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Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

I δ may not be continuous – what is then ∇ · (δ∇u)?
I Approximation of solution u e.g. by piecewise linear functions what

does ∇u mean ?
I Spaces of twice, and even once continuously differentiable functions is

not well suited:
I Favorable approximation functions (e.g. piecewise linear ones) are not

contained
I Though they can be equipped with norms (⇒ Banach spaces) they

have no scalar product ⇒ no Hilbert spaces
I Not complete: Cauchy sequences of functions may not converge to

elements in these spaces
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Cauchy sequences of functions

I Let Ω be a Lipschitz domain, let V be a metric space of functions
f : Ω→ R

I Regard sequences of functions fn = {fn}∞n=1 ⊂ V
I A Cauchy sequence is a sequence fn of functions where the norm of

the difference between two elements can be made arbitrarily small by
increasing the element numbers:

∀ε > 0 ∃n0 ∈ N : ∀m, n > n0, ||fn − fm|| < ε

I All convergent sequences of functions are Cauchy sequences
I A metric space V is complete if all Cauchy sequences fn of its

elements have a limit f = lim
n→∞

fn ∈ V within this space
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Completion of a metric space
I Let V be a metric space. Its completion is the space V̄ consisting of

all elements of V and all possible limits of Cauchy sequences of
elements of V .

I This procedure allows to carry over definitions which are applicable
only to elements of V to more general ones

I Example: step function

fε(x) =





1, x ≥ ε
−( x−ε

ε )2 + 1, 0 ≤ x < ε

( x+ε
ε )2 − 1, −ε ≤ x < 0

−1, x < −ε

ε→0−→ f (x) =
{

1, x ≥ 0
−1, else
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Riemann integral → Lebesgue integral

I Let Ω be a Lipschitz domain, let Cc(Ω) be the set of continuous
functions f : Ω→ R with compact support. (⇒ they vanish on ∂Ω)

I For these functions, the Riemann integral
∫

Ω f (x)dx is well defined,
and ‖f ‖L1 :=

∫
Ω |f (x)|dx provides a norm, and induces a metric.

I Let L1(Ω) be the completion of Cc(Ω) with respect to the metric
defined by the norm ‖·‖L1 . That means that L1(Ω) consists of all
elements of Cc(Ω), and of all limites of Cauchy sequences of elements
of Cc(Ω). Such functions are called measurable.

I For any measurable f = lim
n→∞

fn ∈ L1(Ω) with fn ∈ Cc(Ω), define the
Lebesque integral

∫

Ω
f (x) dx := lim

n→∞

∫

Ω
fn(x) dx

as the limit of a sequence of Riemann integrals of continuous
functions
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Examples for Lebesgue integrable (measurable) functions

I Bounded functions which are continuous except in a finite number of
points

I Step functions
I Equality of L1 functions is elusive as they are not necessarily

continuous: best what we can say is that they are equal “almost
everywhere”.

I In particular, L1 functions whose values differ in a finite number of
points are equal almost everywhere.
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Spaces of integrable functions
I For 1 ≤ p ≤ ∞, let Lp(Ω) be the space of measureable functions

such that

∫

Ω
|f (x)|pdx <∞

equipped with the norm

||f ||p =
(∫

Ω
|f (x)|pdx

) 1
p

I These spaces are Banach spaces, i.e. complete, normed vector spaces.
I The space L2(Ω) is a Hilbert space, i.e. a Banach space equipped

with a scalar product (·, ·) whose norm is induced by that scalar
product, i.e. ||u|| =

√
(u, u). The scalar product in L2 is

(f , g) =
∫

Ω
f (x)g(x)dx.
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Green’s theorem for smooth functions
Theorem Let u, v ∈ C 1(Ω) (continuously differentiable). Then for
n = (n1 . . . nd ) being the outward normal to Ω,

