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Partial Differential Equations
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Differential operators: notations

Given: domain Ω ⊂ Rd .
I Dot product: for x, y ∈ Rd , x · y =

∑d
i=1 xiyi

I Bounded domain Ω ⊂ Rd , with piecewise smooth boundary
I Scalar function u : Ω→ R

I Vector function v =




v1
...

vd


 : Ω→ Rd

I Write ∂iu = ∂u
∂xi

I For a multiindex α = (α1 . . . αd ), let
I |α| = α1 + · · ·+ αd

I ∂αu = ∂|α|

∂xα1
1 ·····∂xαd

d
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Basic Differential operators

I Gradient of scalar function u : Ω→ R

grad = ∇ =



∂1
...
∂d


: u 7→ ∇u =



∂1u

...
∂du




I Divergence of vector function v = Ω→ Rd

div = ∇· : v =




v1
...

vd


 7→ ∇ · v = ∂1v1 + · · ·+ ∂dvd

I Laplace operator of scalar function u : Ω→ R
∆ = div · grad = ∇ · ∇: u 7→ ∆u = ∂11u + · · ·+ ∂ddu
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Lipschitz domains
Definition:

I Let D ⊂ Rn. A function f : D → Rm is called Lipschitz continuous if
there exists c > 0 such that ‖f (x)− f (y)‖ ≤ c‖x − y‖

I A hypersurface in Rn is a graph if for some k it can be represented as

xk = f (x1, . . . , xk−1, xk+1, . . . , xn)

defined on some domain D ⊂ Rn−1

I A domain Ω ⊂ Rn is a Lipschitz domain if for all x ∈ ∂Ω, there exists
a neigborhood of x on ∂Ω which can be represented as the graph of a
Lipschitz continuous function.

Corollaries
I Boundaries of Lipschitz domains are continuous
I Boundaries of Lipschitz domains have no cusps

(e.g. the graph of y =
√
|x | has a cusp at x = 0)

I Polygonal domains are Lipschitz
I Standard PDE calculus happens in Lipschitz domains
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and v : Ω→ Rd be a
continuously differentiable vector function. Let n be the outward normal to
Ω. Then, ∫

Ω
∇ · v dx =

∫

∂Ω
v · n ds

�
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Species balance over an REV
I Let u(x, t) : Ω× [0,T ]→ R be the local amount of some species.
I Assume representative elementary volume (REV) ω ⊂ Ω
I Subinterval in time (t0, t1) ⊂ (0,T )
I −δ∇u · n describes the flux of these species trough ∂ω, where δ is

some transfer coefficient
I Let f (x, t) be some local source of species. Then the flux through the

boundary is balanced by the change of the amount of species in ω
and the source strength:

0 =
∫

ω

(u(x, t1)− u(x, t0)) dx−
∫ t1

t0

∫

∂ω

δ∇u · n ds dt −
∫ t1

t0

∫

ω

f (x, t) ds

I Using Gauss’ theorem, rewrite this as

0 =
∫ t1

t0

∫

ω

∂tu(x, t) dx dt −
∫ t1

t0

∫

ω

∇ · (δ∇u) dx dt −
∫ t1

t0

∫

ω

f (x, t) ds

I True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒ parabolic second order PDE

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)
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Second order PDEs

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)

For solvability we need additional conditions:
I Initial condition in the time dependent case: u(x , 0) = u0(x)
I Boundary conditions: behavior of solution on ∂Ω ?
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Second order parabolic PDEs

I Heat conduction:
u: temperature
δ = λ: heat conduction coefficient
f : heat source
flux=−λ∇u: “Fourier law”

I Diffusion of molecules in a given medium
u: concentration
δ = D
diffusion coefficient
f : species source
flux=−D∇u: “Fick’s law”
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Second order elliptic PDEs

Stationary case: ∂tu = 0 ⇒ second order elliptic PDE

−∇ · (δ∇u(x)) = f (x)

I Stationary heat conduction, stationary diffusion
I Incompressible flow in saturated porous media: u: pressure
δ = k: permeability, flux=−k∇u: “Darcy’s law”

I Electrical conduction: u: electric potential
δ = σ: electric conductivity
flux=−σ∇u ≡ current density: “Ohms’s law”

I Poisson equation (electrostatics in a constant magnetic field):
u: electrostatic potential, ∇u: electric field,
δ = ε: dielectric permittivity, f : charge density
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Second order PDEs: boundary conditions
I Combine PDE in the interior with boundary conditions on variable u

and/or or normal flux δ∇u · n
I Assume ∂Ω = ∪NΓ

i=1Γi is the union of a finite number of
non-intersecting subsets Γi which are locally Lipschitz.

