
Lecture 3 Slide 1

Scientific Computing WS 2018/2019

Lecture 3

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 3 Slide 2

Recap from last time

Lecture 3 Slide 3

C++: first steps

Standard features:
I scalar types
I basic operations
I flow control
I ⇒ see e.g. online references http://www.cplusplus.com/,

https://en.cppreference.com/w

http://www.cplusplus.com/
https://en.cppreference.com/w

Lecture 2 Slide 24

The Preprocessor

I Before being sent to the compiler, the source code is sent through the
preprocessor

I It is a legacy from C which is slowly being squeezed out of C++
I Preprocessor commands start with #

I Include contents of file file.h found on a default search path known to the
compiler:

#include <file.h>

I Include contents of file file.h found on user defined search path:
#include "file.h"

I Define a piece of text (mostly used for constants in pre-C++ times)
(avoid, use const instead):

#define N 15

I Define preprocessor macro for inlining code
(avoid, use inline functions instead):

#define MAX(X,Y) (((x)>(y))?(x):(y))

Lecture 3 Slide 4

Lecture 2 Slide 25

Conditional compilation and pragmas

I Conditional compilation of pieces of source code, mostly used to dispatch
between system dependent variant of code. Rarely necessary nowadays. . .

#ifdef MACOSX
statements to be compiled only for MACOSX
#else
statements for all other systems
#endif

I There can be more complex logic involving constant expressions
I A pragma gives directions to the compiler concerning code generation:

#pragma omp parallel

Lecture 3 Slide 5

Lecture 2 Slide 26

Headers

I If we want to use functions from the standard library we need to include a
header file which contains their declarations

I The #include statement invokes the C-Preprocessor and leads to the
inclusion of the file referenced therein into the actual source

I Include files with names in < > brackets are searched for in system dependent
directories known to the compiler

#include <iostream>

Lecture 3 Slide 6

Lecture 2 Slide 27

Namespaces

I Namespaces allow to prevent clashes between names of functions from
different projects

I All functions from the standard library belong to the namespace std

namespace foo
{

void cool_function(void);
}

namespace bar
{

void cool_function(void);
}

...

{
using namespace bar;
foo::cool function()
cool_function() // equivalent to bar::cool_function()

}

Lecture 3 Slide 7

Lecture 2 Slide 28

Modules ?

I Currently, C++ has no well defined module system.
I A module system usually is emulated using the preprocessor and

namespaces.

Lecture 3 Slide 8

Lecture 2 Slide 29

Emulating modules

I File mymodule.h containing interface declarations
#ifndef MYMODULE_H // Handle multiple #include statements
#define MYMODULE_H
namespace mymodule
{

void my_function(int i, double x);
}
#endif

I File mymodule.cpp containing function definitions
#include "mymodule.h"
namespace mymodule
{

void my_function(int i, double x)
{

...body of function definition...
}

}
#endif

I File using mymodule:
#include "mymodule.h"
...
mymodule::my_function(3,15.0);

Lecture 3 Slide 9

Lecture 2 Slide 30

main

Now we are able to write a complete program in C++
I main()

is the function called by the system when running the program. Everything
else needs to be called from there.

Assume the follwing content of the file run42.cxx:
#include <cstdio>

int main()
{

int i=4,j=2;
int answer=10*i+j;
printf("Hello world, the answer is %d!\n",answer);
return 0;

}

Then the sequence of command line commands
$ g++ -o run42 run42.cxx
$./run42

gives the right answer to (almost) anything.

