Scientific Computing WS 2018/2019

Lecture 8

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Matrix preconditioned Richardson iteration

M, A spd.

- Scaled Richardson iteration with preconditoner M

$$
u_{k+1}=u_{k}-\alpha M^{-1}\left(A u_{k}-b\right)
$$

- Spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

- $\Rightarrow \gamma_{\text {min }} \leq \lambda_{i} \leq \gamma_{\text {max }}$
- \Rightarrow optimal parameter $\alpha=\frac{2}{\gamma_{\text {max }}+\gamma_{\text {min }}}$
- Convergence rate with optimal parameter: $\rho \leq \frac{\kappa\left(M^{-1} A\right)-1}{\kappa\left(M^{-1} A\right)+1}$
- This is one possible way for convergence analysis which at once gives convergence rates
- But ... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

- Regard the $n \times n$ 1D heat conduction matrix with $h=\frac{1}{n-1}$ and $\alpha=\frac{1}{h}$ (easier to analyze).

$$
A=\left(\begin{array}{cccccc}
\frac{2}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{2}{h}
\end{array}\right)
$$

- Eigenvalues (tri-diagonal Toeplitz matrix):

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i \pi}{n+1}\right)\right) \quad(i=1 \ldots n)
$$

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

- Express them in $h: n+1=\frac{1}{h}+2=\frac{1+2 h}{h} \Rightarrow$

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i h \pi}{1+2 h}\right)\right) \quad(i=1 \ldots n)
$$

Richardson for 1D heat conduction: Jacobi

- The Jacobi preconditioner just multiplies by $\frac{h}{2}$, therefore for $M^{-1} A$:

$$
\begin{aligned}
\mu_{\max } & \approx 2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}} \\
\mu_{\min } & \approx \frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Optimal parameter: $\alpha=\frac{2}{\lambda_{\max }+\lambda_{\text {min }}} \approx 1(h \rightarrow 0)$
- Good news: this is independent of h resp. n
- No need for spectral estimate in order to work with optimal parameter
- Is this true beyond this special case ?

Richardson for 1D heat conduction: Convergence factor

- Condition number + spectral radius

$$
\begin{aligned}
\kappa\left(M^{-1} A\right)=\kappa(A) & =\frac{4(1+2 h)^{2}}{\pi^{2} h^{2}}-1 \\
\rho\left(I-M^{-1} A\right) & =\frac{\kappa-1}{\kappa+1}=1-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Bad news: $\rho \rightarrow 1 \quad(h \rightarrow 0)$
- Typical situation with second order PDEs:

$$
\begin{aligned}
\kappa(A) & =O\left(h^{-2}\right) \quad(h \rightarrow 0) \\
\rho\left(I-D^{-1} A\right) & =1-O\left(h^{2}\right) \quad(h \rightarrow 0)
\end{aligned}
$$

- Mean square error of approximation $\left\|u-u_{h}\right\|_{2}<h^{\gamma}$, in the simplest case $\gamma=2$.
- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- Optimal iterative solver complexity - assume:
- $\rho<\rho_{0}<1$ independent of h resp. N
- A sparse ($A \cdot u$ has complexity $O(N)$)
- Solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
\Rightarrow Overall complexity $O(N)$

Iterative solver complexity II

- Assume
- $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta} \rightarrow k_{\rho}=O\left(h^{-\delta}\right)$
- d: space dimension $\Rightarrow h \approx N^{-\frac{1}{d}} \Rightarrow k_{\rho}=O\left(N^{\frac{\delta}{d}}\right)$
- $O(N)$ complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
\Rightarrow Overall complexity $O\left(N^{1+\frac{\delta}{d}}\right)=O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$
- Hypothetical "Improved iterative solver" with $\delta=1$?
- Overview on complexity estimates

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N) \\
2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N) \\
3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

Solver complexity scaling for 1D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N)
\end{array}
$$

- Direct solvers significantly better than iterative ones

Solver complexity scaling for 2D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N)
\end{array}
$$

- Direct solvers better than simple iterative solvers (Jacobi etc.)
- On par with improved iterative solvers

Solver complexity scaling for 3D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

- LU factorization is extremly expensive
- LU solve on par with improved iterative solvers

What could be done ?

- Find optimal iterative solver with $O(N)$ complexity
- Find "improved preconditioner" with $\kappa\left(M^{-1} A\right)=O\left(h^{-1}\right) \Rightarrow \delta=1$
- Find "improved iterative scheme": with $\rho=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$:

For Jacobi, we had $\kappa=X^{2}-1$ where $X=\frac{2(1+2 h)}{\pi h}=O\left(h^{-1}\right)$.

$$
\begin{aligned}
\rho & =1+\frac{\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1}-1 \\
& =1+\frac{\sqrt{X^{2}-1}-1-\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{X\left(\sqrt{1-\frac{1}{X^{2}}}+\frac{1}{X}\right)} \\
& =1-O(h)
\end{aligned}
$$

$\Rightarrow \delta=1$

Solution of SPD system as a minimization procedure

Regard $A u=f$, where A is symmetric, positive definite. Then it defines a bilinear form a : $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
a(u, v)=(A u, v)=v^{T} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Method of steepest descent: iteration scheme

$$
\begin{aligned}
r_{i} & =b-A u_{i} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} r_{i}
\end{aligned}
$$

Let \hat{u} the exact solution. Define $e_{i}=u_{i}-\hat{u}$, then $r_{i}=-A e_{i}$ Let $\|u\|_{A}=(A u, u)^{\frac{1}{2}}$ be the energy norm wrt. A.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number.

