_{n}-f_{m}\right\|<\varepsilon
$$

- All convergent sequences of functions are Cauchy sequences
- A metric space V is complete if all Cauchy sequences f_{n} of its elements have a limit $f=\lim _{n \rightarrow \infty} f_{n} \in V$ within this space

Completion of a metric space

- Let V be a metric space. Its completion is the space \bar{V} consisting of all elements of V and all possible limits of Cauchy sequences of elements of V.
- This procedure allows to carry over definitions which are applicable only to elements of V to more general ones
- Example: step function

$$
f_{\epsilon}(x)=\left\{\begin{array}{ll}
1, & x \geq \epsilon \\
-\left(\frac{x-\epsilon}{\epsilon}\right)^{2}+1, & 0 \leq x<\epsilon \\
\left(\frac{x+\epsilon}{\epsilon}\right)^{2}-1, & -\epsilon \leq x<0 \\
-1, & x<-\epsilon
\end{array} \quad \stackrel{\epsilon \rightarrow 0}{\longrightarrow} f(x)= \begin{cases}1, & x \geq 0 \\
-1, & \text { else }\end{cases}\right.
$$

Riemann integral \rightarrow Lebesgue integral

- Let Ω be a Lipschitz domain, let $C_{c}(\Omega)$ be the set of continuous functions $f: \Omega \rightarrow \mathbb{R}$ with compact support. (\Rightarrow they vanish on $\partial \Omega$)
- For these functions, the Riemann integral $\int_{\Omega} f(x) d \mathbf{x}$ is well defined, and $\|f\|_{L^{1}}:=\int_{\Omega}|f(x)| d \mathbf{x}$ provides a norm, and induces a metric.
- Let $L^{1}(\Omega)$ be the completion of $C_{c}(\Omega)$ with respect to the metric defined by the norm $\|\cdot\|_{L^{1}}$. That means that $L^{1}(\Omega)$ consists of all elements of $C_{c}(\Omega)$, and of all limites of Cauchy sequences of elements of $C_{c}(\Omega)$. Such functions are called measurable.
- For any measurable $f=\lim _{n \rightarrow \infty} f_{n} \in L^{1}(\Omega)$ with $f_{n} \in C_{c}(\Omega)$, define the Lebesque integral

$$
\int_{\Omega} f(x) d \mathbf{x}:=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) d \mathbf{x}
$$

as the limit of a sequence of Riemann integrals of continuous functions

Examples for Lebesgue integrable (measurable) functions

- Bounded functions which are continuous except in a finite number of points
- Step functions
- Equality of L^{1} functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere".
- In particular, L^{1} functions whose values differ in a finite number of points are equal almost everywhere.

Spaces of integrable functions

- For $1 \leq p \leq \infty$, let $L^{p}(\Omega)$ be the space of measureable functions such that

$$
\int_{\Omega}|f(x)|^{p} d \mathbf{x}<\infty
$$

equipped with the norm

$$
\|f\|_{p}=\left(\int_{\Omega}|f(x)|^{p} d \mathbf{x}\right)^{\frac{1}{p}}
$$

- These spaces are Banach spaces, i.e. complete, normed vector spaces.
- The space $L^{2}(\Omega)$ is a Hilbert space, i.e. a Banach space equipped with a scalar product (\cdot, \cdot) whose norm is induced by that scalar product, i.e. $\|u\|=\sqrt{(u, u)}$. The scalar product in L^{2} is

$$
(f, g)=\int_{\Omega} f(x) g(x) d \mathbf{x}
$$

Green's theorem for smooth functions

Theorem Let $u, v \in C^{1}(\bar{\Omega})$ (continuously differentiable). Then for $\mathbf{n}=\left(n_{1} \ldots n_{d}\right)$ being the outward normal to Ω,

$$
\int_{\Omega} u \partial_{i} v d \mathbf{x}=\int_{\partial \Omega} u v n_{i} d s-\int_{\Omega} v \partial_{i} u d \mathbf{x}
$$

Corollaries

- Let $\mathbf{u}=\left(u_{1} \ldots u_{d}\right)$. Then

$$
\begin{aligned}
\int_{\Omega}\left(\sum_{i=1}^{d} u_{i} \partial_{i} v\right) d \mathbf{x} & =\int_{\partial \Omega} v \sum_{i=1}^{d}\left(u_{i} n_{i}\right) d s-\int_{\Omega} v \sum_{i=1}^{d}\left(\partial_{i} u_{i}\right) d \mathbf{x} \\
\int_{\Omega} \mathbf{u} \cdot \nabla v d \mathbf{x} & =\int_{\partial \Omega} v \mathbf{u} \cdot \mathbf{n} d s-\int_{\Omega} v \nabla \cdot \mathbf{u} d \mathbf{x}
\end{aligned}
$$