∫

Ω
u∂i v dx =

∫

∂Ω
uvni ds −

∫

Ω
v∂i u dx

Corollaries
I Let u = (u1 . . . ud ). Then

∫

Ω
(

d∑

i=1
ui∂i v) dx =

∫

∂Ω
v

d∑

i=1
(ui ni ) ds −

∫

Ω
v

d∑

i=1
(∂i ui ) dx

∫

Ω
u · ∇v dx =

∫

∂Ω
vu · n ds −

∫

Ω
v∇ · u dx

I If v = 0 on ∂Ω:
∫

Ω
u∂i v dx = −

∫

Ω
v∂i u dx

∫

Ω
u · ∇v dx = −

∫

Ω
v∇ · u dx
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Weak derivative

I Let L1
loc(Ω) be the set of functions which are Lebesgue integrable on

every compact subset K ⊂ Ω. Let C∞0 (Ω) be the set of functions
infinitely differentiable with zero values on the boundary.

I For u ∈ L1
loc(Ω) we define ∂i u by

∫

Ω
v∂i udx = −

∫

Ω
u∂i vdx ∀v ∈ C∞0 (Ω)

and ∂αu by

∫

Ω
v∂αudx = (−1)|α|

∫

Ω
u∂i vdx ∀v ∈ C∞0 (Ω)

if these integrals exist.
I For smooth functions, weak derivatives coincide with with the usual

derivative
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Sobolev spaces
I For k ≥ 0 and 1 ≤ p <∞, the Sobolev space W k,p(Ω) is the space

functions where all up to the k-th derivatives are in Lp:

W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ k}

with then norm

||u||W k,p(Ω) =


∑

|α|≤k
||∂αu||pLp(Ω)




1
p

I Alternatively, they can be defined as the completion of C∞ in the
norm ||u||W k,p(Ω)

I W k,p
0 (Ω) is the completion of C∞0 in the norm ||u||W k,p(Ω)

I The Sobolev spaces are Banach spaces.
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Sobolev spaces of square integrable functions
I Hk(Ω) = W k,2(Ω) with the scalar product

(u, v)Hk (Ω) =
∑

|α|≤k

∫

Ω
∂αu∂αv dx

is a Hilbert space.
I Hk

0 (Ω) = W k,2
0 (Ω) with the scalar product

(u, v)Hk
0 (Ω) =

∑

|α|=k

∫

Ω
∂αu∂αv dx

is a Hilbert space as well.
I For this course the most important:

I L2(Ω), scalar product (u, v)L2(Ω) = (u, v)0,Ω =
∫

Ω uv dx
I H1(Ω), scalar product (u, v)H1(Ω) = (u, v)1,Ω =

∫
Ω(uv +∇u · ∇v) dx

I H1
0 (Ω), scalar product (u, v)H1

0 (Ω) =
∫

Ω(∇u · ∇v) dx
I Inequalities:

|(u, v)|2 ≤ (u, u)(v , v) Cauchy-Schwarz
||u + v || ≤ ||u||+ ||v || Triangle inequality
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A trace theorem

The notion of function values on the boundary initially is only well defined
for continouos functions. So we need an extension of this notion to
functions from Sobolev spaces.
Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a
bounded linear mapping

tr : H1(Ω)→ L2(∂Ω)

such that
(i) ∃c > 0 such that ‖tr u‖0,∂Ω ≤ c‖u‖1,Ω
(ii) ∀u ∈ C 1(Ω̄), tr u = u|∂Ω

�
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Derivation of weak formulation
I Sobolev space theory provides a convenient framework to formulate

existence, uniqueness and approximations of solutions of PDEs.
I Stationary heat conduction equation with homogeneous Dirichlet

boundary conditions:

−∇ · λ∇u(x) = f (x) in Ω
u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function v ∈ C∞0 (Ω) and
apply Green’s theorem using v = 0 on ∂Ω

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx
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Weak formulation of homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) (here, tr u = 0) such that
∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

