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Partial Differential Equations
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Differential operators: notations

Given: domain Ω ⊂ Rd .
I Dot product: for x, y ∈ Rd , x · y =

∑d
i=1 xiyi

I Bounded domain Ω ⊂ Rd , with piecewise smooth boundary
I Scalar function u : Ω→ R

I Vector function v =




v1
...

vd


 : Ω→ Rd

I Write ∂iu = ∂u
∂xi

I For a multiindex α = (α1 . . . αd ), let
I |α| = α1 + · · ·+ αd

I ∂αu = ∂|α|

∂xα1
1 ·····∂xαd

d
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Basic Differential operators

I Gradient of scalar function u : Ω→ R

grad = ∇ =



∂1
...
∂d


: u 7→ ∇u =



∂1u

...
∂du




I Divergence of vector function v = Ω→ Rd

div = ∇· : v =




v1
...

vd


 7→ ∇ · v = ∂1v1 + · · ·+ ∂dvd

I Laplace operator of scalar function u : Ω→ R
∆ = div · grad = ∇ · ∇: u 7→ ∆u = ∂11u + · · ·+ ∂ddu
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Lipschitz domains
Definition:

I Let D ⊂ Rn. A function f : D → Rm is called Lipschitz continuous if
there exists c > 0 such that ‖f (x)− f (y)‖ ≤ c‖x − y‖

I A hypersurface in Rn is a graph if for some k it can be represented as

xk = f (x1, . . . , xk−1, xk+1, . . . , xn)

defined on some domain D ⊂ Rn−1

I A domain Ω ⊂ Rn is a Lipschitz domain if for all x ∈ ∂Ω, there exists
a neigborhood of x on ∂Ω which can be represented as the graph of a
Lipschitz continuous function.

Corollaries
I Boundaries of Lipschitz domains are continuous
I Boundaries of Lipschitz domains have no cusps

(e.g. the graph of y =
√
|x | has a cusp at x = 0)

I Polygonal domains are Lipschitz
I Standard PDE calculus happens in Lipschitz domains
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and v : Ω→ Rd be a
continuously differentiable vector function. Let n be the outward normal to
Ω. Then, ∫

Ω
∇ · v dx =

∫

∂Ω
v · n ds

�
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Species balance over an REV
I Let u(x, t) : Ω× [0,T ]→ R be the local amount of some species.
I Assume representative elementary volume (REV) ω ⊂ Ω
I Subinterval in time (t0, t1) ⊂ (0,T )
I −δ∇u · n describes the flux of these species trough ∂ω, where δ is

some transfer coefficient
I Let f (x, t) be some local source of species. Then the flux through the

boundary is balanced by the change of the amount of species in ω
and the source strength:

0 =
∫

ω

(u(x, t1)− u(x, t0)) dx−
∫ t1

t0

∫

∂ω

δ∇u · n ds dt −
∫ t1

t0

∫

ω

f (x, t) ds

I Using Gauss’ theorem, rewrite this as

0 =
∫ t1

t0

∫

ω

∂tu(x, t) dx dt −
∫ t1

t0

∫

ω

∇ · (δ∇u) dx dt −
∫ t1

t0

∫

ω

f (x, t) ds

I True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒ parabolic second order PDE

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)
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Second order PDEs

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)

For solvability we need additional conditions:
I Initial condition in the time dependent case: u(x , 0) = u0(x)
I Boundary conditions: behavior of solution on ∂Ω ?
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Second order parabolic PDEs

I Heat conduction:
u: temperature
δ = λ: heat conduction coefficient
f : heat source
flux=−λ∇u: “Fourier law”

I Diffusion of molecules in a given medium
u: concentration
δ = D
diffusion coefficient
f : species source
flux=−D∇u: “Fick’s law”
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Second order elliptic PDEs

Stationary case: ∂tu = 0 ⇒ second order elliptic PDE

−∇ · (δ∇u(x)) = f (x)

I Stationary heat conduction, stationary diffusion
I Incompressible flow in saturated porous media: u: pressure
δ = k: permeability, flux=−k∇u: “Darcy’s law”

I Electrical conduction: u: electric potential
δ = σ: electric conductivity
flux=−σ∇u ≡ current density: “Ohms’s law”

I Poisson equation (electrostatics in a constant magnetic field):
u: electrostatic potential, ∇u: electric field,
δ = ε: dielectric permittivity, f : charge density
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Second order PDEs: boundary conditions
I Combine PDE in the interior with boundary conditions on variable u

and/or or normal flux δ∇u · n
I Assume ∂Ω = ∪NΓ

i=1Γi is the union of a finite number of
non-intersecting subsets Γi which are locally Lipschitz.

