Scientific Computing WS 2018/2019

Lecture 15

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Problems with "strong formulation"

Writing the PDE with divergence and gradient assumes smoothness of coefficients and at least second derivatives for the solution.

- δ may not be continuous what is then $\nabla \cdot (\delta \nabla u)$?
- Approximation of solution u e.g. by piecewise linear functions what does ∇u mean ?
- Spaces of twice, and even once continuously differentiable functions is not well suited:
 - Favorable approximation functions (e.g. piecewise linear ones) are not contained
 - ► Though they can be equipped with norms (⇒ Banach spaces) they have no scalar product ⇒ no Hilbert spaces
 - Not complete: Cauchy sequences of functions may not converge to elements in these spaces

Cauchy sequences of functions

- Let Ω be a Lipschitz domain, let V be a metric space of functions $f:\Omega \to \mathbb{R}$
- Regard sequences of functions $f_n = {f_n}_{n=1}^{\infty} \subset V$
- ▶ A *Cauchy sequence* is a sequence *f_n* of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall m, n > n_0, ||f_n - f_m|| < \varepsilon$$

- All convergent sequences of functions are Cauchy sequences
- ▶ A metric space V is *complete* if all Cauchy sequences f_n of its elements have a limit $f = \lim_{n \to \infty} f_n \in V$ within this space

Completion of a metric space

- ► Let V be a metric space. Its completion is the space V consisting of all elements of V and all possible limits of Cauchy sequences of elements of V.
- This procedure allows to carry over definitions which are applicable only to elements of V to more general ones
- Example: step function

$$f_{\epsilon}(x) = \begin{cases} 1, & x \ge \epsilon \\ -(\frac{x-\epsilon}{\epsilon})^2 + 1, & 0 \le x < \epsilon \\ (\frac{x+\epsilon}{\epsilon})^2 - 1, & -\epsilon \le x < 0 \\ -1, & x < -\epsilon \end{cases} \quad f(x) = \begin{cases} 1, & x \ge 0 \\ -1, & \text{else} \end{cases}$$

Riemann integral \rightarrow Lebesgue integral

- Let Ω be a Lipschitz domain, let $C_c(\Omega)$ be the set of continuous functions $f: \Omega \to \mathbb{R}$ with compact support. (\Rightarrow they vanish on $\partial\Omega$)
- For these functions, the Riemann integral ∫_Ω f(x)dx is well defined, and ||f||_{L¹} := ∫_Ω |f(x)|dx provides a norm, and induces a metric.
- Let $L^1(\Omega)$ be the completion of $C_c(\Omega)$ with respect to the metric defined by the norm $\|\cdot\|_{L^1}$. That means that $L^1(\Omega)$ consists of all elements of $C_c(\Omega)$, and of all limites of Cauchy sequences of elements of $C_c(\Omega)$. Such functions are called *measurable*.
- For any measurable $f = \lim_{n \to \infty} f_n \in L^1(\Omega)$ with $f_n \in C_c(\Omega)$, define the Lebesque integral

$$\int_{\Omega} f(x) \, d\mathbf{x} := \lim_{n \to \infty} \int_{\Omega} f_n(x) \, d\mathbf{x}$$

as the limit of a sequence of Riemann integrals of continuous functions

Examples for Lebesgue integrable (measurable) functions

- Bounded functions which are continuous except in a finite number of points
- Step functions
- Equality of L¹ functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere".
- In particular, L¹ functions whose values differ in a finite number of points are equal almost everywhere.

Spaces of integrable functions

 For 1 ≤ p ≤ ∞, let L^p(Ω) be the space of measureable functions such that

$$\int_{\Omega} |f(x)|^p d\mathbf{x} < \infty$$

equipped with the norm

$$||f||_p = \left(\int_{\Omega} |f(x)|^p d\mathbf{x}\right)^{\frac{1}{p}}$$

- ► These spaces are *Banach spaces*, i.e. complete, normed vector spaces.
- The space L²(Ω) is a *Hilbert space*, i.e. a Banach space equipped with a scalar product (·, ·) whose norm is induced by that scalar product, i.e. ||u|| = √(u, u). The scalar product in L² is

$$(f,g)=\int_{\Omega}f(x)g(x)d\mathbf{x}.$$

Green's theorem for smooth functions

Theorem Let $u, v \in C^1(\overline{\Omega})$ (continuously differentiable). Then for $\mathbf{n} = (n_1 \dots n_d)$ being the outward normal to Ω ,

$$\int_{\Omega} u \partial_i v \, d\mathbf{x} = \int_{\partial \Omega} u v n_i \, d\mathbf{s} - \int_{\Omega} v \partial_i u \, d\mathbf{x}$$