I Then,

a(u, v) :=
∫

Ω
λ∇u∇v dx

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

I It is bounded due to Cauchy-Schwarz:

|a(u, v)| = |λ| · |
∫

Ω
∇u∇v dx| ≤ ||u||H1

0 (Ω) · ||v ||H1
0 (Ω)

I f (v) =
∫

Ω fv dx is a linear functional on H1
0 (Ω). For Hilbert spaces V

the dual space V ′ (the space of linear functionals) can be identified
with the space itself.
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The Lax-Milgram lemma
Theorem: Let V be a Hilbert space. Let a : V × V → R be a self-adjoint
bilinear form, and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤
1
α
||f ||V ′

�
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Coercivity of weak formulation

Theorem: Assume λ > 0. Then the weak formulation of the heat
conduction problem: search u ∈ H1

0 (Ω) such that

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

has an unique solution.
Proof: a(u, v) is cocercive:

a(u, v) =
∫

Ω
λ∇u∇u dx = λ||u||2H1

0 (Ω)

�
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Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ∇u = f in Ω
u = g on ∂Ω

I If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that
ug |∂Ω = g . Then, we can re-formulate:

−∇ · λ∇(u − ug ) = f +∇ · λ∇ug in Ω
u − ug = 0 on ∂Ω

I Search u ∈ H1(Ω) such that

u = ug + φ∫

Ω
λ∇φ∇v dx =

∫

Ω
fv dx +

∫

Ω
λ∇ug∇v ∀v ∈ H1

0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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Weak formulation of Robin problem

−∇ · λ∇u = f in Ω
λ∇u · n + α(u − g) = 0 on ∂Ω

I Multiply and integrate with an arbitrary test function from C∞c (Ω):

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx +

∫

∂Ω
(λ∇u · n)vds =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx +

∫

∂Ω
αuv ds =

∫

Ω
fv dx +

∫

∂Ω
αgv ds
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Weak formulation of Robin problem II

I Let

aR(u, v) :=
∫

Ω
λ∇u∇v dx +

∫

∂Ω
αuv ds

f R(v) :=
∫

Ω
fv dx +

∫

∂Ω
αgv ds

I Search u ∈ H1(Ω) such that

aR(u, v) = f R(v) ∀v ∈ H1(Ω)

I If λ > 0 and α > 0 then aR(u, v) is cocercive.
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Neumann boundary conditions
I Homogeneous Neumann:

λ∇u · n = 0 on ∂Ω

I Inhomogeneous Neumann:

λ∇u · n = g on ∂Ω

I Weak formulation: Search u ∈ H1(Ω) such that

∫

Ω
∇u∇v dx =

∫

∂Ω
gv ds ∀v ∈ H1(Ω)

Not coercive due to the fact that we can add an arbitrary constant to
u and a(u, u) stays the same!
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Further discussion on boundary conditions

I Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero,
the binlinear form becomes coercive.

I Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

I Essential boundary conditions: Dirichlet
Explicitely imposed on the function space

I Coefficients λ, α . . . can be functions from Sobolev spaces as long as
they do not change integrability of terms in the bilinear forms
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The Galerkin method I

I Weak formulations “live” in Hilbert spaces which essentially are
infinite dimensional

I For computer representations we need finite dimensional
approximations

I The Galerkin method and its modifications provide a general scheme
for the derivation of finite dimensional appoximations

I Finite dimensional subspaces of Hilbert spaces are the spans of a set
of basis functions, and are Hilbert spaces as well ⇒ e.g. the
Lax-Milgram lemma is valid there as well
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The Galerkin method II
I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint

bilinear form, and f a linear functional on V . Assume a is coercive
with coercivity constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma
I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)
= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace Vh.
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From the Galerkin method to the matrix equation
I Let φ1 . . . φn be a set of basis functions of Vh.
I Then, we have the representation uh =

