
Lecture 10 Slide 1

Scientific Computing WS 2018/2019

Lecture 10

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 10 Slide 2

Homework assessment

Lecture 10 Slide 3

General

I Please apologize terse answers - on the bright side of this I found time
to reply to all individually who handed things in by yesterday noon

I please stick to the filename scheme, this makes it easier for me to
give feedback to all of you

I Good style with zip files is that they unpack into subdir with the
same name. E.g. abc.zip unpacks into directory abc.

I Mac users: try to pack your stuff without the MACOSX and
.DS Store subdirectories

I No need to include binaries
I Always try to calculate errors if exact data is available (I should have

been more specific in assignment text)

Lecture 10 Slide 4

Code style
I Try to specify datatypes in constants: 0.1f for float, 0.1l for long

double and avoid mixing of datatypes in expressions. In particular
write x/2.0 instead of x/2 if you do division of a double number.
(There are reasonable automatic conversion rules, but things are
clearer if they are explicit).

I Cast ints to double explicitely in floating point expressions. This
ensures that you don’t accidentally create an integer intermediate
result. (1/i*i was the reason of many overflow errors in your codes)

I Math headers: use <cmath> instead of <math.h>. In particular, this
gives you long double version of functions if needed, in particular for
abs.

I When using printf, use the right format specifiers for output of
floating point numbers: %e for float and double, and %Le for
long double. %e,%Le give the exponential notation, and %f, %Lf
give a fixed point notation without exponential which is not very
helpful for accuracy assessment.

Lecture 4 Slide 27

Representation of real numbers

I Any real number x ∈ R can be expressed via representation formula:

x = ±
∞∑

i=0

diβ
−iβe

I β ∈ N, β ≥ 2: base
I di ∈ N, 0 ≤ di < β: mantissa digits
I e ∈ Z : exponent

I Scientific notation of floating point numbers: e.g. x = 6.022 · 1023

I β = 10
I d = (6, 0, 2, 2, 0 . . .)
I e = 23

I Non-unique: x = 0.6022 · 1024

I β = 10
I d = (0, 6, 0, 2, 2, 0 . . .)
I e = 24

I Infinite for periodic decimal numbers, irrational numbers

Lecture 10 Slide 5

Lecture 4 Slide 28

Floating point numbers

I Computer representation uses β = 2, therefore di ∈ {0, 1}
I Truncation to fixed finite size

x = ±
t−1∑

i=0

diβ
−iβe

I t: mantissa length
I Normalization: assume d0 = 1 ⇒ save one bit for mantissa
I k: exponent size −βk + 1 = L ≤ e ≤ U = βk − 1
I Extra bit for sign
I ⇒ storage size: (t − 1) + k + 1

I IEEE 754 single precision (C++ float): k = 8, t = 24 ⇒ 32 bit
I IEEE 754 double precision (C++ double): k = 11, t = 53 ⇒ 64 bit

Lecture 10 Slide 6

Lecture 4 Slide 29

Floating point limits

Finite size of reprensentation ⇒ there are minimal and maximal possible
numbers which can be represented

I symmetry wrt. 0 because of sign bit
I smallest positive normalized number: d0 = 1, di = 0, i = 1 . . . t − 1

xmin = βL

I float: 1.175494351e–38
I double: 2.2250738585072014e–308

I smallest positive denormalized number: di = 0, i = 0 . . . t − 2, dt−1 = 1
xmin = β1−tβL

I largest positive normalized number: di = β − 1, 0 . . . t − 1
xmax = β(1− β1−t)βU

I float: 3.402823466e+38
I double: 1.7976931348623158e+308

Lecture 10 Slide 7

Lecture 4 Slide 30

Machine precision

I There cannot be more than 2t+k floating point numbers ⇒ almost all real
numbers have to be approximated

I Let x be an exact value and x̃ be its approximation Then: | x̃−x
x | < ε is the

best accuracy estimate we can get, where
I ε = β1−t (truncation)
I ε = 1

2β
1−t (rounding)

I Also: ε is the smallest representable number such that 1 + ε > 1.
I Relative errors show up in partiular when

I subtracting two close numbers
I adding smaller numbers to larger ones

Lecture 10 Slide 8

Lecture 10 Slide 9

Machine epsilon

I Smallest floating point number ε such that 1 + ε > 1 in floating point
arithmetic

I In exact math it is true that from 1 + ε = 1 it follows that 0 + ε = 0
and vice versa. In floating point computations this is not true

I Many of you used the right algorithm and used the first value or
which 1 + ε = 1 as the result. This is half the desired quantity.

I Some did not divide start with 1.0 but by other numbers. E.g. 0.1 is
not represented exactly in floating point arithmetic

I Recipe for calculation:
Set ε = 1.0;
while 1.0 + ε/2.0 > 1.0 do

ε = ε/2.0
end

I But . . . this may be optimized away...