I On each Γi , specify one of
I Dirichlet (“first kind”): let gi : Γi → R (homogeneous for gi = 0)

u(x) = uΓi (x) for x ∈ Γi

I Neumann (“second kind”): Let gi : Γi → R (homogeneus for gi = 0)

δ∇u(x) · n = gi (x) for x ∈ Γi

I Robin (“third kind”): let αi , gi : Γi → R

δ∇u(x) · n + αi (x) (u(x)− gi (x)) = 0 for x ∈ Γi

I Boundary functions may be time dependent.
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The Dirichlet penalty method

I We will see later that the implementation of Dirichlet boundary may
be connected with certain technical difficulties

I The Dirichlet penalty method provides a simple way to avoid these
difficulties: let ε > 0:

δ∇uε(x) · n + 1
ε

(uε(x)− gi (x)) = 0 for x ∈ Γi

I It is conceivable that for ε→ 0, uε converges to u with

u(x) = gi (x) for x ∈ Γi

I Proper way of handling the parameter leads to exact fulfillment of
Dirichlet boundary condition in the floating point precision
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Constructing control volumes I

I Assume Ω is a polygon
I Subdivide the domain Ω into a finite number of control volumes :

Ω̄ =
⋃

k∈N ω̄k such that
I ωk are open (not containing their boundary) convex domains
I ωk ∩ ωl = ∅ if ωk 6= ωl
I σkl = ω̄k ∩ ω̄l are either empty, points or straight lines
I we will write |σkl | for the length
I if |σkl | > 0 we say that ωk , ωl are neighbours
I neighbours of ωk : Nk = {l ∈ N : |σkl | > 0}

I To each control volume ωk assign a collocation point: xk ∈ ω̄k such
that

I admissibility condition:
if l ∈ Nk then the line xkxl is orthogonal to σkl

I placement of boundary unknowns:
if ωk is situated at the boundary, i.e. for |∂ωk ∩ ∂Ω| > 0, then
xk ∈ ∂Ω, and ∂ωk ∩ ∂Ω = ∪NΓ

i=1γi,k ( where γi,k = ∅ is possible).
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Constructing control volumes II

xk xl
σklωk

ωlnkl

We know how to construct such a partitioning:
I obtain a boundary conforming Delaunay triangulation with vertices xk
I construct restricted Voronoi cells ωk with xk ∈ ωk
I Delaunay triangulation gives connected neigborhood graph of Voronoi

cells
I Admissibility condition fulfilled in a natural way
I Boundary placement of triangle nodes
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Discretization ansatz for Robin boundary value problem
Given constants κ > 0, αi ≥ 0 (i = 1 . . .NΓ)

−∇ · κ∇u = f in Ω
κ∇u · n + αi (u − gi ) = 0 on Γi (i = 1 . . .NΓ) (*)

I Given control volume ωk , k ∈ N , integrate

0 =
∫

ωk

(−∇ · κ∇u − f ) dω

= −
∫

∂ωk

κ∇u · nkdγ −
∫

ωk

fdω (Gauss)

= −
∑

l∈Nk

∫

σkl

κ∇u · nkldγ −
NΓ∑

i=1

∫

γik

κ∇u · ndγ −
∫

ωk

fdω

≈
∑

L∈Nk

κ
|σkl |
hkl

(uk − ul )
︸ ︷︷ ︸
∇u·n≈ ul−uk

hkl

+
NΓ∑

i=1
|γi,k |αi (uk − gi,k)︸ ︷︷ ︸

bound. cond. (*)

− |ωk |fk︸ ︷︷ ︸
quadrature

I Here, uk = u(xk), gi,k = gi (xk), fk = f (xk)
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Properties of discretization matrix

