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1. Preface

This script is composed from the lecture slides with possible additional text. In order to relate to the slides,
the slide titles are retained in the skript and printed in bold face blue color aligned to the right.

2. Introduction

2.1. Motivation



2.1 Motivation 2

There was a time when “computers” were humans

HARVARD COLLEGE OBSERVATORY.

CIRCULAR 178.

.

PERIODS OF 25 VARIABLE STARS IN THE SMALL MAGELLANIC
CLOUD.

The following statement regarding the periods of 25 variable stars in the
Small Magellanic Cloud has been prepared by Miss Leavitt.

A Catalogue of 1777 variable stars in the two Magellanic Clouds is given
in H.A. 60, No. 4. The measurement and discussion of these objects present
problems of unusual difficulty, on account of the large area covered by the
two regions, the extremely crowded distribution of the stars contained in
them, the faintness of the variables, and the shortness of their periods. As

It was about science — astronomy

By Harvard College Observatory - Public Domain

https://commons.wikimedia.org/w/index. php?curid=10392913

Computations of course have been performed since ancient times. One can trace back the termin “computer”
applied to humans at least until 1613. The “Harvard computers” became very famous in this context.
Incidently, they were mostly female. They predate the NASA human computers of recent movie fame.

Does this scale ?

WEATHER PREDICTION

BY
NUMERICAL PROCESS

Second edition

BY

LEWIS F. RICHARDSON, B.A., F.R.MkT.S0c., F.Inst.P.

FORMERLY SUPERINTENDENT OF ESKDALEMUIR OBSERVATORY
LECTURER ON PHYSICS AT WESTMINSTER TRAINING COLLEGE

64000 computers predicting weather (1986 Illus-
L.F.Richardson 1922 tration of L.F. Richardson’s vision by S. Conlin)

¢ This was about weather, not science in the first place
* Science and Engineering need computing


https://commons.wikimedia.org/w/index.php?curid=10392913
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Computing was taken over by machines

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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Date of introduction

By Wgsimon - Own work, CC BY-SA 3.0 - Public Domain https://commons . wikimedia.org/w/index. php?curid=15193542

Computational engineering

¢ Starting points: Nuclear weapons + rocket design, ballistic trajectories, weather ...

¢ Now ubiquitous:

Structural engineering
Car industry
Oil recovery

* Use of well established, verfied, well supported commercial codes

Comsol
- ANSYS
Eclipse


https://commons.wikimedia.org/w/index.php?curid=15193542
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As soon as computing machines became available ...

... Scientists “misused” them to satisfy their curiosity

300 KL 1
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5 2 / 266.
P i i |
i .
] STUDIES OF NON LINEAR PROBLEMS
20—\ A .
\ I \ I / E. FERMI, J. PASTA, and S. ULAM
I \ [ l [ Document LA-1g40 (May 1955).
o \\ \\ I/
100 \ | \L e ABSTRACT.
/ / 5, J l / A one-dimensional dynamical system of 64 particles with forces between neighbors
E7ANNA 5 siAN 2 containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The
Y F— nonlinear terms considered are quadratic, cubic, and broken linear types. The results are
£ W' . analyzed into Fourier components and plotted as a function of time.
7 NIV TN TN |
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... Fermi became interested in the development and potentialities of the electronic computing machines.
He held many discussions [...] of the kind of future problems which could be studied through the use of
such machines.”

Fermi,Pasta and Ulam studied particle systems with nonlinear interactions
Calculations were done on the MANIAC-1 computer at Los Alamos
And they still do...
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SXS, the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org)

0.35 0.40
Time (sec)

Caltech/MIT/LIGO Lab

Verification of the detection of gravitational waves by numerical solution of Einstein’s equations of general
relativity using the “Spectral Einstein Code”

Computations significantly contributed to the 2017 Nobel prize in physics


http://www.black-holes.org
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Scientific computing

“The purpose of computing is insight, not numbers.”
(https://en.wikiquote.org/wiki/Richard_Hamming)

¢ Frontiers of Scientific Computing

- Insight into complicated phenomena not accessible by other methods
Improvement of models to better fit reality
Improvment of computational methods
Generate testable hypothesis
Support experimentation in other scientific fields
Exploration of new computing capabilities
Prediction, optimization of complex systems
¢ Good scientifc practice

