Scientific Computing WS 2018/2019

Lecture 7

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Compressed Row Storage (CRS) format

(aka Compressed Sparse Row (CSR) or IA-JA etc.)

- real array AA, length nnz, containing all nonzero elements row by row
- integer array JA, length nnz, containing the column indices of the elements of AA
- integer array IA, length $n+1$, containing the start indizes of each row in the arrays $I A$ and $J A$ and $I A(n+1)=n n z+1$

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

- Used in most sparse matrix solver packages
- CSC (Compressed Column Storage) uses similar principle but stores the matrix column-wise.

1. Pre-ordering

- Decrease amount of non-zero elements generated by fill-in by re-ordering of the matrix
- Several, graph theory based heuristic algorithms exist

2. Symbolic factorization

- If pivoting is ignored, the indices of the non-zero elements are calculated and stored
- Most expensive step wrt. computation time

3. Numerical factorization

- Calculation of the numerical values of the nonzero entries
- Moderately expensive, once the symbolic factors are available

4. Upper/lower triangular system solution

- Fairly quick in comparison to the other steps
- Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity structure remains unchanged, e.g. time dependent problems on fixed computational grids
- With pivoting, steps 2 and 3 have to be performed together
- Instead of pivoting, iterative refinement may be used in order to maintain accuracy of the solution

Sparse direct solvers: influence of reordering

- Sparsity patterns for original matrix with three different orderings of unknowns - number of nonzero elements (of course) independent of ordering:

- Sparsity patterns for corresponding LU factorizations - number of nonzero elements depend original ordering!

https://de.mathworks.com

Sparse direct solvers: influence of reordering

- Sparsity patterns for original matrix with three different orderings of unknowns - number of nonzero elements (of course) independent of ordering:

- Sparsity patterns for corresponding LU factorizations - number of nonzero elements depend original ordering!

https://de.mathworks.com

Simple iteration with preconditioning

Idea: $A \hat{u}=b \Rightarrow$

$$
\hat{u}=\hat{u}-M^{-1}(A \hat{u}-b)
$$

\Rightarrow iterative scheme

$$
u_{k+1}=u_{k}-M^{-1}\left(A u_{k}-b\right) \quad(k=0,1 \ldots)
$$

1. Choose initial value u_{0}, tolerance ε, set $k=0$
2. Calculate residuum $r_{k}=A u_{k}-b$
3. Test convergence: if $\left\|r_{k}\right\|<\varepsilon$ set $u=u_{k}$, finish
4. Calculate update: solve $M v_{k}=r_{k}$
5. Update solution: $u_{k+1}=u_{k}-v_{k}$, set $k=i+1$, repeat with step 2 .

- Let $A=D-E-F$, where D : main diagonal, E : negative lower triangular part F : negative upper triangular part
- Preconditioner: $M=D$, where D is the main diagonal of $A \Rightarrow$

$$
u_{k+1, i}=u_{k, i}-\frac{1}{a_{i i}}\left(\sum_{j=1 \ldots n} a_{i j} u_{k, j}-b_{i}\right) \quad(i=1 \ldots n)
$$

- Equivalent to the succesive (row by row) solution of

$$
a_{i i} u_{k+1, i}+\sum_{j=1 \ldots n, j \neq i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n)
$$

- Already calculated results not taken into account
- Alternative formulation with $A=M-N$:

$$
\begin{aligned}
u_{k+1} & =D^{-1}(E+F) u_{k}+D^{-1} b \\
& =M^{-1} N u_{k}+M^{-1} b
\end{aligned}
$$

- Variable ordering does not matter

The Gauss-Seidel method

- Solve for main diagonal element row by row
- Take already calculated results into account

$$
\begin{aligned}
a_{i i} u_{k+1, i}+\sum_{j<i} a_{i j} u_{k+1, j}+\sum_{j>i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n) \\
(D-E) u_{k+1}-F u_{k}=b
\end{aligned}
$$

- May be it is faster
- Variable order probably matters
- Preconditioners: forward $M=D-E$, backward: $M=D-F$
- Splitting formulation: $A=M-N$ forward: $N=F$, backward: $M=E$
- Forward case:

$$
\begin{aligned}
u_{k+1} & =(D-E)^{-1} F u_{k}+(D-E)^{-1} b \\
& =M^{-1} N u_{k}+M^{-1} b
\end{aligned}
$$

