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Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):
I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R:

A = LU − R

I Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?
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Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.
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ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU
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Meshes

I Regard boundary value problems for PDEs in a finite domain Ω ⊂ Rd

I Assume the domain is polygonal, its boundary ∂Ω is the union of a
finite number of subsets of hyperplanes in Rn (line segments for
d = 2, planar polygons for d = 3)

I A mesh (grid) is a subdivision Ω into a finite number of elementary
closed (polygonal) subsets T1 . . .TM .

I Mostly, the elementary shapes are triangles or quadrilaterals (d = 2)
or tetrahedra or cuboids (d = 3)

I During this course: focus on d = 2, triangles
I Synonymous: mesh = grid = triangulation
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(FEM)-Admissible meshes

Definition: A grid is FEM-admissible if
(i) Ω̄ = ∪M

m=1Tm

(ii) If Tm ∩ Tn consists of exactly one point, then this point is a common
vertex of Tm and Tn.

(iii) If for m 6= n, Tm ∩ Tn consists of more than one point, then Tm ∩ Tn
is a common edge (or a common facet for d = 3) of Tm and Tn.

Source: Braess, FEM

Left: admissible mesh. Right: mesh with hanging nodes
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Acute + weakly acute triangulations

Definition A triangulation of a domain Ω is
I acute, if all interior angles of all triangles are less than π

2 ,
I weakly acute, if all interior angles of all triangles are less than or

equal to π
2 .
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Triangulation methods

I Geometrically most flexible
I Starting point for more general methods of subdivision into

quadrilaterals
I Problem seems to be simple only at the first glance . . .
I Here, we will discuss Delaunay triangulations, which have a number

of interesting properties when it comes to PDE discretizations
I J.R. Shewchuk: Lecture Notes on Delaunay Mesh Generation

http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/
delnotes.pdf

http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/delnotes.pdf
http://web.mit.edu/ehliu/Public/ProjectX/Summer2005/delnotes.pdf


Lecture 11 Slide 9

Voronoi diagrams

After G. F. Voronoi, 1868-1908
Definition Let p,q ∈ Rd . The set of points
Hpq =

{
x ∈ Rd : ||x− p|| ≤ ||x− q||

}
is the half space of points x closer

to p than to q.
Definition Given a finite set of points S ⊂ Rd , the Voronoi region
(Voronoi cell) of a point p ∈ S is the set of points x closer to p than to
any other point q ∈ S:

Vp =
{

x ∈ Rd : ||x− p|| ≤ ||x− q|| ∀q ∈ S
}

The Voronoi diagram of S is the collection of the Voronoi regions of the
points of S.
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Voronoi diagrams II

I The Voronoi diagram subdivides the whole space into “nearest
neigbor” regions

I Being intersections of half planes, the Voronoi regions are convex sets

Voronoi diagram of 8 points in
the plane
(H. Si)

Interactive example: http://homepages.loria.fr/BLevy/GEOGRAM/
geogram_demo_Delaunay2d.html

http://homepages.loria.fr/BLevy/GEOGRAM/geogram_demo_Delaunay2d.html
http://homepages.loria.fr/BLevy/GEOGRAM/geogram_demo_Delaunay2d.html
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Delaunay triangulation

After B.N. Delaunay (Delone), 1890-1980
I Assume that the points of S are in general position, i.e. no d + 2

points of S are on one sphere (in 2D: no 4 points on one circle)
I Connect each pair of points whose Voronoi regions share a common

edge with a line
I ⇒ Delaunay triangulation of the convex hull of S

Delaunay triangulation of the
convex hull of 8 points in the
plane
(H. Si)
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Delaunay triangulation II

I The circumsphere (circumcircle in 2D) of a d-dimensional simplex is
the unique sphere containing all vertices of the simplex

I The circumball (circumdisc in 2D) of a simplex is the unique (open)
ball which has the circumsphere of the simplex as boundary

Definition A triangulation of the convex hull of a point set S has the
Delaunay property if each simplex (triangle) of the triangulation is
Delaunay, i.e. its circumsphere (circumcircle) is empty wrt. S, i.e. it does
not contain any points of S.

I The Delaunay triangulation of a point set S, where all points are in
general position is unique

I Otherwise there is an ambiguity - if e.g. 4 points are one circle, there
are two ways to connect them resulting in Delaunay triangles
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Edge flips and locally Delaunay edges (2D only)

I For any two triangles abc and adb sharing a common edge ab, there
is the edge flip operation which reconnects the points in such a way
that two new triangles emerge: adc and cdb.

I An edge of a triangulation is locally Delaunay if it either belongs to
exactly one triangle, or if it belongs to two triangles, and their
respective circumdisks do not contain the points opposite wrt. the
edge

I If an edge is locally Delaunay and belongs to two triangles, the sum
of the angles opposite to this edge is less or equal to π.

I If all edges of a triangulation of the convex hull of S are locally
Delaunay, then the triangulation is the Delaunay triangulation

I If an edge is not locally Delaunay and belongs to two triangles, the
edge emerging from the corresponding edge flip will be locally
Delaunay
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Edge flip algorithm (Lawson)

Input: A stack L of edges of a given triangulation of S;
while L 6= ∅ do

pop an edge ab from L;
if ab is not locally Delaunay then

flip ab to cd;
push edges ac, cb,db,da onto L;

end
end

I This algorithm is known to terminate. After termination, all edges will
be locally Delaunay, so the output is the Delaunay triangulation of S.

I Among all triangulations of a finite point set S, the Delaunay
triangulation maximises the minimum angle

I All triangulations of S are connected via a flip graph
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Radomized incremental flip algorithm (2D only)

I Create Delaunay triangulation of point set S by inserting points one
after another, and creating the Delaunay triangulation of the
emerging subset of S using the flip algorithm

I Estimated complexity: O(n log n)
I In 3D, there is no simple flip algorithm, generalizations are active

research subject
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Triangulations of finite domains

I So far, we discussed triangulations of point sets, but in practice, we
need triangulations of domains

I Create Delaunay triangulation of point set, “Intersect” with domain
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Boundary conforming Delaunay triangulations
Definition: An admissible triangulation of a polygonal Domain Ω ⊂ Rd

has the boundary conforming Delaunay property if
(i) All simplices are Delaunay
(ii) All boundary simplices (edges in 2D, facets in 3d) have the Gabriel

property, i.e. their minimal circumdisks are empty
I Equivalent definition in 2D: sum of angles opposite to interior edges
≤ π, angle opposite to boundary edge ≤ π

2

I Creation of boundary conforming Delaunay triangulation description
may involve insertion of Steiner points at the boundary

Delaunay grid of Ω Boundary conforming Delaunay grid of Ω
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Domain blendend Voronoi cells

I For Boundary conforming Delaunay triangulations, the intersection of
the Voronoi diagram with the domain yields a well defined dual
subdivision
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Boundary conforming Delaunay triangulations II

I Weakly acute triangulations are boundary conforming Delaunay, but
not vice versa!

I Working with weakly acute triangulations for general polygonal
domains is unrealistic, especially in 3D

I For boundary conforming Delaunay triangulations of polygonal
domains there are algoritms with mathematical termination proofs
valid in many relevant cases

I Code examples:
I 2D: Triangle by J.R.Shewchuk

https://www.cs.cmu.edu/˜quake/triangle.html
I 3D: TetGen by H. Si http://tetgen.org

I Features:
I polygonal geometry description
I automatic insertion of points according to given mesh size criteria
I accounting for interior boundaries
I local mesh size control for a priori refinement
I quality control
I standalone executable & library

https://www.cs.cmu.edu/~quake/triangle.html
http://tetgen.org
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Further mesh generation approaches

(Most of them lose Delaunay property)
I Advancing front: create mesh of boundary, “grow” triangles from

boundary to interior implemented e.g. in netgen by J. Schöberl
https://sourceforge.net/projects/netgen-mesher/

I Quadtree/octree: place points on quadtree/octree hierachy and
triangulate

I Mesh improvement: equilibrate element sizes + quality by iteratively
modifying point locations

I . . . active research topic with many open questions, unfortunately not
exactly mainstream . . .

https://sourceforge.net/projects/netgen-mesher/

