Scientific Computing WS 2018/2019

Lecture 7

Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 7 Slide 2

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

> real array AA, length nnz, containing all nonzero elements row by row

> integer array JA, length nnz, containing the column indices of the elements
of AA

> integer array IA, length n+1, containing the start indizes of each row in the
arrays IA and JA and IA(n+1)=nnz+1

>

I
CoowH
cocosrO

AA[L]2]3[4 [5]]

[11

mlafaf[1]2]a]]

A[1[3[6]10]12]13]

> Used in most sparse matrix solver packages
» CSC (Compressed Column Storage) uses similar principle but stores the
matrix column-wise.

Sparse direct solvers: solution steps (Saad Ch. 3.6)

1. Pre-ordering

> Decrease amount of non-zero elements generated by fill-in by re-ordering of
the matrix

> Several, graph theory based heuristic algorithms exist
2. Symbolic factorization

> If pivoting is ignored, the indices of the non-zero elements are calculated and
stored

> Most expensive step wrt. computation time
3. Numerical factorization

> Calculation of the numerical values of the nonzero entries

> Moderately expensive, once the symbolic factors are available
4. Upper/lower triangular system solution

> Fairly quick in comparison to the other steps

» Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

» With pivoting, steps 2 and 3 have to be performed together

> Instead of pivoting, iterative refinement may be used in order to maintain
accuracy of the solution

Sparse direct solvers: influence of reordering

» Sparsity patterns for original matrix with three different orderings of
unknowns — number of nonzero elements (of course) independent of

ordering:
Original Reverse Cuthill-McKee Min Degree
0 0rF =
2, ‘4 A
20| Nk 01 ., ki
. e e
. 40 w' 40
: N i
L) 60 seat
0 50 0 50
nz =180 nz =180 nz =180

https://de.mathworks.com

» Sparsity patterns for corresponding LU factorizations — number of nonzero
elements depend original ordering!

Original RDeverse Cuthill-McKee 0 Min Degree
-
. e
20 20 0, A
0
"
40 40 40
v
e B2
60 60 60
0 50 0 50 0 50
nz = 1022 nz = 968 nz = 636

https://de.mathworks.com

Sparse direct solvers: influence of reordering

» Sparsity patterns for original matrix with three different orderings of
unknowns — number of nonzero elements (of course) independent of

ordering:
Original Reverse Cuthill-McKee Min Degree
0 0rF =
2, ‘4 A
20| Nk 01 ., ki
. e e
. 40 w' 40
: N i
L) 60 seat
0 50 0 50
nz =180 nz =180 nz =180

https://de.mathworks.com

» Sparsity patterns for corresponding LU factorizations — number of nonzero
elements depend original ordering!

Original RDeverse Cuthill-McKee 0 Min Degree
-
. e
20 20 0, A
0
"
40 40 40
v
e B2
60 60 60
0 50 0 50 0 50
nz = 1022 nz = 968 nz = 636

https://de.mathworks.com

Simple iteration with preconditioning

Idea: All=b =

= iterative scheme

U1 = uk — M7 (Aug — b) (k=0,1...)

. Choose initial value wup, tolerance ¢, set k =0
. Calculate residuum ri, = Aux — b
. Test convergence: if ||rk|| < e set u = w, finish

. Calculate update: solve Mvy = ry

g s~ W N =

. Update solution: wuxy1 = ux — vk, set k =i+ 1, repeat with step 2.

The Jacobi method

> Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part
» Preconditioner: M = D, where D is the main diagonal of A =

1 .
Ukt1,i = Uk — — E ajjuk,j — bi (i=1...n)

aii \
=1...n

» Equivalent to the succesive (row by row) solution of
ajiUk+1,i + E ajjUk,j = b; (f =1... n)
j=L...nj#i

> Already calculated results not taken into account
> Alternative formulation with A= M — N:

Ukl = Dil(E + F)Uk + Dilb
=M Nu,+ M 'b

» Variable ordering does not matter

The Gauss-Seidel method

> Solve for main diagonal element row by row
> Take already calculated results into account

QjiUk+1,i + E ajjUky1,j + E ajuk,j = bi (i=1...

j<i J>i
(D — E)uk41 — Fuk=b

May be it is faster

Variable order probably matters

Preconditioners: forward M = D — E, backward: M =D — F
Splitting formulation: A= M — N

forward: N = F, backward: M = E

» Forward case:

vvyVvyy

Ues1 = (D — E) 'Fup+ (D —E) b
=M 'Nuy+ M7 b

Block methods

» Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

> The blocks on the diagonal should be square matrices, and invertible

> Interesting variant for systems of partial differential equations, where
multiple species interact with each other

Convergence

> Let & be the solution of Au = b.
> Let ex = u; — i be the error of the k-th iteration step
Ukl = Uk — I\/I_I(Auk —b)
= =M A)u+M1'b
U1 — O = ux — b — M7 (A — AD)
== M A)(ux —)
== M A (u — b)

resulting in

a1 = (I — M A e

> So when does (/ — M~*A)* converge to zero for k — oo ?

Spectral radius and convergence

Definition The spectral radius p(A) is the largest absolute value of any
eigenvalue of A: p(A) = maxyeo(a) |A-

Theorem (Saad, Th. 1.10) klim A =0 p(A) < 1.
— 00
Proof, =-: Let u; be a unit eigenvector associated with an eigenvalue A;. Then

AU,' =)\,‘U;
AQU,' =)\,‘A,‘U,‘ =)\ZU,'

Akui =)\kUi
therefore ||A*u||> = [\¥|

and lim |\ =0
k— o0

so we must have p(A) < 1

Corollary from proof

Theorem (Saad, Th. 1.12)

lim |
k—o0

ki L
|AT|[*

= p(A)

Back to iterative methods

Sufficient condition for convergence: p(/ — M~'A) < 1.

Convergence rate

Assume X with |A| = p(/ — M~'A) < 1 is the largest eigenvalue and has a single
Jordan block of size /. Then the convergence rate is dominated by this Jordan
block, and therein by the term with the lowest possible power in A which due to

E'=0is
)\k—H—l </fl> El—l

(1 = M~ A)*(uo —)| = O <W*’“I (l - 1>)

and the “worst case” convergence factor p equals the spectral radius:

- (maxul—mlA)k(uo—a)H)i

k—oo \ 1 [|uo —]|

lim ||/ — M~ A)||*
k— o0
= p(l - M'A)

Depending on up, the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues 0 < Amin < Ai < Amax, €.g8. A symmetric,
positive definite (spd),

> Leta>0,M:él:l—M’1A:I—aA

> Then for the eigenvalues u; of | — @A one has:
1 — admax < Mi <1l- QAmin
pi < 1

» We also need 1 — almax > —1, so we must have 0 < a < ﬁ
Theorem. The Richardson iteration converges for any a with 0 < a < ﬁ

The convergence rate is p = max (|1 — aXmax|, |1 — @Amin|).

Richardson iteration, choice of optimal parameter

» We know that

—(1 = admax) > —(1 — aXmin)
+(1 - a)\min) > +(1 - a)\max)

> Therefore, in reality we have p = max ((1 — aXmax), —(1 — aAmin))-

» The first curve is monotonically decreasing, the second one increases, so the
minimum must be at the intersection

1-— aAmax =-1 + a)\min
2= 05()\max +)\min)

2

Theorem. The optimal parameter is agpr = S

For this parameter, the convergence factor is
>\max -)\min _ K — 1
Amax + Amin k+1

Popt =

where 1 = k(A)322 is the spectral condition number of A. O

Spectral equivalence
Theorem. M, A spd. Assume the spectral equivalence estimate
0 < Ymin(Mu, u) < (Au, u) < Ymax(Mu, u)

Then for the eigenvalues p; of M~1A we have

Ymin < Hmin < Hi < M max < Ymax
and K(M™A) < Imax

— Ymin
Proof. Let the inner product (-,)m be defined via (u, v)u = (Mu, v). In this
inner product, C = M~ A is self-adjoint:
(Cu,v)m = (MM Au, v) = (Au,v) = (M~ Mu, Av) = (Mu, M~ Av)
= (u, M A = (u, Cv)um

Minimum and maximum eigenvalues can be obtained as Ritz values in the (-,)um
scalar product

- (Cu,u)m _ min (Au, u)
w0 (u, u)m w0 (Mu,u) —
(Cu, u)m (Au, u)

b = O .~ " (W) <

Hmin =

min

Matrix preconditioned Richardson iteration

M, A spd.

» Scaled Richardson iteration with preconditoner M

Ukr1 = Uk — aM_l(Auk —b)

v

Spectral equivalence estimate

0 < Ymin(Mu, u) < (Au, u) < Ymax(Mu, u)

> = Ymin S Ai S Ymax

2

» = optimal parameter « = —=—
P P Ymax+Ymin

K(M~1A)—1

» Convergence rate with optimal parameter: p < WMETATL

» This is one possible way for convergence analysis which at once gives
convergence rates

» But ... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

> Regard the n x n 1D heat conduction matrix with h = -
(easier to analyze).
2 _1
h h
_1 2 _1
hooh Th
h o h h
_1 2 1
PR
A h
1 2
h o h

» Eigenvalues (tri-diagonal Toeplitz matrix):

)\;:%(l—l—cos(%)) (i=1...n)

Source: A. Béttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

» Express them in h: n+1:%+2=1+—h2h =

2 ihm .
)\;—E<1+cos(1+2h)) (i=1...n)

Richardson for 1D heat conduction: spectral bounds

» For i=1...n, the argument of cos is in (0, 7)
> cos is monotonically decreasing in (0,7), so we get Amax for i =1 and Apmin
for i=n= b

h
» Therefore:

A —g(1+cos< h))Ng 2—i
max = "™1v2n)) T h 2(1 + 2h)?
~ 2
“h

2 1+h 2 h
M= 2 (14 cos (n) (2 = W)
)

Here, we used the Taylor expansion
2
=+ 0% (6-0)

2

cos(0) =1—

cos(m—6) = -1+ %2 +0(8") (6—0)

1+h __ 1+42h h h

and

1+2h — 1+2h 1+2h — 1- 1+2h

Richardson for 1D heat conduction: Jacobi

» The Jacobi preconditioner just multiplies by g therefore for M~ A:
2 h?
Mmax 2
2(1+ 2h)2
w2 h?

Mmin = 72(1 T 2/7)2

v

Optimal parameter: a = ~1(h—0)

2
Amax+Amin

v

Good news: this is independent of h resp. n

v

No need for spectral estimate in order to work with optimal parameter

v

Is this true beyond this special case ?

Richardson for 1D heat conduction: Convergence factor

» Condition number + spectral radius

4(1 4 2h)?
T PR
_nfl_l_ w2 h?
S k+1 2(1 + 2h)2

K(M™'A) = k(A) 1

p(l - M1A)

» Bad news: p—1 (h—0)

v

Typical situation with second order PDEs:

K(A)=0(h™?) (h—0)
p(I=D'A)=1-0(K) (h—0)

> Mean square error of approximation ||u — us||2 < b7, in the simplest case
v =2.

Iterative solver complexity |

> Solve linear system iteratively until ||ex|| = ||(/ — M A)¥eo|| < ¢

pkeoge
kinp <Ine—Ineg

Inegy — Ine-‘

k>k,,:{ i

> = we need at least k, iteration steps to reach accuracy ¢
» Optimal iterative solver complexity - assume:

> p < po < 1 independent of h resp. N

> A sparse (A - u has complexity O(N))

> Solution of Mv = r has complexity O(N).

= Number of iteration steps k, independent of N
= Overall complexity O(N)

Iterative solver complexity Il

> Assume
> p=1-—h = Inp~—h® — k, = O(h™9%)

> d: space dimension = h ~ N3 = kp = O(N%)
> O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

d+d8

= Overall complexity O(NH%):O(NT)
Jacobi: § =2

v

v

Hypothetical “Improved iterative solver” with § =1 7
» Overview on complexity estimates

dim p=1-0(h) p=1-0(h) LU fact. LU solve

1 O(\?) O(\?) O(N) O(N)
O(N?) O(N?) O(N?) O(Nlog N)
3 O(N3) O(N3) O(N?) O(N3)

Solver complexity scaling for 1D problems

dim p=1-0(h) p=1-0(h) LU fact. LU solve
1 O(N?) O(N?) O(N) O(N)

101 Complexity scaling for 1D problems 10 Complexity scaling for 1D problems
r—
L[| — p=1ot®) — 102 — p=1-0(h*)
— p=1-0(h) 107 — p=1-0(h)
10— p<t 10 — <1
ozl LU fact 10 « o LU fact
" LU solve | — - s LU solve
§10° g
2 / 2 102
g 10° &0
10° e eveee 10°
e
10* s 10°
10* e
10? 10 i .
10° 10° trreerey
200000 400000 600000 800000 1000000 107 107 107 107 10°
N h

» Direct solvers significantly better than iterative ones

Solver complexity scaling for 2D problems

dim p=1-0(h) p=1-0(h) LUfact. LU solve
2 O(N?) O(N?) O(N2) O(NlogN)

1018 Complexity scaling for 2D problems Complexity scaling for 2D problems

10
|| — P00 107 — p=1-0(h?)
— p=1-0(h) 107 — p=1-0(h)
104 H — p<i 101 — p<l
ol LU fact 101 * « LUfact
" LUsolve |—" P LU solve
§10° 510
g |7 107
g 10° connnsress g 101
—
10° R 10° ien SR
10° 10°
10*
S
102 102 SN
1 10°
0 200000 400000 600000 800000 1000000 0107 10”2 107 107 10°
N

> Direct solvers better than simple iterative solvers (Jacobi etc.)

» On par with improved iterative solvers

Solver complexity scaling for 3D problems

dim p=1-0(h) p=1-0(h) LUfact. LU solve
3 O(N3) O(N3) O(N?) O(N3)

1018 Complexity scaling for 3D problems 10% Complexity scaling for 3D problems
sl — p=1-0(h*) 102 [t “ — p=1-0(n*)
— p=1-0(h) 107 ey — p=1-0(h)
10 H — p<i 1018 ".. — p<xl
Lo || * ¢ LU fact 101 ‘e, « e« LUfact
" LU solve [egasaasessatess P S, LU solve
5100 e s . “
s . — s 10" . ey
8 10° b T gty S
[P e o 10 ON
10° 10° > %
R———
3
10 10
10*
2
10 102
10 100 L — —~
200000 400000 600000 800000 1000000 10 10 10
N

» LU factorization is extremly expensive

> LU solve on par with improved iterative solvers

What could be done ?

» Find optimal iterative solver with O(N) complexity
» Find “improved preconditioner” with s(M~*A) = O(h™!) = 6 =1

N
VR

For Jacobi, we had k = X? — 1 where X = 2120 — o(p=1).

> Find "“improved iterative scheme”: with p =

popp¥yX-i-1l
VX141
IR cs B B/ s B
VXE 141
-1 1
VXE_1+1
X(1—%+§)
=1-0(h)

Generalization of iteration schemes

v

Simple iterations converge slowly

For most practical purposes, Krylov subspace methods are used.

We will introduce one special case and give hints on practically useful more
general cases

Material after J. Shewchuk: An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain“

vy

v

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Solution of SPD system as a minimization procedure

Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a: R" x R" - R

a(u,v) = (Au,v) = vTAU*z:z:auv,uJ

i=1 j=1

As A'is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function

What is the minimizer of f ?

flluy=Au—b=0

» Solution of SPD system = minimization of f.

Method of steepest descent

» Given some vector u;, look for a new iterate ujy.
> The direction of steepest descend is given by —f'(u;).

> So look for u;y1 in the direction of —f'(u;) = r; = b — Au; such that it
minimizes f in this direction, i.e. set u;+1 = u; + ar; with o choosen from

0= %f(u,- +ar) = f(ui+an)

= (b— A(ui + ari), ri)
= (b — Aui, ri) — a(Ari, ri)
= (r,r) — a(Arn,r)

_ (n,n)
*= (AI’,’, r,-)

Method of steepest descent: iteration scheme

ri=b— Au;
_ (rym)
= (AI’,’, r,-)

Uit1 = Uj + it

Let & the exact solution. Define e; = u; — @I, then r; = —Ae;
1
Let ||u||la = (Au, u)2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

k—1Y\/
lella < (27) lella

where kK = i‘\mfx((AA)) is the spectral condition number.

Method of steepest descent: advantages

» Simple Richardson iteration ux+1 = ux — a(Auk —) needs good eigenvalue

estimate to be optimal with o = ﬁ

> In this case, asymptotic convergence rate is p = ::—111

> Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction
d;i = r; = —Ae; is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let dy, d ... ds—1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi,d;) =0, i # .

» Look for ujy1 in the direction of d; such that it minimizes f in this direction,
i.e. set ujy1 = u; + «;d; with o choosen from

d

0= af(u,- + Oéd,‘) = f’(u,' -+ CMd,') - d;

= (b—A(ui + ad)), d;)

b — Au;, d;) — a(Ad;, d;)
ri, di) — a(Ad;, d;)

(ri, di)

"7 (Ad,, d)

=(
=(

Conjugate directions Il

e = up — U (such that Aep = —rp) can be represented in the basis of the search
directions:

n—1
€ — Z 5JdJ
i=0

Projecting onto di in the A scalar product gives

(Aeo, di)) = Zé (Ad;, di)

= 0k (Adk,dk)
5, — (Ae,di) _ (Aot idi k) (Aex, dk)
(Adi, di) (Ady, di) (Ady, di)
_ (ndd)
(Ady, di)

= —Q

Conjugate directions Il

Then,

e

i—1 n—1 i—1
= eo+zajdj = —Za,-d,-+2ajdj
j=0 j=0 j=0
n—1

= —Za,-dj

Jj=i
So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps. Let k < i. A-projection on di gives

(Aei, di) = Z aj(Ad;, di) =

Therefore, ri = Ae; is orthogonal to dy ... di—1.

Conjugate directions IV

Looking at the error norm ||ej||a, the method yields the element with the
minimum energy norm from all elements of the affine space ey + K; where
’C,‘ = span{do, d1 e d,;l}

n—1 n—1

(Aei, &) = (Za d,,ZM) =3 50, di)

j=i k=i
2 .
= E 6j(dj,d;j) = min_|le[|a
— eCey+K;
j:l
Furthermore, we have
Uir1 = U + a;d;
eiy1 = & + aid;
Ae;+1 = Ae; + a;Ad;

riy1 = ri — o Ad;

By what magic we can obtain these d;?

Gram-Schmidt Orthogonalization

» Assume we have been given some linearly independent vectors
Vo, V1...Vp—1.

> Set dy = vy

» Define
i—1
d=vi+ Zﬁikdk
k=0

> For j < i, A-project onto d; and require orthogonality:

i—1

(Ad;, d)) = (Avi, &) + Y _ Bu(Ad, dj)

k=0
0= (AV,‘, dJ) + /BU(Adﬂ dj)
5“ _ (AV"7 dJ)
" (Ady,d))

» If v; are the coordinate unit vectors, this is Gaussian elimination!

» If v; are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d; from dj, j < i, we can choose v; = r;, i.e. the
residuals built up during the conjugate direction process.

Let Kj = span{dp...di—1}. Then, r; L K;

But d; are built by Gram-Schmidt from the residuals, so we also have
Ki=span{ry...ri—1} and (ri,r;) =0 for j < i.

From r; = ri—1 — a;—1Ad;—1 we obtain
Ki=Ki—1U span{Ad,-_l}

This gives two other representations of C;:
Ki = span{do, Ady, A’dp, ..., A Tdo}
= span{r, Ar, A, ... ,A'nflro}

Such type of subspace of R" is called Krylov subspace, and orthogonalization
methods are more often called Krylov subspace methods.

Conjugate gradients |l

Look at Gram-Schmidt under these conditions. The essential data are (setting
. . . . L (Ari,d;) _ (Adj,r;)
v; = r; and using j < i) B = (Adj,djj) = W.

Then, for j < i:
ri+1 = 1; — ajAd;
(ri+1, 1) = (1, 1) — ay(Adj, ri)
aj(Ad;, ri) = (1, i) = (fjs1, 1)

_O%.(rj-*—l:ri)a ./+1:’ _ail_l(ri7ri)7 J+1:’
(Adbrf): D%j(rjvrf)v ji=i = o%.(rhrf)v j=i
0, else 0, else

For j < i

1 (risri) : _
B =4 %1 (Ad_1.d 1) 4 +1l=i
0, else

Conjugate gradients Il
For Gram-Schmidt we defined (replacing v; by r;):

i—1
d=r+ Zﬁikdk
k=0
=ri+fBii-1di—1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don't have to store old residuals or search

directions. In the sequel, set §; := B i—1.
We have

di—1 =ri—1+ Bi—1di—2
(di1, ri—1) = (riz1, ric1) + Bi—1(di—2, riz1)

= (fi—l,fi—l)
1 (I’,‘7 I’,') (I‘,‘,I’,‘)
/3,- =— : : =
ai—1 (Adi—1, di1) (diz1, riz1)
(ri, ri)

(rie1, ri—1)

Conjugate gradients IV - The algorithm

Given initial value up, spd matrix A, right hand side b.
do =n = b— AUO
(ri, ri)

o = 77—

(Adj, dy)
Uir1 = Ui + a;d;
riv1 = ri — ;Ad;

(riy1, riva)
Biy1 = ————
(risri)
dit1 = rig1 + Bisrd;

At the i-th step, the algorithm yields the element from e + K; with the
minimum energy error.

Theorem The convergence rate of the method is

VE—1Y)
A <2
lleil|a < (\/E T |leol| A
Amax(A)

where k = §227 is the spectral condition number.
>\mm(A)

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
k(M™TA) << Kk(A).

Let E be such that M = EET, e.g. its Cholesky factorization. Then,
o(M™*A) = o(EPAET):

Assume M~*Au = Au. We have

(ET'AE"YETw)=(ETE-T)E " Au=E" M "Au= XET

& ETuis an eigenvector of ETYAE~T with eigenvalue .

Preconditioned CG |

Now we can use the CG algorithm for the preconditioned system
ET'AE TR =E"b
with 1= ETu
do=F=E'b—E*AE Tu
(Fi, i)
(E-1AE-Td;, d;)

i =

U1 = Ui + aud;
Fi+1 = T’,‘ — Oz,'EilAEiTa,'
By = (Fit1, Fir1)
i+1 — (?i7 FI)
div1 = Fir1 + Bisrd;

Not very practical as we need E

Preconditioned CG Il

Assume %, = E~'r;, di = E" d;, we get the equivalent algorithm

= b*AUo

do = Milro

@ — (M~ ri,ri)
(Ad;, di)

Uiy1 = Ui + aid;
riy1 = ri — aiAdj
—1
(M~ riy1, ri1)

Bit1 =)

diy1 = M_l"H—l + Biv1d;

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

fiv1 = r — a;Ad;
give a much more optimistic picture on the state of the iteration than the real

residual

riv1 = b — Auiqx