∑n
j=1 ujφj

I In order to search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

it is actually sufficient to require

a(uh, φi ) = f (φi ) (i = 1 . . . n)

a
( n∑

j=1
ujφj , φi

)
= f (φi ) (i = 1 . . . n)

n∑

j=1
a(φj , φi )uj = f (φi ) (i = 1 . . . n)

AU = F

with A = (aij), aij = a(φi , φj), F = (fi ), fi = F (φi ), U = (ui ).
I Matrix dimension is n × n. Matrix sparsity ?
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Obtaining a finite dimensional subspace

I Let Ω = (a, b) ⊂ R1

I Let a(u, v) =
∫

Ω λ(x)∇u∇vdx.
I Analysis I provides a finite dimensional subspace: the space of sin/cos

functions up to a certain frequency ⇒ spectral method
I Ansatz functions have global support ⇒ full n × n matrix
I OTOH: rather fast convergence for smooth data
I Generalization to higher dimensions possible
I Big problem in irregular domains: we need the eigenfunction basis of

some operator. . .
I Spectral methods are successful in cases where one has regular

geometry structures and smooth/constant coefficients – e.g.
“Spectral Einstein Code”
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Definition of a Finite Element (Ciarlet)

Triplet {K ,P,Σ} where
I K ⊂ Rd : compact, connected Lipschitz domain with non-empty

interior
I P: finite dimensional vector space of functions p : K → R
I Σ = {σ1 . . . σs} ⊂ L(P,R): set of linear forms defined on P called

local degrees of freedom such that the mapping

ΛΣ : P → Rs

p 7→ (σ1(p) . . . σs(p))

is bijective, i.e. Σ is a basis of L(P,R).
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Local shape functions

I Due to bijectivity of ΛΣ, for any finite element {K ,P,Σ}, there exists
a basis {θ1 . . . θs} ⊂ P such that

σi (θj) = δij (1 ≤ i , j ≤ s)

I Elements of such a basis are called local shape functions
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Unisolvence

I Bijectivity of ΛΣ is equivalent to the condition

∀(α1 . . . αs) ∈ Rs ∃!p ∈ P such that σi (p) = αi (1 ≤ i ≤ s)

i.e. for any given tuple of values a = (α1 . . . αs) there is a unique
polynomial p ∈ P such that ΛΣ(p) = a.

I Equivalent to unisolvence:

{
dim P = |Σ| = s
∀p ∈ P : σi (p) = 0 (i = 1 . . . s) ⇒ p = 0
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Lagrange finite elements

I A finite element {K ,P,Σ} is called Lagrange finite element (or nodal
finite element) if there exist a set of points {a1 . . . as} ⊂ K such that

σi (p) = p(ai ) 1 ≤ i ≤ s

I {a1 . . . as}: nodes of the finite element
I nodal basis: {θ1 . . . θs} ⊂ P such that

θj(ai ) = δij (1 ≤ i , j ≤ s)
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Local interpolation operator
I Let {K ,P,Σ} be a finite element with shape function bases
{θ1 . . . θs}. Let V (K ) be a normed vector space of functions
v : K → R such that

I P ⊂ V (K)
I The linear forms in Σ can be extended to be defined on V (K)

I local interpolation operator

IK : V (K )→ P

v 7→
s∑

i=1
σi (v)θi

I P is invariant under the action of IK , i.e. ∀p ∈ P, IK (p) = p:
I Let p =

∑s
j=1 αjθj Then,

IK (p) =
s∑

i=1

σi (p)θi =
s∑

i=1

s∑

j=1

αjσi (θj )θi

=
s∑

i=1

s∑

j=1

αjδijθi =
s∑

j=1

αjθj
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Local Lagrange interpolation operator

I Let V (K ) = (C0(K ))

IK : V (K )→ P

v 7→ IK v =
s∑

i=1
v(ai )θi
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Simplices

I Let {a0 . . . ad} ⊂ Rd such that the d vectors a1 − a0 . . . ad − a0 are
linearly independent. Then the convex hull K of a0 . . . ad is called
simplex, and a0 . . . ad are called vertices of the simplex.

