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Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . . )

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.
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The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aij uk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aii uk+1,i +
∑

j=1...n,j 6=i

aij uk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F )uk + D−1b
= M−1Nuk + M−1b

I Variable ordering does not matter
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The Gauss-Seidel method

I Solve for main diagonal element row by row
I Take already calculated results into account

aii uk+1,i +
∑

j<i

aij uk+1,j +
∑

j>i

aij uk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b

I May be it is faster
I Variable order probably matters
I Preconditioners: forward M = D − E , backward: M = D − F
I Splitting formulation: A = M − N

forward: N = F , backward: M = E
I Forward case:

uk+1 = (D − E)−1Fuk + (D − E)−1b
= M−1Nuk + M−1b
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Block methods

I Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

I The blocks on the diagonal should be square matrices, and invertible
I Interesting variant for systems of partial differential equations, where

multiple species interact with each other
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Convergence

I Let û be the solution of Au = b.
I Let ek = uj − û be the error of the k-th iteration step

uk+1 = uk −M−1(Auk − b)
= (I −M−1A)uk + M−1b

uk+1 − û = uk − û −M−1(Auk − Aû)
= (I −M−1A)(uk − û)
= (I −M−1A)k (u0 − û)

resulting in

ek+1 = (I −M−1A)k e0

I So when does (I −M−1A)k converge to zero for k →∞ ?
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Spectral radius and convergence

Definition The spectral radius ρ(A) is the largest absolute value of any
eigenvalue of A: ρ(A) = maxλ∈σ(A) |λ|.

Theorem (Saad, Th. 1.10) lim
k→∞

Ak = 0 ⇔ ρ(A) < 1.

Proof, ⇒: Let ui be a unit eigenvector associated with an eigenvalue λi . Then

Aui = λi ui

A2ui = λi Ai ui = λ2ui

...
Ak ui = λk ui

therefore ||Ak ui ||2 = |λk |
and lim

k→∞
|λk | = 0

so we must have ρ(A) < 1
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Corollary from proof

Theorem (Saad, Th. 1.12)

lim
k→∞

||Ak || 1
k = ρ(A)

�
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Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.
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Eigenvalue analysis for more general matrices

I For 1D heat conduction we used a very special regular structure of
the matrix which allowed exact eigenvalue calculations

I Generalizations to tensor product is possible
I Generalization to varying coefficients, unstructured grids . . .
⇒ what can be done for general matrices ?
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The Gershgorin Circle Theorem (Semyon Gershgorin,1931)
(everywhere, we assume n ≥ 2)
Theorem (Varga, Th. 1.11) Let A be an n × n (real or complex) matrix.
Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there exists r , 1 ≤ r ≤ n such that
|λ− arr | ≤ Λr

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− aii )xi =
∑

j=1...n
j 6=i

aijxj

|λ− arr | = |
∑

j=1...n
j 6=r

arjxj | ≤
∑

j=1...n
j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�
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Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

λ ∈
⋃

i=1...n
{µ ∈ V : |µ− aii | ≤ Λi}

Corollary:

ρ(A) ≤ max
i=1...n

n∑

j=1
|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑

i=1
|aij | = ||A||1

Proof

|µ− aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =
n∑

j=1
|aij |

Furthermore, σ(A) = σ(AT ). �
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Gershgorin circles: example

A =




1.9 1.8 3.4
0.4 1.8 0.4

0.05 0.1 2.3


 , λ1 = 1, λ2 = 2, λ3 = 3,Λ1 = 5.2,Λ2 = 0.8, λ3 = 0.15
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Im
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Gershgorin circles: heat example I

A =




2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h




B = (I − D−1A) =




0 1
21

2 0 1
21

2 0 1
2

. . . . . . . . . . . .
1
2 0 1

21
2 0 1

21
2 0




We have bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1
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Gershgorin circles: heat example II
Let n=11, h=0.1:

λi = cos
(

ihπ
1 + 2h

)
(i = 1 . . . n)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Re

Im

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

⇒ the Gershgorin circle theorem is too pessimistic...
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Weighted directed graph representation of matrices
Define a directed graph from the
nonzero entries of a matrix A = (aik):

I Nodes: N = {Ni}i=1...n
I Directed edges:
E = {−−−→NkNl |akl 6= 0}

I Matrix entries ≡ weights of
directed edges

A =




1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.




N1

N2

N3

N4

N5

1

2

4

3 5

6

7

8

9
10

11

12

I 1:1 equivalence between matrices and weighted directed graphs
I Convenient e.g. for sparse matrices
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Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =
(

A11 A12
0 A22

)

A is irreducible if it is not reducible.
Theorem (Varga, Th. 1.17): A is irreducible ⇔ the matrix graph is
connected, i.e. for each ordered pair (Ni ,Nj) there is a path consisting of
directed edges, connecting them.
Equivalently, for each i , j there is a sequence of consecutive nonzero matrix
entries aik1 , ak1k2 , ak2k3 . . . , akr−1kr akr j .

�
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Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue λ is a boundary point of the union of all the disks

λ ∈ ∂
⋃

i=1...n
{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi
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Taussky theorem proof

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− arr )xr =
∑

j=1...n
j 6=r

arjxj (1)

|λ− arr | ≤
∑

j=1...n
j 6=r

|arj | · |xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr (2)

λ is boundary point ⇒ |λ− arr | = Λr

⇒ For all p 6= r with arp 6= 0, |xp| = 1.
Due to irreducibility there is at least one such p. For this p, equation (2)
is valid (with p in place of r) ⇒ |λ− app| = Λp

Due to irreducibility, this is true for all p = 1 . . . n. �



Lecture 9 Slide 20

Consequences for heat example from Taussky theorem

I B = I − D−1A

I We had bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

I Assume |λi | = 1. Then λi lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius 1

2 and 1 around 0.
I Contradiction ⇒ |λi | < 1, ρ(B) < 1!
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Diagonally dominant matrices
Definition Let A = (aij) be an n × n matrix.