- If $v=0$ on $\partial \Omega$:

$$
\begin{aligned}
\int_{\Omega} u \partial_{i} v d \mathbf{x} & =-\int_{\Omega} v \partial_{i} u d \mathbf{x} \\
\int_{\Omega} \mathbf{u} \cdot \nabla v d \mathbf{x} & =-\int_{\Omega} v \nabla \cdot \mathbf{u} d \mathbf{x}
\end{aligned}
$$

Weak derivative

- Let $L_{l o c}^{1}(\Omega)$ be the set of functions which are Lebesgue integrable on every compact subset $K \subset \Omega$. Let $C_{0}^{\infty}(\Omega)$ be the set of functions infinitely differentiable with zero values on the boundary.
- For $u \in L_{l o c}^{1}(\Omega)$ we define $\partial_{i} u$ by

$$
\int_{\Omega} v \partial_{i} u d \mathrm{x}=-\int_{\Omega} u \partial_{i} v d \mathrm{x} \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

and $\partial^{\alpha} u$ by

$$
\int_{\Omega} v \partial^{\alpha} u d \mathbf{x}=(-1)^{|\alpha|} \int_{\Omega} u \partial_{i} v d \mathbf{x} \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

if these integrals exist.

- For smooth functions, weak derivatives coincide with with the usual derivative

Sobolev spaces

- For $k \geq 0$ and $1 \leq p<\infty$, the Sobolev space $W^{k, p}(\Omega)$ is the space functions where all up to the k-th derivatives are in L^{p} :

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega): \partial^{\alpha} u \in L^{p}(\Omega) \forall|\alpha| \leq k\right\}
$$

with then norm

$$
\|u\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

- Alternatively, they can be defined as the completion of C^{∞} in the norm $\|u\|_{W^{k, p}(\Omega)}$
- $W_{0}^{k, p}(\Omega)$ is the completion of C_{0}^{∞} in the norm $\|u\|_{W^{k, p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

Sobolev spaces of square integrable functions

- $H^{k}(\Omega)=W^{k, 2}(\Omega)$ with the scalar product

$$
(u, v)_{H^{k}(\Omega)}=\sum_{|\alpha| \leq k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v d \mathbf{x}
$$

is a Hilbert space.

- $H_{0}^{k}(\Omega)=W_{0}^{k, 2}(\Omega)$ with the scalar product

$$
(u, v)_{H_{0}^{k}(\Omega)}=\sum_{|\alpha|=k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v d \mathbf{x}
$$

is a Hilbert space as well.

- For this course the most important:
- $L^{2}(\Omega)$, scalar product $(u, v)_{L^{2}(\Omega)}=(u, v)_{0, \Omega}=\int_{\Omega} u v d \mathbf{x}$
- $H^{1}(\Omega)$, scalar product $(u, v)_{H^{1}(\Omega)}=(u, v)_{1, \Omega}=\int_{\Omega}(u v+\nabla u \cdot \nabla v) d \mathbf{x}$
- $H_{0}^{1}(\Omega)$, scalar product $(u, v)_{H_{0}^{1}(\Omega)}=\int_{\Omega}(\nabla u \cdot \nabla v) d \mathbf{x}$
- Inequalities:

$$
\begin{array}{ll}
|(u, v)|^{2} \leq(u, u)(v, v) & \text { Cauchy-Schwarz } \\
\|u+v\| \leq\|u\|+\|v\| & \text { Triangle inequality }
\end{array}
$$

A trace theorem

The notion of function values on the boundary initially is only well defined for continouos functions. So we need an extension of this notion to functions from Sobolev spaces.

Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a bounded linear mapping

$$
\operatorname{tr}: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)
$$

such that
(i) $\exists c>0$ such that $\|\operatorname{tr} u\|_{0, \partial \Omega} \leq c\|u\|_{1, \Omega}$
(ii) $\forall u \in C^{1}(\bar{\Omega}), \operatorname{tr} u=\left.u\right|_{\partial \Omega}$

Derivation of weak formulation

- Sobolev space theory provides a convenient framework to formulate existence, uniqueness and approximations of solutions of PDEs.
- Stationary heat conduction equation with homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u(x) & =f(x) \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function $v \in C_{0}^{\infty}(\Omega)$ and apply Green's theorem using $v=0$ on $\partial \Omega$

$$
\begin{aligned}
-\int_{\Omega}(\nabla \cdot \lambda \nabla u) v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x} \\
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x}
\end{aligned}
$$

Weak formulation of homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ (here, $\operatorname{tr} u=0$) such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x} \forall v \in H_{0}^{1}(\Omega)
$$

- Then,

$$
a(u, v):=\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}
$$

is a self-adjoint bilinear form defined on the Hilbert space $H_{0}^{1}(\Omega)$.