Block methods

- Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a partition of the system matrix into larger blocks,
- The blocks on the diagonal should be square matrices, and invertible
- Interesting variant for systems of partial differential equations, where multiple species interact with each other

Convergence

- Let \hat{u} be the solution of $A u=b$.
- Let $e_{k}=u_{j}-\hat{u}$ be the error of the k-th iteration step

$$
\begin{aligned}
u_{k+1} & =u_{k}-M^{-1}\left(A u_{k}-b\right) \\
& =\left(I-M^{-1} A\right) u_{k}+M^{-1} b \\
u_{k+1}-\hat{u} & =u_{k}-\hat{u}-M^{-1}\left(A u_{k}-A \hat{u}\right) \\
& =\left(I-M^{-1} A\right)\left(u_{k}-\hat{u}\right) \\
& =\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)
\end{aligned}
$$

resulting in

$$
e_{k+1}=\left(I-M^{-1} A\right)^{k} e_{0}
$$

- So when does $\left(I-M^{-1} A\right)^{k}$ converge to zero for $k \rightarrow \infty$?

Spectral radius and convergence

Definition The spectral radius $\rho(A)$ is the largest absolute value of any eigenvalue of $A: \rho(A)=\max _{\lambda \in \sigma(A)}|\lambda|$.
Theorem (Saad, Th. 1.10) $\lim _{k \rightarrow \infty} A^{k}=0 \Leftrightarrow \rho(A)<1$.
Proof, \Rightarrow : Let u_{i} be a unit eigenvector associated with an eigenvalue λ_{i}. Then

$$
\begin{aligned}
A u_{i} & =\lambda_{i} u_{i} \\
A^{2} u_{i} & =\lambda_{i} A_{i} u_{i}=\lambda^{2} u_{i} \\
\vdots & \\
A^{k} u_{i} & =\lambda^{k} u_{i} \\
\text { therefore }\left\|A^{k} u_{i}\right\|_{2} & =\left|\lambda^{k}\right| \\
\text { and } \lim _{k \rightarrow \infty}\left|\lambda^{k}\right| & =0
\end{aligned}
$$

so we must have $\rho(A)<1$

Corollary from proof

Theorem (Saad, Th. 1.12)

$$
\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{\frac{1}{k}}=\rho(A)
$$

Back to iterative methods

Sufficient condition for convergence: $\rho\left(I-M^{-1} A\right)<1$.

Convergence rate

Assume λ with $|\lambda|=\rho\left(I-M^{-1} A\right)<1$ is the largest eigenvalue and has a single Jordan block of size I. Then the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible power in λ which due to $E^{\prime}=0$ is

$$
\begin{gathered}
\lambda^{k-I+1}\binom{k}{I-1} E^{I-1} \\
\left\|\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)\right\|=O\left(\left|\lambda^{k-I+1}\right|\binom{k}{I-1}\right)
\end{gathered}
$$

and the "worst case" convergence factor ρ equals the spectral radius:

$$
\begin{aligned}
\rho & =\lim _{k \rightarrow \infty}\left(\max _{u_{0}} \frac{\left\|\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)\right\|}{\left\|u_{0}-\hat{u}\right\|}\right)^{\frac{1}{k}} \\
& =\lim _{k \rightarrow \infty}\left\|\left(I-M^{-1} A\right)^{k}\right\|^{\frac{1}{k}} \\
& =\rho\left(I-M^{-1} A\right)
\end{aligned}
$$

Depending on u_{0}, the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues $0<\lambda_{\text {min }} \leq \lambda_{i} \leq \lambda_{\text {max }}$, e.g. A symmetric, positive definite (spd),

- Let $\alpha>0, M=\frac{1}{\alpha} I \Rightarrow I-M^{-1} A=I-\alpha A$
- Then for the eigenvalues μ_{i} of $I-\alpha A$ one has:

$$
\begin{aligned}
1-\alpha \lambda_{\max } & \leq \mu_{i} \leq 1-\alpha \lambda_{\min } \\
\mu_{i} & <1
\end{aligned}
$$

- We also need $1-\alpha \lambda_{\max }>-1$, so we must have $0<\alpha<\frac{2}{\lambda_{\max }}$.

