Scientific Computing WS 2018/2019

Lecture 10

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Homework assessment

General

- Please apologize terse answers - on the bright side of this I found time to reply to all individually who handed things in by yesterday noon
- please stick to the filename scheme, this makes it easier for me to give feedback to all of you
- Good style with zip files is that they unpack into subdir with the same name. E.g. abc.zip unpacks into directory abc.
- Mac users: try to pack your stuff without the __MACOSX and DS_Store subdirectories
- No need to include binaries
- Always try to calculate errors if exact data is available (I should have been more specific in assignment text)

Code style

- Try to specify datatypes in constants: 0.1 f for float, 0.11 for long double and avoid mixing of datatypes in expressions. In particular write $x / 2.0$ instead of $x / 2$ if you do division of a double number. (There are reasonable automatic conversion rules, but things are clearer if they are explicit).
- Cast ints to double explicitely in floating point expressions. This ensures that you don't accidentally create an integer intermediate result. ($1 / \mathrm{i} * \mathrm{i}$ was the reason of many overflow errors in your codes)
- Math headers: use <cmath> instead of <math.h>. In particular, this gives you long double version of functions if needed, in particular for abs.
- When using printf, use the right format specifiers for output of floating point numbers: \%e for float and double, and \%Le for long double. \%e,\%Le give the exponential notation, and \%f, \%Lf give a fixed point notation without exponential which is not very helpful for accuracy assessment.

Representation of real numbers

- Any real number $x \in \mathbb{R}$ can be expressed via representation formula:

$$
x= \pm \sum_{i=0}^{\infty} d_{i} \beta^{-i} \beta^{e}
$$

- $\beta \in \mathbb{N}, \beta \geq 2$: base
- $d_{i} \in \mathbb{N}, 0 \leq d_{i}<\beta$: mantissa digits
- $e \in \mathbb{Z}$: exponent
- Scientific notation of floating point numbers: e.g. $x=6.022 \cdot 10^{23}$
- $\beta=10$
- $d=(6,0,2,2,0 \ldots)$
- $e=23$
- Non-unique: $x=0.6022 \cdot 10^{24}$
- $\beta=10$
- $d=(0,6,0,2,2,0 \ldots)$
- $e=24$
- Infinite for periodic decimal numbers, irrational numbers

Floating point numbers

- Computer representation uses $\beta=2$, therefore $d_{i} \in\{0,1\}$
- Truncation to fixed finite size

$$
x= \pm \sum_{i=0}^{t-1} d_{i} \beta^{-i} \beta^{e}
$$

- t : mantissa length
- Normalization: assume $d_{0}=1 \Rightarrow$ save one bit for mantissa
- k : exponent size $-\beta^{k}+1=L \leq e \leq U=\beta^{k}-1$
- Extra bit for sign
- \Rightarrow storage size: $(t-1)+k+1$
- IEEE 754 single precision (C++ float) : $k=8, t=24 \Rightarrow 32$ bit
- IEEE 754 double precision (C++ double) : $k=11, t=53 \Rightarrow 64$ bit

Floating point limits

Finite size of reprensentation \Rightarrow there are minimal and maximal possible numbers which can be represented

- symmetry wrt. 0 because of sign bit
- smallest positive normalized number: $d_{0}=1, d_{i}=0, i=1 \ldots t-1$ $x_{\text {min }}=\beta^{L}$
- float: 1.175494351e-38
- double: 2.2250738585072014e-308
- smallest positive denormalized number: $d_{i}=0, i=0 \ldots t-2, d_{t-1}=1$ $x_{\text {min }}=\beta^{1-t} \beta^{L}$
- largest positive normalized number: $d_{i}=\beta-1,0 \ldots t-1$ $x_{\text {max }}=\beta\left(1-\beta^{1-t}\right) \beta^{U}$
- float: 3.402823466e+38
- double: $1.7976931348623158 \mathrm{e}+308$

