
Lecture 4 Slide 1

Scientific Computing WS 2018/2019

Lecture 4

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 4 Slide 2

Recap from last time

Lecture 2 Slide 39

Memory: stack

I pre-allocated memory where main() and all functions called from there put
their data.

I Any time a function is called, the current position in the instruction stream is
stored in the stack as the return address, and the called function is allowed to
work with the memory space after that

By R. S. Shaw, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=1956587

void DrawLine(double x0, double y0, double x1, double y1)
{

paint ...
}

void DrawSquare(double x0,double y0, double a)
{

DrawLine(x0,y0,x0+a,y0);
DrawLine(x0+a,y0,x0+a,y0+a);
DrawLine(x0+a,y0+a,x0,y0+a);
DrawLine(x0,y0+a,x0,y0);

}

Lecture 4 Slide 3

Lecture 2 Slide 40

Stack space is scarce

I Variables declared in {} blocks get placed on the stack
I All previous examples had their data on the stack, even large arrays
I Stack space should be considered scarce
I Stack size for a program is fixed, set by the system
I On UNIX, use ulimit -s to check/set stack size default

Lecture 4 Slide 4

Lecture 3 Slide 24

Memory: heap

I Chunks from free system memory can be reserved – “allocated” – on
demand in order to provide memory space for objects

I The operator new reserves the memory and returns an address which can be
assigned to a pointer variable

I The operator delete (delete[] for arrays) releases this memory and
makes it available for other processes

I Compared to declarations on the stack, these operations are expensive
I Use cases:

I Problem sizes unknown at compile time
I Large amounts of data
I . . . so, yes, we will need this. . .

double *x= new double(5); // allocate space for a double, initialize it with 5
double *y=new double[5]; // allocate space of five doubles, uninitialized
x[3]=1; // Segmentation fault
y[3]=1; // Perfect...
delete x; // Choose the right delete!
delete[] y; // Choose the right delete!

Lecture 4 Slide 5

Lecture 3 Slide 25

Multidimensional Arrays

I Multidimensional arrays are useful for storing matrices, tensors, arrays of
coordinate vectors etc.

I It is easy to declare a multidimensional array on the stack when the size the
array is known at compile time

double x[5][6];

for (int i=0;i<5;i++)
for (int j=0;j<6;j++)

x[i][j]=0;

I Determining array dimensions from function parameters may work with
some compilers, but are not backed by the standard

I One option to have 2D arrays with arbitrary, run-time defined dimensions is
to allocate a an array of pointers to double, and to use new to allocate each
(!) row
. . . this leads to nowhere . . .

Lecture 4 Slide 6

Lecture 3 Slide 27

Classes and members

I Classes are data types which collect different kinds of data, and methods to
work on them.
class class_name
{

private:
private_member1;
private_member2;
...

public:
public_member1;
public_member2;
...

};
I If not declared otherwise, all members are private
I struct is the same as class but by default all members are public
I Accessing members of a class object:

class_name x;
x.public_member1=...

I Accessing members of a pointer to class object:
class_name *x;
(*x).public_member1=...
x->public_member1=...

Lecture 4 Slide 7

Lecture 3 Slide 28

Example class
I Define a class vector which holds data and length information and thus is

more comfortable than plain arrays
class vector
{

private:
double *data;

public:
int size;

double get_value(int i) {return data[i];};
void set_value(int i, double value); {data[i]=value;};

};

...

{
vector v;
v.data=new double(5); // would work if data would be public
v.size=5;
v.set_value(3,5);

b=v.get_value(3); // now, b=5
v.size=6; // size changed, but not the length of the data array...

// and who is responsible for delete[] at the end of scope ?
}

I Methods of a class know all its members
I It would be good to have a method which constructs the vector and another

one which destroys it.