Theorem. The Richardson iteration converges for any α with $0<\alpha<\frac{2}{\lambda_{\max }}$.
The convergence rate is $\rho=\max \left(\left|1-\alpha \lambda_{\max }\right|,\left|1-\alpha \lambda_{\text {min }}\right|\right)$.

Richardson iteration, choice of optimal parameter

- We know that

$$
\begin{aligned}
& -\left(1-\alpha \lambda_{\max }\right)>-\left(1-\alpha \lambda_{\min }\right) \\
& +\left(1-\alpha \lambda_{\min }\right)>+\left(1-\alpha \lambda_{\max }\right)
\end{aligned}
$$

- Therefore, in reality we have $\rho=\max \left(\left(1-\alpha \lambda_{\max }\right),-\left(1-\alpha \lambda_{\min }\right)\right)$.
- The first curve is monotonically decreasing, the second one increases, so the minimum must be at the intersection

$$
\begin{aligned}
1-\alpha \lambda_{\max } & =-1+\alpha \lambda_{\min } \\
2 & =\alpha\left(\lambda_{\max }+\lambda_{\min }\right)
\end{aligned}
$$

Theorem. The optimal parameter is $\alpha_{o p t}=\frac{2}{\lambda_{\min }+\lambda_{\max }}$.
For this parameter, the convergence factor is

$$
\rho_{\text {opt }}=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}=\frac{\kappa-1}{\kappa+1}
$$

where $\kappa=\kappa(A) \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$ is the spectral condition number of A.

Spectral equivalence

Theorem. M, A spd. Assume the spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

Then for the eigenvalues μ_{i} of $M^{-1} A$ we have

$$
\gamma_{\min } \leq \mu_{\min } \leq \mu_{i} \leq \mu_{\max } \leq \gamma_{\max }
$$

and $\kappa\left(M^{-1} A\right) \leq \frac{\gamma_{\text {max }}}{\gamma_{\text {min }}}$
Proof. Let the inner product $(\cdot, \cdot)_{M}$ be defined via $(u, v)_{M}=(M u, v)$. In this inner product, $C=M^{-1} A$ is self-adjoint:

$$
\begin{aligned}
(C u, v)_{M} & =\left(M M^{-1} A u, v\right)=(A u, v)=\left(M^{-1} M u, A v\right)=\left(M u, M^{-1} A v\right) \\
& =\left(u, M^{-1} A\right)_{M}=(u, C v)_{M}
\end{aligned}
$$

Minimum and maximum eigenvalues can be obtained as Ritz values in the $(\cdot, \cdot)_{M}$ scalar product

$$
\begin{aligned}
\mu_{\min } & =\min _{u \neq 0} \frac{(C u, u)_{M}}{(u, u)_{M}}=\min _{u \neq 0} \frac{(A u, u)}{(M u, u)} \geq \gamma_{\min } \\
\mu_{\max } & =\max _{u \neq 0} \frac{(C u, u)_{M}}{(u, u)_{M}}=\max _{u \neq 0} \frac{(A u, u)}{(M u, u)} \leq \gamma_{\max }
\end{aligned}
$$

Matrix preconditioned Richardson iteration

M, A spd.

- Scaled Richardson iteration with preconditoner M

$$
u_{k+1}=u_{k}-\alpha M^{-1}\left(A u_{k}-b\right)
$$

- Spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

- $\Rightarrow \gamma_{\text {min }} \leq \lambda_{i} \leq \gamma_{\text {max }}$
- \Rightarrow optimal parameter $\alpha=\frac{2}{\gamma_{\text {max }}+\gamma_{\text {min }}}$
- Convergence rate with optimal parameter: $\rho \leq \frac{\kappa\left(M^{-1} A\right)-1}{\kappa\left(M^{-1} A\right)+1}$
- This is one possible way for convergence analysis which at once gives convergence rates
- But ... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

- Regard the $n \times n$ 1D heat conduction matrix with $h=\frac{1}{n-1}$ and $\alpha=\frac{1}{h}$ (easier to analyze).

$$
A=\left(\begin{array}{cccccc}
\frac{2}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{2}{h}
\end{array}\right)
$$

- Eigenvalues (tri-diagonal Toeplitz matrix):

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i \pi}{n+1}\right)\right) \quad(i=1 \ldots n)
$$