Machine precision

- There cannot be more than 2^{t+k} floating point numbers \Rightarrow almost all real numbers have to be approximated
- Let x be an exact value and \tilde{x} be its approximation Then: $\left|\frac{\tilde{x}-x}{x}\right|<\epsilon$ is the best accuracy estimate we can get, where
- $\epsilon=\beta^{1-t}$ (truncation)
- $\epsilon=\frac{1}{2} \beta^{1-t}$ (rounding)
- Also: ϵ is the smallest representable number such that $1+\epsilon>1$.
- Relative errors show up in partiular when
- subtracting two close numbers
- adding smaller numbers to larger ones

Machine epsilon

- Smallest floating point number ϵ such that $1+\epsilon>1$ in floating point arithmetic
- In exact math it is true that from $1+\varepsilon=1$ it follows that $0+\varepsilon=0$ and vice versa. In floating point computations this is not true
- Many of you used the right algorithm and used the first value or which $1+\varepsilon=1$ as the result. This is half the desired quantity.
- Some did not divide start with 1.0 but by other numbers. E.g. 0.1 is not represented exactly in floating point arithmetic
- Recipe for calculation:

Set $\epsilon=1.0$;
while $1.0+\epsilon / 2.0>1.0$ do
$\epsilon=\epsilon / 2.0$
end

- But ... this may be optimized away...

Normalized floating point number

- IEEE 75432 bit floating point number - normally the same as C++ float

- Storage layout for a normalized number $\left(d_{0}=1\right)$
- bit 0 : sign, $0 \rightarrow+, \quad 1 \rightarrow-$
- bit $1 \ldots 8$: $r=8$ exponent bits, value $e+2^{r-1}-1=127$ is stored \Rightarrow no need for sign bit in exponent
- bit 9...31: $t=23$ mantissa bits $d_{1} \ldots d_{23}$
- $d_{0}=1$ not stored \equiv "hidden bit"
- Examples

1	$0 _01111111 _00000000000000000000000$	$e=0$, stored 127
2	$0 _10000000 _00000000000000000000000$	$e=1$, stored 128
0.5	$0 _01111110 _00000000000000000000000$	$e=-1$, stored 126
0.1	$0 _01111011 _10011001100110011001101$	infinite periodic
0	$0 _00000000 _0000000000000000000000$	

- Numbers which are exactly represented in decimal system may not be exactly represented in binary system.

How Additionworks ?

- General:
- 1. Adjust exponent of number to be added:
- Until both exponents are equal, add one to exponent, shift mantissa to right by one bit
- 2. Add both numbers
- 3. Normalize result
- For $1+\epsilon$, We have at maximum t bit shifts of normalized mantissa until mantissa becomes 0 , so $\epsilon=2^{-t}$.

Data of IEEE 754 floating point representations

	size	t	r	ϵ
float	32	23	8	$1.1920928955078125 \mathrm{e}-07$
double	64	53	11	$2.2204460492503131 \mathrm{e}-16$
long double	128	63	15	$1.0842021724855044 \mathrm{e}-19$

- Floating point format not standardized by language but by IEEE comitee
- Implementation of long double varies, may even be the same as double, or may be significantly slower, so it is mostly no good option
- There are high accuracy floating point number packages available, which however perform calculations without support of the CPU floating point arithmetic

Summation

- Basel sum: $\sum_{n=1}^{K} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
- Intended answer for accuracy: sum in reverse order. Start with adding up many small values which would be cancelled out if added to an already large sum value.
- Results for float:

| n | forward sum | forward sum error | reverse sum | reverse sum error |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 10 | $1.5497677326202392 \mathrm{e}+00$ | $9.51664447784423828 \mathrm{e}-02$ | $1.54976773262023925 \mathrm{e}+00$ | $9.51664447784423828 \mathrm{e}-02$ |
| 100 | $1.6349840164184570 \mathrm{e}+00$ | $9.95016098022460937 \mathrm{e}-03$ | $1.63498389720916748 \mathrm{e}+00$ | $9.95028018951416015 \mathrm{e}-03$ |
| 1000 | $1.6439348459243774 \mathrm{e}+00$ | $9.99331474304199218 \mathrm{e}-04$ | $1.64393448829650878 \mathrm{e}+00$ | $9.99689102172851562 \mathrm{e}-04$ |
| 10000 | $1.6447253227233886 \mathrm{e}+00$ | $2.08854675292968750 \mathrm{e}-04$ | $1.64483404159545898 \mathrm{e}+00$ | $1.00135803222656250 \mathrm{e}-04$ |
| 100000 | $1.6447253227233886 \mathrm{e}+00$ | $2.08854675292968750 \mathrm{e}-04$ | $1.64492404460906982 \mathrm{e}+00$ | $1.01327896118164062 \mathrm{e}-05$ |
| 1000000 | $1.6447253227233886 \mathrm{e}+00$ | $2.08854675292968750 \mathrm{e}-04$ | $1.64493298530578613 \mathrm{e}+00$ | $1.19209289550781250 \mathrm{e}-06$ |
| 10000000 | $1.6447253227233886 \mathrm{e}+00$ | $2.08854675292968750 \mathrm{e}-04$ | $1.64493393898010253 \mathrm{e}+00$ | $2.38418579101562500 \mathrm{e}-07$ |
| 100000000 | $1.6447253227233886 \mathrm{e}+00$ | $2.08854675292968750 \mathrm{e}-04$ | $1.64493405818939208 \mathrm{e}+00$ | $1.19209289550781250 \mathrm{e}-07$ |

- No gain in accuracy for forward sum for $n>10000$

Kahan summation

- Some of you hinted at the Kahan compensated summation algorithm (thanks!):

```
T sum_kah=0.0;
T error_compensation=0.0;
for (int i=1; i<=n;i++)
{
    T x=i;
    T increment=1.0/(x*x);
    T corrected_increment=increment-error_compensation;
    T good_sum=sum_kah+corrected_increment;
    error_compensation= (good_sum-sum_kah)-corrected_increment;
    sum_kah =good_sum;
}
```

- When implementing, be careful that expressions are not optimized away ...
- William Kahan (1933-) is the principle architect of the IEEE 754 floating point standard ...

Recap on nonnegative matrices

The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume $n \geq 2$)
Theorem (Varga, Th. 1.11) Let A be an $n \times n$ (real or complex) matrix. Let

$$
\Lambda_{i}=\sum_{\substack{j=1 \ldots . n \\ j \neq i}}\left|a_{i j}\right|
$$

If λ is an eigenvalue of A then there exists $r, 1 \leq r \leq n$ such that

$$
\left|\lambda-a_{r r}\right| \leq \Lambda_{r}
$$

Proof Assume λ is eigenvalue, \mathbf{x} a corresponding eigenvector, normalized such that $\max _{i=1 \ldots n}\left|x_{i}\right|=\left|x_{r}\right|=1$. From $A \mathbf{x}=\lambda \mathbf{x}$ it follows that

$$
\begin{aligned}
\left(\lambda-a_{i i}\right) x_{i} & =\sum_{\substack{j=1 \ldots . n \\
j \neq i}} a_{i j} x_{j} \\
\left|\lambda-a_{r r}\right| & =\left|\sum_{\substack{j=1 \ldots n \\
j \neq r}} a_{r j} x_{j}\right| \leq \sum_{\substack{j=1 \ldots . n \\
j \neq r}}\left|a_{r j}\right|\left|x_{j}\right| \leq \sum_{\substack{j=1 \ldots . \ldots \\
j \neq r}}\left|a_{r j}\right|=\Lambda_{r}
\end{aligned}
$$

Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by the Gershgorin circles

$$
\lambda \in \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{V}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Corollary:

$$
\begin{array}{r}
\rho(A) \leq \max _{i=1 \ldots n} \sum_{j=1}^{n}\left|a_{i j}\right|=\|A\|_{\infty} \\
\rho(A) \leq \max _{j=1 \ldots n} \sum_{i=1}^{n}\left|a_{i j}\right|=\|A\|_{1}
\end{array}
$$

Proof

$$
\left|\mu-a_{i i}\right| \leq \Lambda_{i} \quad \Rightarrow \quad|\mu| \leq \Lambda_{i}+\left|a_{i i}\right|=\sum_{j=1}^{n}\left|a_{i j}\right|
$$

Furthermore, $\sigma(A)=\sigma\left(A^{T}\right)$.