I On each Γi , specify one of
I Dirichlet (“first kind”): let gi : Γi → R (homogeneous for gi = 0)

u(x) = uΓi (x) for x ∈ Γi

I Neumann (“second kind”): Let gi : Γi → R (homogeneus for gi = 0)

δ∇u(x) · n = gi (x) for x ∈ Γi

I Robin (“third kind”): let αi , gi : Γi → R

δ∇u(x) · n + αi (x) (u(x)− gi (x)) = 0 for x ∈ Γi

I Boundary functions may be time dependent.
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The Dirichlet penalty method

I We will see later that the implementation of Dirichlet boundary may
be connected with certain technical difficulties

I The Dirichlet penalty method provides a simple way to avoid these
difficulties: let ε > 0:

δ∇uε(x) · n + 1
ε

(uε(x)− gi (x)) = 0 for x ∈ Γi

I It is conceivable that for ε→ 0, uε converges to u with

u(x) = gi (x) for x ∈ Γi

I Proper way of handling the parameter leads to exact fulfillment of
Dirichlet boundary condition in the floating point precision
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PDEs: generalizations

I δ may depend on x, u, |∇u| . . . ⇒ equations become nonlinear
I Coupled second order equations:

I temperature can influence conductvity
I source terms can describe chemical reactions between different species
I chemical reactions can generate/consume heat
I Electric current generates heat (“Joule heating”)
I . . .

I Momentom balance → Navier-Stokes equations of fluid flow



Lecture 13 Slide 14

The Finite volume method
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Constructing control volumes I

I Assume Ω is a polygon
I Subdivide the domain Ω into a finite number of control volumes :

Ω̄ =
⋃

k∈N ω̄k such that
I ωk are open (not containing their boundary) convex domains
I ωk ∩ ωl = ∅ if ωk 6= ωl
I σkl = ω̄k ∩ ω̄l are either empty, points or straight lines
I we will write |σkl | for the length
I if |σkl | > 0 we say that ωk , ωl are neighbours
I neighbours of ωk : Nk = {l ∈ N : |σkl | > 0}

I To each control volume ωk assign a collocation point: xk ∈ ω̄k such
that

I admissibility condition:
if l ∈ Nk then the line xkxl is orthogonal to σkl

I placement of boundary unknowns:
if ωk is situated at the boundary, i.e. for |∂ωk ∩ ∂Ω| > 0, then
xk ∈ ∂Ω, and ∂ωk ∩ ∂Ω = ∪NΓ

i=1γi,k ( where γi,k = ∅ is possible).
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Constructing control volumes II

xk xl
σklωk

ωlnkl

We know how to construct such a partitioning:
I obtain a boundary conforming Delaunay triangulation with vertices xk
I construct restricted Voronoi cells ωk with xk ∈ ωk
I Delaunay triangulation gives connected neigborhood graph of Voronoi

cells
I Admissibility condition fulfilled in a natural way
I Boundary placement of triangle nodes
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Discretization ansatz for Robin boundary value problem
Given constants κ > 0, αi ≥ 0 (i = 1 . . .NΓ)

−∇ · κ∇u = f in Ω
κ∇u · n + αi (u − gi ) = 0 on Γi (i = 1 . . .NΓ) (*)

I Given control volume ωk , k ∈ N , integrate

0 =
∫

ωk

(−∇ · κ∇u − f ) dω

= −
∫

∂ωk

κ∇u · nkdγ −
∫

ωk

fdω (Gauss)

= −
∑

l∈Nk

∫

σkl

κ∇u · nkldγ −
NΓ∑

i=1

∫

γik

κ∇u · ndγ −
∫

ωk

fdω

≈
∑

L∈Nk

κ
|σkl |
hkl

(uk − ul )
︸ ︷︷ ︸
∇u·n≈ ul−uk

hkl

+
NΓ∑

i=1
|γi,k |αi (uk − gi,k)︸ ︷︷ ︸

bound. cond. (*)

− |ωk |fk︸ ︷︷ ︸
quadrature

I Here, uk = u(xk), gi,k = gi (xk), fk = f (xk)
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Properties of discretization matrix