Corollaries

• Let
$$\mathbf{u} = (u_1 \dots u_d)$$
. Then

$$\int_{\Omega} \left(\sum_{i=1}^{d} u_i \partial_i v \right) d\mathbf{x} = \int_{\partial \Omega} v \sum_{i=1}^{d} (u_i n_i) ds - \int_{\Omega} v \sum_{i=1}^{d} (\partial_i u_i) d\mathbf{x} \int_{\Omega} \mathbf{u} \cdot \nabla v \, d\mathbf{x} = \int_{\partial \Omega} v \mathbf{u} \cdot \mathbf{n} \, ds - \int_{\Omega} v \nabla \cdot \mathbf{u} \, d\mathbf{x}$$

• If v = 0 on $\partial \Omega$:

$$\int_{\Omega} u \partial_i v \, d\mathbf{x} = -\int_{\Omega} v \partial_i u \, d\mathbf{x}$$
$$\int_{\Omega} \mathbf{u} \cdot \nabla v \, d\mathbf{x} = -\int_{\Omega} v \nabla \cdot \mathbf{u} \, d\mathbf{x}$$

Weak derivative

- Let L¹_{loc}(Ω) be the set of functions which are Lebesgue integrable on every compact subset K ⊂ Ω. Let C₀[∞](Ω) be the set of functions infinitely differentiable with zero values on the boundary.
- For $u \in L^1_{loc}(\Omega)$ we define $\partial_i u$ by

$$\int_{\Omega} v \partial_i u d\mathbf{x} = - \int_{\Omega} u \partial_i v d\mathbf{x} \quad \forall v \in C_0^{\infty}(\Omega)$$

and $\partial^{lpha} u$ by

$$\int_{\Omega} v \partial^{\alpha} u d\mathbf{x} = (-1)^{|\alpha|} \int_{\Omega} u \partial_i v d\mathbf{x} \quad \forall v \in C_0^{\infty}(\Omega)$$

if these integrals exist.

 For smooth functions, weak derivatives coincide with with the usual derivative

Sobolev spaces

For k≥ 0 and 1 ≤ p < ∞, the Sobolev space W^{k,p}(Ω) is the space functions where all up to the k-th derivatives are in L^p:

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : \partial^{\alpha} u \in L^p(\Omega) \; \forall |\alpha| \le k \}$$

with then norm

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \le k} ||\partial^{\alpha}u||_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

- ► Alternatively, they can be defined as the completion of C[∞] in the norm ||u||_{W^{k,p}(Ω)}
- $W_0^{k,p}(\Omega)$ is the completion of C_0^{∞} in the norm $||u||_{W^{k,p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

Sobolev spaces of square integrable functions $h^{k}(\Omega) = W^{k}(\Omega)$ with the codes product

• $H^k(\Omega) = W^{k,2}(\Omega)$ with the scalar product

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \ d\mathbf{x}$$

is a Hilbert space.

• $H_0^k(\Omega) = W_0^{\dot{k},2}(\Omega)$ with the scalar product

$$(u,v)_{H_0^k(\Omega)} = \sum_{|\alpha|=k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, d\mathbf{x}$$

is a Hilbert space as well.

For this course the most important:

- $L^2(\Omega)$, scalar product $(u, v)_{L^2(\Omega)} = (u, v)_{0,\Omega} = \int_{\Omega} uv \ d\mathbf{x}$
- $H^1(\Omega)$, scalar product $(u, v)_{H^1(\Omega)} = (u, v)_{1,\Omega} = \int_{\Omega} (uv + \nabla u \cdot \nabla v) d\mathbf{x}$
- $H_0^1(\Omega)$, scalar product $(u, v)_{H_0^1(\Omega)} = \int_{\Omega} (\nabla u \cdot \nabla v) d\mathbf{x}$

Inequalities:

$$\begin{split} |(u,v)|^2 &\leq (u,u)(v,v) \quad \text{Cauchy-Schwarz} \\ ||u+v|| &\leq ||u||+||v|| \quad \text{Triangle inequality} \end{split}$$

The notion of function values on the boundary initially is only well defined for continouos functions. So we need an extension of this notion to functions from Sobolev spaces.

Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a bounded linear mapping

$$\operatorname{tr}: H^1(\Omega) \to L^2(\partial \Omega)$$

such that

(i) $\exists c > 0$ such that $\|\operatorname{tr} u\|_{0,\partial\Omega} \leq c \|u\|_{1,\Omega}$ (ii) $\forall u \in C^1(\overline{\Omega})$, tr $u = u|_{\partial\Omega}$

Derivation of weak formulation

- Sobolev space theory provides a convenient framework to formulate existence, uniqueness and approximations of solutions of PDEs.
- Stationary heat conduction equation with homogeneous Dirichlet boundary conditions:

$$-\nabla \cdot \lambda \nabla u(x) = f(x) \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

Multiply and integrate with an arbitrary test function $v \in C_0^{\infty}(\Omega)$ and apply Green's theorem using v = 0 on $\partial \Omega$

$$-\int_{\Omega} (\nabla \cdot \lambda \nabla u) \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathsf{f} \mathbf{v} \, d\mathbf{x}$$
$$\int_{\Omega} \lambda \nabla u \nabla \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathsf{f} \mathbf{v} \, d\mathbf{x}$$

Weak formulation of homogeneous Dirichlet problem

• Search $u \in H^1_0(\Omega)$ (here, tr u = 0) such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

Then,

$$a(u,v) := \int_{\Omega} \lambda
abla u
abla v \, d\mathbf{x}$$

is a self-adjoint bilinear form defined on the Hilbert space H¹₀(Ω).
It is bounded due to Cauchy-Schwarz:

$$|\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v})| = |\lambda| \cdot |\int_{\Omega} \nabla \boldsymbol{u} \nabla \boldsymbol{v} \, d\mathbf{x}| \leq ||\boldsymbol{u}||_{H^{1}_{0}(\Omega)} \cdot ||\boldsymbol{v}||_{H^{1}_{0}(\Omega)}$$

• f(v) = ∫_Ω fv dx is a linear functional on H¹₀(Ω). For Hilbert spaces V
the dual space V' (the space of linear functionals) can be identified
with the space itself.

The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

 $\exists \alpha > 0 : \forall u \in V, a(u, u) \ge \alpha ||u||_V^2.$

Then the problem: find $u \in V$ such that

 $a(u,v)=f(v) \ \forall v \in V$

admits one and only one solution with an a priori estimate

$$||u||_V \le \frac{1}{\alpha} ||f||_{V'}$$

Coercivity of weak formulation

Theorem: Assume $\lambda > 0$. Then the weak formulation of the heat conduction problem: search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

has an unique solution.

Proof: a(u, v) is cocercive:

$$a(u, v) = \int_{\Omega} \lambda \nabla u \nabla u \, d\mathbf{x} = \lambda ||u||^2_{H^1_0(\Omega)}$$

Lecture 14 Slide 34

 \square

Weak formulation of inhomogeneous Dirichlet problem

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

▶ If g is smooth enough, there exists a lifting $u_g \in H^1(\Omega)$ such that $u_g|_{\partial\Omega} = g$. Then, we can re-formulate:

$$-\nabla \cdot \lambda \nabla (u - u_g) = f + \nabla \cdot \lambda \nabla u_g \text{ in } \Omega$$
$$u - u_g = 0 \text{ on } \partial \Omega$$

• Search $u \in H^1(\Omega)$ such that

$$egin{aligned} & u = u_g + \phi \ & \int_\Omega \lambda
abla \phi
abla oldsymbol{v} \, d \mathbf{x} = \int_\Omega extsf{fv} \, d \mathbf{x} + \int_\Omega \lambda
abla u_g
abla v \, orall \mathbf{x} \in H^1_0(\Omega) \end{aligned}$$

Here, necessarily, $\phi \in H^1_0(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