Gershgorin circles: example

$$
A=\left(\begin{array}{ccc}
1.9 & 1.8 & 3.4 \\
0.4 & 1.8 & 0.4 \\
0.05 & 0.1 & 2.3
\end{array}\right), \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3, \Lambda_{1}=5.2, \Lambda_{2}=0.8, \lambda_{3}=0.15
$$

Gershgorin circles: heat example I

$$
\begin{gathered}
A=\left(\begin{array}{ccccccc}
\frac{2}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
B=\left(I-D^{-1} A\right) & =\left(\begin{array}{ccccccc}
0 & \frac{1}{2} & & & & & \frac{1}{h}
\end{array}\right) \\
\frac{1}{2} & 0 & \frac{1}{2} & & & \\
& \frac{1}{2} & 0 & \frac{1}{2} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & \frac{1}{2} & 0 & \frac{1}{2} & \\
& & & \frac{1}{2} & 0 & \frac{1}{2} \\
& & & & \frac{1}{2} & 0
\end{array}\right)
\end{gathered}
$$

We have $b_{i i}=0, \Lambda_{i}=\left\{\begin{array}{ll}\frac{1}{2}, & i=1, n \\ 1 & i=2 \ldots n-1\end{array} \Rightarrow\right.$ estimate $\left|\lambda_{i}\right| \leq 1$

Gershgorin circles: heat example II
Let $\mathrm{n}=11, \mathrm{~h}=0.1$:

$$
\lambda_{i}=\cos \left(\frac{i h \pi}{1+2 h}\right) \quad(i=1 \ldots n)
$$

\Rightarrow the Gershgorin circle theorem is too pessimistic...

Weighted directed graph representation of matrices

Define a directed graph from the nonzero entries of a matrix $A=\left(a_{i k}\right)$:

- Nodes: $\mathcal{N}=\left\{N_{i}\right\}_{i=1 \ldots n}$
- Directed edges:

$$
\mathcal{E}=\left\{\vec{N}_{k} \vec{N}_{l} \mid a_{k l} \neq 0\right\}
$$

- Matrix entries \equiv weights of directed edges

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

- 1:1 equivalence between matrices and weighted directed graphs
- Convenient e.g. for sparse matrices

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

$$
P A P^{T}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right)
$$

A is irreducible if it is not reducible.
Theorem (Varga, Th. 1.17): A is irreducible \Leftrightarrow the matrix graph is connected, i.e. for each ordered pair $\left(N_{i}, N_{j}\right)$ there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix entries $a_{i k_{1}}, a_{k_{1} k_{2}}, a_{k_{2} k_{3}} \ldots, a_{k_{r-1} k_{r}} a_{k_{r} j}$.

Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$
\lambda \in \partial \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Then, all n Gershgorin circles pass through λ, i.e. for $i=1 \ldots n$,

$$
\left|\lambda-a_{i i}\right|=\Lambda_{i}
$$

Consequences for heat example from Taussky theorem

- $B=I-D^{-1} A$
- We had $b_{i i}=0, \Lambda_{i}=\left\{\begin{array}{ll}\frac{1}{2}, & i=1, n \\ 1 & i=2 \ldots n-1\end{array} \Rightarrow\right.$ estimate $\left|\lambda_{i}\right| \leq 1$
- Assume $\left|\lambda_{i}\right|=1$. Then λ_{i} lies on the boundary of the union of the Gershgorin circles. But then it must lie on the boundary of both circles with radius $\frac{1}{2}$ and 1 around 0 .
- Contradiction $\Rightarrow\left|\lambda_{i}\right|<1, \rho(B)<1$!

Diagonally dominant matrices

Definition Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix.

