
Lecture 7 Slide 1

Scientific Computing WS 2018/2019

Lecture 7

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 7 Slide 2

Lecture 5 Slide 33

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

I real array AA, length nnz, containing all nonzero elements row by row
I integer array JA, length nnz, containing the column indices of the elements

of AA
I integer array IA, length n+1, containing the start indizes of each row in the

arrays IA and JA and IA(n+1)=nnz+1

A =




1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.




AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

I Used in most sparse matrix solver packages
I CSC (Compressed Column Storage) uses similar principle but stores the

matrix column-wise.

Lecture 7 Slide 3

Lecture 5 Slide 37

Sparse direct solvers: solution steps (Saad Ch. 3.6)

1. Pre-ordering
I Decrease amount of non-zero elements generated by fill-in by re-ordering of

the matrix
I Several, graph theory based heuristic algorithms exist

2. Symbolic factorization
I If pivoting is ignored, the indices of the non-zero elements are calculated and

stored
I Most expensive step wrt. computation time

3. Numerical factorization
I Calculation of the numerical values of the nonzero entries
I Moderately expensive, once the symbolic factors are available

4. Upper/lower triangular system solution
I Fairly quick in comparison to the other steps

I Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

I With pivoting, steps 2 and 3 have to be performed together
I Instead of pivoting, iterative refinement may be used in order to maintain

accuracy of the solution

Lecture 7 Slide 4

Lecture 5 Slide 38

Sparse direct solvers: influence of reordering
I Sparsity patterns for original matrix with three different orderings of

unknowns – number of nonzero elements (of course) independent of
ordering:

https://de.mathworks.com

I Sparsity patterns for corresponding LU factorizations – number of nonzero
elements depend original ordering!

https://de.mathworks.com

Lecture 7 Slide 5

Lecture 5 Slide 38

Sparse direct solvers: influence of reordering
I Sparsity patterns for original matrix with three different orderings of

unknowns – number of nonzero elements (of course) independent of
ordering:

https://de.mathworks.com

I Sparsity patterns for corresponding LU factorizations – number of nonzero
elements depend original ordering!

https://de.mathworks.com

Lecture 7 Slide 6

Lecture 5 Slide 42

Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . .)

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.

Lecture 7 Slide 7

Lecture 5 Slide 43

The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aij uk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aii uk+1,i +
∑

j=1...n,j 6=i

aij uk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F)uk + D−1b
= M−1Nuk + M−1b

I Variable ordering does not matter

Lecture 7 Slide 8

Lecture 5 Slide 44

The Gauss-Seidel method

I Solve for main diagonal element row by row
I Take already calculated results into account

aii uk+1,i +
∑

j<i

aij uk+1,j +
∑

j>i

aij uk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b

I May be it is faster
I Variable order probably matters
I Preconditioners: forward M = D − E , backward: M = D − F
I Splitting formulation: A = M − N

forward: N = F , backward: M = E
I Forward case:

uk+1 = (D − E)−1Fuk + (D − E)−1b
= M−1Nuk + M−1b

Lecture 7 Slide 9

Lecture 5 Slide 48

Block methods

I Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

I The blocks on the diagonal should be square matrices, and invertible
I Interesting variant for systems of partial differential equations, where

multiple species interact with each other

Lecture 7 Slide 10

Lecture 5 Slide 49

Convergence

I Let û be the solution of Au = b.
I Let ek = uj − û be the error of the k-th iteration step

uk+1 = uk −M−1(Auk − b)
= (I −M−1A)uk + M−1b

uk+1 − û = uk − û −M−1(Auk − Aû)
= (I −M−1A)(uk − û)
= (I −M−1A)k (u0 − û)

resulting in

ek+1 = (I −M−1A)k e0

I So when does (I −M−1A)k converge to zero for k →∞ ?

Lecture 7 Slide 11

Lecture 5 Slide 52

Spectral radius and convergence

Definition The spectral radius ρ(A) is the largest absolute value of any
eigenvalue of A: ρ(A) = maxλ∈σ(A) |λ|.

Theorem (Saad, Th. 1.10) lim
k→∞

Ak = 0 ⇔ ρ(A) < 1.