Lecture 3 Slide 10

Lecture 3 Slide 11

Command line instructions to control compiler

I By default, the compiler command performs the linking process as well
I Compiler command (Linux)

g++ GNU C++ compiler
g++-5 GNU C++ 5.x
clang++ CLANG compiler from LLVM project
icpc Intel compiler

I Options (common to all of those named above, but not standardized)
-o name Name of output file
-g Generate debugging instructions
-O0, -O1, -O2, -O3 Optimization levels
-c Avoid linking
-I<path> Add <path> to include search path
-D<symbol> Define preprocessor symbol
-std=c++11 Use C++11 standard

Lecture 3 Slide 12

Compiling. . .

src3.c

src2.c

src1.c

src3.o

src2.o

src1.o

program output

g++ -O3 -c -o src3.o src3.cxx

g++ -O3 -c -o src2.o src2.cxx

g++ -O3 -c -o src1.o src1.cxx

g++ -o program src1.o src2.o src3.o

link ./program

$ g++ -O3 -c -o src3.o src3.cxx
$ g++ -O3 -c -o src2.o src2.cxx
$ g++ -O3 -c -o src1.o src1.cxx
$ g++ -o program src1.o src2.o src3.o
$./program

Shortcut: invoke compiler and linker at once
$ g++ -O3 -o program src1.cxx src2.cxx src3.cxx
$./program

Lecture 3 Slide 13

Some shell commands in the terminal window

ls -l list files in directory
subdirectories are marked with ’d’
in the first column of permission list

cd dir change directory to dir
cd .. change directory one level up in directory hierachy
cp file1 file2 copy file1 to file2
cp file1 dir copy file1 to directory
mv file1 file2 rename file1 to file2
mv file1 dir move file1 to directory
rm file delete file
[cmd] *.o perform command on all files with name ending with .o

Lecture 3 Slide 14

Editors & IDEs

I Source code is written with text editors
(as compared to word processors like MS Word or libreoffice)

I Editors installed are
I gedit - text editor of gnome desktop (recommended)
I emacs - comprehensive, powerful, a bit unusual GUI (my preferred choice)
I nedit - quick and simple
I vi, vim - the UNIX purist’s crowbar

(which I avoid as much as possible)

I Integrated development environments (IDE)
I Integrated editor/debugger/compiler
I eclipse (need to get myself used to it before teaching)

Lecture 3 Slide 15

Working with source code

I Copy the code:
$ cp /net/wir/examples/part1/example.cxx .

I Editing:
$ gedit example.cxx

I Compiling: (-o gives the name of the output file)
$ g++ -std=c++11 example.cxx -o example

I Running: (./ means file from current directory)
$./example

Lecture 3 Slide 16

Alternative:Code::Blocks IDE

I http://www.codeblocks.org/

I Open example
$ codeblocks example.cxx

I Compile + run example: Build/"Build and Run" or F9

I Switching on C++11 standard: tick
Settings/Compiler/"Have g++ follow the C++11..."

Lecture 2 Slide 33

Addresses and pointers

I Objects are stored in memory, in order to find them they have an address
I We can determine the address of an object by the & operator

I The result of this operation can be assigned to a variable called pointer
I “pointer to type x” is another type denoted by *x

I Given an address (pointer) object we can refer to the content using the *
operator

int i=15; // i is an object
int *j= &i; // j is a pointer
int k=*j; // now, k=15

I The nullptr object can be assigned to a pointer in order to indicate that it
points to “nothing”

int *p=nullptr;

Lecture 3 Slide 17

Lecture 2 Slide 34

Passing addresses to functions

I Instead of values, addresses can be passed to functions
void do_multiplication(double x, double y, double *result)
{

*result=x*y;
}
...
double x=5,y=9;
double result=0;
do_multiplication(x,y,&result) // result now contains 45

Lecture 3 Slide 18

Lecture 2 Slide 35

Arrays

I Focusing on numerical methods for PDEs results in work with finite
dimensional vectors which are represented as arrays - sequences of
consecutively stored objects

I Stemming from C, in C++ array objects represent just the fixed amount of
consecutive memory. No size info or whatsoever

I No bounds check
I First array index is always 0

double x[9]; // uninitialized array of 9 elements
double y[3]={1,2,3}; // initialized array of 3 elements
double z[]={1,2,3}; // Same
double z[]{1,2,3}; //Same

I Accessing arrays
I [] is the array access operator in C++
I Each element of an array has an index

double a=x[3]; // undefined value because x was not initialized
double b=y[12]; // undefined value because out of bounds
y[12]=19; // may crash program ("segmentation fault"),
double c=z[0]; // Acces to first element in array, now c=1;