- A is diagonally dominant if
(i) for $i=1 \ldots n,\left|a_{i i}\right| \geq \sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|$
- A is strictly diagonally dominant (sdd) if
(i) for $i=1 \ldots n,\left|a_{i i}\right|>\sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|$
- A is irreducibly diagonally dominant (idd) if
(i) A is irreducible
(ii) A is diagonally dominant -

$$
\text { for } i=1 \ldots n,\left|a_{i i}\right| \geq \sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|
$$

(iii) for at least one $r, 1 \leq r \leq n,\left|a_{r r}\right|>\sum_{\substack{j=1 \ldots n \\ j \neq r}}\left|a_{r j}\right|$

A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or irreducibly diagonally dominant. Then A is nonsingular.

If in addition, $a_{i i}>0$ is real for $i=1 \ldots n$, then all real parts of the eigenvalues of A are positive:

$$
\operatorname{Re} \lambda_{i}>0, \quad i=1 \ldots n
$$

Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they must be positive, so A is positive definite.

Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector \mathbf{x} is

- positive $(x>0)$ if all entries of x are positive
- nonnegative $(x \geq 0)$ if all entries of x are nonnegative

Definition: A real $n \times n$ matrix A is

- positive $(A>0)$ if all entries of A are positive
- nonnegative $(A \geq 0)$ if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let $A \geq 0$ be an irreducible $n \times n$ matrix. Then
(i) A has a positive real eigenvalue equal to its spectral radius $\rho(A)$.
(ii) To $\rho(A)$ there corresponds a positive eigenvector $\mathbf{x}>0$.
(iii) $\rho(A)$ increases when any entry of A increases.
(iv) $\rho(A)$ is a simple eigenvalue of A.

Proof: See Varga.

Perron-Frobenius for general nonnegative matrices

Each $n \times n$ matrix can be brought to the normal form

$$
P A P^{T}=\left(\begin{array}{cccc}
R_{11} & R_{12} & \ldots & R_{1 m} \\
0 & R_{22} & \ldots & R_{2 m} \\
\vdots & & \ddots & \\
0 & 0 & \ldots & R_{m m}
\end{array}\right)
$$

where for $j=1 \ldots m$, either $R_{j j}$ irreducible or $R_{j j}=(0)$.
Theorem(Varga, Th. 2.20) Let $A \geq 0$ be an $n \times n$ matrix. Then
(i) A has a nonnegative eigenvalue equal to its spectral radius $\rho(A)$. This eigenvalue is positive unless A is reducible and its normal form is strictly upper triangular
(ii) To $\rho(A)$ there corresponds a nonzero eigenvector $\mathbf{x} \geq 0$.
(iii) $\rho(A)$ does not decrease when any entry of A increases.

Proof: See Varga; $\sigma(A)=\bigcup_{j=1}^{m} \sigma\left(R_{j j}\right)$, apply irreducible Perron-Frobenius to $R_{j j}$.

Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then $\rho\left(I-D^{-1} A\right)<1$, i.e. the Jacobi method converges.

Proof In this case, $|B|=B$

Regular splittings

- $A=M-N$ is a regular splitting if
- M is nonsingular
- M^{-1}, N are nonnegative, i.e. have nonnegative entries
- Regard the iteration $u_{k+1}=M^{-1} N u_{k}+M^{-1} b$.
- We have $I-M^{-1} A=M^{-1} N$.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting. Then $\rho\left(M^{-1} N\right)<1$.

Proof: Let $G=M^{-1} N$. Then $A=M(I-G)$, therefore $I-G$ is nonsingular.

In addition

$$
A^{-1} N=\left(M\left(I-M^{-1} N\right)\right)^{-1} N=\left(I-M^{-1} N\right)^{-1} M^{-1} N=(I-G)^{-1} G
$$

By Perron-Frobenius (for general matrices), $\rho(G)$ is an eigenvalue with a nonnegative eigenvector \mathbf{x}. Thus,

$$
0 \leq A^{-1} N \mathbf{x}=\frac{\rho(G)}{1-\rho(G)} \mathbf{x}
$$

Therefore $0 \leq \rho(G) \leq 1$.
As $I-G$ is nonsingular, $\rho(G)<1$.