- It is bounded due to Cauchy-Schwarz:

$$
|a(u, v)|=|\lambda| \cdot\left|\int_{\Omega} \nabla u \nabla v d \mathbf{x}\right| \leq\|u\|_{H_{0}^{1}(\Omega)} \cdot\|v\|_{H_{0}^{1}(\Omega)}
$$

- $f(v)=\int_{\Omega} f v d \mathbf{x}$ is a linear functional on $H_{0}^{1}(\Omega)$. For Hilbert spaces V the dual space V^{\prime} (the space of linear functionals) can be identified with the space itself.

The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$
\exists \alpha>0: \forall u \in V, a(u, u) \geq \alpha\|u\|_{V}^{2}
$$

Then the problem: find $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

admits one and only one solution with an a priori estimate

$$
\|u\|_{v} \leq \frac{1}{\alpha}\|f\|_{v^{\prime}}
$$

Coercivity of weak formulation

Theorem: Assume $\lambda>0$. Then the weak formulation of the heat conduction problem: search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x} \forall v \in H_{0}^{1}(\Omega)
$$

has an unique solution.
Proof: $a(u, v)$ is cocercive:

$$
a(u, v)=\int_{\Omega} \lambda \nabla u \nabla u d \mathbf{x}=\lambda\|u\|_{H_{0}^{1}(\Omega)}^{2}
$$

Weak formulation of inhomogeneous Dirichlet problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

- If g is smooth enough, there exists a lifting $u_{g} \in H^{1}(\Omega)$ such that $\left.u_{g}\right|_{\partial \Omega}=g$. Then, we can re-formulate:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla\left(u-u_{g}\right) & =f+\nabla \cdot \lambda \nabla u_{g} \text { in } \Omega \\
u-u_{g} & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \\
\int_{\Omega} \lambda \nabla \phi \nabla v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x}+\int_{\Omega} \lambda \nabla u_{g} \nabla v \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Here, necessarily, $\phi \in H_{0}^{1}(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

Weak formulation of Robin problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-g) & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Multiply and integrate with an arbitrary test function from $C_{c}^{\infty}(\Omega)$:

$$
\begin{aligned}
-\int_{\Omega}(\nabla \cdot \lambda \nabla u) v d \mathbf{x} & =\int_{\Omega} f v d \mathbf{x} \\
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}+\int_{\partial \Omega}(\lambda \nabla u \cdot \mathbf{n}) v d s & =\int_{\Omega} f v d \mathbf{x} \\
\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}+\int_{\partial \Omega} \alpha u v d s & =\int_{\Omega} f v d \mathbf{x}+\int_{\partial \Omega} \alpha g v d s
\end{aligned}
$$

Weak formulation of Robin problem II

- Let

$$
\begin{aligned}
a^{R}(u, v) & :=\int_{\Omega} \lambda \nabla u \nabla v d \mathbf{x}+\int_{\partial \Omega} \alpha u v d s \\
f^{R}(v) & :=\int_{\Omega} f v d \mathbf{x}+\int_{\partial \Omega} \alpha g v d s
\end{aligned}
$$

- Search $u \in H^{1}(\Omega)$ such that

$$
a^{R}(u, v)=f^{R}(v) \forall v \in H^{1}(\Omega)
$$

- If $\lambda>0$ and $\alpha>0$ then $a^{R}(u, v)$ is cocercive.

Neumann boundary conditions

- Homogeneous Neumann:

$$
\lambda \nabla u \cdot \mathbf{n}=0 \text { on } \partial \Omega
$$

- Inhomogeneous Neumann:

$$
\lambda \nabla u \cdot \mathbf{n}=g \text { on } \partial \Omega
$$

- Weak formulation: Search $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \nabla v d \mathbf{x}=\int_{\partial \Omega} g v d s \forall v \in H^{1}(\Omega)
$$

Not coercive due to the fact that we can add an arbitrary constant to u and $a(u, u)$ stays the same!

Further discussion on boundary conditions

- Mixed boundary conditions:

One can have differerent boundary conditions on different parts of the boundary. In particular, if Dirichlet or Robin boundary conditions are applied on at least a part of the boundary of measure larger than zero, the binlinear form becomes coercive.