I N = |N | equations (one for each control volume ωk)
I N = |N | unknowns (one for each collocation point xk ∈ ωk)
I weighted connected edge graph of triangulation ≡ N × N irreducible

sparse discretization matrix A = (akl ) :

akl =





∑
l′∈Nk

κ |σkl′ |
hkl′

+
∑NΓ

i=1 |γi,k |αi , l = k
−κσkl

hkl
, l ∈ Nk

0, else

I A is irreducibly diagonally dominant if at least for one i , |γi,k |αi > 0
I Main diagonal entries are positive, off diagonal entries are non-positive
I ⇒ A has the M-property.
I A is symmetric ⇒ A is positive definite
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Matrix assembly: summary

I Sufficient to keep list of triangles, boundary segments – they typically
come out of the mesh generator

I Be able to calculate triangular contributions to form factors: |ωk ∩ τ |,
|σkl ∩ τ | – we need only the numbers, and not the construction of the
geometrical objects

I O(N) operation, one loop over triangles, one loop over boundary
elements
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Interpretation of results

I One solution value per control volume ωk allocated to the collocation
point xk ⇒ piecewise constant function on collection of control
volumes

I But: xk are at the same time nodes of the corresponding Delaunay
mesh ⇒ representation as piecewise linear function on triangles
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Convergence

I With finer discretization meshes we expect closer approximation to
solution of continuous problem

I Current convergence theory for finite volume methods uses rather
deep results from functional analysis: sequences of piecewise constant
functions converging to differentiable solutions

I On structured grids, investigations based on Taylor expansions are
possible

I How to find a simple ansatz for a convergence theory ?
I Formulation of PDE in some space V
I Approximation by elements of a subspace Vh
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Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

I δ may not be continuous – what is then ∇ · (δ∇u)?
I Approximation of solution u e.g. by piecewise linear functions what

does ∇u mean ?
I Spaces of twice, and even once continuously differentiable functions is

not well suited:
I Favorable approximation functions (e.g. piecewise linear ones) are not

contained
I Though they can be equipped with norms (⇒ Banach spaces) they

have no scalar product ⇒ no Hilbert spaces
I Not complete: Cauchy sequences of functions may not converge to

elements in these spaces
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Cauchy sequences of functions

I Let Ω be a Lipschitz domain, let V be a metric space of functions
f : Ω→ R

I Regard sequences of functions fn = {fn}∞n=1 ⊂ V
I A Cauchy sequence is a sequence fn of functions where the norm of

the difference between two elements can be made arbitrarily small by
increasing the element numbers:

∀ε > 0 ∃n0 ∈ N : ∀m, n > n0, ||fn − fm|| < ε

I All convergent sequences of functions are Cauchy sequences
I A metric space V is complete if all Cauchy sequences fn of its

elements have a limit f = lim
n→∞

fn ∈ V within this space
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Completion of a metric space
I Let V be a metric space. Its completion is the space V̄ consisting of

all elements of V and all possible limits of Cauchy sequences of
elements of V .

I This procedure allows to carry over definitions which are applicable
only to elements of V to more general ones

I Example: step function

fε(x) =





1, x ≥ ε
−( x−ε

ε )2 + 1, 0 ≤ x < ε

( x+ε
ε )2 − 1, −ε ≤ x < 0

−1, x < −ε

ε→0−→ f (x) =
{

1, x ≥ 0
−1, else
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Riemann integral → Lebesgue integral

I Let Ω be a Lipschitz domain, let Cc(Ω) be the set of continuous
functions f : Ω→ R with compact support. (⇒ they vanish on ∂Ω)

I For these functions, the Riemann integral
∫

Ω f (x)dx is well defined,
and ‖f ‖L1 :=

∫
Ω |f (x)|dx provides a norm, and induces a metric.

I Let L1(Ω) be the completion of Cc(Ω) with respect to the metric
defined by the norm ‖·‖L1 . That means that L1(Ω) consists of all
elements of Cc(Ω), and of all limites of Cauchy sequences of elements
of Cc(Ω). Such functions are called measurable.

I For any measurable f = lim
n→∞

fn ∈ L1(Ω) with fn ∈ Cc(Ω), define the
Lebesque integral

∫

Ω
f (x) dx := lim

n→∞

∫

Ω
fn(x) dx

as the limit of a sequence of Riemann integrals of continuous
functions
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Examples for Lebesgue integrable (measurable) functions

I Bounded functions which are continuous except in a finite number of
points

I Step functions
I Equality of L1 functions is elusive as they are not necessarily

continuous: best what we can say is that they are equal “almost
everywhere”.