Convergence rate comparison

Corollary: $\rho\left(M^{-1} N\right)=\frac{\tau}{1+\tau}$ where $\tau=\rho\left(A^{-1} N\right)$.
Proof: Rearrange $\tau=\frac{\rho(G)}{1-\rho(G)} \square$
Corollary: Let $A \geq 0, A=M_{1}-N_{1}$ and $A=M_{2}-N_{2}$ be regular splittings. If $N_{2} \geq N_{1} \geq 0$, then $1>\rho\left(M_{2}^{-1} N_{2}\right) \geq \rho\left(M_{1}^{-1} N_{1}\right)$.

Proof: $\tau_{2}=\rho\left(A^{-1} N_{2}\right) \geq \rho\left(A^{-1} N_{1}\right)=\tau_{1}$
But $\frac{\tau}{1+\tau}$ is strictly increasing.

M-Matrix definition

Definition Let A be an $n \times n$ real matrix. A is called M-Matrix if
(i) $a_{i j} \leq 0$ for $i \neq j$
(ii) A is nonsingular
(iii) $A^{-1} \geq 0$

Corollary: If A is an M-Matrix, then $A^{-1}>0 \Leftrightarrow A$ is irreducible.
Proof: See Varga.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show $A^{-1} \geq 0$.

- Let $B=I-D^{-1} A$. Then $\rho(B)<1$, therefore $I-B$ is nonsingular.
- We have for $k>0$:

$$
\begin{aligned}
I-B^{k+1} & =(I-B)\left(I+B+B^{2}+\cdots+B^{k}\right) \\
(I-B)^{-1}\left(I-B^{k+1}\right) & =\left(I+B+B^{2}+\cdots+B^{k}\right)
\end{aligned}
$$

The left hand side for $k \rightarrow \infty$ converges to $(I-B)^{-1}$, therefore

$$
(I-B)^{-1}=\sum_{k=0}^{\infty} B^{k}
$$

As $B \geq 0$, we have $(I-B)^{-1}=A^{-1} D \geq 0$. As $D>0$ we must have $A^{-1} \geq 0$.

Application

Let A be an M-Matrix. Assume $A=D-E-F$.

- Jacobi method: $M=D$ is nonsingular, $M^{-1} \geq 0 . N=E+F$ nonnegative \Rightarrow convergence
- Gauss-Seidel: $M=D-E$ is an M-Matrix as $A \leq M$ and M has non-positive off-digonal entries. $N=F \geq 0 . \Rightarrow$ convergence
- Comparison: $N_{J} \geq N_{G S} \Rightarrow$ Gauss-Seidel converges faster.
- More general: Block Jacobi, Block Gauss Seidel etc.

Intermediate Summary

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible.

This is mostly the case for elliptic and parabolic PDEs.

- Check if the matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.
- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.
- These critera do not depend on the symmetry of the matrix!

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- Result: incomplete LU factors L, U, remainder R :

$$
A=L U-R
$$

- Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?

Comparison of M-Matrices

Theorem(Saad, Th. 1.33): Let $A, B n \times n$ matrices such that
(i) $A \leq B$
(ii) $b_{i j} \leq 0$ for $i \neq j$.

Then, if A is an M-Matrix, so is B.
Proof: For the diagonal parts, one has $D_{B} \geq D_{A}>0$, $D_{A}-A \geq D_{B}-B \geq 0$ Therefore

$$
I-D_{A}^{-1} A \geq D_{A}^{-1}\left(D_{B}-B\right) \geq D_{B}^{-1}\left(D_{B}-B\right)=I-D_{B}^{-1} B=: G \geq 0
$$

Perron-Frobenius $\Rightarrow \rho(G)=\rho\left(I-D_{B}^{-1} B\right) \leq \rho\left(I-D_{A}^{-1} A\right)<1$
$\Rightarrow I-G$ is nonsingular. From the proof of the M-matrix criterion,
$D_{B}^{-1} B=(I-G)^{-1}=\sum_{k=0}^{\infty} G^{k} \geq 0$. As $D_{B}>0$, we get $B \geq 0$.