I A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑

j=1...n
j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |
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A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.
If in addition, aii > 0 is real for i = 1 . . . n, then all real parts of the
eigenvalues of A are positive:

Reλi > 0, i = 1 . . . n
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A very practical nonsingularity criterion, proof I

Proof:
I Assume A strictly diagonally dominant. Then the union of the

Gershgorin disks does not contain 0 and λ = 0 cannot be an
eigenvalue ⇒ A is nonsingular.

I As for the real parts, the union of the disks is
⋃

i=1...n
{µ ∈ C : |µ− aii | ≤ Λi}

and Reµ must be larger than zero if µ should be contained.
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A very practical nonsingularity criterion, proof I

I Assume A irreducibly diagonally dominant. Then, if 0 is an
eigenvalue, it sits on the boundary of one of the Gershgorin disks.
By Taussky theorem, we have |aii | = Λi for all i = 1 . . . n.
This is a contradiction as by definition there is at least one i such
that |aii | > Λi

I Assume aii > 0, real. All real parts of the eigenvalues must be ≥ 0.
Therefore, if a real part is 0, it lies on the boundary of at least one
disk.
By Taussky theorem it must be contained at the same time in the
boundary of all the disks and in the imaginary axis.
This contradicts the fact that there is at least one disk which does
not touch the imaginary axis as by definition there is at least one i
such that |aii | > Λi �
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Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.
Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.

�
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Heat conduction matrix

A =




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α




I A is idd ⇒ A is nonsingular
I diagA is positive real ⇒ eigenvalues of A have positive real parts
I A is real, symmetric ⇒ A is positive definite
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Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is

I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n× n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.
Proof: See Varga. �
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Perron-Frobenius for general nonnegative matrices
Each n × n matrix can be brought to the normal form

PAPT =




R11 R12 . . . R1m
0 R22 . . . R2m
... . . .
0 0 . . . Rmm




where for j = 1 . . .m, either Rjj irreducible or Rjj = (0).
Theorem(Varga, Th. 2.20) Let A ≥ 0 be an n × n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius ρ(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(ii) To ρ(A) there corresponds a nonzero eigenvector x ≥ 0.
(iii) ρ(A) does not decrease when any entry of A increases.

Proof: See Varga; σ(A) =
m⋃

j=1
σ(Rjj), apply irreducible Perron-Frobenius

to Rjj . �
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Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij) = I − D−1A. Then

bij =
{

0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑

j=1...n
|bij | =

∑

j=1...n
j 6=i

|aij
aii
| = Λi
|aii |

< 1

Therefore, ρ(|B|) < 1.
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Theorem on Jacobi matrix II
If A is idd, then for i = 1 . . . n,

∑

j=1...n
|bij | =

∑

j=1...n
j 6=i

|aij
aii
| = Λi
|aii |
≤ 1

∑

j=1...n
|brj | = Λr

|arr |
< 1 for at least one r

Therefore, ρ(|B|) <= 1. Assume ρ(|B|) = 1. By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks, for some i ,

|λ| = 1 ≤ Λi
|aii |
≤ 1

and it must lie on the boundary of this union. By Taussky then one has for
all i

|λ| = 1 ≤ Λi
|aii |

= 1

which contradicts the idd condition. �
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Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0
and aij ≤ 0 for i 6= j . Then ρ(I − D−1A) < 1, i.e. the Jacobi method
converges.
Proof In this case, |B| = B �.
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Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.



Lecture 9 Slide 33

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.
Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is
nonsingular.
In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius (for general matrices), ρ(G) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(G)
1− ρ(G)x

Therefore 0 ≤ ρ(G) ≤ 1.
As I − G is nonsingular, ρ(G) < 1. �
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Convergence rate comparison

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(G)
1−ρ(G) �

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular
splittings. If N2 ≥ N1 ≥ 0, then 1 > ρ(M−1

2 N2) ≥ ρ(M−1
1 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1

But τ
1+τ is strictly increasing. �
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M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if
(i) aij ≤ 0 for i 6= j

(ii) A is nonsingular
(iii) A−1 ≥ 0
Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.
Proof: See Varga. �
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Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j .
Then A is an M-Matrix.
Proof: We know that A is nonsingular, but we have to show A−1 ≥ 0.

I Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.
I We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk)
(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk)

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0
Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �
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Application

Let A be an M-Matrix. Assume A = D − E − F .
I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F

nonnegative ⇒ convergence
I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has

non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence
I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.
I More general: Block Jacobi, Block Gauss Seidel etc.
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Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

I These critera do not depend on the symmetry of the matrix!
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Example: 1D finite difference matrix:

Au =




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α







u1
u2
u3
...

uN−2
uN−1
uN




= f =




αv1
hf2
hf3

...
hfN−2
hfN−1
αvn




I idd
I positive main diagonal entries, nonpositive off-diagonal entries
⇒ A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it (ok, in 1D we already know
this is a bad idea . . . ).
⇒ for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.
≡ heating and positive environment temperatures cannot lead to negative
temperatures in the interior.