Proof, ⇒: Let ui be a unit eigenvector associated with an eigenvalue λi . Then

Aui = λi ui

A2ui = λi Ai ui = λ2ui

...
Ak ui = λk ui

therefore ||Ak ui ||2 = |λk |
and lim

k→∞
|λk | = 0

so we must have ρ(A) < 1

Lecture 7 Slide 12

Lecture 5 Slide 54

Corollary from proof

Theorem (Saad, Th. 1.12)

lim
k→∞

||Ak || 1
k = ρ(A)

�

Lecture 7 Slide 13

Lecture 5 Slide 55

Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.

Lecture 7 Slide 14

Lecture 5 Slide 56

Convergence rate
Assume λ with |λ| = ρ(I −M−1A) < 1 is the largest eigenvalue and has a single
Jordan block of size l . Then the convergence rate is dominated by this Jordan
block, and therein by the term with the lowest possible power in λ which due to
E l = 0 is

λk−l+1
(

k
l − 1

)
E l−1

||(I −M−1A)k (u0 − û)|| = O
(
|λk−l+1|

(
k

l − 1

))

and the “worst case” convergence factor ρ equals the spectral radius:

ρ = lim
k→∞

(
max

u0

||(I −M−1A)k (u0 − û)||
||u0 − û||

) 1
k

= lim
k→∞

||(I −M−1A)k || 1
k

= ρ(I −M−1A)

Depending on u0, the rate may be faster, though
Lecture 7 Slide 15

Lecture 7 Slide 16

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues 0 < λmin ≤ λi ≤ λmax , e.g. A symmetric,
positive definite (spd),

I Let α > 0, M = 1
α

I ⇒ I −M−1A = I − αA
I Then for the eigenvalues µi of I − αA one has:

1− αλmax ≤ µi ≤ 1− αλmin

µi < 1

I We also need 1− αλmax > −1, so we must have 0 < α < 2
λmax

.

Theorem. The Richardson iteration converges for any α with 0 < α < 2
λmax

.
The convergence rate is ρ = max (|1− αλmax |, |1− αλmin|).

�

Lecture 7 Slide 17

Richardson iteration, choice of optimal parameter

I We know that

−(1− αλmax) > −(1− αλmin)
+(1− αλmin) > +(1− αλmax)

I Therefore, in reality we have ρ = max ((1− αλmax),−(1− αλmin)).
I The first curve is monotonically decreasing, the second one increases, so the

minimum must be at the intersection

1− αλmax = −1 + αλmin

2 = α(λmax + λmin)

Theorem. The optimal parameter is αopt = 2
λmin+λmax

.
For this parameter, the convergence factor is

ρopt = λmax − λmin
λmax + λmin

= κ− 1
κ+ 1

where κ = κ(A)λmax
λmin

is the spectral condition number of A. �

Lecture 7 Slide 18

Spectral equivalence
Theorem. M, A spd. Assume the spectral equivalence estimate

0 < γmin(Mu, u) ≤ (Au, u) ≤ γmax (Mu, u)

Then for the eigenvalues µi of M−1A we have

γmin ≤ µmin ≤ µi ≤ µmax ≤ γmax

and κ(M−1A) ≤ γmax
γmin

Proof. Let the inner product (·, ·)M be defined via (u, v)M = (Mu, v). In this
inner product, C = M−1A is self-adjoint:

(Cu, v)M = (MM−1Au, v) = (Au, v) = (M−1Mu,Av) = (Mu,M−1Av)
= (u,M−1A)M = (u,Cv)M

Minimum and maximum eigenvalues can be obtained as Ritz values in the (·, ·)M
scalar product

µmin = min
u 6=0

(Cu, u)M
(u, u)M

= min
u 6=0

(Au, u)
(Mu, u) ≥ γmin

µmax = max
u 6=0

(Cu, u)M
(u, u)M

= max
u 6=0

(Au, u)
(Mu, u) ≤ γmax

�

Lecture 7 Slide 19

Matrix preconditioned Richardson iteration

M, A spd.
I Scaled Richardson iteration with preconditoner M

uk+1 = uk − αM−1(Auk − b)

I Spectral equivalence estimate

0 < γmin(Mu, u) ≤ (Au, u) ≤ γmax (Mu, u)

I ⇒ γmin ≤ λi ≤ γmax

I ⇒ optimal parameter α = 2
γmax +γmin

I Convergence rate with optimal parameter: ρ ≤ κ(M−1A)−1
κ(M−1A)+1

I This is one possible way for convergence analysis which at once gives
convergence rates

I But . . . how to obtain a good spectral estimate for a particular problem ?