I In particular, L1 functions whose values differ in a finite number of
points are equal almost everywhere.
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Spaces of integrable functions
I For 1 ≤ p ≤ ∞, let Lp(Ω) be the space of measureable functions

such that

∫

Ω
|f (x)|pdx <∞

equipped with the norm

||f ||p =
(∫

Ω
|f (x)|pdx

) 1
p

I These spaces are Banach spaces, i.e. complete, normed vector spaces.
I The space L2(Ω) is a Hilbert space, i.e. a Banach space equipped

with a scalar product (·, ·) whose norm is induced by that scalar
product, i.e. ||u|| =

√
(u, u). The scalar product in L2 is

(f , g) =
∫

Ω
f (x)g(x)dx.



Lecture 14 Slide 26

Green’s theorem for smooth functions
Theorem Let u, v ∈ C 1(Ω) (continuously differentiable). Then for
n = (n1 . . . nd ) being the outward normal to Ω,

∫

Ω
u∂i v dx =

∫

∂Ω
uvni ds −

∫

Ω
v∂i u dx

Corollaries
I Let u = (u1 . . . ud ). Then

∫

Ω
(

d∑

i=1
ui∂i v) dx =

∫

∂Ω
v

d∑

i=1
(ui ni ) ds −

∫

Ω
v

d∑

i=1
(∂i ui ) dx

∫

Ω
u · ∇v dx =

∫

∂Ω
vu · n ds −

∫

Ω
v∇ · u dx

I If v = 0 on ∂Ω:
∫

Ω
u∂i v dx = −

∫

Ω
v∂i u dx

∫

Ω
u · ∇v dx = −

∫

Ω
v∇ · u dx
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Weak derivative

I Let L1
loc(Ω) be the set of functions which are Lebesgue integrable on

every compact subset K ⊂ Ω. Let C∞0 (Ω) be the set of functions
infinitely differentiable with zero values on the boundary.

I For u ∈ L1
loc(Ω) we define ∂i u by

∫

Ω
v∂i udx = −

∫

Ω
u∂i vdx ∀v ∈ C∞0 (Ω)

and ∂αu by

∫

Ω
v∂αudx = (−1)|α|

∫

Ω
u∂i vdx ∀v ∈ C∞0 (Ω)

if these integrals exist.
I For smooth functions, weak derivatives coincide with with the usual

derivative
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Sobolev spaces
I For k ≥ 0 and 1 ≤ p <∞, the Sobolev space W k,p(Ω) is the space

functions where all up to the k-th derivatives are in Lp:

W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ k}

with then norm

||u||W k,p(Ω) =


∑

|α|≤k
||∂αu||pLp(Ω)




1
p

I Alternatively, they can be defined as the completion of C∞ in the
norm ||u||W k,p(Ω)

I W k,p
0 (Ω) is the completion of C∞0 in the norm ||u||W k,p(Ω)

I The Sobolev spaces are Banach spaces.
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Sobolev spaces of square integrable functions
I Hk(Ω) = W k,2(Ω) with the scalar product

(u, v)Hk (Ω) =
∑

|α|≤k

∫

Ω
∂αu∂αv dx

is a Hilbert space.
I Hk

0 (Ω) = W k,2
0 (Ω) with the scalar product

(u, v)Hk
0 (Ω) =

∑

|α|=k

∫

Ω
∂αu∂αv dx

is a Hilbert space as well.
I For this course the most important:

I L2(Ω), scalar product (u, v)L2(Ω) = (u, v)0,Ω =
∫

Ω uv dx
I H1(Ω), scalar product (u, v)H1(Ω) = (u, v)1,Ω =

∫
Ω(uv +∇u · ∇v) dx

I H1
0 (Ω), scalar product (u, v)H1

0 (Ω) =
∫

Ω(∇u · ∇v) dx
I Inequalities:

|(u, v)|2 ≤ (u, u)(v , v) Cauchy-Schwarz
||u + v || ≤ ||u||+ ||v || Triangle inequality
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A trace theorem