I N = |N | equations (one for each control volume ωk)
I N = |N | unknowns (one for each collocation point xk ∈ ωk)
I weighted connected edge graph of triangulation ≡ N × N irreducible

sparse discretization matrix A = (akl ) :

akl =





∑
l′∈Nk

κ |σkl′ |
hkl′

+
∑NΓ

i=1 |γi,k |αi , l = k
−κσkl

hkl
, l ∈ Nk

0, else

I A is irreducibly diagonally dominant if at least for one i , |γi,k |αi > 0
I Main diagonal entries are positive, off diagonal entries are non-positive
I ⇒ A has the M-property.
I A is symmetric ⇒ A is positive definite
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Matrix assembly – main part
I Keep list of global node numbers per triangle τ mapping local node

numbers of the triangle to the global node numbers:
{0, 1, 2} → {kτ,0, kτ,1, kτ,2}

I Loop over all triangles τ ∈ T of the discretization, add up contributions
for k, l = 1 . . .N do

set akl = 0
end
for τ ∈ T do

for n,m = 0 . . . 2, n 6= m do
σ = σkτ,m,kτ,n ∩ τ

σh = κ
|σ|

hkτ,m,kτ,n

akτ,m,kτ,m + = σh

akτ,m,kτ,n− = σh

akτ,n,kτ,m− = σh

akτ,n,kτ,n + = σh

end
end
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Matrix assembly – boundary part

I Keep list of global node numbers per boundary element γ mapping
local node element to the global node numbers: {0, 1} → {kγ,0, kγ,1}

I Keep list of boundary part numbers per boundary element iγ
I Loop over

all boundary elements γ ∈ G of the discretization, add up contributions
for γ ∈ G do

for n = 0, 1 do
akγn ,kγn + = αiγ |γ ∩ ωkγn |

end
end
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RHS assembly: calculate control volumes

I Denote wk = |ωk |
I Loop over triangles, add up contributions

for k . . .N do
set wk = 0

end
for τ ∈ T do

for n = . . . 3 do
wk+ = |ωkτ,m ∩ τ |

end
end
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Matrix assembly: summary

I Sufficient to keep list of triangles, boundary segments – they typically
come out of the mesh generator

I Be able to calculate triangular contributions to form factors: |ωk ∩ τ |,
|σkl ∩ τ | – we need only the numbers, and not the construction of the
geometrical objects

I O(N) operation, one loop over triangles, one loop over boundary
elements
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Finite volume local stiffness matrix calculation I

PB

PA

PC

PCC
sa

sbsc

a

c b

I Triangle edge lengths: a, b, c
I Semiperimeter: s = a

2 + b
2 + c

2

I Square area (from Heron’s formula):
16A2 = 16s(s − a)(s − b)(s − c) =
(−a + b + c) (a − b + c) (a + b − c) (a + b + c)

I Square circumradius: R2 = a2b2c2

(−a+b+c)(a−b+c)(a+b−c)(a+b+c) = a2b2c2

16A2
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Finite volume local stiffness matrix calculation II

I Square of the Voronoi surface contribution via Pythagoras:
s2
a = R2 −

( 1
2 a
)2 = − a2(a2−b2−c2)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c)

I Square of edge contribution in the finite volume method:
e2

a = s2
a

a2 = − (a2−b2−c2)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c) = (b2+c2−a2)2

64A2

I Edge contribution. ea = sa
a = b2+c2−a2

8A

I The sign chosen implies a positive value if the angle α < π
2 , and a

negative value if it is obtuse. In the latter case, this corresponds to
the negative length of the line between edge midpoint and
circumcenter, which is exactly the value which needs to be added to
the corresponding amount from the opposite triangle in order to
obtain the measure of the Voronoi face.
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Finite volume local stiffness matrix calculation III
a0 = (x0, y0) . . . ad = (x2, y2): vertices of the simplex K Calculate the
contribution from triangle to σkl

hkl
in the finite volume discretization

a0

a2

a1
s2

s0s1

ω2

ω0 ω1

h2

h1 h0

Let hi = |ai+1 − ai+2| (i counting modulo 2) be the lengths of the
discretization edges. Let A be the area of the triangle. Then for the
contribution from the triangle to the form factor one has

|si |
hi

= 1
8A (h2

i+1 + h2
i+2 − h2

i )

|ωi | = (|si+1|hi+1 + |si+2|hi+2)/4
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Variations of the discretization ansatz

I 3D: tetrahedron based
I κ = κ(x) ⇒ κ(x)∇u ≈ κkl

ul−uk
hkl

I Non-constant αi , g
I Nonlinear dependencies . . .



Lecture 13 Slide 27

Interpretation of results

I One solution value per control volume ωk allocated to the collocation
point xk ⇒ piecewise constant function on collection of control
volumes

I But: xk are at the same time nodes of the corresponding Delaunay
mesh ⇒ representation as piecewise linear function on triangles