- Natural boundary conditions: Robin, Neumann

These are imposed in a "natural" way in the weak formulation

- Essential boundary conditions: Dirichlet Explicitely imposed on the function space
- Coefficients $\lambda, \alpha \ldots$ can be functions from Sobolev spaces as long as they do not change integrability of terms in the bilinear forms

The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- For computer representations we need finite dimensional approximations
- The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations
- Finite dimensional subspaces of Hilbert spaces are the spans of a set of basis functions, and are Hilbert spaces as well \Rightarrow e.g. the Lax-Milgram lemma is valid there as well

The Galerkin method II

- Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α, and continuity constant γ.
- Continuous problem: search $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

- Let $V_{h} \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_{h} ?
- Let $v_{h} \in V_{h}$ be arbitrary. Then

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (Coercivity) } \\
& =a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}\right) \quad \text { (Galerkin Orthogonality) } \\
& \leq \gamma\left\|u-u_{h}\right\| \cdot\left\|u-v_{h}\right\| \quad \text { (Boundedness) }
\end{aligned}
$$

- As a result

$$
\left\|u-u_{h}\right\| \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|
$$

- Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_{h}.

From the Galerkin method to the matrix equation

- Let $\phi_{1} \ldots \phi_{n}$ be a set of basis functions of V_{h}.
- Then, we have the representation $u_{h}=\sum_{j=1}^{n} u_{j} \phi_{j}$
- In order to search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

it is actually sufficient to require

$$
\begin{aligned}
a\left(u_{h}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
a\left(\sum_{j=1}^{n} u_{j} \phi_{j}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
\sum_{j=1}^{n} a\left(\phi_{j}, \phi_{i}\right) u_{j} & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
A U & =F
\end{aligned}
$$

with $A=\left(a_{i j}\right), a_{i j}=a\left(\phi_{i}, \phi_{j}\right), F=\left(f_{i}\right), f_{i}=F\left(\phi_{i}\right), U=\left(u_{i}\right)$.

- Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

- Let $\Omega=(a, b) \subset \mathbb{R}^{1}$
- Let $a(u, v)=\int_{\Omega} \lambda(x) \nabla u \nabla v d \mathbf{x}$.
- Analysis I provides a finite dimensional subspace: the space of \sin / \cos functions up to a certain frequency \Rightarrow spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients - e.g. "Spectral Einstein Code"

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $K \subset \mathbb{R}^{d}:$ compact, connected Lipschitz domain with non-empty interior
- P : finite dimensional vector space of functions $p: K \rightarrow \mathbb{R}$
- $\Sigma=\left\{\sigma_{1} \ldots \sigma_{s}\right\} \subset \mathcal{L}(P, \mathbb{R})$: set of linear forms defined on P called local degrees of freedom such that the mapping

$$
\begin{aligned}
\Lambda_{\Sigma}: P & \rightarrow \mathbb{R}^{s} \\
p & \mapsto\left(\sigma_{1}(p) \ldots \sigma_{s}(p)\right)
\end{aligned}
$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P, \mathbb{R})$.

Local shape functions

- Due to bijectivity of Λ_{Σ}, for any finite element $\{K, P, \Sigma\}$, there exists a basis $\left\{\theta_{1} \ldots \theta_{s}\right\} \subset P$ such that

$$
\sigma_{i}\left(\theta_{j}\right)=\delta_{i j} \quad(1 \leq i, j \leq s)
$$

- Elements of such a basis are called local shape functions

Unisolvence

- Bijectivity of Λ_{Σ} is equivalent to the condition

$$
\forall\left(\alpha_{1} \ldots \alpha_{s}\right) \in \mathbb{R}^{s} \exists!p \in P \text { such that } \sigma_{i}(p)=\alpha_{i} \quad(1 \leq i \leq s)
$$

i.e. for any given tuple of values $a=\left(\alpha_{1} \ldots \alpha_{s}\right)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p)=a$.