— Reproducibility

— Sharing of ideas and knowledge
¢ Interdisciplinarity

— Numerical Analysis

— Computer science

— Modeling in specific fields

General approach
Hypothesis

| Mathematical model |

¢ Possible (probable) involvement of different persons, institutions
¢ Itis important to keep interdisciplinarity in mind

Scientific computing tools
Many of them are Open Source

¢ General purpose environments
— Matlab
- COMSOL
- Python + ecosystem
- R + ecosystem
Julia (evolving)
¢ “Classical” computer languages + compilers
- Fortran
- C,C++
e Established special purpose libraries
— Linear algebra: LAPACK, BLAS, UMFPACK, Pardiso
— Mesh generation: triangle, TetGen, NetGen
- Eigenvalue problems: ARPACK
— Visualization libraries: VTK
* Tools in the “background”
Build systems Make, CMake
Editors + IDEs (emacs, jedit, eclipse)
Debuggers
Version control (svn, git, hg)


https://en.wikiquote.org/wiki/Richard_Hamming
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Confusio Linguarum

"And the whole land was of one language and
of one speech. ... And they said, Go to, let us
build us a city and a tower whose top may reach
unto heaven. ... And the Lord said, behold, the
people is one, and they have all one language.

. Go to, let us go down, and there confound
their language that they may not understand
one another’s speech. So the Lord scattered
them abroad from thence upon the face of all
the earth." (Daniel 1:1-7)

Once again Hamming
...of “Hamming code” and “Hamming distance” fame, who started his carrier programming in Los Alamos:

“Indeed, one of my major complaints about the computer field is that whereas Newton could say,”If I have
seen a little farther than others, it is because I have stood on the shoulders of giants," I am forced to say,
“Today we stand on each other’s feet.” Perhaps the central problem we face in all of computer science is how
we are to get to the situation where we build on top of the work of others rather than redoing so much of it
in a trivially different way. Science is supposed to be cumulative, not almost endless duplication of the same
kind of things." (1968)

e 2017 this is still a problem
Intended aims and topics of this course
* Indicate a reasonable path within this labyrinth
¢ Relevant topics from numerical analysis
¢ Introduction to C++ (= 3 lectures) and Python (short, mostly for graphics purposes)
* Provide technical skills to understand a part of the inner workings of the relevant tools
* Focus on partial differential equation (PDE) solution

— Finite elements

— Finite volumes

— Mesh generation

Nonlinear if time permits — so we can see some real action
Parallelization

— A bit of visualization

* Tools/Languages

— C++, Python
— Parallelization: Focus on OpenMP, but glances on MPI, C++ threads
— Visualization: Python, VTK
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2.2. Sequential Hardware

von Neumann Architecture

I

s
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* Data and instructions from same memory
— Instruction decode: determine operation and operands
— Get operands from memory
— Perform operation
— Write results back
— Continue with next instruction

Contemporary Architecture

Multiple operations simultaneously “in flight”

Operands can be in memory, cache, register

¢ Results may need to be coordinated with other processing elements
* Operations can be performed speculatively

i Queue, Uncore
& I/0
et .

% ey

. Memory Controller

e

Modern CPU. From: https://www.hartware.de/review_1411_2.html


https://www.hartware.de/review_1411_2.html
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What is in a “core” ?
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From: Eijkhout
Modern CPU functionality

¢ Traditionally: one instruction per clock cycle
* Modern CPUs: Multiple floating point units, for instance 1 Mul + 1 Add, or 1 FMA
— Peak performance is several operations /clock cycle
— Only possible to obtain with highly optimized code
¢ Pipelining
— A single floating point instruction takes several clock cycles to complete:
— Subdivide an instruction:
* Instruction decode
* Operand exponent align
* Actual operation
* Normalize
- Pipeline: separate piece of hardware for each subdivision
- Like assembly line

Data and code
¢ Stored in the same memory = encoded in the same way

¢ Stored as binary numbers, most often written in hexadecimal form
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Machine code

* Detailed instructions for the actions of the CPU

¢ Not human readable

¢ Sample types of instructions:

Transfer data between memory location and register
Perform arithmetic/logic operations with data in register
Check if data in register fulfills some condition

— Conditionally change the memory address from where instructions are fetched = “ump” to
address

— Save all register context and take instructions from different memory location until return =
“call77

¢ Instructions are very hard to handle, although programming started this way...
534c 29e5 31db 48cl £d03 4883 ec08 e85d
feff £f4A8 85ed 74le 0fif 8400 0000 0000
4c89 eadc 89f6 4489 ff4l £f14 dc48 83c3
0148 39eb 75ea 4883 c408 5b5d 415c 415d
415e 415f c390 662e Of1f 8400 0000 0000
£3c3 0000 4883 ec08 4883 c408 c300 0000
0100 0200 4865 6c6¢c 6£20 776f 726c 6400
011b 033b 3400 0000 0500 0000 20fe ffff
8000 0000 60fe ffff 5000 0000 4dff ffff

Assembler code

* Human readable representation of CPU instructions
* Some write it by hand ...

— Code close to abilities and structure of the machine

- Handle constrained resources (embedded systems, early computers)
* Translated to machine code by a programm called assembler

.file "code.c"
.section .rodata
.LCO:

.string "Hello world"
.text

pushqg  Yrbp

.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq hrsp, hrbp
.cfi_def_cfa_register 6
subq $16, Yrsp

movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
movl $.LCO, %edi
movl $0, %eax

call printf

Memory Hierachy
* Main memory access is slow compared to the processor

— 100-1000 cycles latency before data arrive
- Data stream maybe 1/4 floating point number/cycle;
— processor wants 2 or 3

¢ Faster memory is expensive

* Cache is a small piece of fast memory for intermediate storage of data
¢ Operands are moved to CPU registers immediately before operation

¢ Memory hierarchy:

Registers in different cores Fast on-CPU cache memory (L1, L2, L3) Main memory
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Registers

Processor instructions operate on registers directly

2.3.

#

have assembly language names names like: eax, ebx, ecx, etc.
sample instruction: addl Yeax, %edx
Separate instructions and registers for floating-point operations

Data caches

Between the CPU Registers and main memory

L1 Cache: Data cache closest to registers

L2 Cache: Secondary data cache, stores both data and instructions
Data from L2 has to go through L1 to registers

L2 is 10 to 100 times larger than L1

Some systems have an L3 cache, ~10x larger than L2

Cache line

The smallest unit of data transferred between main memory and the caches (or between levels of
cache)

N sequentially-stored, multi-byte words (usually N=8 or 16).
If you request one word on a cache line, you get the whole line

— make sure to use the other items, you’ve paid for them in bandwidth
- Sequential access good, “strided” access ok, random access bad

Cache hit: location referenced is found in the cache
Cache miss: location referenced is not found in cache

— triggers access to the next higher cache or memory
Cache thrashing

— Two data elements can be mapped to the same cache line: loading the second “evicts” the first
— Now what if this code is in a loop? “thrashing”: really bad for performance

Performance is limited by data transfer rate

— High performance if data items are used multiple times

Computer Languages

Compiled high level languages

Algorithm description using mix of mathematical formulas and statements inspired by human lan-
guage
Translated to machine code (resp. assembler) by compiler

include <stdio.h>

int main (int argc, char *argv[])

{

}

printf("Hello world");

¢ “Far away” from CPU = the compiler is responsible for creation of optimized machine code
¢ Fortran, COBOL, C, Pascal, Ada, Modula2, C++, Go, Rust, Swift

* Strongly typed

¢ Tedious workflow: compile - link - run

source3.c

link
source2.c source2.0
sourcel.c

compile

source3.o

compile run as system executable

}| executable output

compile

sourcel.o
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High level scripting languages

¢ Algorithm description using mix of mathematical formulas and statements inspired by human lan-
guage
* Need intepreter in order to be executed

print ("Hello world")