Lecture 4 Slide 8

Lecture 3 Slide 29

Constructors and Destructors

class vector
{ private:

double *data=nullptr;
int size=0;

public:
int get_size(){ return size;};
double get_value(int i) { return data[i]; };
void set_value(int i, double value) { data[i]=value; };
Vector(int new_size) { data = new double[new_size];

size=new_size; };
˜Vector() { delete [] data; };

};
...
{ vector v(5);

for (int i=0;i<5;i++) v.set_value(i,0.0);
v.set_value(3,5);
b=v.get_value(3); // now, b=5
v.size=6; // Size is now private and can not be set;
vector w(5);
for (int i=0;i<5;i++) w.set_value(i,v.get_value(i));
// Destructors automatically called at end of scope.

}

I Constructors are declared as classname(...)
I Destructors are declared as ˜classname()

Lecture 4 Slide 9

Lecture 3 Slide 30

Interlude: References

I C style access to objects is direct or via pointers
I C++ adds another option - references

I References essentially are alias names for already existing variables
I Must always be initialized
I Can be used in function parameters and in return values
I No pointer arithmetics with them

I Declaration of reference
double a=10.0;
double &b=a;

b=15; // a=15 now as well

I Reference as function parameter: no copying of data!
void do_multiplication(double x, double y, double &result)
{

result=x*y;
}
...
double x=5,y=9;
double result=0;
do_multiplication(x,y,result) // result now contains 45

Lecture 4 Slide 10

Lecture 3 Slide 31

Vector class again

I We can define () and [] operators!
class vector
{

private:
double *data=nullptr;
int size=0;

public:
int get_size(return size);
double & operator()(int i) { return data[i]; };
double & operator[](int i) { return data[i]; };
vector(int new_size) { data = new double[new_size];

size=new_size;}
˜vector() { delete [] data;}

};
...
{

vector v(5);
for (int i=0;i<5;i++) v[i]=0.0;
v[3]=5;
b=v[3]; // now, b=5
vector w(5);
for (int i=0;i<5;i++) w(i)=v(i);

}

Lecture 4 Slide 11

Lecture 3 Slide 32

Matrix class

I We can define (i,j) but not [i,j]

class matrix
{ private:

double *data=nullptr;
int size=0; int nrows=0;
int ncols=0;

public:
int get_nrows(return nrows);
int get_ncols(return ncols);
double & operator()(int i,int j) { return data[i*nrow+j]);
matrix(int new_rows,new_cols)
{ nrows=new_rows; ncols=new_cols;

size=nrows*ncols;
data = new double[size];

}
˜matrix() { delete [] data;}

};
...
{

matrix m(3,3);
for (int i=0;i<3;i++)

for (int j=0;j<3;j++)
m(i,j)=0.0;

}

Lecture 4 Slide 12

Lecture 3 Slide 33

Inheritance

I Classes in C++ can be extended, creating new classes which retain
characteristics of the base class.

I The derived class inherits the members of the base class, on top of which it
can add its own members.
class vector2d
{ private:

double *data;
int nrow, ncol;
int size;

public:
double & operator(int i, int j);
vector2d(int nrow, ncol);
˜vector2d();

}
class matrix: public vector2d
{ public:

apply(const vector1d & u, vector1d &v);
solve(vector1d &u, const vector1d &rhs);

}
I All operations which can be performed with instances of vector2d can be

performed with instances of matrix as well
I In addition, matrix has methods for linear system solution and

matrix-vector multiplication

Lecture 4 Slide 13

Lecture 3 Slide 35

Generic programming: templates

I Templates allow to write code where a data type is a parameter
I We want do be able to have vectors of any basic data type.
I We do not want to write new code for each type

template <typename T>
class vector
{

private:
T *data=nullptr;
int size=0;

public:
int get_size(return size);
T & operator[](int i) { return data[i]; };
vector(int new_size) { data = new T[new_size];

size = new_size;};
˜vector() { delete [] data;};

};
...
{

vector<double> v(5);
vector<int> iv(3);

}

Lecture 4 Slide 14

Lecture 3 Slide 36

C++ template libray

I The standard template library (STL) became part of the C++11 standard
I Whenever you can, use the classes available from there
I For one-dimensional data, std::vector is appropriate
I For two-dimensional data, things become more complicated

I There is no reasonable matrix class
I std::vector< std::vector> is possible but has to allocate each matrix row and is

inefficient
I it is hard to create a std::vector from already existing data

Lecture 4 Slide 15

Lecture 3 Slide 37

Smart pointers

. . . with a little help from Timo Streckenbach from WIAS who introduced smart
pointers into our simulation code.