- Equivalent to unisolvence:

$$
\left\{\begin{array}{l}
\operatorname{dim} P=|\Sigma|=s \\
\forall p \in P: \sigma_{i}(p)=0(i=1 \ldots s) \Rightarrow p=0
\end{array}\right.
$$

Lagrange finite elements

- A finite element $\{K, P, \Sigma\}$ is called Lagrange finite element (or nodal finite element) if there exist a set of points $\left\{a_{1} \ldots a_{s}\right\} \subset K$ such that

$$
\sigma_{i}(p)=p\left(a_{i}\right) \quad 1 \leq i \leq s
$$

- $\left\{a_{1} \ldots a_{s}\right\}$: nodes of the finite element
- nodal basis: $\left\{\theta_{1} \ldots \theta_{s}\right\} \subset P$ such that

$$
\theta_{j}\left(a_{i}\right)=\delta_{i j} \quad(1 \leq i, j \leq s)
$$

Local interpolation operator

- Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\left\{\theta_{1} \ldots \theta_{s}\right\}$. Let $V(K)$ be a normed vector space of functions $v: K \rightarrow \mathbb{R}$ such that
- $P \subset V(K)$
- The linear forms in Σ can be extended to be defined on $V(K)$
- local interpolation operator

$$
\begin{aligned}
\mathcal{I}_{K}: V(K) & \rightarrow P \\
v & \mapsto \sum_{i=1}^{s} \sigma_{i}(v) \theta_{i}
\end{aligned}
$$

- P is invariant under the action of \mathcal{I}_{K}, i.e. $\forall p \in P, \mathcal{I}_{K}(p)=p$:
- Let $p=\sum_{j=1}^{s} \alpha_{j} \theta_{j}$ Then,

$$
\begin{aligned}
\mathcal{I}_{K}(p) & =\sum_{i=1}^{s} \sigma_{i}(p) \theta_{i}=\sum_{i=1}^{s} \sum_{j=1}^{s} \alpha_{j} \sigma_{i}\left(\theta_{j}\right) \theta_{i} \\
& =\sum_{i=1}^{s} \sum_{j=1}^{s} \alpha_{j} \delta_{i j} \theta_{i}=\sum_{j=1}^{s} \alpha_{j} \theta_{j}
\end{aligned}
$$

Local Lagrange interpolation operator

- Let $V(K)=\left(\mathcal{C}^{0}(K)\right)$

$$
\begin{aligned}
\mathcal{I}_{K}: V(K) & \rightarrow P \\
v & \mapsto I_{K} v=\sum_{i=1}^{s} v\left(a_{i}\right) \theta_{i}
\end{aligned}
$$

Simplices

- Let $\left\{a_{0} \ldots a_{d}\right\} \subset \mathbb{R}^{d}$ such that the d vectors $a_{1}-a_{0} \ldots a_{d}-a_{0}$ are linearly independent. Then the convex hull K of $a_{0} \ldots a_{d}$ is called simplex, and $a_{0} \ldots a_{d}$ are called vertices of the simplex.
- Unit simplex: $a_{0}=(0 \ldots 0), a_{1}=(0,1 \ldots 0) \ldots a_{d}=(0 \ldots 0,1)$.

$$
K=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0(i=1 \ldots d) \text { and } \sum_{i=1}^{d} x_{i} \leq 1\right\}
$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_{i} : face of K opposite to a_{i}
- \mathbf{n}_{i} : outward normal to F_{i}

Barycentric coordinates

- Let K be a simplex.
- Functions $\lambda_{i}(i=0 \ldots d)$:

$$
\begin{aligned}
\lambda_{i}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \lambda_{i}(x)=1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}
\end{aligned}
$$

where a_{j} is any vertex of K situated in F_{i}.

- For $x \in K$, one has

$$
\begin{aligned}
1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} & =\frac{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}-\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} \\
& =\frac{\left(a_{j}-x\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}=\frac{\operatorname{dist}\left(x, F_{i}\right)}{\operatorname{dist}\left(a_{i}, F_{i}\right)} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right| / d}{\operatorname{dist}\left(a_{i}, F_{i}\right)\left|F_{i}\right| / d} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right|}{|K|}
\end{aligned}
$$

i.e. $\lambda_{i}(x)$ is the ratio of the volume of the simplex $K_{i}(x)$ made up of x and the vertices of F_{i} to the volume of K.

Barycentric coordinates II

- $\lambda_{i}\left(a_{j}\right)=\delta_{i j}$
- $\lambda_{i}(x)=0 \forall x \in F_{i}$
- $\sum_{i=0}^{d} \lambda_{i}(x)=1 \forall x \in \mathbb{R}^{d}$ (just sum up the volumes)
- $\sum_{i=0}^{d} \lambda_{i}(x)\left(x-a_{i}\right)=0 \forall x \in \mathbb{R}^{d}$ (due to $\sum \lambda_{i}(x) x=x$ and $\sum \lambda_{i} a_{i}=x$ as the vector of linear coordinate functions)
- Unit simplex:
- $\lambda_{0}(x)=1-\sum_{i=1}^{d} x_{i}$
- $\lambda_{i}(x)=x_{i}$ for $1 \leq i \leq d$