Weak formulation of Robin problem $-\nabla \cdot \lambda \nabla u = f$ in Ω $\lambda \nabla u \cdot \mathbf{n} + \alpha (u - g) = 0 \text{ on } \partial \Omega$ • Multiply and integrate with an arbitrary *test function* from $C_c^{\infty}(\Omega)$: ſ ſ

$$-\int_{\Omega} (\nabla \cdot \lambda \nabla u) v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x}$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} (\lambda \nabla u \cdot \mathbf{n}) v ds = \int_{\Omega} f v \, d\mathbf{x}$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} \alpha g v \, ds$$

Weak formulation of Robin problem II

Let

$$a^{R}(u, v) := \int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} \alpha u v \, ds$$
$$f^{R}(v) := \int_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} \alpha g v \, ds$$

• Search
$$u \in H^1(\Omega)$$
 such that

$$a^{R}(u,v) = f^{R}(v) \ \forall v \in H^{1}(\Omega)$$

• If $\lambda > 0$ and $\alpha > 0$ then $a^{R}(u, v)$ is cocercive.

Neumann boundary conditions

Homogeneous Neumann:

 $\lambda \nabla u \cdot \mathbf{n} = 0 \text{ on } \partial \Omega$

Inhomogeneous Neumann:

$$\lambda \nabla u \cdot \mathbf{n} = g \text{ on } \partial \Omega$$

• Weak formulation: Search $u \in H^1(\Omega)$ such that

$$\int_{\Omega}
abla u
abla v \ d\mathbf{x} = \int_{\partial \Omega} g v \ ds \ orall v \in H^1(\Omega)$$

Not coercive due to the fact that we can add an arbitrary constant to u and a(u, u) stays the same!

Further discussion on boundary conditions

Mixed boundary conditions:

One can have differerent boundary conditions on different parts of the boundary. In particular, if Dirichlet or Robin boundary conditions are applied on at least a part of the boundary of measure larger than zero, the binlinear form becomes coercive.

- Natural boundary conditions: Robin, Neumann These are imposed in a "natural" way in the weak formulation
- Essential boundary conditions: Dirichlet Explicitely imposed on the function space
- Coefficients λ, α... can be functions from Sobolev spaces as long as they do not change integrability of terms in the bilinear forms

The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- For computer representations we need finite dimensional approximations
- The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations
- ► Finite dimensional subspaces of Hilbert spaces are the spans of a set of basis functions, and are Hilbert spaces as well ⇒ e.g. the Lax-Milgram lemma is valid there as well

The Galerkin method II

- Let V be a Hilbert space. Let $a : V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- Continuous problem: search $u \in V$ such that

$$a(u,v) = f(v) \ \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad (\text{Coercivity}) \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad (\text{Galerkin Orthogonality}) \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad (\text{Boundedness}) \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

▶ Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h.

From the Galerkin method to the matrix equation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{j=1}^n u_j \phi_j$
- ▶ In order to search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with
$$A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$$

Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

• Let
$$\Omega = (a, b) \subset \mathbb{R}^1$$

• Let
$$a(u, v) = \int_{\Omega} \lambda(x) \nabla u \nabla v d\mathbf{x}$$
.

- ► Analysis I provides a finite dimensional subspace: the space of sin/cos functions up to a certain frequency ⇒ spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients – e.g. "Spectral Einstein Code"

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $K \subset \mathbb{R}^d$: compact, connected Lipschitz domain with non-empty interior
- ▶ *P*: finite dimensional vector space of functions $p: K \to \mathbb{R}$
- $\Sigma = {\sigma_1 \dots \sigma_s} \subset \mathcal{L}(P, \mathbb{R})$: set of linear forms defined on P called *local degrees of freedom* such that the mapping

$$egin{aligned} &\Lambda_{\Sigma}:P o \mathbb{R}^s\ &p\mapsto (\sigma_1(p)\ldots\sigma_s(p)) \end{aligned}$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P, \mathbb{R})$.

Local shape functions

Due to bijectivity of Λ_Σ, for any finite element {K, P, Σ}, there exists a basis {θ₁...θ_s} ⊂ P such that

$$\sigma_i(heta_j) = \delta_{ij} \quad (1 \leq i, j \leq s)$$

Elements of such a basis are called *local shape functions*

Unisolvence

• Bijectivity of Λ_{Σ} is equivalent to the condition

$$\forall (\alpha_1 \dots \alpha_s) \in \mathbb{R}^s \exists ! p \in P \text{ such that } \sigma_i(p) = \alpha_i \quad (1 \le i \le s)$$

i.e. for any given tuple of values $a = (\alpha_1 \dots \alpha_s)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p) = a$.

