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Recap

For more discussion of mesh generation, see J.R. Shewchuk: Lecture Notes
on Delaunay Mesh Generation
http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/
delnotes.pdf

http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/delnotes.pdf
http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/delnotes.pdf
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Meshes

I Regard boundary value problems for PDEs in a finite domain Ω ⊂ Rd

I Assume the domain is polygonal, its boundary ∂Ω is the union of a
finite number of subsets of hyperplanes in Rn (line segments for
d = 2, planar polygons for d = 3)

I A mesh (grid) is a subdivision Ω into a finite number of elementary
closed (polygonal) subsets T1 . . .TM .

I Mostly, the elementary shapes are triangles or quadrilaterals (d = 2)
or tetrahedra or cuboids (d = 3)

I During this course: focus on d = 2, triangles
I Synonymous: mesh = grid = triangulation
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(FEM)-Admissible meshes

Definition: A grid is FEM-admissible if
(i) Ω̄ = ∪M

m=1Tm

(ii) If Tm ∩ Tn consists of exactly one point, then this point is a common
vertex of Tm and Tn.

(iii) If for m 6= n, Tm ∩ Tn consists of more than one point, then Tm ∩ Tn
is a common edge (or a common facet for d = 3) of Tm and Tn.

Source: Braess, FEM

Left: admissible mesh. Right: mesh with hanging nodes
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Acute + weakly acute triangulations

Definition A triangulation of a domain Ω is
I acute, if all interior angles of all triangles are less than π

2 ,
I weakly acute, if all interior angles of all triangles are less than or

equal to π
2 .
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Triangulation methods

I Geometrically most flexible
I Starting point for more general methods of subdivision into

quadrilaterals
I Problem seems to be simple only at the first glance . . .
I Here, we will discuss Delaunay triangulations, which have a number

of interesting properties when it comes to PDE discretizations
I J.R. Shewchuk: Lecture Notes on Delaunay Mesh Generation

http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/
delnotes.pdf
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Voronoi diagrams

After G. F. Voronoi, 1868-1908
Definition Let p,q ∈ Rd . The set of points
Hpq =

{
x ∈ Rd : ||x− p|| ≤ ||x− q||

}
is the half space of points x closer

to p than to q.
Definition Given a finite set of points S ⊂ Rd , the Voronoi region
(Voronoi cell) of a point p ∈ S is the set of points x closer to p than to
any other point q ∈ S:

Vp =
{

x ∈ Rd : ||x− p|| ≤ ||x− q|| ∀q ∈ S
}

The Voronoi diagram of S is the collection of the Voronoi regions of the
points of S.
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Voronoi diagrams II

I The Voronoi diagram subdivides the whole space into “nearest
neigbor” regions

I Being intersections of half planes, the Voronoi regions are convex sets

Voronoi diagram of 8 points in
the plane
(H. Si)

Interactive example: http://homepages.loria.fr/BLevy/GEOGRAM/
geogram_demo_Delaunay2d.html
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Delaunay triangulation

After B.N. Delaunay (Delone), 1890-1980
I Assume that the points of S are in general position, i.e. no d + 2

points of S are on one sphere (in 2D: no 4 points on one circle)
I Connect each pair of points whose Voronoi regions share a common

edge with a line
I ⇒ Delaunay triangulation of the convex hull of S

Delaunay triangulation of the
convex hull of 8 points in the
plane
(H. Si)
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Delaunay triangulation II

I The circumsphere (circumcircle in 2D) of a d-dimensional simplex is
the unique sphere containing all vertices of the simplex

I The circumball (circumdisc in 2D) of a simplex is the unique (open)
ball which has the circumsphere of the simplex as boundary

Definition A triangulation of the convex hull of a point set S has the
Delaunay property if each simplex (triangle) of the triangulation is
Delaunay, i.e. its circumsphere (circumcircle) is empty wrt. S, i.e. it does
not contain any points of S.

I The Delaunay triangulation of a point set S, where all points are in
general position is unique

I Otherwise there is an ambiguity - if e.g. 4 points are one circle, there
are two ways to connect them resulting in Delaunay triangles
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Edge flips and locally Delaunay edges (2D only)

I For any two triangles abc and adb sharing a common edge ab, there
is the edge flip operation which reconnects the points in such a way
that two new triangles emerge: adc and cdb.

I An edge of a triangulation is locally Delaunay if it either belongs to
exactly one triangle, or if it belongs to two triangles, and their
respective circumdisks do not contain the points opposite wrt. the
edge

I If an edge is locally Delaunay and belongs to two triangles, the sum
of the angles opposite to this edge is less or equal to π.

I If all edges of a triangulation of the convex hull of S are locally
Delaunay, then the triangulation is the Delaunay triangulation

I If an edge is not locally Delaunay and belongs to two triangles, the
edge emerging from the corresponding edge flip will be locally
Delaunay
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Edge flip algorithm (Lawson)

Input: A stack L of edges of a given triangulation of S;
while L 6= ∅ do

pop an edge ab from L;
if ab is not locally Delaunay then

flip ab to cd;
push edges ac, cb,db,da onto L;

end
end

I This algorithm is known to terminate. After termination, all edges will
be locally Delaunay, so the output is the Delaunay triangulation of S.