Polynomial space \mathbb{P}_{k}

- Space of polynomials in $x_{1} \ldots x_{d}$ of total degree $\leq k$ with real coefficients $\alpha_{i_{1} \ldots i_{d}}$:

$$
\mathbb{P}_{k}=\left\{p(x)=\sum_{\substack{0 \leq i_{1} \ldots i_{d} \leq k \\ i_{1}+\cdots+i_{d} \leq k}} \alpha_{i_{1} \ldots i_{d}} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}\right\}
$$

- Dimension:

$$
\begin{aligned}
\operatorname{dim} \mathbb{P}_{k}=\binom{d+k}{k} & = \begin{cases}k+1, & d=1 \\
\frac{1}{2}(k+1)(k+2), & d=2 \\
\frac{1}{6}(k+1)(k+2)(k+3), & d=3\end{cases} \\
\operatorname{dim} \mathbb{P}_{1} & =d+1 \\
\operatorname{dim} \mathbb{P}_{2} & = \begin{cases}3, & d=1 \\
6, & d=2 \\
10, & d=3\end{cases}
\end{aligned}
$$

\mathbb{P}_{k} simplex finite elements

- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{k}$, such that $s=\operatorname{dim} P_{k}$
- For $0 \leq i_{0} \ldots i_{d} \leq k, i_{0}+\cdots+i_{d}=k$, let the set of nodes be defined by the points $a_{i_{1} \ldots i_{i} ; k}$ with barycentric coordinates $\left(\frac{i_{0}}{k} \ldots \frac{i_{d}}{k}\right)$.
Define Σ by $\sigma_{i_{1} \ldots i_{d} ; k}(p)=p\left(a_{i_{1}, \ldots i_{d} ; k}\right)$.

\mathbb{P}_{1} simplex finite elements

- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{1}$, such that $s=d+1$
- Nodes \equiv vertices
- Basis functions \equiv barycentric coordinates

\mathbb{P}_{2} simplex finite elements

- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{2}$, Nodes \equiv vertices + edge midpoints
- Basis functions:

$$
\lambda_{i}\left(2 \lambda_{i}-1\right),(0 \leq i \leq d) ; \quad 4 \lambda_{i} \lambda_{j}, \quad(0 \leq i<j \leq d) \quad(\text { "edge bubbles") }
$$

General finite elements

- Simplicial finite elements can be defined on triangulations of polygonal domains. During the course we will stick to this case.
- For vector PDEs, one can define finite elements for vector valued functions
- A curved domain Ω may be approximated by a polygonal domain Ω_{h} which is then triangulated. During the course, we will ignore this difference.
- As we have seen, more general elements are possible: cuboids, but also prismatic elements etc.
- Curved geometries are possible. Isoparametric finite elements use the polynomial space to define a mapping of some polyghedral reference element to an element with curved boundary

Conformal triangulations

- Let \mathcal{T}_{h} be a subdivision of the polygonal domain $\Omega \subset \mathbb{R}^{d}$ into non-intersecting compact simplices $K_{m}, m=1 \ldots n_{e}$:

$$
\bar{\Omega}=\bigcup_{m=1}^{n_{e}} K_{m}
$$

- Each simplex can be seen as the image of a affine transformation of a reference (e.g. unit) simplex \widehat{K} :

$$
K_{m}=T_{m}(\widehat{K})
$$

- We assume that it is conformal, i.e. if K_{m}, K_{n} have a $d-1$ dimensional intersection $F=K_{m} \cap K_{n}$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_{n}, K_{m} such that $F=T_{m}(\widehat{F})=T_{n}(\widehat{F})$ and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$

Conformal triangulations II

- $d=1$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex
- $d=2$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge

- $d=3$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

Global interpolation operator \mathcal{I}_{h}

- Let $\left\{K, P_{K}, \Sigma_{K}\right\}_{K \in \mathcal{T}_{h}}$ be a triangulation of Ω.
- Domain:

$$
D\left(\mathcal{I}_{h}\right)=\left\{v \in\left(L^{1}(\Omega)\right) \text { such that } \forall K \in \mathcal{T}_{h},\left.v\right|_{K} \in V(K)\right\}
$$

- For all $v \in D\left(\mathcal{I}_{h}\right)$, define $\mathcal{I}_{h} v$ via

$$
\left.\mathcal{I}_{h} v\right|_{K}=\mathcal{I}_{K}\left(\left.v\right|_{K}\right)=\sum_{i=1}^{s} \sigma_{K, i}\left(\left.v\right|_{K}\right) \theta_{K, i} \forall K \in \mathcal{T}_{h}
$$