I Automatic book-keeping of pointers to objects in memory.
I Instead of the meory address of an object aka. pointer, a structure is passed

around by value which holds the memory address and a pointer to a
reference count object.

I It delegates the member access operator -> and the address resolution
operator * to the pointer it contains.

I Each assignment of a smart pointer increases this reference count.
I Each destructor invocation from a copy of the smart pointer structure

decreases the reference count.
I If the reference count reaches zero, the memory is freed.
I std::shared_ptr is part of the C++11 standard

Lecture 4 Slide 16

Lecture 3 Slide 38

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Stack Heap

C obj

ref=1

x1: C* p obj
int * p ref

std::shared ptr<C> x1= std::make shared<C>();

x2: C* p obj
int * p ref

std::shared ptr<C> x2= x1;

x3: C* p obj
int * p ref

std::shared ptr<C> x3= x1;

Lecture 4 Slide 17

Lecture 3 Slide 38

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Stack Heap

C obj

ref=2

x1: C* p obj
int * p ref

std::shared ptr<C> x1= std::make shared<C>();

x2: C* p obj
int * p ref

std::shared ptr<C> x2= x1;

x3: C* p obj
int * p ref

std::shared ptr<C> x3= x1;

Lecture 4 Slide 18

Lecture 3 Slide 38

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Stack Heap

C obj

ref=3

x1: C* p obj
int * p ref

std::shared ptr<C> x1= std::make shared<C>();

x2: C* p obj
int * p ref

std::shared ptr<C> x2= x1;

x3: C* p obj
int * p ref

std::shared ptr<C> x3= x1;

Lecture 4 Slide 19

Lecture 4 Slide 20

C/C++: Expression templates

Lecture 4 Slide 21

Vector operations

I So far we are able to perform vector operations by explicitely writing loops
over the length of the vector

I Generally, C++ allows to overload operators like +,-,*,/,= etc. allowing to
use vector expressions (like in matlab, python/numpy, Julia)

inline const vector
operator+(const vector& a, const vector& b)
{

vector tmp(a.size());
for(std::size_t i=0; i<a.size(); ++i)
tmp[i] = a[i] + b[i];
return tmp;

}
...

vector a,b,c;
c=a+b;

I But this involves the creation of a temporary object for each operation in
an expression

I Temporary object creation is prohibitively expensive for large objects

Lecture 4 Slide 22

Expression templates I

C++ technique which allows to implement expressions of vectors while avoiding
introduction and copies of temporary objects.

I Expression class definition:
template< typename A, typename B >
class Sum {

public:
Sum(const A& a, const B& b): a_(a), b_(b){} // Constructor from two vectors
std::size_t size() const { return a_.size(); } // Delegate size() to argument
double operator[](std::size_t i) const // Access operator
{ return a_[i] + b_[i]; }
private:
const A& a_; // Reference to the left-hand side operand
const B& b_; // Reference to the right-hand side operand

};
I Overloaded + operator:

template< typename A, typename B >
const Sum<A,B> operator+(const A& a, const B& b)
{

return Sum<A,B>(a, b); // Return instance of Sum<A,B>
}

I a,b can be vectors, other expressions or any object which implements
size() and [].

Lecture 4 Slide 23

Expression templates II

I Method in vector class to copy vector data from expression:
class vector
{

public:
...
template< typename A >
vector& operator=(const A& expr)
{

for(std::size_t i=0; i<expr.size(); i++)
v_[i] = expr[i];

return *this; // Return reference to target vector
}
...