• Equivalent to *unisolvence*:

$$\begin{cases} \dim P = |\Sigma| = s \\ \forall p \in P : \sigma_i(p) = 0 (i = 1 \dots s) \Rightarrow p = 0 \end{cases}$$

Lagrange finite elements

A finite element {K, P, Σ} is called Lagrange finite element (or nodal finite element) if there exist a set of points {a₁...a_s} ⊂ K such that

$$\sigma_i(p) = p(a_i) \quad 1 \leq i \leq s$$

$$\theta_j(a_i) = \delta_{ij} \quad (1 \le i, j \le s)$$

Local interpolation operator

• Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\{\theta_1 \dots \theta_s\}$. Let V(K) be a normed vector space of functions $v : K \to \mathbb{R}$ such that

$$\blacktriangleright P \subset V(K)$$

- The linear forms in Σ can be extended to be defined on V(K)
- Iocal interpolation operator

$$egin{aligned} \mathcal{I}_{\mathcal{K}} &: \mathcal{V}(\mathcal{K}) o \mathcal{P} \ & \mathbf{v} \mapsto \sum_{i=1}^s \sigma_i(\mathbf{v}) heta_i \end{aligned}$$

P is invariant under the action of *I_K*, i.e. ∀p ∈ P, *I_K*(p) = p:
 Let p = ∑_{j=1}^s α_jθ_j Then,

$$egin{aligned} \mathcal{I}_{\mathcal{K}}(m{p}) &= \sum_{i=1}^{s} \sigma_i(m{p}) heta_i = \sum_{i=1}^{s} \sum_{j=1}^{s} lpha_j \sigma_i(heta_j) heta_i \ &= \sum_{i=1}^{s} \sum_{j=1}^{s} lpha_j \delta_{ij} heta_i = \sum_{j=1}^{s} lpha_j heta_j \end{aligned}$$

Local Lagrange interpolation operator

• Let
$$V(K) = (\mathcal{C}^0(K))$$

$$\mathcal{I}_{\mathcal{K}}: \mathcal{V}(\mathcal{K}) o \mathcal{P}$$
 $\mathbf{v} \mapsto \mathcal{I}_{\mathcal{K}} \mathbf{v} = \sum_{i=1}^{s} \mathbf{v}(\mathbf{a}_{i}) \mathbf{ heta}_{i}$

Simplices

- Let {a₀...a_d} ⊂ ℝ^d such that the d vectors a₁ − a₀...a_d − a₀ are linearly independent. Then the convex hull K of a₀...a_d is called simplex, and a₀...a_d are called vertices of the simplex.
- Unit simplex: $a_0 = (0...0), a_1 = (0, 1...0) \dots a_d = (0...0, 1).$

$$\mathcal{K} = \left\{ x \in \mathbb{R}^d : x_i \geq 0 \ (i = 1 \dots d) \ \text{and} \ \sum_{i=1}^d x_i \leq 1
ight\}$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- ► *F_i*: face of *K* opposite to *a_i*
- **•** \mathbf{n}_i : outward normal to F_i

Barycentric coordinates

- Let K be a simplex.
- Functions λ_i $(i = 0 \dots d)$:

$$\lambda_i : \mathbb{R}^d \to \mathbb{R}$$

 $x \mapsto \lambda_i(x) = 1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$

where a_j is any vertex of K situated in F_i .

For $x \in K$, one has

$$1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{(a_j - a_i) \cdot \mathbf{n}_i - (x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$$
$$= \frac{(a_j - x) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{\operatorname{dist}(x, F_i)}{\operatorname{dist}(a_i, F_i)}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|/d}{\operatorname{dist}(a_i, F_i)|F_i|/d}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|}{|K|}$$

i.e. $\lambda_i(x)$ is the ratio of the volume of the simplex $K_i(x)$ made up of x and the vertices of F_i to the volume of K.