Lecture 7 Slide 20

Richardson for 1D heat conduction
I Regard the n × n 1D heat conduction matrix with h = 1

n−1 and α = 1
h

(easier to analyze).

A =




2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h




I Eigenvalues (tri-diagonal Toeplitz matrix):

λi = 2
h

(
1 + cos

(iπ
n + 1

))
(i = 1 . . . n)

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

I Express them in h: n + 1 = 1
h + 2 = 1+2h

h ⇒

λi = 2
h

(
1 + cos

(ihπ
1 + 2h

))
(i = 1 . . . n)

Lecture 7 Slide 21

Richardson for 1D heat conduction: spectral bounds

I For i = 1 . . . n, the argument of cos is in (0, π)
I cos is monotonically decreasing in (0, π), so we get λmax for i = 1 and λmin

for i = n = 1+h
h

I Therefore:

λmax = 2
h

(
1 + cos

(
π

h
1 + 2h

))
≈ 2

h

(
2− π2h2

2(1 + 2h)2

)

λmin = 2
h

(
1 + cos

(
π

1 + h
1 + 2h

))
≈ 2

h

(
π2h2

2(1 + 2h)2

)

Here, we used the Taylor expansion

cos(δ) = 1− δ2

2 + O(δ4) (δ → 0)

cos(π − δ) = −1 + δ2

2 + O(δ4) (δ → 0)

and 1+h
1+2h = 1+2h

1+2h − h
1+2h = 1− h

1+2h

Lecture 7 Slide 22

Richardson for 1D heat conduction: Jacobi

I The Jacobi preconditioner just multiplies by h
2 , therefore for M−1A:

µmax ≈ 2− π2h2

2(1 + 2h)2

µmin ≈ π2h2

2(1 + 2h)2

I Optimal parameter: α = 2
λmax +λmin

≈ 1 (h→ 0)
I Good news: this is independent of h resp. n
I No need for spectral estimate in order to work with optimal parameter
I Is this true beyond this special case ?

Lecture 7 Slide 23

Richardson for 1D heat conduction: Convergence factor

I Condition number + spectral radius

κ(M−1A) = κ(A) = 4(1 + 2h)2

π2h2 − 1

ρ(I −M−1A) = κ− 1
κ+ 1 = 1− π2h2

2(1 + 2h)2

I Bad news: ρ→ 1 (h→ 0)
I Typical situation with second order PDEs:

κ(A) = O(h−2) (h→ 0)
ρ(I − D−1A) = 1− O(h2) (h→ 0)

I Mean square error of approximation ||u − uh||2 < hγ , in the simplest case
γ = 2.

Lecture 7 Slide 24

Iterative solver complexity I

I Solve linear system iteratively until ||ek || = ||(I −M−1A)ke0|| ≤ ε

ρke0 ≤ ε
k ln ρ < ln ε− ln e0

k ≥ kρ =
⌈

ln e0 − ln ε
ln ρ

⌉

I ⇒ we need at least kρ iteration steps to reach accuracy ε
I Optimal iterative solver complexity - assume:

I ρ < ρ0 < 1 independent of h resp. N
I A sparse (A · u has complexity O(N))
I Solution of Mv = r has complexity O(N).

⇒ Number of iteration steps kρ independent of N
⇒ Overall complexity O(N)

Lecture 7 Slide 25

Iterative solver complexity II

I Assume
I ρ = 1− hδ ⇒ ln ρ ≈ −hδ → kρ = O(h−δ)

I d : space dimension ⇒ h ≈ N− 1
d ⇒ kρ = O(N δ

d)
I O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

⇒ Overall complexity O(N1+ δ
d)=O(N d+δ

d)
I Jacobi: δ = 2
I Hypothetical “Improved iterative solver” with δ = 1 ?
I Overview on complexity estimates

dim ρ = 1− O(h2) ρ = 1− O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)
2 O(N2) O(N 3

2) O(N 3
2) O(N log N)

3 O(N 5
3) O(N 4

3) O(N2) O(N 4
3)