* Very far away from CPU = usually significantly slower compared to compiled languages
e Matlab, Python, Lua, perl, R, Java, javascript
* Less strict type checking, often simple syntax, powerful introspection capabilities
¢ Immediate workflow: “just run”
- in fact: first compiled to bytecode which can be interpreted more efficiently

modulel.py

1mpo; - run in interpreter
module2.py main.py output
module3.py

* As described, all modern interpreted language first compile to bytecode wich then is run in the
interpreter
¢ Couldn’t they be compiled to machine code instead? — Yes, they can: Use a just in time (JIT) compiler!
- V8 — javascript
— LLVM Compiler infrastructure — Python/NUMBA,
Julia (currently at 0.5)
— LuadJIT
- Java
— Smalltalk
* Drawback over compiled languages: compilation delay at every start, can be mediated by caching
* Potential advantage over compiled languages: tracing JIT, i.e. optimization at runtime
e Still early times, but watch closely. . .

JITting to the future ?

Compiled languages in Scientific Computing

¢ Fortran: FORmula TRANslator (1957)
— Fortran4: really dead
— Fortran77: large number of legacy libs: BLAS, LAPACK, ARPACK ...
— Fortran90, Fortran2003, Fortran 2008
* Catch up with features of C/C++ (structures,allocation,classes,inheritance, C/C++ library
calls)
* Lost momentum among new programmers
* Hard to integrate with C/C++
* In many aspects very well adapted to numerical computing
Well designed multidimensional arrays
¢ C: General purpose language
K&R C (1978) weak type checking
ANSI C (1989) strong type checking
Had structures and allocation early on
Numerical methods support via libraries
Fortran library calls possible
¢ C++: The powerful object oriented language
— Superset of C (in a first approximation)
- Classes, inheritance, overloading, templates (generic programming)
— C++11: Quantum leap: smart pointers, threads, lambdas, initializer lists in standard
- With great power comes the possibility of great failure. ..

*
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Summary
¢ Compiled languages important for high performance
¢ Fortran lost its momentum, but still important due to huge amount of legacy libs
* C++ highly expressive, ubiquitous, significant improvements in C++11
3. Introduction to C++
3.1. C++ basics
Evolution

¢ Essentially, C++ started as “C with classes”

¢ Current standard is C++11, C++14 and C++17 are evolving.
¢ Almost all of the C language is part of C++

e C standard library is part of C++ standard librar

* As most computer languages, C++ has variables, flow control, functions etc. which will be discussed
first

Printing stuff

Printing is not part of the language itself, but is performed via functions from libraries. As we need printing
very early in the examples, we show how to do it.

¢ [OStream library
— “Official” C++ output library
— Type safe, easy to extend
— Clumsy syntax for format control

#include <iostream>

std::cout << "Hello world" << std::endl;

¢ C Output library
— Supported by C++-11 standard
— No type safety, Hard to extend
— Short, relatively easy syntax for format control
— Same format specifications as in Python

#include <cstdio>

std: :printf ("Hello world\n");
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C++ : scalar data types

¢ Store character, integer and floating point values of various sizes

¢ Type sizes are the “usual ones” on 64bit systems

name printf | bytes | bits | Minimum value |

Maximum value

-128

0

-32768

0
-2147483648
0

he (hd) |
%e (hd)
%d |
%

d

%

8
8
16
16
32
32

char

unsigned char
short int
unsigned short int
int

unsigned int

127

255

32767
65535
2147483647
4294967295

%1d 72036854775808

|
|
|
long int |
unsigned long int %lu |
float |
double
long double
|

bool

-9
64
32
64
128
8

1.175494e-38
2.225074e-308
3.362103e-4932
[

he
he
Le
%d

=
=)

11 |
11 |
2| |
2 |
4 |
4 |
81 641
8 |
41 |
8 | |
6 | |
11 |

9 72036854775807
18446744073709551615
3.402823e38

1.
1.189731e4932

797693e308

1

* The standard only guarantees that sizeof (short
¢ E.g. on embedded systems sizes may be different
¢ Declaration and output (example)

#include <cstdio>

int i=3;
double x=15.0;
std: :printf ("i=/d, x=Ve\n",i,x);

* C++ has the ability to declare variables as constants:
const int i=15;

i=i+1; // attempt to modify value of const object leads to
// compiler error

¢ All variables are typed and must be declared

— Declared variables “live” in scopes defined by braces

{32

.) <= sizeof(...) <=sizeof(long ...)