Barycentric coordinates II

- $\triangleright \ \lambda_i(a_j) = \delta_{ij}$
- $\blacktriangleright \lambda_i(x) = 0 \ \forall x \in F_i$
- $\sum_{i=0}^{d} \lambda_i(x) = 1 \ \forall x \in \mathbb{R}^d$ (just sum up the volumes)
- ► $\sum_{i=0}^{d} \lambda_i(x)(x a_i) = 0 \ \forall x \in \mathbb{R}^d$ (due to $\sum \lambda_i(x)x = x$ and $\sum \lambda_i a_i = x$ as the vector of linear coordinate functions)
- Unit simplex:

$$\lambda_0(x) = 1 - \sum_{i=1}^d x_i$$

$$\lambda_i(x) = x_i \text{ for } 1 \le i \le a$$

Polynomial space \mathbb{P}_k

Space of polynomials in x₁...x_d of total degree ≤ k with real coefficients α_{i1...id}:

$$\mathbb{P}_{k} = \left\{ p(x) = \sum_{\substack{0 \leq i_{1} \dots i_{d} \leq k \\ i_{1} + \dots + i_{d} \leq k}} \alpha_{i_{1} \dots i_{d}} x_{1}^{i_{1}} \dots x_{d}^{i_{d}} \right\}$$

► Dimension:

$$\dim \mathbb{P}_{k} = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$
$$\dim \mathbb{P}_{1} = d+1$$
$$\dim \mathbb{P}_{2} = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

\mathbb{P}_k simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_k$, such that $s = \dim P_k$
- ► For $0 \le i_0 \dots i_d \le k$, $i_0 + \dots + i_d = k$, let the set of nodes be defined by the points $a_{i_1 \dots i_d;k}$ with barycentric coordinates $(\frac{i_0}{k} \dots \frac{i_d}{k})$. Define Σ by $\sigma_{i_1 \dots i_d;k}(p) = p(a_{i_1 \dots i_d;k})$.

\mathbb{P}_1 simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_1$, such that s = d + 1
- ► Nodes ≡ vertices
- Basis functions \equiv barycentric coordinates

\mathbb{P}_2 simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_2$, Nodes \equiv vertices + edge midpoints
- Basis functions:

 $\lambda_i (2\lambda_i - 1), (0 \le i \le d); \quad 4\lambda_i \lambda_j, \quad (0 \le i < j \le d) \quad ("edge \ bubbles")$

General finite elements

- Simplicial finite elements can be defined on triangulations of polygonal domains. During the course we will stick to this case.
- For vector PDEs, one can define finite elements for vector valued functions
- A curved domain Ω may be approximated by a polygonal domain Ω_h which is then triangulated. During the course, we will ignore this difference.
- ► As we have seen, more general elements are possible: cuboids, but also prismatic elements etc.
- Curved geometries are possible. Isoparametric finite elements use the polynomial space to define a mapping of some polyghedral reference element to an element with curved boundary

Conformal triangulations

Let *T_h* be a subdivision of the polygonal domain Ω ⊂ ℝ^d into non-intersecting compact simplices *K_m*, *m* = 1 ... *n_e*:

$$\overline{\Omega} = \bigcup_{m=1}^{n_e} K_m$$

Each simplex can be seen as the image of a affine transformation of a reference (e.g. unit) simplex K:

$$K_m = T_m(\widehat{K})$$

• We assume that it is conformal, i.e. if K_m , K_n have a d-1 dimensional intersection $F = K_m \cap K_n$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_n , K_m such that $F = T_m(\widehat{F}) = T_n(\widehat{F})$ and $T_m|_{\widehat{F}} = T_n|_{\widehat{F}}$

Conformal triangulations II

- ▶ d = 1: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex
- ► d = 2: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge

- ► d = 3: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

Global interpolation operator \mathcal{I}_h

• Let $\{K, P_K, \Sigma_K\}_{K \in \mathcal{T}_h}$ be a triangulation of Ω .