Method of steepest descent: advantages

- Simple Richardson iteration $u_{k+1}=u_{k}-\alpha\left(A u_{k}-f\right)$ needs good eigenvalue estimate to be optimal with $\alpha=\frac{2}{\lambda_{\text {max }}+\lambda_{\text {min }}}$
- In this case, asymptotic convergence rate is $\rho=\frac{\kappa-1}{\kappa+1}$
- Steepest descent has the same rate without need for spectral estimate

Conjugate gradients IV - The algorithm

Given initial value u_{0}, spd matrix A, right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\text {min }}(A)}$ is the spectral condition number.

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

$\mathrm{C}++$ implementation

```
template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,
const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;
    Vector p, z, q;
    Vector alpha(1), beta(1), rho(1), rho_1(1);
    Real normb = norm(b);
    Vector r = b - A*x;
    if (normb == 0.0) normb = 1;
    if ((resid = norm(r) / normb) <= tol) {
        tol = resid;
        max_iter = 0;
        return 0;
    }
    for (int i = 1; i <= max_iter; i++) {
        z = M.solve(r);
        rho(0) = dot(r, z);
        if (i == 1)
        p = z;
        else {
            beta(0) = rho(0) / rho_1(0);
            p=z + beta(0) * p;
        }
        q = A*p;
        alpha(0) =rho(0) / dot(p,q);
        x += alpha(0) * p;
        r -= alpha(0) * q;
        if ((resid = norm(r) / normb) <= tol) {
            tol = resid;
            max_iter = i;
            return 0;
        }
        rho_1(0) = rho(0);
    }
    tol = resid; return 1;
}
```


C ++ implementation II

- Available from http://www.netlib.org/templates/cpp//cg.h
- Slightly adapted for numcxx
- Available in numxx in the namespace netlib.

Next steps

- Put linear solution methods into our toolchest for solving PDE problems test them later in more interesting 2D situations
- Need more "tools":
- visualization
- triangulation of polygonal domains
- finite element, finite volume discretization methods

Visualization in Scientific Computing

- Human perception much better adapted to visual representation than to numbers
- Visualization of computational results necessary for the development of understanding
- Basic needs: curve plots etc
- python/matplotlib
- Advanced needs: Visualize discretization grids, geometry descriptions, solutions of PDEs
- Visualization in Scientific Computing: paraview
- Graphics hardware: GPU
- How to program GPU: OpenGL
- vtk

Python

- Scripting language with huge impact in Scientific Computing
- Open Source, exhaustive documentation online
- https://docs.python.org/3/
- https://www.python.org/about/gettingstarted/
- Possibility to call $\mathrm{C} / \mathrm{C}++$ code from python
- Library API
- swig - simple wrapper and interface generator (not only python)
- pybind11-C++11 specific
- Glue language for projects from different sources
- Huge number of libraries
- numpy/scipy
- Array + linear algebra library implemented in C
- matplotlib: graphics library https://matplotlib.org/users/pyplot_tutorial.html

C++/matplotlib workflow

- Run C++ program
- Write data generated during computations to disk
- Use python/matplotlib for to visualize results
- Advantages:
- Rich possibilities to create publication ready plots
- Easy to handle installation (write your code, install python+matplotlib)
- Python/numpy to postprocess calculated data
- Disadvantages
- Long way to in-depth understanding of API
- Slow for large datasets
- Not immediately available for creating graphics directly from $\mathrm{C}++$

Matplotlib: Alternative tools

- Similar workflow
- gnuplot
- Latex/tikz
- Call graphics from C++ ?
- ???
- Best shot: call C++ from python, return data directly to python
- Send data to python through UNIX pipes
- Link python interpreter into $\mathrm{C}++$ code
- Faster graphics ?

Processing steps in visualization

- Representation of data using elementary primitives: points, lines, triangles, ...
- Coordinate transformation form world coordinates to screen coordinates
- Transformation 3D $\rightarrow 2 \mathrm{D}$ - what is visible ?
- Rasterization: smooth data into pixels
- Coloring, lighting, transparency
- Similar tasks in CAD, gaming etc.
- Huge number of very similar operations

GPU aka "Graphics Card"

- SIMD parallelism "Single instruction, multiple data" inherent to processing steps in visualization
- Mostly float (32bit) accuracy is sufficient
- \Rightarrow Create specialized coprocessors devoted to this task, free CPU from it
- Pionieering: Silicon Graphics (SGI)
- Today: nvidia, AMD
- Multiple parallel pipelines, fast memory for intermediate results

GPU Programming

- As GPU is a different processor, one needs to write extra programs to handle data on it - "shaders"
- Typical use:
- Include shaders as strings in C++ (or load then from extra source file)
- Compile shaders
- Send compiled shaders to GPU
- Send data to GPU - critical step for performance
- Run shaders with data
- OpenGL, Vulkan

GPU Programming as it used to be

- Specify transformations
- Specify parameters for lighting etc.
- Specify points, lines etc. via API calls
- Graphics library sends data and manages processing on GPU
- No shaders - "fixed functions"
- Iris GL (SGI), OpenGL 1.x, now deprecated
- No simple, standardized API for 3D graphics with equivalent functionality
- Hunt for performance (gaming)

vtk

https://www.vtk.org/

- Visualization primitives in scientific computing
- Datasets on rectangular and unstructured discretization grids
- Scalar data
- Vector data
- The Visualization Toolkit vtk provides an API with these primitives and uses up-to data graphics API (OpenGL) to render these data
- Well maintained, "working horse" in high performance computing
- Open Source
- Paraview, Vislt: GUI programs around vtk

Working with paraview

https://www.paraview.org/

- Write data into files using vtk specific data format
- Call paraview, load data

In-Situ visualization

- Using "paraview catalyst"
- Send data via network from simulation server to desktop running paraview
- Call vtk API directly
- vtkfig: small library for graphics primitives compatible with numcxx