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

- Express them in $h: n+1=\frac{1}{h}+2=\frac{1+2 h}{h} \Rightarrow$

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i h \pi}{1+2 h}\right)\right) \quad(i=1 \ldots n)
$$

Richardson for 1D heat conduction: spectral bounds

- For $i=1 \ldots n$, the argument of \cos is in $(0, \pi)$
- cos is monotonically decreasing in $(0, \pi)$, so we get $\lambda_{\max }$ for $i=1$ and $\lambda_{\text {min }}$ for $i=n=\frac{1+h}{h}$
- Therefore:

$$
\begin{aligned}
& \lambda_{\max }=\frac{2}{h}\left(1+\cos \left(\pi \frac{h}{1+2 h}\right)\right) \approx \frac{2}{h}\left(2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}\right) \\
& \lambda_{\min }=\frac{2}{h}\left(1+\cos \left(\pi \frac{1+h}{1+2 h}\right)\right) \approx \frac{2}{h}\left(\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}\right)
\end{aligned}
$$

Here, we used the Taylor expansion

$$
\begin{aligned}
\cos (\delta) & =1-\frac{\delta^{2}}{2}+O\left(\delta^{4}\right) \quad(\delta \rightarrow 0) \\
\cos (\pi-\delta) & =-1+\frac{\delta^{2}}{2}+O\left(\delta^{4}\right) \quad(\delta \rightarrow 0)
\end{aligned}
$$

and $\frac{1+h}{1+2 h}=\frac{1+2 h}{1+2 h}-\frac{h}{1+2 h}=1-\frac{h}{1+2 h}$

Richardson for 1D heat conduction: Jacobi

- The Jacobi preconditioner just multiplies by $\frac{h}{2}$, therefore for $M^{-1} A$:

$$
\begin{aligned}
\mu_{\max } & \approx 2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}} \\
\mu_{\min } & \approx \frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Optimal parameter: $\alpha=\frac{2}{\lambda_{\text {max }}+\lambda_{\text {min }}} \approx 1(h \rightarrow 0)$
- Good news: this is independent of h resp. n
- No need for spectral estimate in order to work with optimal parameter
- Is this true beyond this special case ?

Richardson for 1D heat conduction: Convergence factor

- Condition number + spectral radius

$$
\begin{aligned}
\kappa\left(M^{-1} A\right)=\kappa(A) & =\frac{4(1+2 h)^{2}}{\pi^{2} h^{2}}-1 \\
\rho\left(I-M^{-1} A\right) & =\frac{\kappa-1}{\kappa+1}=1-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Bad news: $\rho \rightarrow 1 \quad(h \rightarrow 0)$
- Typical situation with second order PDEs:

$$
\begin{aligned}
\kappa(A) & =O\left(h^{-2}\right) \quad(h \rightarrow 0) \\
\rho\left(I-D^{-1} A\right) & =1-O\left(h^{2}\right) \quad(h \rightarrow 0)
\end{aligned}
$$

- Mean square error of approximation $\left\|u-u_{h}\right\|_{2}<h^{\gamma}$, in the simplest case $\gamma=2$.

Iterative solver complexity I

- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- Optimal iterative solver complexity - assume:
- $\rho<\rho_{0}<1$ independent of h resp. N
- A sparse ($A \cdot u$ has complexity $O(N)$)
- Solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
\Rightarrow Overall complexity $O(N)$

Iterative solver complexity II

- Assume
- $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta} \rightarrow k_{\rho}=O\left(h^{-\delta}\right)$
- d: space dimension $\Rightarrow h \approx N^{-\frac{1}{d}} \Rightarrow k_{\rho}=O\left(N^{\frac{\delta}{d}}\right)$
- $O(N)$ complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
\Rightarrow Overall complexity $O\left(N^{1+\frac{\delta}{d}}\right)=O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$
- Hypothetical "Improved iterative solver" with $\delta=1$?
- Overview on complexity estimates

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N) \\
2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N) \\
3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

Solver complexity scaling for 1D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \mathrm{LU} \text { fact. } & \mathrm{LU} \text { solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N)
\end{array}
$$

- Direct solvers significantly better than iterative ones

Solver complexity scaling for 2D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N)
\end{array}
$$

- Direct solvers better than simple iterative solvers (Jacobi etc.)
- On par with improved iterative solvers

Solver complexity scaling for 3D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

- LU factorization is extremly expensive
- LU solve on par with improved iterative solvers

What could be done?