Domain:

 $D(\mathcal{I}_h) = \{ v \in (L^1(\Omega)) \text{ such that } \forall K \in \mathcal{T}_h, v |_K \in V(K) \}$

▶ For all $v \in D(\mathcal{I}_h)$, define $\mathcal{I}_h v$ via

$$\mathcal{I}_h v|_{\mathcal{K}} = \mathcal{I}_{\mathcal{K}}(v|_{\mathcal{K}}) = \sum_{i=1}^s \sigma_{\mathcal{K},i}(v|_{\mathcal{K}}) heta_{\mathcal{K},i} \ \forall \mathcal{K} \in \mathcal{T}_h,$$

Assuming $\theta_{K,i} = 0$ outside of K, one can write

$$\mathcal{I}_h \mathbf{v} = \sum_{K \in \mathcal{T}_h} \sum_{i=1}^s \sigma_{K,i}(\mathbf{v}|_K) \theta_{K,i},$$

mapping $D(\mathcal{I}_h)$ to the approximation space

$$W_h = \{v_h \in (L^1(\Omega)) \text{ such that } \forall K \in \mathcal{T}_h, v_h|_K \in P_K\}$$

H^1 -Conformal approximation using Lagrangian finite elemenents

• Conformal subspace of W_h with zero jumps at element faces:

$$V_h = \{v_h \in W_h : \forall n, m, K_m \cap K_n \neq 0 \Rightarrow (v_h|_{K_m})_{K_m \cap K_n} = (v_h|_{K_n})_{K_m \cap K_n} \}$$

• Then: $V_h \subset H^1(\Omega)$.

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- For any face F = K₁ ∩ K₂ there are renumberings of the nodes of K₁ and K₂ such that for i = 1...s[∂], a_{K1,i} = a_{K2,i}
- ► Then, v_h|_{K1} and v_h|_{K2} match at the interface K₁ ∩ K₂ if and only if they match at the common nodes

$$v_h|_{K_1}(a_{K_1,i}) = v_h|_{K_2}(a_{K_2,i}) \quad (i = 1 \dots s^{\partial})$$

Global degrees of freedom

• Let
$$\{a_1 \ldots a_N\} = \bigcup_{K \in \mathcal{T}_h} \{a_{K,1} \ldots a_{K,s}\}$$

Degree of freedom map

$$\begin{split} j &: \mathcal{T}_h \times \{1 \dots s\} \to \{1 \dots N\} \\ & (K,m) \mapsto j(K,m) \text{ the global degree of freedom number} \end{split}$$

▶ Global shape functions $\phi_1, \ldots, \phi_N \in W_h$ defined by

$$\phi_i|_{\mathcal{K}}(\mathbf{a}_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

▶ Global degrees of freedom $\gamma_1, \ldots, \gamma_N : V_h \to \mathbb{R}$ defined by

$$\gamma_i(\mathbf{v}_h) = \mathbf{v}_h(\mathbf{a}_i)$$

Lagrange finite element basis

- $\{\phi_1, \ldots, \phi_N\}$ is a basis of V_h , and $\gamma_1 \ldots \gamma_N$ is a basis of $\mathcal{L}(V_h, \mathbb{R})$. **Proof:**
 - {φ₁,...,φ_N} are linearly independent: if ∑^N_{j=1} α_jφ_j = 0 then evaluation at a₁... a_N yields that α₁... α_N = 0.
 - ▶ Let $v_h \in V_h$. It is single valued in $a_1 \ldots a_N$. Let $w_h = \sum_{j=1}^N v_h(a_j)\phi_j$. Then for all $K \in \mathcal{T}_h$, $v_h|_K$ and $w_h|_K$ coincide in the local nodes $a_{K,1} \ldots a_{K,2}$, and by unisolvence, $v_h|_K = w_h|_K$.

Finite element approximation space

$$\blacktriangleright P_{c,h}^k = P_h^k = \{ v_h \in \mathcal{C}^0(\bar{\Omega}_h) : \forall K \in \mathcal{T}_h, v_k \circ \mathcal{T}_K \in \mathbb{P}^k \}$$

 'c' for continuity across mesh interfaces. There are also discontinuous FEM spaces which we do not consider here.