Lecture 7 Slide 26

Solver complexity scaling for 1D problems

dim ρ = 1− O(h2) ρ = 1− O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 1D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 1D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I Direct solvers significantly better than iterative ones

Lecture 7 Slide 27

Solver complexity scaling for 2D problems

dim ρ = 1− O(h2) ρ = 1− O(h) LU fact. LU solve
2 O(N2) O(N 3

2) O(N 3
2) O(N log N)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 2D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 2D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I Direct solvers better than simple iterative solvers (Jacobi etc.)
I On par with improved iterative solvers

Lecture 7 Slide 28

Solver complexity scaling for 3D problems

dim ρ = 1− O(h2) ρ = 1− O(h) LU fact. LU solve
3 O(N 5

3) O(N 4
3) O(N2) O(N 4

3)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 3D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 3D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I LU factorization is extremly expensive
I LU solve on par with improved iterative solvers

Lecture 7 Slide 29

What could be done ?
I Find optimal iterative solver with O(N) complexity
I Find “improved preconditioner” with κ(M−1A) = O(h−1) ⇒ δ = 1

I Find “improved iterative scheme”: with ρ =
√
κ−1√
κ+1 :

For Jacobi, we had κ = X 2 − 1 where X = 2(1+2h)
πh = O(h−1).

ρ = 1 +
√

X 2 − 1− 1√
X 2 − 1 + 1

− 1

= 1 +
√

X 2 − 1− 1−
√

X 2 − 1− 1√
X 2 − 1 + 1

= 1− 1√
X 2 − 1 + 1

= 1− 1
X
(√

1− 1
X2 + 1

X

)

= 1− O(h)

⇒ δ = 1

Lecture 7 Slide 30

Generalization of iteration schemes

I Simple iterations converge slowly
I For most practical purposes, Krylov subspace methods are used.
I We will introduce one special case and give hints on practically useful more

general cases
I Material after J. Shewchuk: An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain“

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Lecture 7 Slide 31

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑

j=1

aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.
For a given vector b, regard the function

f (u) = 1
2 a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .

Lecture 7 Slide 32

Method of steepest descent

I Given some vector ui , look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui).
I So look for ui+1 in the direction of −f ′(ui) = ri = b − Aui such that it

minimizes f in this direction, i.e. set ui+1 = ui + αri with α choosen from

0 = d
dα f (ui + αri) = f ′(ui + αri) · ri

= (b − A(ui + αri), ri)
= (b − Aui , ri)− α(Ari , ri)
= (ri , ri)− α(Ari , ri)

α = (ri , ri)
(Ari , ri)

Lecture 7 Slide 33

Method of steepest descent: iteration scheme

ri = b − Aui

αi = (ri , ri)
(Ari , ri)

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û, then ri = −Aei

Let ||u||A = (Au, u) 1
2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 7 Slide 34

Method of steepest descent: advantages

I Simple Richardson iteration uk+1 = uk − α(Auk − f) needs good eigenvalue
estimate to be optimal with α = 2

λmax +λmin

I In this case, asymptotic convergence rate is ρ = κ−1
κ+1

I Steepest descent has the same rate without need for spectral estimate

Lecture 7 Slide 35

Conjugate directions

For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.
So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j.

I Look for ui+1 in the direction of di such that it minimizes f in this direction,
i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα f (ui + αdi) = f ′(ui + αdi) · di

= (b − A(ui + αdi), di)
= (b − Aui , di)− α(Adi , di)
= (ri , di)− α(Adi , di)

αi = (ri , di)
(Adi , di)

Lecture 7 Slide 36

Conjugate directions II

e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the search
directions:

e0 =
n−1∑

i=0

δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk) =
n−1∑

i=0

δj (Adj , dk)

= δk (Adk , dk)

δk = (Ae0, dk)
(Adk , dk) =

(Ae0 +
∑

i<k αidi , dk)
(Adk , dk) = (Aek , dk)

(Adk , dk)

= (rk , dk)
(Adk , dk)

= −αk

Lecture 7 Slide 37

Conjugate directions III

Then,

ei = e0 +
i−1∑

j=0

αjdj = −
n−1∑

j=0

αjdj +
i−1∑

j=0

αjdj

= −
n−1∑

j=i

αjdj

So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps. Let k ≤ i . A-projection on dk gives

(Aei , dk) = −
n−1∑

j=i

αj (Adj , dk) = 0

Therefore, ri = Aei is orthogonal to d0 . . . di−1.