- Find optimal iterative solver with $O(N)$ complexity
- Find "improved preconditioner" with $\kappa\left(M^{-1} A\right)=O\left(h^{-1}\right) \Rightarrow \delta=1$
- Find "improved iterative scheme": with $\rho=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$:

For Jacobi, we had $\kappa=X^{2}-1$ where $X=\frac{2(1+2 h)}{\pi h}=O\left(h^{-1}\right)$.

$$
\begin{aligned}
\rho & =1+\frac{\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1}-1 \\
& =1+\frac{\sqrt{X^{2}-1}-1-\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{X\left(\sqrt{1-\frac{1}{X^{2}}}+\frac{1}{X}\right)} \\
& =1-O(h)
\end{aligned}
$$

$\Rightarrow \delta=1$

Generalization of iteration schemes

- Simple iterations converge slowly
- For most practical purposes, Krylov subspace methods are used.
- We will introduce one special case and give hints on practically useful more general cases
- Material after J. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"

Solution of SPD system as a minimization procedure

Regard $A u=f$, where A is symmetric, positive definite. Then it defines a bilinear form a $: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
a(u, v)=(A u, v)=v^{\top} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Method of steepest descent

- Given some vector u_{i}, look for a new iterate u_{i+1}.
- The direction of steepest descend is given by $-f^{\prime}\left(u_{i}\right)$.
- So look for u_{i+1} in the direction of $-f^{\prime}\left(u_{i}\right)=r_{i}=b-A u_{i}$ such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha r_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha r_{i}\right)=f^{\prime}\left(u_{i}+\alpha r_{i}\right) \cdot r_{i} \\
& =\left(b-A\left(u_{i}+\alpha r_{i}\right), r_{i}\right) \\
& =\left(b-A u_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
& =\left(r_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
\alpha & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)}
\end{aligned}
$$

Method of steepest descent: iteration scheme

$$
\begin{aligned}
r_{i} & =b-A u_{i} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} r_{i}
\end{aligned}
$$

Let \hat{u} the exact solution. Define $e_{i}=u_{i}-\hat{u}$, then $r_{i}=-A e_{i}$
Let $\|u\|_{A}=(A u, u)^{\frac{1}{2}}$ be the energy norm wrt. A.
Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\text {min }}(A)}$ is the spectral condition number.

Method of steepest descent: advantages

- Simple Richardson iteration $u_{k+1}=u_{k}-\alpha\left(A u_{k}-f\right)$ needs good eigenvalue estimate to be optimal with $\alpha=\frac{2}{\lambda_{\text {max }}+\lambda_{\text {min }}}$
- In this case, asymptotic convergence rate is $\rho=\frac{\kappa-1}{\kappa+1}$
- Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_{i}=r_{i}=-A e_{i}$ is not used several times. If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let $d_{0}, d_{1} \ldots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $\left(A d_{i}, d_{j}\right)=0, i \neq j$.

- Look for u_{i+1} in the direction of d_{i} such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha_{i} d_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha d_{i}\right)=f^{\prime}\left(u_{i}+\alpha d_{i}\right) \cdot d_{i} \\
& =\left(b-A\left(u_{i}+\alpha d_{i}\right), d_{i}\right) \\
& =\left(b-A u_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
& =\left(r_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
\alpha_{i} & =\frac{\left(r_{i}, d_{i}\right)}{\left(A d_{i}, d_{i}\right)}
\end{aligned}
$$

Conjugate directions II

$e_{0}=u_{0}-\hat{u}$ (such that $A e_{0}=-r_{0}$) can be represented in the basis of the search directions:

$$
e_{0}=\sum_{i=0}^{n-1} \delta_{j} d_{j}
$$

Projecting onto d_{k} in the A scalar product gives

$$
\begin{aligned}
\left(A e_{0}, d_{k}\right) & =\sum_{i=0}^{n-1} \delta_{j}\left(A d_{j}, d_{k}\right) \\
& =\delta_{k}\left(A d_{k}, d_{k}\right) \\
\delta_{k} & =\frac{\left(A e_{0}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{0}+\sum_{i<k} \alpha_{i} d_{i}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =\frac{\left(r_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =-\alpha_{k}
\end{aligned}
$$