	-		-
	d	k $N = \dim P_h^k$	
1	1	N _v	-
1	2	$N_{v} + N_{el}$	
1	3	$N_v + 2N_{el}$	
2	1	N_{ν}	
2	2	$N_v + N_{ed}$	
2	3	$N_v + 2N_{ed} + N_{ed}$	N_e
3	1	N_{v}	
3	2	$N_v + N_{ed}$	
3	3	$N_v + 2N_{ed} + N_{ed}$	N_{f}

${\cal P}^1$ global shape functions

P^2 global shape functions

Node based

Edge based

Global Lagrange interpolation operator

Let $V_h = P_h^k$

$$egin{aligned} \mathcal{I}_h &: \mathcal{C}^0(ar{\Omega}_h) o V_h \ v &\mapsto \sum_{i=1}^N v(a_i) \phi_i \end{aligned}$$

Quadrature rules

Quadrature rule:

$$\int_{\mathcal{K}} g(x) \, d\mathbf{x} pprox |\mathcal{K}| \sum_{l=1}^{l_q} \omega_l g(\xi_l)$$

- ξ_I : nodes, Gauss points
- $\blacktriangleright \omega_l$: weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_q of the quadrature rule, i.e.

$$orall k \leq k_q, orall p \in \mathbb{P}^k \int_K p(x) \, d\mathbf{x} = |K| \sum_{l=1}^{l_q} \omega_l p(\xi_l)$$

Error estimate:

$$\forall \phi \in \mathcal{C}^{k_q+1}(\mathcal{K}), \left| \frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} \phi(x) \, d\mathbf{x} - \sum_{l=1}^{l_q} \omega_l g(\xi_l) \right| \\ \leq ch_{\mathcal{K}}^{k_q+1} \sup_{x \in \mathcal{K}, |\alpha| = k_q+1} |\partial^{\alpha} \phi(x)|$$

Some common quadrature rules

d	k _q	lq	Nodes	Weights
1	1	1	$\left(\frac{1}{2},\frac{1}{2}\right)$	1
	1	2	$(\tilde{1}, \tilde{0}), (0, 1)$	$\frac{1}{2}, \frac{1}{2}$
	3	2	$(rac{1}{2}+rac{\sqrt{3}}{6},rac{1}{2}-rac{\sqrt{3}}{6}),(rac{1}{2}-rac{\sqrt{3}}{6},rac{1}{2}+rac{\sqrt{3}}{6})$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$(\frac{1}{2},), (\frac{1}{2}+\sqrt{\frac{3}{20}}, \frac{1}{2}-\sqrt{\frac{3}{20}}), (\frac{1}{2}-\sqrt{\frac{3}{20}}, \frac{1}{2}+\sqrt{\frac{3}{20}})$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$	1
	1	3	(1, 0, 0), (0, 1, 0), (0, 0, 1)	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right), \left(\frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right), \left(\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right)$	$-\frac{9}{16}, \frac{25}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$\left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$	1
	1	4	(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3\sqrt{5}}{20}\right)\dots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Nodes are characterized by the barycentric coordinates

Weak formulation of homogeneous Dirichlet problem

• Search $u \in V = H_0^1(\Omega)$ such that

$$\int_{\Omega} \kappa \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

Then,

$$a(u,v) := \int_{\Omega} \kappa \nabla u \nabla v \, d\mathbf{x}$$

is a self-adjoint bilinear form defined on the Hilbert space $H_0^1(\Omega)$.

Galerkin ansatz

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem ≡ Galerkin approximation: Search u_h ∈ V_h such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

 \triangleright E.g. V_h is the space of P1 Lagrange finite element approximations

Stiffness matrix for Laplace operator for P1 FEM

Element-wise calculation:

$$m{a}_{ij} = m{a}(\phi_i, \phi_j) = \int_\Omega
abla \phi_i
abla \phi_j \ m{d} m{x} = \int_\Omega \sum_{K \in \mathcal{T}_h}
abla \phi_i |_K
abla \phi_j |_K \ m{d} m{x}$$

Standard assembly loop:

for
$$i, j = 1 \dots N$$
 do
| set $a_{ij} = 0$

end

for
$$K \in \mathcal{T}_h$$
 do
for $m, n=0...d$ do
 $s_{mn} = \int_K \nabla \lambda_m \nabla \lambda_n d\mathbf{x}$
 $a_{j_{dof}(K,m), j_{dof}(K,n)} = a_{j_{dof}(K,m), j_{dof}(K,n)} + s_{mn}$
end

Local stiffness matrix:

$$S_{\mathcal{K}}=(s_{\mathcal{K};m,n})=\int_{\mathcal{K}}\nabla\lambda_{m}\nabla\lambda_{n}\ d\mathbf{x}$$