Typed constant expressions

Scopes, Declaration, Initialization

— Good practice: initialize variables along with declaration
- “auto” is a great innovation in C++11 which is useful with complicated types which arise in

template programming

* type of lvalue (left hand side value) is detected from type of rvalue (value at the right hand

side)

int i=3;
double x=15.0;
auto y=33.0;

}

* Assignment operator

a=b;
c=(a=b);

¢ Arithmetic operators +, -, *, /, modulo (%)
¢ Beware of precedence which ( mostly) is like in math!
¢ Ifin doubt, use brackets, or look it up!

, /=

*= s %:

¢ Compund assignment: +=, -=,

x=x+a;
x+=a; // equivalent to =x+a

¢ Increment and decrement:
++,——

y=x+1;
y=x++; // equivalent to y=x; x=x+1;
y=++x; // equivalent to x=x+1; y=x;

Arithmetic operators
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Further operators

¢ Relational and comparison operators ==, !=, >, <, >=, <=
¢ Logical operators !, &&, ||
— short circuit evaluation:
* if a in a&&b is false, the expression is false and b is never evaluated
* if ain al | b is true, the expression is true and b is never evaluated
¢ Conditional ternary operator ?

c=(a<b)?a:b; // equivalent to the following
if (a<b) c=a; else c=b;

¢ Comma operator ,
c=(a,b); // evaluates to c=b
e Bitwise operators &, |, =, ~, <<, >>
* sizeof: memory space (in bytes) used by the object resp. type

n=sizeof (char); // evaluate

Functions

* Functions have to be declared and given names as other variables:
type name(typel pl, type2 p2,...);

¢ (...) holds parameter list
— each parameter has to be defined with its type

* type part of declaration describes type of return value
- void for returning nothing

double multiply(double x, double y);

¢ Functions are defined by attaching a scope to the declaration
— Values of parameters are copied into the scope

double multiply(double x, double y)
{
return x*y;

}

* Functions are called by statements invoking the function with a particular set of parameters

{

double s=3.0, t=9.0;

double result=multiply(s,t);

printf ("s=Y%e, t=ke, s*t= %e\n",s,t,result); // s and t keep their values
}

Functions: inlining

¢ Function calls sometimes are expensive compared to the task performed by the function
— Remember: save all register context and take instructions from different memory location until
return, restore register context after return
— The compiler may include the content of functions into the instruction stream instead of generat-
ing a call

inline double multiply(double x, double y)
{
return x*y;

}
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Flow control: Statements and conditional statements

¢ Statements are individual expressions like declarations or instructions or sequences of statements
enclosed in curly braces:

{ statementl; statement2; statement3; }

¢ Conditional execution: if

if (condition) statement;
if (condition) statement; else statement;

if (x>15)
{
printf ("error");

}

else

{

X++;
}

Equivalent but less safe:

if (x>15)
printf ("error");

else

X++;

Flow control: Simple loops
¢ While loop:
while (condition) statement;

i=0;
while (i<9)
{

printf ("i=Yd\n",i);

i++;
}

® Do-While loop: do statement while (condition);
Flow control: for loops

® This is the most important kind of loops for numerical methods.
for (initialization; condition; increase) statement;

1. initialization is executed. Generally, here, one declares a counter variable and sets it to some
initial value. This is executed a single time, at the beginning of the loop.

2. condition is checked. If it is true, the loop continues; otherwise, the loop ends, and statement is
skipped, going directly to step 5.

3. statement is executed. As usual, it can be either a single statement or a block enclosed in curly
braces { }

4. increase is executed, and the loop gets back to step 2.