I Unit simplex: a0 = (0...0), a1 = (0, 1 . . . 0) . . . ad = (0 . . . 0, 1).

K =
{

x ∈ Rd : xi ≥ 0 (i = 1 . . . d) and
d∑

i=1
xi ≤ 1

}

I A general simplex can be defined as an image of the unit simplex
under some affine transformation

I Fi : face of K opposite to ai

I ni : outward normal to Fi



Lecture 15 Slide 34

Barycentric coordinates
I Let K be a simplex.
I Functions λi (i = 0 . . . d):

λi : Rd → R

x 7→ λi (x) = 1− (x − ai ) · ni
(aj − ai ) · ni

where aj is any vertex of K situated in Fi .
I For x ∈ K , one has

1− (x − ai ) · ni
(aj − ai ) · ni

= (aj − ai ) · ni − (x − ai ) · ni
(aj − ai ) · ni

= (aj − x) · ni
(aj − ai ) · ni

= dist(x ,Fi )
dist(ai ,Fi )

= dist(x ,Fi )|Fi |/d
dist(ai ,Fi )|Fi |/d

= dist(x ,Fi )|Fi |
|K |

i.e. λi (x) is the ratio of the volume of the simplex Ki (x) made up of
x and the vertices of Fi to the volume of K .
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Barycentric coordinates II

I λi (aj) = δij

I λi (x) = 0 ∀x ∈ Fi

I
∑d

i=0 λi (x) = 1 ∀x ∈ Rd

(just sum up the volumes)
I
∑d

i=0 λi (x)(x − ai ) = 0 ∀x ∈ Rd

(due to
∑
λi (x)x = x and

∑
λiai = x as the vector of linear

coordinate functions)
I Unit simplex:

I λ0(x) = 1−
∑d

i=1 xi
I λi (x) = xi for 1 ≤ i ≤ d
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Polynomial space Pk
I Space of polynomials in x1 . . . xd of total degree ≤ k with real

coefficients αi1...id :

Pk =





p(x) =
∑

0≤i1...id≤k
i1+···+id≤k

αi1...id x i1
1 . . . x id

d





I Dimension:

dimPk =
(

d + k
k

)
=





k + 1, d = 1
1
2 (k + 1)(k + 2), d = 2
1
6 (k + 1)(k + 2)(k + 3), d = 3

dimP1 = d + 1

dimP2 =





3, d = 1
6, d = 2
10, d = 3
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Pk simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = Pk , such that s = dim Pk
I For 0 ≤ i0 . . . id ≤ k , i0 + · · ·+ id = k , let the set of nodes be defined

by the points ai1...id ;k with barycentric coordinates ( i0
k . . .

id
k ).

Define Σ by σi1...id ;k(p) = p(ai1...id ;k).
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P1 simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = P1, such that s = d + 1
I Nodes ≡ vertices
I Basis functions ≡ barycentric coordinates
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P2 simplex finite elements
I K : simplex spanned by a0 . . . ad in Rd

I P = P2, Nodes ≡ vertices + edge midpoints
I Basis functions:

λi (2λi − 1),(0 ≤ i ≤ d); 4λiλj , (0 ≤ i < j ≤ d) (”edge bubbles”)
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General finite elements

I Simplicial finite elements can be defined on triangulations of
polygonal domains. During the course we will stick to this case.

I For vector PDEs, one can define finite elements for vector valued
functions

I A curved domain Ω may be approximated by a polygonal domain Ωh
which is then triangulated. During the course, we will ignore this
difference.

I As we have seen, more general elements are possible: cuboids, but
also prismatic elements etc.