};
I Usage:

vector a,b,c;
c=a+b;

I After template instantiation and inlining, the compiler will generate code
without temporary vector objects:

for(std::size_t i=0; i<a.size(); i++)
c[i] = a[i] + b[i];

I Large potential for optimization for more complex expressions

Lecture 4 Slide 24

Vector classes for linear algebra

I Expression templates and overloading of component access allow to
implement classes for linear algebra which are almost as easy to use as in
matlab or python/numpy

I These techniques are used by libraries like
I Eigen http://eigen.tuxfamily.org
I Armadillo http://arma.sourceforge.net/
I Blaze https://bitbucket.org/blaze-lib/blaze/overview

I Regrettably, none of this is standardized in C++ . . .

I During the course, we will use our own, small and therefore hopefully easy
to understand library named numcxx

http://eigen.tuxfamily.org
http://arma.sourceforge.net/
https://bitbucket.org/blaze-lib/blaze/overview

Lecture 4 Slide 25

C++ topics not covered so far

I To be covered later
I Threads/parallelism
I Graphics (via library)

I To be covered on occurence (possibly)
I Character strings
I Overloading
I malloc/free/realloc (C-style memory management)
I cmath library
I Interfacing C/Fortran

I To be omitted (probably)
I Functor classes, lambdas
I optional arguments, variable parameter lists
I Exceptions
I Move semantics
I GUI libraries
I Interfacing Python/numpy

Lecture 4 Slide 26

Recap from numerical analysis

Lecture 4 Slide 27

Representation of real numbers

I Any real number x ∈ R can be expressed via representation formula:

x = ±
∞∑
i=0

diβ
−iβe

I β ∈ N, β ≥ 2: base
I di ∈ N, 0 ≤ di < β: mantissa digits
I e ∈ Z : exponent

I Scientific notation of floating point numbers: e.g. x = 6.022 · 1023

I β = 10
I d = (6, 0, 2, 2, 0 . . .)
I e = 23

I Non-unique: x = 0.6022 · 1024

I β = 10
I d = (0, 6, 0, 2, 2, 0 . . .)
I e = 24

I Infinite for periodic decimal numbers, irrational numbers

Lecture 4 Slide 28

Floating point numbers

I Computer representation uses β = 2, therefore di ∈ {0, 1}
I Truncation to fixed finite size

x = ±
t−1∑
i=0

diβ
−iβe

I t: mantissa length
I Normalization: assume d0 = 1 ⇒ save one bit for mantissa
I k: exponent size −βk + 1 = L ≤ e ≤ U = βk − 1
I Extra bit for sign
I ⇒ storage size: (t − 1) + k + 1

I IEEE 754 single precision (C++ float): k = 8, t = 24 ⇒ 32 bit
I IEEE 754 double precision (C++ double): k = 11, t = 53 ⇒ 64 bit

Lecture 4 Slide 29

Floating point limits

Finite size of reprensentation ⇒ there are minimal and maximal possible
numbers which can be represented

I symmetry wrt. 0 because of sign bit
I smallest positive normalized number: d0 = 1, di = 0, i = 1 . . . t − 1

xmin = βL

I float: 1.175494351e–38
I double: 2.2250738585072014e–308

I smallest positive denormalized number: di = 0, i = 0 . . . t − 2, dt−1 = 1
xmin = β1−tβL

I largest positive normalized number: di = β − 1, 0 . . . t − 1
xmax = β(1− β1−t)βU

I float: 3.402823466e+38
I double: 1.7976931348623158e+308

Lecture 4 Slide 30

Machine precision

I There cannot be more than 2t+k floating point numbers ⇒ almost all real
numbers have to be approximated

I Let x be an exact value and x̃ be its approximation Then: | x̃−x
x | < ε is the

best accuracy estimate we can get, where
I ε = β1−t (truncation)
I ε = 1

2β
1−t (rounding)

I Also: ε is the smallest representable number such that 1 + ε > 1.
I Relative errors show up in partiular when