5. The loop ends: execution continues at the next statement after it.

¢ All elements (initialization, condition, increase, statement) can be empty

for (int i=0;i<9;i++) printf("i=}d\n",i); // same as on previous slide
for(;;); // completely valid, runs forever
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Flow control: break, continue

¢ break statement: “premature” end of loop
for (int i=1;i<10;i++)
{

if (i*i>15) break;
}

* continue statement: jump to end of loop body
for (int i=1;i<10;i++)
{
if (i==5) continue;
else do_someting with_i;
}
Flow control: switch

switch (expression)
{
case constantl:
group-of-statements-1;
break;
case constant2:
group-of-statements-2;
break;

default:
default-group-of-statements
}
equivalent to

if (expression==constantl) {group-of-statements-1;}
else if (expression==constant2) {group-of-statements-2;}

;aiée {default-group-of-statements;}
Execution of switch statement can be faster than the hierarchy of if-then-else statement
The Preprocessor
¢ Before being sent to the compiler, the source code is sent through the preprocessor
e It is a legacy from C which is slowly being squeezed out of C++
* Preprocessor commands start with #
* Include contents of file file.h found on a default search path known to the compiler:
#include <file.h>
¢ Include contents of file file.h found on user defined search path:
#include "file.h"

* Define a piece of text (mostly used for constants in pre-C++ times)
(avoid, use const instead):

#define N 15

* Define preprocessor macro for inlining code
(avoid, use inline functions instead):

#define MAX(X,Y) (((x)>(y))?(x):(y))
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Conditional compilation and pragmas

¢ Conditional compilation of pieces of source code, mostly used to dispatch between system dependent
variant of code. Rarely necessary nowadays. . .

#ifdef MACOSX

statements to be compiled only for MACOSX

#else

statements for all other systems

#endif
There can be more complex logic involving constant expressions
¢ A pragma gives directions to the compiler concerning code generation:

#pragma omp parallel

Headers

If we want to use functions from the standard library we need to include a header file which contains
their declarations
— The #include statement invokes the C-Preprocessor and leads to the inclusion of the file
referenced therein into the actual source
- Include files with names in < > brackets are searched for in system dependent directories known
to the compiler

#include <iostream>

Namespaces

* Namespaces allow to prevent clashes between names of functions from different projects
— All functions from the standard library belong to the namespace std

namespace foo
{
void cool_function(void);

}

namespace bar
{
void cool_function(void);

}

{
using namespace bar;
foo::cool function()
cool_function() // equivalent to bar::cool_function()

}
Modules ?

® Currently, C++ has no well defined module system.

¢ A module system usually is emulated using the preprocessor and namespaces.
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Emulating modules
¢ File mymodule.h containing interface declarations

#ifndef MYMODULE_H // Handle multiple #include statements
#define MYMODULE_H
namespace mymodule
{
void my_function(int i, double x);

}
#endif

¢ File mymodule. cpp containing function definitions

#include "mymodule.h"
namespace mymodule

{
void my_function(int i, double x)
{
...body of function definition...
¥
}
#endif

¢ File using mymodule:

#include "mymodule.h"

mymodule: :my_function(3,15.0);

main
Now we are able to write a complete program in C++
e main()
is the function called by the system when running the program. Everything else needs to be called
from there.

Assume the follwing content of the file run42. cxx:

#include <cstdio>

int main()
{
int i=4,j=2;
int answer=10%i+j;
printf ("Hello world, the answer is %d!\n",answer);
return O;

}
Then the sequence of command line commands

$ g++ -o run42 rund2.cxx
$ ./run4d2

gives the right answer to (almost) anything.

3.2. C++ — the hard stuff



3.2 C++ —the hard stuff 19

Addresses and pointers

¢ Objects are stored in memory, in order to find them they have an address
¢ We can determine the address of an object by the & operator
— The result of this operation can be assigned to a variable called pointer
— “pointer to type x” is another type denoted by *x
* Given an address (pointer) object we can refer to the content using the * operator
int i=15; // i is an object
int *j= &i; // j is a pointer
int k=*j; // now, k=15

¢ The nullptr object can be assigned to a pointer in order to indicate that it points to “nothing”
int *p=nullptr;
Passing addresses to functions

¢ Instead of values, addresses can be passed to functions

void do_multiplication(double x, double y, double *result)
{
*result=x*y;

}

double x=5,y=9;
double result=0;
do_multiplication(x,y,&result) // result now contains 45

Arrays

* Focusing on numerical methods for PDEs results in work with finite dimensional vectors which are
represented as arrays - sequences of consecutively stored objects

¢ Stemming from C, in C++ array objects represent just the fixed amount of consecutive memory. No
size info or whatsoever