I Curved geometries are possible. Isoparametric finite elements use the
polynomial space to define a mapping of some polyghedral reference
element to an element with curved boundary
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Conformal triangulations

I Let Th be a subdivision of the polygonal domain Ω ⊂ Rd into
non-intersecting compact simplices Km, m = 1 . . . ne :

Ω =
ne⋃

m=1
Km

I Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K̂ :

Km = Tm(K̂ )

I We assume that it is conformal, i.e. if Km, Kn have a d − 1
dimensional intersection F = Km ∩ Kn, then there is a face F̂ of K̂
and renumberings of the vertices of Kn,Km such that
F = Tm(F̂ ) = Tn(F̂ ) and Tm|F̂ = Tn|F̂
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Conformal triangulations II

I d = 1 : Each intersection F = Km ∩ Kn is either empty or a common
vertex

I d = 2 : Each intersection F = Km ∩ Kn is either empty or a common
vertex or a common edge

I d = 3 : Each intersection F = Km ∩ Kn is either empty or a common
vertex or a common edge or a common face

I Delaunay triangulations are conformal
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Global interpolation operator Ih
I Let {K ,PK ,ΣK}K∈Th be a triangulation of Ω.
I Domain:

D(Ih) = {v ∈ (L1(Ω)) such that ∀K ∈ Th, v |K ∈ V (K )}
I For all v ∈ D(Ih), define Ihv via

Ihv |K = IK (v |K ) =
s∑

i=1
σK ,i (v |K )θK ,i ∀K ∈ Th,

Assuming θK ,i = 0 outside of K , one can write

Ihv =
∑

K∈Th

s∑

i=1
σK ,i (v |K )θK ,i ,

mapping D(Ih) to the approximation space

Wh = {vh ∈ (L1(Ω)) such that ∀K ∈ Th, vh|K ∈ PK}
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H1-Conformal approximation using Lagrangian finite
elemenents

I Conformal subspace of Wh with zero jumps at element faces:

Vh = {vh ∈Wh : ∀n,m,Km ∩ Kn 6= 0⇒ (vh|Km )Km∩Kn = (vh|Kn )Km∩Kn}

I Then: Vh ⊂ H1(Ω).
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Zero jump at interfaces with Lagrangian finite elements

I Assume geometrically conformal mesh
I Assume all faces of K̂ have the same number of nodes s∂

I For any face F = K1 ∩ K2 there are renumberings of the nodes of K1
and K2 such that for i = 1 . . . s∂ , aK1,i = aK2,i

I Then, vh|K1 and vh|K2 match at the interface K1 ∩ K2 if and only if
they match at the common nodes

vh|K1 (aK1,i ) = vh|K2 (aK2,i ) (i = 1 . . . s∂)
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Global degrees of freedom
I Let {a1 . . . aN} =

⋃
K∈Th

{aK ,1 . . . aK ,s}
I Degree of freedom map

j : Th × {1 . . . s} → {1 . . .N}
(K ,m) 7→ j(K ,m) the global degree of freedom number

I Global shape functions φ1, . . . , φN ∈Wh defined by

φi |K (aK ,m) =
{
δmn if ∃n ∈ {1 . . . s} : j(K , n) = i
0 otherwise

I Global degrees of freedom γ1, . . . , γN : Vh → R defined by

γi (vh) = vh(ai )
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Lagrange finite element basis

I {φ1, . . . , φN} is a basis of Vh, and γ1 . . . γN is a basis of L(Vh,R).
Proof:

I {φ1, . . . , φN} are linearly independent: if
∑N

j=1 αjφj = 0 then
evaluation at a1 . . . aN yields that α1 . . . αN = 0.