I Among all triangulations of a finite point set S, the Delaunay
triangulation maximises the minimum angle

I All triangulations of S are connected via a flip graph
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Radomized incremental flip algorithm (2D only)

I Create Delaunay triangulation of point set S by inserting points one
after another, and creating the Delaunay triangulation of the
emerging subset of S using the flip algorithm

I Estimated complexity: O(n log n)
I In 3D, there is no simple flip algorithm, generalizations are active

research subject
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Triangulations of finite domains

I So far, we discussed triangulations of point sets, but in practice, we
need triangulations of domains

I Create Delaunay triangulation of point set, “Intersect” with domain
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Boundary conforming Delaunay triangulations
Definition: An admissible triangulation of a polygonal Domain Ω ⊂ Rd

has the boundary conforming Delaunay property if
(i) All simplices are Delaunay
(ii) All boundary simplices (edges in 2D, facets in 3d) have the Gabriel

property, i.e. their minimal circumdisks are empty
I Equivalent definition in 2D: sum of angles opposite to interior edges
≤ π, angle opposite to boundary edge ≤ π

2

I Creation of boundary conforming Delaunay triangulation description
may involve insertion of Steiner points at the boundary

Delaunay grid of Ω Boundary conforming Delaunay grid of Ω
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Domain blendend Voronoi cells

I For Boundary conforming Delaunay triangulations, the intersection of
the Voronoi diagram with the domain yields a well defined dual
subdivision
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Boundary conforming Delaunay triangulations II

I Weakly acute triangulations are boundary conforming Delaunay, but
not vice versa!

I Working with weakly acute triangulations for general polygonal
domains is unrealistic, especially in 3D

I For boundary conforming Delaunay triangulations of polygonal
domains there are algoritms with mathematical termination proofs
valid in many relevant cases

I Code examples:
I 2D: Triangle by J.R.Shewchuk

https://www.cs.cmu.edu/˜quake/triangle.html
I 3D: TetGen by H. Si http://tetgen.org

I Features:
I polygonal geometry description
I automatic insertion of points according to given mesh size criteria
I accounting for interior boundaries
I local mesh size control for a priori refinement
I quality control
I standalone executable & library
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Further mesh generation approaches

(Most of them lose Delaunay property)
I Advancing front: create mesh of boundary, “grow” triangles from

boundary to interior implemented e.g. in netgen by J. Schöberl
https://sourceforge.net/projects/netgen-mesher/

I Quadtree/octree: place points on quadtree/octree hierachy and
triangulate

I Mesh improvement: equilibrate element sizes + quality by iteratively
modifying point locations

I . . . active research topic with many open questions, unfortunately not
exactly mainstream . . .
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Virtual Machine

I Install VirtualBox https://www.virtualbox.org/ on your system
(available for Linux, Windows, Mac)

I Download the virtual machine debian-numcxx-v01.ova from the
course homepage (Attention: 2.5GB!)

I Import it into VirtualBox and start
I Log in as ’unknown’ with password ’numcxx’
I Debian system, similar to that in UNIX pool
I CodeBlocks, g++, gedit, numcxx, vtk, vtkfig are installed.
I numcxx and vtkfig updates can performed from bitbucket repo, see

corresponding README on the desktop
I Data transfer with your computer through shared folders or ssh login.

Problems with drag&drop, unfortunately

https://www.virtualbox.org/
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The Triangle mesh generator

I Free for non-commercial use
I By J.R.Shewchuk, Berkeley
I Distributed with numcxx

$ triangle --help

I Accompanied by showme program to visualize grids
I Triangle as a standalone program is controlled by certain flags, reads

input from disk, writes output to disk
I Triangle as a library is controlled by the same flags, but takes input as

double* and int* arrays, and creates output in the same form
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Convex hulls of point sets with Triangle
$ triangle --help
...
-c Creates segments on the convex hull of the triangulation. If you

are triangulating a vertex set, this switch causes a .poly file to
be written, containing all edges of the convex hull.

...
-v Outputs the Voronoi diagram associated with the triangulation.
...
-V Verbose: Gives detailed information about what Triangle is doing.
...
$ triangle -Vvc hello.node
$ ls hello.*
hello.node # input
hello.1.node # output, nodes of the Delaunay triangulation
hello.1.ele # output, triangles of the Delaunay triangulation
hello.1.poly # output, Edges of the convex hull of the point set
hello.1.v.node # output, nodes of Voronoi diagram
hello.1.v.edge # output, edges of Voronoi diagram

I .node files contain lists of points (possibly with attributes)
I .poly files contain lists of polygons (possibly with attributes)
I .edge files contain lists of edges (possibly with attributes)
I .ele files contain lists of triangles (possibly with attributes)
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Discretization of a domain with Triangle
$ triangle --help
-p Reads a Planar Straight Line Graph (.poly file), which can specify

vertices, segments, holes, regional attributes, and regional area
constraints. Generates a constrained Delaunay triangulation (CDT)
fitting the input; or, if -s, -q, -a, or -u is used, a conforming
constrained Delaunay triangulation (CCDT).