The notion of function values on the boundary initially is only well defined
for continouos functions. So we need an extension of this notion to
functions from Sobolev spaces.
Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a
bounded linear mapping

tr : H1(Ω)→ L2(∂Ω)

such that
(i) ∃c > 0 such that ‖tr u‖0,∂Ω ≤ c‖u‖1,Ω
(ii) ∀u ∈ C 1(Ω̄), tr u = u|∂Ω

�
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Derivation of weak formulation
I Sobolev space theory provides a convenient framework to formulate

existence, uniqueness and approximations of solutions of PDEs.
I Stationary heat conduction equation with homogeneous Dirichlet

boundary conditions:

−∇ · λ∇u(x) = f (x) in Ω
u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function v ∈ C∞0 (Ω) and
apply Green’s theorem using v = 0 on ∂Ω

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx
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Weak formulation of homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) (here, tr u = 0) such that
∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

I Then,

a(u, v) :=
∫

Ω
λ∇u∇v dx

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

I It is bounded due to Cauchy-Schwarz:

|a(u, v)| = |λ| · |
∫

Ω
∇u∇v dx| ≤ ||u||H1

0 (Ω) · ||v ||H1
0 (Ω)

I f (v) =
∫

Ω fv dx is a linear functional on H1
0 (Ω). For Hilbert spaces V

the dual space V ′ (the space of linear functionals) can be identified
with the space itself.
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The Lax-Milgram lemma
Theorem: Let V be a Hilbert space. Let a : V × V → R be a self-adjoint
bilinear form, and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤
1
α
||f ||V ′

�
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Coercivity of weak formulation

Theorem: Assume λ > 0. Then the weak formulation of the heat
conduction problem: search u ∈ H1

0 (Ω) such that

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

has an unique solution.
Proof: a(u, v) is cocercive:

a(u, v) =
∫

Ω
λ∇u∇u dx = λ||u||2H1

0 (Ω)

�



Lecture 14 Slide 35

Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ∇u = f in Ω
u = g on ∂Ω

I If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that
ug |∂Ω = g . Then, we can re-formulate:

−∇ · λ∇(u − ug ) = f +∇ · λ∇ug in Ω
u − ug = 0 on ∂Ω

I Search u ∈ H1(Ω) such that

u = ug + φ∫

Ω
λ∇φ∇v dx =

∫

Ω
fv dx +

∫

Ω
λ∇ug∇v ∀v ∈ H1

0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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Weak formulation of Robin problem

−∇ · λ∇u = f in Ω
λ∇u · n + α(u − g) = 0 on ∂Ω

I Multiply and integrate with an arbitrary test function from C∞c (Ω):

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx +

∫

∂Ω
(λ∇u · n)vds =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx +

∫

∂Ω
αuv ds =

∫

Ω
fv dx +

∫

∂Ω
αgv ds
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Weak formulation of Robin problem II

I Let

aR(u, v) :=
∫

Ω
λ∇u∇v dx +

∫

∂Ω
αuv ds

f R(v) :=
∫

Ω
fv dx +

∫

∂Ω
αgv ds

I Search u ∈ H1(Ω) such that

aR(u, v) = f R(v) ∀v ∈ H1(Ω)

I If λ > 0 and α > 0 then aR(u, v) is cocercive.
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Neumann boundary conditions
I Homogeneous Neumann:

λ∇u · n = 0 on ∂Ω

I Inhomogeneous Neumann:

λ∇u · n = g on ∂Ω

I Weak formulation: Search u ∈ H1(Ω) such that

∫

Ω
∇u∇v dx =

∫

∂Ω
gv ds ∀v ∈ H1(Ω)

Not coercive due to the fact that we can add an arbitrary constant to
u and a(u, u) stays the same!
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Further discussion on boundary conditions

I Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero,
the binlinear form becomes coercive.

I Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

I Essential boundary conditions: Dirichlet
Explicitely imposed on the function space

I Coefficients λ, α . . . can be functions from Sobolev spaces as long as
they do not change integrability of terms in the bilinear forms
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The Dirichlet penalty method
I Robin problem: search uα ∈ H1(Ω) such that

∫

Ω
λ∇uα∇v dx +

∫

∂Ω
αuαv ds =

∫

Ω
fv dx +

∫

∂Ω
αgv ds ∀v ∈ H1(Ω)

I Dirichlet problem: search u ∈ H1(Ω) such that

u = ug + φ where ug |∂Ω = g∫

Ω
λ∇φ∇v dx =

∫

Ω
fv dx +

∫

Ω
λ∇ug∇v dx ∀v ∈ H1

0 (Ω)

I Penalty limit:

lim
α→∞

uα = u

I Formally, the convergence rate is quite low
I Implementing Dirichlet boundary conditions directly leads to a

number of technical problems
I Implementing the penalty method is technically much simpler
I Proper way of handling the parameter leads to exact fulfillment of

Dirichlet boundary condition in the floating point precision
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The Finite Element Method
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The Galerkin method I

I Weak formulations “live” in Hilbert spaces which essentially are
infinite dimensional

I For computer representations we need finite dimensional
approximations

I The Galerkin method and its modifications provide a general scheme
for the derivation of finite dimensional appoximations

I Finite dimensional subspaces of Hilbert spaces are the spans of a set
of basis functions, and are Hilbert spaces as well ⇒ e.g. the
Lax-Milgram lemma is valid there as well
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The Galerkin method II
I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint

bilinear form, and f a linear functional on V . Assume a is coercive
with coercivity constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma
I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)
= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace Vh.
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From the Galerkin method to the matrix equation
I Let φ1 . . . φn be a set of basis functions of Vh.
I Then, we have the representation uh =

∑n
j=1 ujφj

I In order to search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

it is actually sufficient to require

a(uh, φi ) = f (φi ) (i = 1 . . . n)

a
( n∑

j=1
ujφj , φi

)
= f (φi ) (i = 1 . . . n)

n∑

j=1
a(φj , φi )uj = f (φi ) (i = 1 . . . n)

AU = F

with A = (aij), aij = a(φi , φj), F = (fi ), fi = F (φi ), U = (ui ).
I Matrix dimension is n × n. Matrix sparsity ?
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Obtaining a finite dimensional subspace

I Let Ω = (a, b) ⊂ R1

I Let a(u, v) =
∫

Ω λ(x)∇u∇vdx.
I Analysis I provides a finite dimensional subspace: the space of sin/cos

functions up to a certain frequency ⇒ spectral method
I Ansatz functions have global support ⇒ full n × n matrix
I OTOH: rather fast convergence for smooth data
I Generalization to higher dimensions possible
I Big problem in irregular domains: we need the eigenfunction basis of

some operator. . .
I Spectral methods are successful in cases where one has regular

geometry structures and smooth/constant coefficients – e.g.
“Spectral Einstein Code”
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The finite element idea
I Choose basis functions with local support. In this case, the matrix

becomes sparse, as only integrals of basis function pairs with
overlapping support contribute to the matrix.

I Linear finite elements in Ω = (a, b) ⊂ R1:
I Partition a = x1 ≤ x2 ≤ · · · ≤ xn = b
I Basis functions (for i = 1 . . . n)

φi (x) =





x−xi−1
xi−xi−1

, i > 1, x ∈ (xi−1, xi )
xi+1−x
xi+1−xi

, i < n, x ∈ (xi , xi+1)
0, else

I Any function uh ∈ Vh = span{φ1 . . . φn} is piecewise linear, and the
coefficients in the representation uh =

∑n
i=1 uiφi are the values

uh(xi ).
I Fortunately, we are working with a weak formulation, and weak

derivatives are well defined !
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1D matrix elements for heat equation
I Assume (λ = 1, xi+1 − xi = h)

a(u, v) =
∫ b

a
∇u∇v dx + αu(a)v(a) + αu(b)v(b)

I The integrals are nonzero for i = j , i + 1 = j , i − 1 = j
I Let j = i + 1

∫

Ω
∇φi∇φjdx =

∫ xi+1

xi

∇φi∇φjdx = −
∫ xi+1

xi

1
h2 dx = −1

h dx

I Similarly, for j = i + 1,
∫

Ω∇φi∇φjdx = − 1
h

I For 1 < i < N:
∫

Ω
∇φi∇φi dx =

∫ xi+1

xi−1

∇φi∇φi dx =
∫ xi+1

xi−1

1
h2 dx = 2

h

I For i = 1 or i = N, a(φi , φi ) = 1
h + α
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1D matrix elements II

Adding the boundary integrals yields

A =




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α




. . . the same matrix as for the finite difference and finite volume methods