Conjugate directions III

Then,

$$
\begin{aligned}
e_{i} & =e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=-\sum_{j=0}^{n-1} \alpha_{j} d_{j}+\sum_{j=0}^{i-1} \alpha_{j} d_{j} \\
& =-\sum_{j=i}^{n-1} \alpha_{j} d_{j}
\end{aligned}
$$

So, the iteration consists in component-wise suppression of the error, and it must converge after n steps. Let $k \leq i$. A-projection on d_{k} gives

$$
\left(A e_{i}, d_{k}\right)=-\sum_{j=i}^{n-1} \alpha_{j}\left(A d_{j}, d_{k}\right)=0
$$

Therefore, $r_{i}=A e_{i}$ is orthogonal to $d_{0} \ldots d_{i-1}$.

Conjugate directions IV

Looking at the error norm $\left\|e_{i}\right\|_{A}$, the method yields the element with the minimum energy norm from all elements of the affine space $e_{0}+\mathcal{K}_{i}$ where $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0}, d_{1} \ldots d_{i-1}\right\}$

$$
\begin{aligned}
\left(A e_{i}, e_{i}\right) & =\left(\sum_{j=i}^{n-1} \delta_{j} d_{j}, \sum_{j=i}^{n-1} \delta_{j} d_{j}\right)=\sum_{j=i}^{n-1} \sum_{k=i}^{n-1} \delta_{j} \delta_{k}\left(d_{j}, d_{k}\right) \\
& =\sum_{j=i}^{n-1} \delta_{j}^{2}\left(d_{j}, d_{j}\right)=\min _{e \in e_{0}+\mathcal{K}_{i}}\|e\|_{A}
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
e_{i+1} & =e_{i}+\alpha_{i} d_{i} \\
A e_{i+1} & =A e_{i}+\alpha_{i} A d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i}
\end{aligned}
$$

By what magic we can obtain these d_{i} ?

Gram-Schmidt Orthogonalization

- Assume we have been given some linearly independent vectors

$$
v_{0}, v_{1} \ldots v_{n-1} .
$$

- Set $d_{0}=v_{0}$
- Define

$$
d_{i}=v_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k}
$$

- For $j<i$, A-project onto d_{j} and require orthogonality:

$$
\begin{aligned}
\left(A d_{i}, d_{j}\right) & =\left(A v_{i}, d_{j}\right)+\sum_{k=0}^{i-1} \beta_{i k}\left(A d_{k}, d_{j}\right) \\
0 & =\left(A v_{i}, d_{j}\right)+\beta_{i j}\left(A d_{j}, d_{j}\right) \\
\beta_{i j} & =-\frac{\left(A v_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}
\end{aligned}
$$

- If v_{i} are the coordinate unit vectors, this is Gaussian elimination!
- If v_{i} are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d_{i} from $d_{j}, j<i$, we can choose $v_{i}=r_{i}$, i.e. the residuals built up during the conjugate direction process.

Let $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0} \ldots d_{i-1}\right\}$. Then, $r_{i} \perp \mathcal{K}_{i}$
But d_{i} are built by Gram-Schmidt from the residuals, so we also have $\mathcal{K}_{i}=\operatorname{span}\left\{r_{0} \ldots r_{i-1}\right\}$ and $\left(r_{i}, r_{j}\right)=0$ for $j<i$.

From $r_{i}=r_{i-1}-\alpha_{i-1} A d_{i-1}$ we obtain
$\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup \operatorname{span}\left\{A d_{i-1}\right\}$
This gives two other representations of \mathcal{K}_{i} :

$$
\begin{aligned}
\mathcal{K}_{i} & =\operatorname{span}\left\{d_{0}, A d_{0}, A^{2} d_{0}, \ldots, A^{i-1} d_{0}\right\} \\
& =\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
\end{aligned}
$$

Such type of subspace of \mathbb{R}^{n} is called Krylov subspace, and orthogonalization methods are more often called Krylov subspace methods.