¢ No bounds check

¢ First array index is always 0

double x[9]; // uninitialized array of 9 elements
double y[3]={1,2,3}; // initialized array of 3 elements
double z[]={1,2,3}; // Same

double z[1{1,2,3}; //Same

* Accessing arrays
— [] is the array access operator in C++
— Each element of an array has an index

double a=x[3]; // undefined value because x was not initialized
double b=y[12]; // undefined value because out of bounds
y[12]=19; // may crash program ("segmentation fault"),
double c=z[0]; // Acces to first element in array, now c=1;

Arrays, pointers and pointer arithmetic

¢ Arrays are strongly linked to pointers
* Array object can be treated as pointer

double x[]1={1,2,3,4};

double b=*x; // now x=1;

double *y=x+2; // y is a pointer to third value in arrax

double c=xy; // now c=3

ptrdiff_t d=y-x; // We can also do differences between pointers

¢ Pointer arithmetic is valid only in memory regions belonging to the same array
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Arrays and functions

¢ Arrays are passed by passing the pointer referring to its first element
¢ As they contain no length information, we need to pass that as well

void func_on_arrayl(double[] x, int len);
void func_on_array2(double* x, int len); // same
void func_on_array3(const double[] x, int len);//same, but prevent changing x

double x[1={3,4,5};
int len=sizeof (x)/sizeof (x[0]);
func_on_arrayl(x,len);

¢ Be careful with array return

double * some_func(void)

{
double a[l={-1,-2,-3};
return a; // illegal as with the end of scope, the life time of a is over
// smart compilers at least warn

Arrays with length detected at runtime ?
¢ This one is illegal (not part of C++ standard), though often compilers accept it

void another_func(int n)

{
int b[n];
}
¢ Even in main() this will be illegal.
¢ How to work on problems where size information is obtained only during runtime, e.g. user input ?
Memory: stack
¢ pre-allocated memory where main () and all functions called from there put their data.

— Any time a function is called, the current position in the instruction stream is stored in the stack
as the return address, and the called function is allowed to work with the memory space after
that

Stack Pointer > top of stack
Locals of
DrawLine stack frame
F Point for
rame Pointer ———» f
Return Address DrawlLine void DrawLine(double x0, double yO, double x1, double y1)
subroutine {
Parameters for | R oo
DrawLine
void DrawSquare(double x0,double yO, double a)
Locals of {
DrawLine (x0,y0,x0+a,y0) ;
stack frame DrawSquare e g
for Return Address DrawLine (x0+a,y0+a,x0,y0+a) ;
DrawSquare , DrawLine (x0,y0+a,x0,y0) ;
subroutine Parameters for
DrawSquare
By R. S. Shaw, Public Domain, http. wikimedia. index.php?curid=1956587

Stack space is scarce
® Variables declared in {} blocks get placed on the stack
¢ All previous examples had their data on the stack, even large arrays
¢ Stack space should be considered scarce
¢ Stack size for a program is fixed, set by the system
e On UNIX, use ulimit -s to check/set stack size default
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Memory: heap

¢ Chunks from free system memory can be reserved — “allocated” — on demand in order to provide
memory space for objects
* The operator new reserves the memory and returns an address which can be assigned to a pointer
variable
* The operator delete (delete[] for arrays) releases this memory and makes it available for other
processes
¢ Compared to declarations on the stack, these operations are expensive
¢ Use cases:
— Problem sizes unknown at compile time
- Large amounts of data
— ...s0, yes, we will need this. ..

double *x= new double(5); // allocate space for a double, initialize it with 5
double *y=new double[5]; // allocate space of five doubles, uninitialized

x[3]=1; // Segmentation fault
y[31=1; // Perfect...

delete x; // Choose the right delete!
delete[] y; // Choose the right delete!

Multidimensional Arrays

¢ Multidimensional arrays are useful for storing matrices, tensors, arrays of coordinate vectors etc.
¢ It is easy to declare a multidimensional array on the stack when the size the array is known at compile
time
double x[5][6];

for (int i=0;i<5;i++)
for (int j=0;j<6;j++)
x[i] [j1=0;

* Determining array dimensions from function parameters may work with some compilers, but are not
backed by the standard

* One option to have 2D arrays with arbitrary, run-time defined dimensions is to allocate a an array of
pointers to double, and to use new to allocate each (!) row
... this leads to nowhere ...