M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix A_{1} obtained from the first step of Gaussian elimination is an M-matrix.
Proof: One has $a_{i j}^{1}=a_{i j}-\frac{a_{i 1} a_{1 j}}{a_{11}}$,
$a_{i j}, a_{i 1}, a_{1 j} \leq 0, a_{11}>0$
$\Rightarrow a_{i j}^{1} \leq 0$ for $i \neq j$
$A=L_{1} A_{1}$ with $L_{1}=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ \frac{-a_{12}}{a_{11}} & 1 & \ldots & 0 \\ \vdots & & \ddots & 0 \\ \frac{-a l n}{a_{11}} & 0 & \ldots & 1\end{array}\right)$ nonsingular, nonnegative
$\Rightarrow A_{1}$ nonsingular

Let $e_{1} \ldots e_{n}$ be the unit vectors. Then $A_{1}^{-1} e_{1}=\frac{1}{a_{1} 1} e_{1} \geq 0$. For $j>1$, $A_{1}^{-1} e_{j}=A^{-1} L^{-1} e_{j}=A^{-1} e_{j} \geq 0$.
$\Rightarrow A_{1}^{-1} \geq 0$

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU factorization with a given nonzero pattern

$$
A=L U-R
$$

is stable. Moreover, $A=L U-R$ is a regular splitting.

Stability of ILU decomposition II

Proof

Let $\tilde{A}_{1}=A_{1}+R_{1}=L_{1} A+R_{1}$ where R_{1} is a nonnegative matrix which occurs from dropping some off diagonal entries from A_{1}. Thus, $\tilde{A}_{1} \geq A_{1}$ and \tilde{A}_{1} is an M-matrix. We can repeat this recursively

$$
\begin{aligned}
\tilde{A}_{k}=A_{k}+R_{k} & =L_{k} A_{k-1}+R_{k} \\
& =L_{k} L_{k-1} A_{k-2}+L_{k} R_{k-1}+R_{k} \\
& =L_{k} L_{k-1} \cdot \ldots \cdot L_{1} A+L_{k} L_{k-1} \cdot \ldots \cdot L_{2} R_{1}+\cdots+R_{k}
\end{aligned}
$$

Let $L=\left(L_{n-1} \cdot \ldots \cdot L_{1}\right)^{-1}, U=\tilde{A}_{n-1}$. Then $U=L^{-1} A+S$ with
$S=L_{n-1} L_{n-2} \cdot \ldots \cdot L_{2} R_{1}+\cdots+R_{n-1}=L_{n-1} L_{n-2} \cdot \cdots \cdot L_{2}\left(R_{1}+R_{2}+\ldots R_{n-1}\right)$
Let $R=R_{1}+R_{2}+\ldots R_{n-1}$, then $A=L U-R$ where $U^{-1} L^{-1}, R$ are nonnegative.

$\operatorname{ILU}(0)$

- Special case of ILU: ignore any fill-in.
- Representation:

$$
M=(\tilde{D}-E) \tilde{D}^{-1}(\tilde{D}-F)
$$

- \tilde{D} is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup:

```
for(int i=0;i<n;i++)
d(i)=a(i,i)
for(int i=0;i<n;i++)
{
    d(i)=1.0/d(i)
    for (int j=i+1;j<n;j++)
    d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}
```


ILU(0)

Solve $M u=v$

```
for(int i=0;i<n;i++)
{
    double x=0.0;
    for (int j=0;j<i;i++)
    x=x+a(i,j)*u(j)
    u(i)=d(i)*(v(i)-x)
}
for(int i=n-1;i>=0;i--)
{
    double x=0.0
    for(int j=i+1;j<n;j++)
    x=x+a(i,j)*u(j)
    u(i)=u(i)-d(i)*x
}
```


ILU(0)

- Generally better convergence properties than Jacobi, Gauss-Seidel
- One can develop block variants
- Alternatives:
- ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
- ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