Lecture 10 Slide 10

Normalized floating point number
I IEEE 754 32 bit floating point number – normally the same as C++

float
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
± e0 e1 e1 e2 e4 e5 e6 e7 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23

I Storage layout for a normalized number (d0 = 1)
I bit 0: sign, 0→ +, 1→ −
I bit 1. . . 8: r = 8 exponent bits, value e + 2r−1 − 1 = 127 is stored
⇒ no need for sign bit in exponent

I bit 9. . . 31: t = 23 mantissa bits d1 . . . d23

I d0 = 1 not stored ≡ ”hidden bit”

I Examples
1 0_01111111_00000000000000000000000 e = 0, stored 127
2 0_10000000_00000000000000000000000 e = 1, stored 128
0.5 0_01111110_00000000000000000000000 e = −1, stored 126
0.1 0_01111011_10011001100110011001101 infinite periodic
0 0_00000000_00000000000000000000000

I Numbers which are exactly represented in decimal system may not be
exactly represented in binary system.

Lecture 10 Slide 11

How Additionworks ?

I General:
I 1. Adjust exponent of number to be added:

I Until both exponents are equal, add one to exponent, shift mantissa to
right by one bit

I 2. Add both numbers
I 3. Normalize result

I For 1+ε, We have at maximum t bit shifts of normalized mantissa
until mantissa becomes 0, so ε = 2−t .

Lecture 10 Slide 12

Data of IEEE 754 floating point representations

size t r ε
float 32 23 8 1.1920928955078125e-07

double 64 53 11 2.2204460492503131e-16
long double 128 63 15 1.0842021724855044e-19
I Floating point format not standardized by language but by IEEE

comitee
I Implementation of long double varies, may even be the same as

double, or may be significantly slower, so it is mostly no good option
I There are high accuracy floating point number packages available,

which however perform calculations without support of the CPU
floating point arithmetic

Lecture 10 Slide 13

Summation

I Basel sum:
∑K

n=1
1
n2 = π2

6

I Intended answer for accuracy: sum in reverse order. Start with adding
up many small values which would be cancelled out if added to an
already large sum value.

I Results for float:
n forward sum forward sum error reverse sum reverse sum error

10 1.5497677326202392e+00 9.51664447784423828e-02 1.54976773262023925e+00 9.51664447784423828e-02
100 1.6349840164184570e+00 9.95016098022460937e-03 1.63498389720916748e+00 9.95028018951416015e-03

1000 1.6439348459243774e+00 9.99331474304199218e-04 1.64393448829650878e+00 9.99689102172851562e-04
10000 1.6447253227233886e+00 2.08854675292968750e-04 1.64483404159545898e+00 1.00135803222656250e-04

100000 1.6447253227233886e+00 2.08854675292968750e-04 1.64492404460906982e+00 1.01327896118164062e-05
1000000 1.6447253227233886e+00 2.08854675292968750e-04 1.64493298530578613e+00 1.19209289550781250e-06

10000000 1.6447253227233886e+00 2.08854675292968750e-04 1.64493393898010253e+00 2.38418579101562500e-07
100000000 1.6447253227233886e+00 2.08854675292968750e-04 1.64493405818939208e+00 1.19209289550781250e-07

I No gain in accuracy for forward sum for n > 10000

Lecture 10 Slide 14

Kahan summation

I Some of you hinted at the Kahan compensated summation algorithm
(thanks!):
T sum_kah=0.0;
T error_compensation=0.0;
for (int i=1; i<=n;i++)
{

T x=i;
T increment=1.0/(x*x);
T corrected_increment=increment-error_compensation;
T good_sum=sum_kah+corrected_increment;
error_compensation= (good_sum-sum_kah)-corrected_increment;
sum_kah =good_sum;

}

I When implementing, be careful that expressions are not optimized
away . . .

I William Kahan (1933-) is the principle architect of the IEEE 754
floating point standard . . .

Lecture 10 Slide 15

Recap on nonnegative matrices

Lecture 9 Slide 11

The Gershgorin Circle Theorem (Semyon Gershgorin,1931)
(everywhere, we assume n ≥ 2)
Theorem (Varga, Th. 1.11) Let A be an n × n (real or complex) matrix.
Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there exists r , 1 ≤ r ≤ n such that
|λ− arr | ≤ Λr

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− aii)xi =
∑

j=1...n
j 6=i

aijxj

|λ− arr | = |
∑

j=1...n
j 6=r

arjxj | ≤
∑

j=1...n
j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�
Lecture 10 Slide 16

Lecture 9 Slide 12

Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

λ ∈
⋃

i=1...n
{µ ∈ V : |µ− aii | ≤ Λi}

Corollary:

ρ(A) ≤ max
i=1...n

n∑

j=1
|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑

i=1
|aij | = ||A||1

Proof

|µ− aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =
n∑

j=1
|aij |

Furthermore, σ(A) = σ(AT). �

Lecture 10 Slide 17

Lecture 9 Slide 13

Gershgorin circles: example

A =

1.9 1.8 3.4
0.4 1.8 0.4

0.05 0.1 2.3

 , λ1 = 1, λ2 = 2, λ3 = 3,Λ1 = 5.2,Λ2 = 0.8, λ3 = 0.15

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 Re

Im

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Lecture 10 Slide 18

Lecture 9 Slide 14

Gershgorin circles: heat example I

A =

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h

B = (I − D−1A) =

0 1
21

2 0 1
21

2 0 1
2

.
1
2 0 1

21
2 0 1

21
2 0

We have bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

Lecture 10 Slide 19

Lecture 9 Slide 15

Gershgorin circles: heat example II
Let n=11, h=0.1:

λi = cos
(

ihπ
1 + 2h

)
(i = 1 . . . n)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Re

Im

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

⇒ the Gershgorin circle theorem is too pessimistic...

Lecture 10 Slide 20

Lecture 9 Slide 16

Weighted directed graph representation of matrices
Define a directed graph from the
nonzero entries of a matrix A = (aik):

I Nodes: N = {Ni}i=1...n
I Directed edges:
E = {−−−→NkNl |akl 6= 0}

I Matrix entries ≡ weights of
directed edges

A =

1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.

N1

N2

N3

N4

N5

1

2

4

3 5

6

7

8

9
10

11

12

I 1:1 equivalence between matrices and weighted directed graphs
I Convenient e.g. for sparse matrices

Lecture 10 Slide 21

Lecture 9 Slide 17

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =
(

A11 A12
0 A22

)

A is irreducible if it is not reducible.
Theorem (Varga, Th. 1.17): A is irreducible ⇔ the matrix graph is
connected, i.e. for each ordered pair (Ni ,Nj) there is a path consisting of
directed edges, connecting them.
Equivalently, for each i , j there is a sequence of consecutive nonzero matrix
entries aik1 , ak1k2 , ak2k3 . . . , akr−1kr akr j .

�

Lecture 10 Slide 22

Lecture 9 Slide 18

Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue λ is a boundary point of the union of all the disks

λ ∈ ∂
⋃

i=1...n
{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi

Lecture 10 Slide 23

Lecture 9 Slide 20

Consequences for heat example from Taussky theorem

I B = I − D−1A

I We had bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

I Assume |λi | = 1. Then λi lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius 1

2 and 1 around 0.
I Contradiction ⇒ |λi | < 1, ρ(B) < 1!

Lecture 10 Slide 24

Lecture 9 Slide 21

Diagonally dominant matrices
Definition Let A = (aij) be an n × n matrix.

I A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑

j=1...n
j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |

Lecture 10 Slide 25

Lecture 9 Slide 22

A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.
If in addition, aii > 0 is real for i = 1 . . . n, then all real parts of the
eigenvalues of A are positive:

Reλi > 0, i = 1 . . . n

Lecture 10 Slide 26

Lecture 9 Slide 25

Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.
Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.

�

Lecture 10 Slide 27

Lecture 9 Slide 27

Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is

I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n× n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.
Proof: See Varga. �

Lecture 10 Slide 28

Lecture 9 Slide 28

Perron-Frobenius for general nonnegative matrices
Each n × n matrix can be brought to the normal form

PAPT =

R11 R12 . . . R1m
0 R22 . . . R2m
... . . .
0 0 . . . Rmm

where for j = 1 . . .m, either Rjj irreducible or Rjj = (0).
Theorem(Varga, Th. 2.20) Let A ≥ 0 be an n × n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius ρ(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(ii) To ρ(A) there corresponds a nonzero eigenvector x ≥ 0.
(iii) ρ(A) does not decrease when any entry of A increases.

Proof: See Varga; σ(A) =
m⋃

j=1
σ(Rjj), apply irreducible Perron-Frobenius

to Rjj . �

Lecture 10 Slide 29

Lecture 9 Slide 31

Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0
and aij ≤ 0 for i 6= j . Then ρ(I − D−1A) < 1, i.e. the Jacobi method
converges.
Proof In this case, |B| = B �.

Lecture 10 Slide 30

Lecture 9 Slide 32

Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.