I Let vh ∈ Vh. It is single valued in a1 . . . aN . Let wh =
∑N

j=1 vh(aj)φj .
Then for all K ∈ Th, vh|K and wh|K coincide in the local nodes
aK ,1 . . . aK ,2, and by unisolvence, vh|K = wh|K .
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Finite element approximation space

I Pk
c,h = Pk

h = {vh ∈ C0(Ω̄h) : ∀K ∈ Th, vk ◦ TK ∈ Pk}
I ‘c’ for continuity across mesh interfaces. There are also discontinuous

FEM spaces which we do not consider here.

d k N = dim Pk
h

1 1 Nv
1 2 Nv + Nel
1 3 Nv + 2Nel
2 1 Nv
2 2 Nv + Ned
2 3 Nv + 2Ned + Nel
3 1 Nv
3 2 Nv + Ned
3 3 Nv + 2Ned + Nf
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P1 global shape functions
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P2 global shape functions

Node based Edge based
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Global Lagrange interpolation operator

Let Vh = Pk
h

Ih : C0(Ω̄h)→ Vh

v 7→
N∑

i=1
v(ai )φi
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Quadrature rules
I Quadrature rule:

∫

K
g(x) dx ≈ |K |

lq∑

l=1
ωlg(ξl )

I ξl : nodes, Gauss points
I ωl : weights
I The largest number k such that the quadrature is exact for

polynomials of order k is called order kq of the quadrature rule, i.e.

∀k ≤ kq,∀p ∈ Pk
∫

K
p(x) dx = |K |

lq∑

l=1
ωlp(ξl )

I Error estimate:

∀φ ∈ Ckq+1(K ),

∣∣∣∣∣∣
1
|K |

∫

K
φ(x) dx−

lq∑

l=1
ωlg(ξl )

∣∣∣∣∣∣

≤ chkq+1
K sup

x∈K ,|α|=kq+1
|∂αφ(x)|
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Some common quadrature rules

Nodes are characterized by the barycentric coordinates
d kq lq Nodes Weights
1 1 1 ( 1

2 ,
1
2 ) 1

1 2 (1, 0), (0, 1) 1
2 ,

1
2

3 2 ( 1
2 +

√
3

6 ,
1
2 −

√
3

6 ), ( 1
2 −

√
3

6 ,
1
2 +

√
3

6 ) 1
2 ,

1
2

5 3 ( 1
2 , ), (

1
2 +
√

3
20 ,

1
2 −
√

3
20 ), ( 1

2 −
√

3
20 ,

1
2 +
√

3
20 ) 8

18 ,
5

18 ,
5

18
2 1 1 ( 1

3 ,
1
3 ,

1
3 ) 1

1 3 (1, 0, 0), (0, 1, 0), (0, 0, 1) 1
3 ,

1
3 ,

1
3

2 3 ( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 ), (0, 1

2 ,
1
2 ) 1

3 ,
1
3 ,

1
3

3 4 ( 1
3 ,

1
3 ,

1
3 ), ( 1

5 ,
1
5 ,

3
5 ), ( 1

5 ,
3
5 ,

1
5 ), ( 3

5 ,
1
5 ,

1
5 ), − 9

16 ,
25
48 ,

25
48 ,

25
48

3 1 1 ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) 1

1 4 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) 1
4 ,

1
4 ,

1
4 ,

1
4

2 4 ( 5−
√

5
20 , 5−

√
5

20 , 5−
√

5
20 , 5+3

√
5

20 ) . . . 1
4 ,

1
4 ,

1
4 ,

1
4
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Weak formulation of homogeneous Dirichlet problem

I Search u ∈ V = H1
0 (Ω) such that

∫

Ω
κ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

I Then,

a(u, v) :=
∫

Ω
κ∇u∇v dx

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).
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Galerkin ansatz

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

I E.g. Vh is the space of P1 Lagrange finite element approximations
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Stiffness matrix for Laplace operator for P1 FEM
I Element-wise calculation:

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx =

∫

Ω

∑

K∈Th

∇φi |K∇φj |K dx

I Standard assembly loop:
for i , j = 1 . . .N do

set aij = 0
end
for K ∈ Th do

for m,n=0. . . d do
smn =

∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn
end

end

I Local stiffness matrix:

SK = (sK ;m,n) =
∫

K
∇λm∇λn dx