Assuming $\theta_{K, i}=0$ outside of K, one can write

$$
\mathcal{I}_{h} v=\sum_{K \in \mathcal{T}_{h}} \sum_{i=1}^{s} \sigma_{K, i}\left(\left.v\right|_{K}\right) \theta_{K, i}
$$

mapping $D\left(\mathcal{I}_{h}\right)$ to the approximation space

$$
W_{h}=\left\{v_{h} \in\left(L^{1}(\Omega)\right) \text { such that } \forall K \in \mathcal{T}_{h},\left.v_{h}\right|_{K} \in P_{K}\right\}
$$

H^{1}-Conformal approximation using Lagrangian finite elemenents

- Conformal subspace of W_{h} with zero jumps at element faces:

$$
V_{h}=\left\{v_{h} \in W_{h}: \forall n, m, K_{m} \cap K_{n} \neq 0 \Rightarrow\left(v_{h} \mid K_{m}\right)_{K_{m} \cap K_{n}}=\left(v_{h} \mid K_{n}\right) K_{m} \cap K_{n}\right\}
$$

- Then: $V_{h} \subset H^{1}(\Omega)$.

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- For any face $F=K_{1} \cap K_{2}$ there are renumberings of the nodes of K_{1} and K_{2} such that for $i=1 \ldots s^{\partial}, a_{K_{1}, i}=a_{K_{2}, i}$
- Then, $v_{h} \mid K_{1}$ and $v_{h} \mid K_{2}$ match at the interface $K_{1} \cap K_{2}$ if and only if they match at the common nodes

$$
\left.v_{h}\right|_{K_{1}}\left(a_{K_{1}, i}\right)=v_{h}{\mid K_{2}}\left(a_{K_{2}, i}\right) \quad\left(i=1 \ldots s^{\partial}\right)
$$

Global degrees of freedom

- Let $\left\{a_{1} \ldots a_{N}\right\}=\bigcup_{K \in \mathcal{T}_{h}}\left\{a_{K, 1} \ldots a_{K, s}\right\}$
- Degree of freedom map

$$
\begin{aligned}
j: \mathcal{T}_{h} \times\{1 \ldots s\} & \rightarrow\{1 \ldots N\} \\
(K, m) & \mapsto j(K, m) \text { the global degree of freedom number }
\end{aligned}
$$

- Global shape functions $\phi_{1}, \ldots, \phi_{N} \in W_{h}$ defined by

$$
\left.\phi_{i}\right|_{K}\left(a_{K, m}\right)= \begin{cases}\delta_{m n} & \text { if } \exists n \in\{1 \ldots s\}: j(K, n)=i \\ 0 & \text { otherwise }\end{cases}
$$

- Global degrees of freedom $\gamma_{1}, \ldots, \gamma_{N}: V_{h} \rightarrow \mathbb{R}$ defined by

$$
\gamma_{i}\left(v_{h}\right)=v_{h}\left(a_{i}\right)
$$

Lagrange finite element basis

- $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ is a basis of V_{h}, and $\gamma_{1} \ldots \gamma_{N}$ is a basis of $\mathcal{L}\left(V_{h}, \mathbb{R}\right)$.

Proof:

- $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ are linearly independent: if $\sum_{j=1}^{N} \alpha_{j} \phi_{j}=0$ then evaluation at $a_{1} \ldots a_{N}$ yields that $\alpha_{1} \ldots \alpha_{N}=0$.
- Let $v_{h} \in V_{h}$. It is single valued in $a_{1} \ldots a_{N}$. Let $w_{h}=\sum_{j=1}^{N} v_{h}\left(a_{j}\right) \phi_{j}$. Then for all $K \in \mathcal{T}_{h},\left.v_{h}\right|_{K}$ and $\left.w_{h}\right|_{K}$ coincide in the local nodes $a_{K, 1} \ldots a_{K, 2}$, and by unisolvence, $\left.v_{h}\right|_{K}=\left.w_{h}\right|_{K}$.

Finite element approximation space

- $P_{c, h}^{k}=P_{h}^{k}=\left\{v_{h} \in \mathcal{C}^{0}\left(\bar{\Omega}_{h}\right): \forall K \in \mathcal{T}_{h}, v_{k} \circ T_{K} \in \mathbb{P}^{k}\right\}$
- 'c' for continuity across mesh interfaces. There are also discontinuous FEM spaces which we do not consider here.