Lecture 3 Slide 19

Lecture 2 Slide 36

Arrays, pointers and pointer arithmetic

I Arrays are strongly linked to pointers
I Array object can be treated as pointer

double x[]={1,2,3,4};
double b=*x; // now x=1;
double *y=x+2; // y is a pointer to third value in arrax
double c=*y; // now c=3
ptrdiff_t d=y-x; // We can also do differences between pointers

I Pointer arithmetic is valid only in memory regions belonging to the same
array

Lecture 3 Slide 20

Lecture 2 Slide 37

Arrays and functions

I Arrays are passed by passing the pointer referring to its first element
I As they contain no length information, we need to pass that as well

void func_on_array1(double[] x, int len);
void func_on_array2(double* x, int len); // same
void func_on_array3(const double[] x, int len);//same, but prevent changing x
...
double x[]={3,4,5};
int len=sizeof(x)/sizeof(x[0]);
func_on_array1(x,len);

I Be careful with array return
double * some_func(void)
{

double a[]={-1,-2,-3};
return a; // illegal as with the end of scope, the life time of a is over

// smart compilers at least warn
}

Lecture 3 Slide 21

Lecture 2 Slide 39

Memory: stack

I pre-allocated memory where main() and all functions called from there put
their data.

I Any time a function is called, the current position in the instruction stream is
stored in the stack as the return address, and the called function is allowed to
work with the memory space after that

By R. S. Shaw, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=1956587

void DrawLine(double x0, double y0, double x1, double y1)
{

paint ...
}

void DrawSquare(double x0,double y0, double a)
{

DrawLine(x0,y0,x0+a,y0);
DrawLine(x0+a,y0,x0+a,y0+a);
DrawLine(x0+a,y0+a,x0,y0+a);
DrawLine(x0,y0+a,x0,y0);

}

Lecture 3 Slide 22

Lecture 2 Slide 40

Stack space is scarce

I Variables declared in {} blocks get placed on the stack
I All previous examples had their data on the stack, even large arrays
I Stack space should be considered scarce
I Stack size for a program is fixed, set by the system
I On UNIX, use ulimit -s to check/set stack size default

Lecture 3 Slide 23

Lecture 3 Slide 24

Memory: heap

I Chunks from free system memory can be reserved – “allocated” – on
demand in order to provide memory space for objects

I The operator new reserves the memory and returns an address which can be
assigned to a pointer variable

I The operator delete (delete[] for arrays) releases this memory and
makes it available for other processes

I Compared to declarations on the stack, these operations are expensive
I Use cases:

I Problem sizes unknown at compile time
I Large amounts of data
I . . . so, yes, we will need this. . .

double *x= new double(5); // allocate space for a double, initialize it with 5
double *y=new double[5]; // allocate space of five doubles, uninitialized
x[3]=1; // Segmentation fault
y[3]=1; // Perfect...
delete x; // Choose the right delete!
delete[] y; // Choose the right delete!

Lecture 3 Slide 25

Multidimensional Arrays

I Multidimensional arrays are useful for storing matrices, tensors, arrays of
coordinate vectors etc.

I It is easy to declare a multidimensional array on the stack when the size the
array is known at compile time

double x[5][6];

for (int i=0;i<5;i++)
for (int j=0;j<6;j++)

x[i][j]=0;

I Determining array dimensions from function parameters may work with
some compilers, but are not backed by the standard

I One option to have 2D arrays with arbitrary, run-time defined dimensions is
to allocate a an array of pointers to double, and to use new to allocate each
(!) row
. . . this leads to nowhere . . .

Lecture 3 Slide 26

Intermediate Summary

I This was mostly all (besides structs) of the C subset of C++
I Most “old” C libraries and code written in previous versions of C++ are

mostly compatible to modern C++
I Many “classical” programs use the (int size, double * data) style of

passing data, especially in numerics
I UMFPACK, Pardiso direct solvers
I PetsC library for distributed linear algebra
I triangle, tetgen mesh generators
I . . .

I On this level it is possible to call Fortran programs from C++
I BLAS vector operations
I LAPACK dense matrix linear algebra
I ARPACK eigenvalue computations
I . . .