I subtracting two close numbers
I adding smaller numbers to larger ones

Lecture 4 Slide 31

Matrix + Vector norms
I Vector norms: let x = (xi) ∈ Rn

I ||x ||1 =
∑n

i=1 |xi |: sum norm, l1-norm

I ||x ||2 =
√∑n

i=1 x2
i : Euclidean norm, l2-norm

I ||x ||∞ = maxn
i=1 |xi |: maximum norm, l∞-norm

I Matrix A = (aij) ∈ Rn × Rn

I Representation of linear operator A : Rn → Rn defined by A : x 7→ y = Ax
with

yi =
n∑

j=1

aij xj

I Induced matrix norm:

||A||ν = max
x∈Rn,x 6=0

||Ax ||ν
||x ||ν

= max
x∈Rn,||x||ν =1

||Ax ||ν
||x ||ν

Lecture 4 Slide 32

Matrix norms

I ||A||1 = maxn
j=1
∑n

i=1 |aij | maximum of column sums
I ||A||∞ = maxn

i=1
∑n

j=1 |aij | maximum of row sums

I ||A||2 =
√
λmax with λmax : largest eigenvalue of AT A.

Lecture 4 Slide 33

Matrix condition number and error propagation

I Problem: solve Ax = b, where b is inexact
I Let ∆b be the error in b and ∆x be the resulting error in x such that

A(x + ∆x) = b + ∆b.

I Since Ax = b, we get A∆x = ∆b
I Therefore{

∆x = A−1∆b
Ax = b

}
⇒
{
||A|| · ||x || ≥ ||b||
||∆x || ≤ ||A−1|| · ||∆b||

⇒ ||∆x ||
||x || ≤ κ(A) ||∆b||

||b||

where κ(A) = ||A|| · ||A−1|| is the condition number of A.

Lecture 4 Slide 34

Solution of linear systems of equations

Lecture 4 Slide 35

Approaches to linear system solution

Let A: n × n matrix, b ∈ Rn.
Solve Ax = b

I Direct methods:
I Exact

I up to machine precision
I condition number

I Expensive (in time and space)
I where does this matter ?

I Iterative methods:
I Only approximate

I with good convergence and proper accuracy control, results are not worse than for
direct methods

I May be cheaper in space and (possibly) time
I Convergence guarantee is problem dependent and can be tricky

Lecture 4 Slide 36

Complexity: ”big O notation”

I Let f , g : V→ R+ be some functions, where V = N or V = R.
We write

f (x) = O(g(x)) (x →∞)
if there exist a constant C > 0 and x0 ∈ V such that

∀x > x0, |f (x)| ≤ C |g(x)|

I Often, one skips the part ”(x →∞)”
I Examples:

I Addition of two vectors: O(n)
I Matrix-vector multiplication (for matrix where all entries are assumed to be

nonzero): O(n2)

Lecture 4 Slide 37

Really bad example of direct method

Solve Ax = b by Cramer’s rule

xi =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1i−1 b1 a1i+1 . . . a1n
a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣ /|A| (i = 1 . . . n)

This takes O(n!) operations...

Lecture 4 Slide 38

Gaussian elimination

I Essentially the only feasible direct solution method
I Solve Ax = b with square matrix A.
I While formally, the algorithm is always the same, its implementation

depends on
I data structure to store matrix
I possibility to ignore zero entries for matrices with many zeroes
I sorting of elements

Lecture 4 Slide 39

Gaussian elemination: pass 1

(6 −2 2
12 −8 6
3 −13 3

)
x =

(16
26
−19

)

Step 1: equation2 ← equation2 − 2 equation1
equation3 ← equation3 − 1

2 equation1

(6 −2 2
0 −4 2
0 −12 2

)
x =

(16
−6
−27

)

Step 2: equation3 ← equation3 − 3 equation2

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)

Lecture 4 Slide 40

Gaussian elimination: pass 2

Solve upper triangular system

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)

−4x3 = −9 ⇒ x3 = 9
4

−4x2 + 2x3 = −6 ⇒ −4x2 = −21
2 ⇒ x2 = 21

8
6x1 − 2x2 + 2x3 = 2 ⇒ 6x1 = 2 + 21

4 −
18
4 = 11

4 ⇒ x1 = 11
4

Lecture 4 Slide 41

LU factorization

Pass 1 expressed in matrix operation

L1Ax =

(6 −2 2
0 −4 2
0 −12 2

)
x =

(16
−6
−27

)
= L1b, L1 =

(1 0 0
−2 1 0
− 1

2 0 1

)

L2L1Ax =

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)
= L2L1b, L2 =

(1 0 0
0 1 0
0 −3 1

)

I Let L = L−1
1 L−1

2 =

(1 0 0
2 1 0
1
2 3 1

)
, U = L2L1A. Then A = LU

I Inplace operation. Diagonal elements of L are always 1, so no need to store
them ⇒ work on storage space for A and overwrite it.