P^{1} global shape functions

P^{2} global shape functions

Node based

Edge based

Global Lagrange interpolation operator

Let $V_{h}=P_{h}^{k}$

$$
\begin{aligned}
& \quad \mathcal{I}_{h}: \mathcal{C}^{0}\left(\bar{\Omega}_{h}\right) \rightarrow V_{h} \\
& v \mapsto
\end{aligned} \sum_{i=1}^{N} v\left(a_{i}\right) \phi_{i} .
$$

Quadrature rules

- Quadrature rule:

$$
\int_{K} g(x) d \mathbf{x} \approx|K| \sum_{l=1}^{I_{q}} \omega_{l} g\left(\xi_{l}\right)
$$

- ξ_{l} : nodes, Gauss points
- ω_{1} : weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_{q} of the quadrature rule, i.e.

$$
\forall k \leq k_{q}, \forall p \in \mathbb{P}^{k} \int_{K} p(x) d \mathbf{x}=|K| \sum_{l=1}^{I_{q}} \omega_{l} p\left(\xi_{l}\right)
$$

- Error estimate:

$$
\begin{aligned}
\forall \phi \in \mathcal{C}^{k_{q}+1}(K), \left\lvert\, \frac{1}{|K|} \int_{K} \phi(x) d \mathbf{x}\right. & -\sum_{I=1}^{I_{q}} \omega_{I} g\left(\xi_{I}\right) \mid \\
& \leq c_{K}^{k_{q}+1} \sup _{x \in K,|\alpha|=k_{q}+1}\left|\partial^{\alpha} \phi(x)\right|
\end{aligned}
$$

Some common quadrature rules

Nodes are characterized by the barycentric coordinates

d	k_{q}	I_{q}	Nodes	Weights
1	1	1	$\left(\frac{1}{2}, \frac{1}{2}\right)$	1
	1	2	$(1,0),(0,1)$	$\frac{1}{2}, \frac{1}{2}$
	3	2	$\left(\frac{1}{2}+\frac{\sqrt{3}}{6}, \frac{1}{2}-\frac{\sqrt{3}}{6}\right),\left(\frac{1}{2}-\frac{\sqrt{3}}{6}, \frac{1}{2}+\frac{\sqrt{3}}{6}\right)$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$\left(\frac{1}{2},\right),\left(\frac{1}{2}+\sqrt{\frac{3}{20}}, \frac{1}{2}-\sqrt{\frac{3}{20}}\right),\left(\frac{1}{2}-\sqrt{\frac{3}{20}}, \frac{1}{2}+\sqrt{\frac{3}{20}}\right)$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	1
	1	3	$(1,0,0),(0,1,0),(0,0,1)$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right)$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right),\left(\frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right),\left(\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right)$,	$-\frac{9}{16}, \frac{25}{48}, 45,45$
3	1	1	$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	
	1	4	$(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$	1
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{5-\sqrt{5}}{20}, \frac{5+3}{20}\right) \ldots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Weak formulation of homogeneous Dirichlet problem

- Search $u \in V=H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \kappa \nabla u \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x} \forall v \in H_{0}^{1}(\Omega)
$$

- Then,

$$
a(u, v):=\int_{\Omega} \kappa \nabla u \nabla v d \mathbf{x}
$$

is a self-adjoint bilinear form defined on the Hilbert space $H_{0}^{1}(\Omega)$.

Galerkin ansatz

- Let $V_{h} \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

- E.g. V_{h} is the space of P1 Lagrange finite element approximations

Stiffness matrix for Laplace operator for P1 FEM

- Element-wise calculation:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d \mathbf{x}=\left.\left.\int_{\Omega} \sum_{K \in \mathcal{T}_{h}} \nabla \phi_{i}\right|_{K} \nabla \phi_{j}\right|_{K} d \mathbf{x}
$$

- Standard assembly loop:

$$
\begin{aligned}
& \text { for } i, j=1 \ldots N \text { do } \\
& \text { set } a_{i j}=0 \\
& \text { end } \\
& \text { for } K \in \mathcal{T}_{h} \text { do } \\
& \quad \begin{array}{l}
\text { for } m, n=0 \ldots d \text { do } \\
\quad s_{m n}=\int_{K} \nabla \lambda_{m} \nabla \lambda_{n} d \mathbf{x} \\
a_{j_{d o f}(K, m), j_{d o f}(K, n)}=a_{j_{d o f}(K, m), j_{d o f}(K, n)}+s_{m n} \\
\text { end } \\
\text { end }
\end{array}
\end{aligned}
$$

- Local stiffness matrix:

$$
S_{K}=\left(s_{K ; m, n}\right)=\int_{K} \nabla \lambda_{m} \nabla \lambda_{n} d \mathbf{x}
$$