I Understanding these interfaces is the main reason to know about plain C
pointers and arrays

I Modern C++ has easier to handle and safer ways to do these things, so
they should be avoided as much as possible in new programs

Lecture 3 Slide 27

Classes and members

I Classes are data types which collect different kinds of data, and methods to
work on them.
class class_name
{

private:
private_member1;
private_member2;
...

public:
public_member1;
public_member2;
...

};
I If not declared otherwise, all members are private
I struct is the same as class but by default all members are public
I Accessing members of a class object:

class_name x;
x.public_member1=...

I Accessing members of a pointer to class object:
class_name *x;
(*x).public_member1=...
x->public_member1=...

Lecture 3 Slide 28

Example class
I Define a class vector which holds data and length information and thus is

more comfortable than plain arrays
class vector
{

private:
double *data;

public:
int size;

double get_value(int i) {return data[i];};
void set_value(int i, double value); {data[i]=value;};

};

...

{
vector v;
v.data=new double(5); // would work if data would be public
v.size=5;
v.set_value(3,5);

b=v.get_value(3); // now, b=5
v.size=6; // size changed, but not the length of the data array...

// and who is responsible for delete[] at the end of scope ?
}

I Methods of a class know all its members
I It would be good to have a method which constructs the vector and another

one which destroys it.

Lecture 3 Slide 29

Constructors and Destructors

class vector
{ private:

double *data=nullptr;
int size=0;

public:
int get_size(){ return size;};
double get_value(int i) { return data[i]; };
void set_value(int i, double value) { data[i]=value; };
Vector(int new_size) { data = new double[new_size];

size=new_size; };
˜Vector() { delete [] data; };

};
...
{ vector v(5);

for (int i=0;i<5;i++) v.set_value(i,0.0);
v.set_value(3,5);
b=v.get_value(3); // now, b=5
v.size=6; // Size is now private and can not be set;
vector w(5);
for (int i=0;i<5;i++) w.set_value(i,v.get_value(i));
// Destructors automatically called at end of scope.

}

I Constructors are declared as classname(...)
I Destructors are declared as ˜classname()

Lecture 3 Slide 30

Interlude: References

I C style access to objects is direct or via pointers
I C++ adds another option - references

I References essentially are alias names for already existing variables
I Must always be initialized
I Can be used in function parameters and in return values
I No pointer arithmetics with them

I Declaration of reference
double a=10.0;
double &b=a;

b=15; // a=15 now as well

I Reference as function parameter: no copying of data!
void do_multiplication(double x, double y, double &result)
{

result=x*y;
}
...
double x=5,y=9;
double result=0;
do_multiplication(x,y,result) // result now contains 45

Lecture 3 Slide 31

Vector class again

I We can define () and [] operators!
class vector
{

private:
double *data=nullptr;
int size=0;

public:
int get_size(return size);
double & operator()(int i) { return data[i]; };
double & operator[](int i) { return data[i]; };
vector(int new_size) { data = new double[new_size];

size=new_size;}
˜vector() { delete [] data;}

};
...
{

vector v(5);
for (int i=0;i<5;i++) v[i]=0.0;
v[3]=5;
b=v[3]; // now, b=5
vector w(5);
for (int i=0;i<5;i++) w(i)=v(i);

}

Lecture 3 Slide 32

Matrix class

I We can define (i,j) but not [i,j]

class matrix
{ private:

double *data=nullptr;
int size=0; int nrows=0;
int ncols=0;

public:
int get_nrows(return nrows);
int get_ncols(return ncols);
double & operator()(int i,int j) { return data[i*nrow+j]);
matrix(int new_rows,new_cols)
{ nrows=new_rows; ncols=new_cols;

size=nrows*ncols;
data = new double[size];

}
˜matrix() { delete [] data;}

};
...
{

matrix m(3,3);
for (int i=0;i<3;i++)

for (int j=0;j<3;j++)
m(i,j)=0.0;

}

Lecture 3 Slide 33

Inheritance

I Classes in C++ can be extended, creating new classes which retain
characteristics of the base class.