Lecture 7 Slide 38

Conjugate directions IV

Looking at the error norm ||ei ||A, the method yields the element with the
minimum energy norm from all elements of the affine space e0 +Ki where
Ki = span{d0, d1 . . . di−1}

(Aei , ei) =

(
n−1∑

j=i

δjdj ,

n−1∑

j=i

δjdj

)
=

n−1∑

j=i

n−1∑

k=i

δjδk (dj , dk)

=
n−1∑

j=i

δ2
j (dj , dj) = min

e∈e0+Ki
||e||A

Furthermore, we have

ui+1 = ui + αidi

ei+1 = ei + αidi

Aei+1 = Aei + αiAdi

ri+1 = ri − αiAdi

By what magic we can obtain these di ?

Lecture 7 Slide 39

Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0

I Define

di = vi +
i−1∑

k=0

βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +
i−1∑

k=0

βik (Adk , dj)

0 = (Avi , dj) + βij (Adj , dj)

βij = − (Avi , dj)
(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory

Lecture 7 Slide 40

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up di from dj , j < i , we can choose vi = ri , i.e. the
residuals built up during the conjugate direction process.
Let Ki = span{d0 . . . di−1}. Then, ri ⊥ Ki

But di are built by Gram-Schmidt from the residuals, so we also have
Ki = span{r0 . . . ri−1} and (ri , rj) = 0 for j < i .
From ri = ri−1 − αi−1Adi−1 we obtain
Ki = Ki−1 ∪ span{Adi−1}
This gives two other representations of Ki :

Ki = span{d0,Ad0,A2d0, . . . ,Ai−1d0}
= span{r0,Ar0,A2r0, . . . ,Ai−1r0}

Such type of subspace of Rn is called Krylov subspace, and orthogonalization
methods are more often called Krylov subspace methods.

Lecture 7 Slide 41

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting
vi = ri and using j < i) βij = − (Ari ,dj)

(Adj ,dj) = − (Adj ,ri)
(Adj ,dj) .

Then, for j ≤ i :

rj+1 = rj − αjAdj

(rj+1, ri) = (rj , ri)− αj (Adj , ri)
αj (Adj , ri) = (rj , ri)− (rj+1, ri)

(Adj , ri) =





− 1
αj

(rj+1, ri), j + 1 = i
1
αj

(rj , ri), j = i
0, else

=





− 1
αi−1

(ri , ri), j + 1 = i
1
αi

(ri , ri), j = i
0, else

For j < i :

βij =

{
1

αi−1
(ri ,ri)

(Adi−1,di−1) , j + 1 = i
0, else

Lecture 7 Slide 42

Conjugate gradients III
For Gram-Schmidt we defined (replacing vi by ri):

di = ri +
i−1∑

k=0

βikdk

= ri + βi,i−1di−1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or search
directions. In the sequel, set βi := βi,i−1.
We have

di−1 = ri−1 + βi−1di−2

(di−1, ri−1) = (ri−1, ri−1) + βi−1(di−2, ri−1)
= (ri−1, ri−1)

βi = 1
αi−1

(ri , ri)
(Adi−1, di−1) = (ri , ri)

(di−1, ri−1)

= (ri , ri)
(ri−1, ri−1)

Lecture 7 Slide 43

Conjugate gradients IV - The algorithm

Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri)

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.
Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i

||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 7 Slide 44

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
κ(M−1A) << κ(A).
Let E be such that M = EE T , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T):
Assume M−1Au = λu. We have

(E−1AE−T)(E T u) = (E T E−T)E−1Au = E T M−1Au = λE T u

⇔ E T u is an eigenvector of E−1AE−T with eigenvalue λ.

Lecture 7 Slide 45

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = E T u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi = (r̃i , r̃i)
(E−1AE−T d̃i , d̃i)

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 = (r̃i+1, r̃i+1)
(r̃i , r̃i)

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E

Lecture 7 Slide 46

Preconditioned CG II

Assume r̃i = E−1ri , d̃i = E T di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri)

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

Lecture 7 Slide 47

A few issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

ri+1 = ri − αiAdi

give a much more optimistic picture on the state of the iteration than the real
residual

ri+1 = b − Aui+1