Lecture 4 Slide 42

LU factorization

Solve Ax = b
I Pass 1: factorize A = LU such that L,U are lower/upper triangular
I Pass 2: obtain x = U−1L−1b by solution of lower/upper triangular systems

I 1. solve Lx̃ = b
I 2. solve Ux = x̃

I We never calculate A−1 as this would be more expensive

Lecture 4 Slide 43

Problem example

I Consider
(
ε 1
1 1

)(
x1
x2

)
=
(

1 + ε
1

)
I Solution:

(
x1
x2

)
=
(

1
1

)
I Machine arithmetic: Let ε << 1 such that 1 + ε = 1.
I Equation system in machine arithmetic:

1 · ε+ 1 · 1 = 1 + ε

1 · 1 + 1 · 1 = 2
I Still fulfilled!

Lecture 4 Slide 44

Problem example II: Gaussian elimination

I Ordinary elimination: equation2 ← equation2 − 1
ε

equation1(
ε 1
0 1− 1

ε

)(
x1
x2

)
=
(

1 + ε
2− 1+ε

ε

)
I In exact arithmetic:

⇒ x2 =
1− 1

ε

1− 1
ε

= 1⇒ x1 = 1 + ε− x2
ε

= 1

I In floating point arithmetic: 1 + ε = 1, 1− 1
ε

= − 1
ε
, 2− 1

ε
= − 1

ε
:(

ε 1
0 − 1

ε

)(
x1
x2

)
=
(

1
− 1
ε

)
⇒ x2 = 1 ⇒ εx1 + 1 = 1 ⇒ x1 = 0

Lecture 4 Slide 45

Problem example III: Partial Pivoting

I Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”

I This prevents near zero divisions and increases stability(
1 1
ε 1

)(
x1
x2

)
=
(

2
1 + ε

)
⇒
(

1 1
0 1− ε

)(
x1
x2

)
=
(

2
1− ε

)
I Independent of ε:

x2 = 1− ε
1− ε = 1, x1 = 2− x2 = 1

I Instead of A, factorize PA: PA = LU, where P is a permutation matrix
which can be encoded using an integer vector

Lecture 4 Slide 46

Gaussian elimination and LU factorization

I Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

I Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

I Complexity of LU-Factorization: O(N3), some theoretically better
algorithms are known with e.g. O(N2.736)

I Complexity of triangular solve: O(N2)
⇒ overall complexity of linear system solution is O(N3)

Lecture 4 Slide 47

Cholesky factorization

I A = LLT for symmetric, positive definite matrices

Lecture 4 Slide 48

BLAS, LAPACK

I BLAS: Basic Linear Algebra Subprograms http://www.netlib.org/blas/

I Level 1 - vector-vector: y← αx + y
I Level 2 - matrix-vector: y← αAx + βy
I Level 3 - matrix-matrix: C ← αAB + βC

I LAPACK: Linear Algebra PACKage http://www.netlib.org/lapack/
I Linear system solution, eigenvalue calculation etc.
I dgetrf: LU factorization
I dgetrs: LU solve

I Used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use these routines. Unless there is special need, they should
be used.