...
-a Imposes a maximum triangle area. If a number follows the ‘a’, no

triangle is generated whose area is larger than that number.
...
-q Quality mesh generation by Delaunay refinement. Adds vertices

to the mesh to ensure that all angles are between 20 and 140 degrees.
An alternative bound on the minimum angle, replacing 20 degrees, may
be specified after the ‘q’.

...
-D Conforming Delaunay triangulation: use this switch if you want to

ensure that all the triangles in the mesh are Delaunay, and not
merely constrained Delaunay; or if you want to ensure that all the
Voronoi vertices lie within the triangulation. (Some finite volume
methods have this requirement.)

...
$ triangle -Vp hello.poly
$ ls hello.*
hello.1.node # output, nodes of the triangulation
hello.1.ele # output, triangles of the triangulation
hello.1.poly # output, boundary edges
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Triangle in numcxx

I In addition to nodes, triangles and boundary edges we need a region
attribute for each triangle (for different data in different regions) and
a boundary region attribute for each boundary edge (for different
boundary conditions)

I Triangle handles these attributes
I class numcxx::Geometry → class numcxx::SimpleGrid
I class numcxx::SimpleGrid is ready for use in finite element and

finite volume methods
I points
I cells
I boundary faces
I cell and boundary regions
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Partial Differential Equations
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Differential operators: notations

Given: domain Ω ⊂ Rd .
I Dot product: for x, y ∈ Rd , x · y =

∑d
i=1 xiyi

I Bounded domain Ω ⊂ Rd , with piecewise smooth boundary
I Scalar function u : Ω→ R

I Vector function v =




v1
...

vd


 : Ω→ Rd

I Write ∂iu = ∂u
∂xi

I For a multiindex α = (α1 . . . αd ), let
I |α| = α1 + · · ·+ αd

I ∂αu = ∂|α|

∂xα1
1 ·····∂xαd

d
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Basic Differential operators

I Gradient of scalar function u : Ω→ R

grad = ∇ =



∂1
...
∂d


: u 7→ ∇u =



∂1u

...
∂du




I Divergence of vector function v = Ω→ Rd

div = ∇· : v =




v1
...

vd


 7→ ∇ · v = ∂1v1 + · · ·+ ∂dvd

I Laplace operator of scalar function u : Ω→ R
∆ = div · grad = ∇ · ∇: u 7→ ∆u = ∂11u + · · ·+ ∂ddu
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Lipschitz domains
Definition:

I Let D ⊂ Rn. A function f : D → Rm is called Lipschitz continuous if
there exists c > 0 such that ‖f (x)− f (y)‖ ≤ c‖x − y‖

I A hypersurface in Rn is a graph if for some k it can be represented as

xk = f (x1, . . . , xk−1, xk+1, . . . , xn)

defined on some domain D ⊂ Rn−1

I A domain Ω ⊂ Rn is a Lipschitz domain if for all x ∈ ∂Ω, there exists
a neigborhood of x on ∂Ω which can be represented as the graph of a
Lipschitz continuous function.

Corollaries
I Boundaries of Lipschitz domains are continuous
I Boundaries of Lipschitz domains have no cusps

(e.g. the graph of y =
√
|x | has a cusp at x = 0)

I Polygonal domains are Lipschitz
I Standard PDE calculus happens in Lipschitz domains
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and v : Ω→ Rd be a
continuously differentiable vector function. Let n be the outward normal to
Ω. Then, ∫

Ω
∇ · v dx =

∫

∂Ω
v · n ds

�
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Species balance over an REV
I Let u(x, t) : Ω× [0,T ]→ R be the local amount of some species.
I Assume representative elementary volume (REV) ω ⊂ Ω
I Subinterval in time (t0, t1) ⊂ (0,T )
I −δ∇u · n describes the flux of these species trough ∂ω, where δ is

some transfer coefficient
I Let f (x, t) be some local source of species. Then the flux through the

boundary is balanced by the change of the amount of species in ω
and the source strength:

0 =
∫

ω

(u(x, t1)− u(x, t0)) dx−
∫ t1

t0

∫

∂ω

δ∇u · n ds dt −
∫ t1

t0

∫

ω

f (x, t) ds

I Using Gauss’ theorem, rewrite this as

0 =
∫ t1

t0

∫

ω

∂tu(x, t) dx dt −
∫ t1

t0

∫

ω

∇ · (δ∇u) dx dt −
∫ t1

t0

∫

ω

f (x, t) ds

I True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒ parabolic second order PDE

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)
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No lecture on Tue, Dec. 4!