Lecture 10 Slide 31

Lecture 9 Slide 33

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.
Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is
nonsingular.
In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius (for general matrices), ρ(G) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(G)
1− ρ(G)x

Therefore 0 ≤ ρ(G) ≤ 1.
As I − G is nonsingular, ρ(G) < 1. �

Lecture 10 Slide 32

Lecture 9 Slide 34

Convergence rate comparison

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(G)
1−ρ(G) �

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular
splittings. If N2 ≥ N1 ≥ 0, then 1 > ρ(M−1

2 N2) ≥ ρ(M−1
1 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1

But τ
1+τ is strictly increasing. �

Lecture 10 Slide 33

Lecture 9 Slide 35

M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if
(i) aij ≤ 0 for i 6= j
(ii) A is nonsingular
(iii) A−1 ≥ 0
Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.
Proof: See Varga. �

Lecture 10 Slide 34

Lecture 9 Slide 36

Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j .
Then A is an M-Matrix.
Proof: We know that A is nonsingular, but we have to show A−1 ≥ 0.

I Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.
I We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk)
(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk)

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0
Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �

Lecture 10 Slide 35

Lecture 9 Slide 37

Application

Let A be an M-Matrix. Assume A = D − E − F .
I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F

nonnegative ⇒ convergence
I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has

non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence
I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.
I More general: Block Jacobi, Block Gauss Seidel etc.

Lecture 10 Slide 36

Lecture 9 Slide 38

Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

I These critera do not depend on the symmetry of the matrix!

Lecture 10 Slide 37

Lecture 10 Slide 38

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):
I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R:

A = LU − R

I Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?

Lecture 10 Slide 39

Comparison of M-Matrices

Theorem(Saad, Th. 1.33): Let A, B n × n matrices such that
(i) A ≤ B
(ii) bij ≤ 0 for i 6= j .

Then, if A is an M-Matrix, so is B.
Proof: For the diagonal parts, one has DB ≥ DA > 0,
DA − A ≥ DB − B ≥ 0 Therefore

I − D−1
A A ≥ D−1

A (DB − B) ≥ D−1
B (DB − B) = I − D−1

B B =: G ≥ 0.

Perron-Frobenius ⇒ ρ(G) = ρ(I − D−1
B B) ≤ ρ(I − D−1

A A) < 1
⇒ I − G is nonsingular. From the proof of the M-matrix criterion,
D−1

B B = (I − G)−1 =
∑∞

k=0 Gk ≥ 0. As DB > 0, we get B ≥ 0.
�

Lecture 10 Slide 40

M-Property propagation in Gaussian Elimination
Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix
A1 obtained from the first step of Gaussian elimination is an M-matrix.
Proof: One has a1

ij = aij − ai1a1j
a11

,
aij , ai1, a1j ≤ 0, a11 > 0
⇒ a1

ij ≤ 0 for i 6= j

A = L1A1 with L1 =

1 0 . . . 0
−a12
a11

1 . . . 0
... . . . 0
−a1n
a11

0 . . . 1

 nonsingular, nonnegative

⇒ A1 nonsingular

Let e1 . . . en be the unit vectors. Then A−1
1 e1 = 1

a11 e1 ≥ 0. For j > 1,
A−1

1 ej = A−1L−1ej = A−1ej ≥ 0.
⇒ A−1

1 ≥ 0
�

Lecture 10 Slide 41

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.

Lecture 10 Slide 42

Stability of ILU decomposition II

Proof

Let Ã1 = A1 + R1 = L1A + R1 where R1 is a nonnegative matrix which
occurs from dropping some off diagonal entries from A1. Thus, Ã1 ≥ A1
and Ã1 is an M-matrix. We can repeat this recursively

Ãk = Ak + Rk = LkAk−1 + Rk

= LkLk−1Ak−2 + LkRk−1 + Rk

= LkLk−1 · . . . · L1A + LkLk−1 · . . . · L2R1 + · · ·+ Rk

Let L = (Ln−1 · . . . · L1)−1, U = Ãn−1. Then U = L−1A + S with

S = Ln−1Ln−2· . . . ·L2R1+· · ·+Rn−1 = Ln−1Ln−2· . . . ·L2(R1+R2+. . .Rn−1)

Let R = R1 + R2 + . . .Rn−1, then A = LU − R where U−1L−1, R are
nonnegative.

�

Lecture 10 Slide 43

ILU(0)
I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F)

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:
for(int i=0;i<n;i++)
d(i)=a(i,i)

for(int i=0;i<n;i++)
{

d(i)=1.0/d(i)
for (int j=i+1;j<n;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,i)

}

Lecture 10 Slide 44

ILU(0)

Solve Mu = v
for(int i=0;i<n;i++)
{

double x=0.0;
for (int j=0;j<i;i++)
x=x+a(i,j)*u(j)
u(i)=d(i)*(v(i)-x)

}

for(int i=n-1;i>=0;i--)
{

double x=0.0
for(int j=i+1;j<n;j++)
x=x+a(i,j)*u(j)
u(i)=u(i)-d(i)*x

}

Lecture 10 Slide 45

ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU