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting $v_{i}=r_{i}$ and using $\left.j<i\right) \beta_{i j}=-\frac{\left(A r_{i}, d_{j}\right)}{\left(A A_{j}, d_{j}\right)}=-\frac{\left(A d_{j}, r_{i}\right)}{\left(A d_{j}, d_{j}\right)}$.
Then, for $j \leq i$:

$$
\begin{aligned}
r_{j+1} & =r_{j}-\alpha_{j} A d_{j} \\
\left(r_{j+1}, r_{i}\right) & =\left(r_{j}, r_{i}\right)-\alpha_{j}\left(A d_{j}, r_{i}\right) \\
\alpha_{j}\left(A d_{j}, r_{i}\right) & =\left(r_{j}, r_{i}\right)-\left(r_{j+1}, r_{i}\right) \\
\left(A d_{j}, r_{i}\right)= & \left\{\begin{array}{ll}
-\frac{1}{\alpha_{j}}\left(r_{j+1}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{j}}\left(r_{j}, r_{i}\right), & j=i \\
0, & \text { else }
\end{array}= \begin{cases}-\frac{1}{\alpha_{i-1}}\left(r_{i}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{i}}\left(r_{i}, r_{i}\right), & j=i \\
0, & \text { else }\end{cases} \right.
\end{aligned}
$$

For $j<i$:

$$
\beta_{i j}= \begin{cases}\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}, & j+1=i \\ 0, & \text { else }\end{cases}
$$

Conjugate gradients III

For Gram-Schmidt we defined (replacing v_{i} by r_{i}):

$$
\begin{aligned}
d_{i} & =r_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k} \\
& =r_{i}+\beta_{i, i-1} d_{i-1}
\end{aligned}
$$

So, the new orthogonal direction depends only on the previous orthogonal direction and the current residual. We don't have to store old residuals or search directions. In the sequel, set $\beta_{i}:=\beta_{i, i-1}$.

We have

$$
\begin{aligned}
d_{i-1} & =r_{i-1}+\beta_{i-1} d_{i-2} \\
\left(d_{i-1}, r_{i-1}\right) & =\left(r_{i-1}, r_{i-1}\right)+\beta_{i-1}\left(d_{i-2}, r_{i-1}\right) \\
& =\left(r_{i-1}, r_{i-1}\right) \\
\beta_{i} & =\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}=\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i-1}, r_{i-1}\right)} \\
& =\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)}
\end{aligned}
$$

Conjugate gradients IV - The algorithm

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\text {min }}(A)}$ is the spectral condition number.

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that $\kappa\left(M^{-1} A\right) \ll \kappa(A)$.
Let E be such that $M=E E^{\top}$, e.g. its Cholesky factorization. Then, $\sigma\left(M^{-1} A\right)=\sigma\left(E^{-1} A E^{-T}\right):$
Assume $M^{-1} A u=\lambda u$. We have

$$
\left(E^{-1} A E^{-T}\right)\left(E^{T} u\right)=\left(E^{T} E^{-T}\right) E^{-1} A u=E^{T} M^{-1} A u=\lambda E^{T} u
$$

$\Leftrightarrow E^{T} u$ is an eigenvector of $E^{-1} A E^{-T}$ with eigenvalue λ.

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

$$
E^{-1} A E^{-T} \tilde{x}=E^{-1} b
$$

with $\tilde{u}=E^{T} u$

$$
\begin{aligned}
\tilde{d}_{0} & =\tilde{r}_{0}=E^{-1} b-E^{-1} A E^{-T} u_{0} \\
\alpha_{i} & =\frac{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)}{\left(E^{-1} A E-T \tilde{d}_{i}, \tilde{d}_{i}\right)} \\
\tilde{u}_{i+1} & =\tilde{u}_{i}+\alpha_{i} \tilde{d}_{i} \\
\tilde{r}_{i+1} & =\tilde{r}_{i}-\alpha_{i} E^{-1} A E^{-T} \tilde{d}_{i} \\
\beta_{i+1} & =\frac{\left(\tilde{r}_{i+1}, \tilde{r}_{i+1}\right)}{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)} \\
\tilde{d}_{i+1} & =\tilde{r}_{i+1}+\beta_{i+1} \tilde{d}_{i}
\end{aligned}
$$

Not very practical as we need E

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$
r_{i+1}=r_{i}-\alpha_{i} A d_{i}
$$

give a much more optimistic picture on the state of the iteration than the real residual

$$
r_{i+1}=b-A u_{i+1}
$$