I Reference implementations in Fortran, but many more implementations
available which carefully work with cache lines etc.

http://www.netlib.org/blas/
http://www.netlib.org/lapack/

Lecture 4 Slide 49

Matrices from PDEs

I So far, we assumed that matrices are stored in a two-dimensional, n × n
array of numbers

I This kind of matrices are also called dense matrices
I As we will see, matrices from PDEs (can) have a number of structural

properties one can take advantage of when storing a matrix and solving the
linear system

Lecture 4 Slide 50

1D heat conduction

I vL, vR : ambient temperatures, α: heat transfer coefficient
I Second order boundary value problem in Ω = [0, 1]:

−u′′(x) = f (x) inΩ
−u′(0) + α(u(0)− vL) = 0

u′(1) + α(u(1)− vR) = 0

I Let h = 1
n−1 , xi = x0 + (i − 1)h i = 1 . . . n be discretization points, let ui

approximations for u(xi) and fi = f (xi)
I Finite difference approximation:

−u′(0) + α(u(0)− vL) ≈ 1
h (u0 − u1) + α(u0 − vL)

−u′′(xi)− f (xi) ≈
1
h2 (−ui+1 + 2ui − ui−1)− fi (i = 2 . . . n − 1)

u′(1) + α(u(1)− vR) ≈ 1
h (un − un−1) + α(un − vR)

Lecture 4 Slide 51

1D heat conduction: discretization matrix

I equations 2 . . . n − 1 multiplied by h
I only nonzero entries written

α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α

u1
u2
u3
...

uN−2
uN−1
uN

=

αvL
hf2
hf3
...

hfN−2
hfN−1
αvR

I Each row contains ≤ 3 elements
I Only 3n − 2 of n2 elements are non-zero

Lecture 4 Slide 52

General tridiagonal matrix

b1 c1
a2 b2 c2

a3 b3
. . .

. cn−1
an bn

u1
u2
u3
...

un

 =

f1
f2
f3
...
fn

I To store matrix, it is sufficient to store only nonzero elements in three

one-dimensional arrays for ai , bi , ci , respectively

Lecture 4 Slide 53

Gaussian elimination for tridiagonal systems

Gaussian elimination using arrays a, b, c as matrix storage ?
From what we have seen, this question arises in a quite natural way, and
historically, the answer has been given several times

I TDMA (tridiagonal matrix algorithm)
I “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))
I “Progonka method” (from Russian ”run through”; Gelfand, Lokutsievski,

1952, published 1960)

Lecture 4 Slide 54

Progonka: derivation

I aiui−1 + biui + ciui+1 = fi (i = 1 . . . n); a1 = 0, cN = 0
I For i = 1 . . . n − 1, assume there are coefficients αi , βi such that

ui = αi+1ui+1 + βi+1.
I Then, we can express ui−1 and ui via ui+1:

(aiαiαi+1 + biαi+1 + ci)ui+1 + aiαiβi+1 + aiβi + biβi+1 − fi = 0
I This is true independently of u if

{
aiαiαi+1 + biαi+1 + ci = 0
aiαiβi+1 + aiβi + biβi+1 − fi = 0

I or for i = 1 . . . n − 1:

{
αi+1 = − ci

aiαi +bi

βi+1 = fi−aiβi
aiαi +bi

Lecture 4 Slide 55

Progonka: realization
I Forward sweep: {

α2 = − c1
b1

β2 = fi
b1

for i = 2 . . . n − 1 {
αi+1 = − ci

aiαi +bi

βi+1 = fi−aiβi
aiαi +bi

I Backward sweep:

un = fn − anβn

anαn + bn

for n − 1 . . . 1:

ui = αi+1ui+1 + βi+1

Lecture 4 Slide 56

Progonka: properties

I n unknowns, one forward sweep, one backward sweep
⇒ O(n) operations vs. O(n3) for algorithm using full matrix

I No pivoting ⇒ stability issues
I Stability for diagonally dominant matrices (|bi | > |ai |+ |ci |)
I Stability for symmetric positive definite matrices

Lecture 4 Slide 57

2D finite difference grid

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

I Each discretization point has not more then 4 neighbours
I Matrix can be stored in five diagonals,

LU factorization not anymore ≡ ”fill-in”
I Certain iterative methods can take advantage of the regular and hierachical

structure (multigrid) and are able to solve system in O(n) operations
I Another possibility: fast Fourier transform with O(n log n) operations

Lecture 4 Slide 58

No lecture on Thu Nov 1!

(Project review of MATH+ excellence cluster)

First homework will be on course homepage (probably by Nov.1)