I The derived class inherits the members of the base class, on top of which it
can add its own members.
class vector2d
{ private:

double *data;
int nrow, ncol;
int size;

public:
double & operator(int i, int j);
vector2d(int nrow, ncol);
˜vector2d();

}
class matrix: public vector2d
{ public:

apply(const vector1d & u, vector1d &v);
solve(vector1d &u, const vector1d &rhs);

}
I All operations which can be performed with instances of vector2d can be

performed with instances of matrix as well
I In addition, matrix has methods for linear system solution and

matrix-vector multiplication

Lecture 3 Slide 34

C++: Generic programming

Lecture 3 Slide 35

Generic programming: templates

I Templates allow to write code where a data type is a parameter
I We want do be able to have vectors of any basic data type.
I We do not want to write new code for each type

template <typename T>
class vector
{

private:
T *data=nullptr;
int size=0;

public:
int get_size(return size);
T & operator[](int i) { return data[i]; };
vector(int new_size) { data = new T[new_size];

size = new_size;};
˜vector() { delete [] data;};

};
...
{

vector<double> v(5);
vector<int> iv(3);

}

Lecture 3 Slide 36

C++ template libray

I The standard template library (STL) became part of the C++11 standard
I Whenever you can, use the classes available from there
I For one-dimensional data, std::vector is appropriate
I For two-dimensional data, things become more complicated

I There is no reasonable matrix class
I std::vector< std::vector> is possible but has to allocate each matrix row and is

inefficient
I it is hard to create a std::vector from already existing data

Lecture 3 Slide 37

Smart pointers

. . . with a little help from Timo Streckenbach from WIAS who introduced smart
pointers into our simulation code.

I Automatic book-keeping of pointers to objects in memory.
I Instead of the meory address of an object aka. pointer, a structure is passed

around by value which holds the memory address and a pointer to a
reference count object.

I It delegates the member access operator -> and the address resolution
operator * to the pointer it contains.

I Each assignment of a smart pointer increases this reference count.
I Each destructor invocation from a copy of the smart pointer structure

decreases the reference count.
I If the reference count reaches zero, the memory is freed.
I std::shared_ptr is part of the C++11 standard

Lecture 3 Slide 38

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Stack Heap

C obj

ref=1

x1: C* p obj
int * p ref

std::shared ptr<C> x1= std::make shared<C>();

x2: C* p obj
int * p ref

std::shared ptr<C> x2= x1;

x3: C* p obj
int * p ref

std::shared ptr<C> x3= x1;

Lecture 3 Slide 38

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Stack Heap

C obj

ref=2

x1: C* p obj
int * p ref

std::shared ptr<C> x1= std::make shared<C>();

x2: C* p obj
int * p ref

std::shared ptr<C> x2= x1;

x3: C* p obj
int * p ref

std::shared ptr<C> x3= x1;

Lecture 3 Slide 38

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Stack Heap

C obj

ref=3

x1: C* p obj
int * p ref

std::shared ptr<C> x1= std::make shared<C>();

x2: C* p obj
int * p ref

std::shared ptr<C> x2= x1;

x3: C* p obj
int * p ref

std::shared ptr<C> x3= x1;

Lecture 3 Slide 39

Smart pointers vs. *-pointers

I When writing code using smart pointers, write
#include <memory>
class R;
std::shared_ptr<R> ReturnObjectOfClassR(void);
void PassObjectOfClassR(std::shared_ptr<R> pR);
...
{ auto pR=std::make_shared<R>();

PassObjectOfClassR(pR)
// Smart pointer object is deleted at end of scope and frees memory

}

instead of
class R;
R* ReturnObjectOfClassR(void);
void PassObjectOfClassR(R* o);
...
{ R* pR=new R;

PassObjectOfClassR(pR);
delete pR; // never forget this here!!!

}

Lecture 3 Slide 40

Smart pointer advantages vs. *-pointers

I “Forget” about memory deallocation
I Automatic book-keeping in situations when members of several different

objects point to the same allocated memory
I Proper reference counting when working together with other libraries