Intermediate Summary

¢ This was mostly all (besides structs) of the C subset of C++
— Most “old” C libraries and code written in previous versions of C++ are mostly compatible to
modern C++
* Many “classical” programs use the (int size, double * data) style of passing data, especially in
numerics
UMFPACK, Pardiso direct solvers
PetsC library for distributed linear algebra
triangle, tetgen mesh generators

* On this level it is possible to call Fortran programs from C++
— BLAS vector operations
— LAPACK dense matrix linear algebra
— ARPACK eigenvalue computations
* Understanding these interfaces is the main reason to know about plain C pointers and arrays
* Modern C++ has easier to handle and safer ways to do these things, so they should be avoided as much
as possible in new programs
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Classes and members

¢ (Classes are data types which collect different kinds of data, and methods to work on them.
class class_name

{
private:
private_memberl;
private_member2;
public:
public_memberi;
public_member2;
g

¢ If not declared otherwise, all members are private
* struct is the same as class but by default all members are public

¢ Accessing members of a class object:
class_name Xx;
x.public_memberi=...

* Accessing members of a pointer to class object:
class_name *X;
(*x) .public_memberil=. ..
x->public_memberi=...

Example class

¢ Define a class vector which holds data and length information and thus is more comfortable than
plain arrays

class vector
{
private:
double *data;
public:
int size;
double get_value( int i) {return datal[il;};
void set_value( int i, double value); {datal[i]l=value;};

g

{
vector v;
v.data=new double(5); // would work if data would be public
v.size=5;
v.set_value(3,5);

b=v.get_value(3); // now, b=5
v.size=6; // size changed, but not the length of the data array...
// and who is responsible for delete[] at the end of scope 7

* Methods of a class know all its members
¢ It would be good to have a method which constructs the vector and another one which destroys it.
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Constructors and Destructors

class vector

{ private:
double *data=nullptr;
int size=0;

public:
int get_size(){ return size;};
double get_value( int i ) { return datalil; };
void set_value( int i, double value ) { datal[il=value; };
Vector( int new_size ) { data = new double[new_size];
size=new_size; 1};

~Vector() { delete [] data; };

15

{ vector v(5);
for (int i=0;i<5;i++) v.set_value(i,0.0);
v.set_value(3,5);
b=v.get_value(3); // now, b=5
v.size=6; // Size is now private and can not be set;
vector w(5);
for (int i=0;i<5;i++) w.set_value(i,v.get_value(i));
// Destructors automatically called at end of scope.

¢ Constructors are declared as classname(...)
¢ Destructors are declared as ~classname ()

Interlude: References

¢ (C style access to objects is direct or via pointers

¢ C++ adds another option - references

References essentially are alias names for already existing variables
Must always be initialized

Can be used in function parameters and in return values

No pointer arithmetics with them

¢ Declaration of reference

double a=10.0;
double &b=a;

b=15; // a=15 now as well
¢ Reference as function parameter: no copying of data!

void do_multiplication(double x, double y, double &result)
{
result=xx*y;

}

double x=5,y=9;
double result=0;
do_multiplication(x,y,result) // result now contains 45
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Vector class again

¢ We can define () and [] operators!

class vector

{
private:
double *data=nullptr;
int size=0;
public:
int get_size( return size);
double & operator() (int i) { return datal[il; };
double & operator[] (int i) { return datal[il; };
vector( int new_size) { data = new double[new_size];
size=new_size;}
~vector() { delete [] data;}
I8
{
vector v(5);
for (int i=0;i<5;i++) v[i]=0.0;
v[3]=5;
b=v[3]; // now, b=5
vector w(5);
for (int i=0;i<5;i++) w(i)=v(i);
}

Matrix class
* We can define (i, j) but not [i,j]

class matrix
{ private:
double *data=nullptr;
int size=0; int nrows=0;
int ncols=0;
public:
int get_nrows( return nrows);
int get_ncols( return ncols);
double & operator() (int i,int j) { return datali*nrow+j]);
matrix( int new_rows,new_cols)
{ nrows=new_rows; ncols=new_cols;
size=nrows*ncols;
data = new double[size];
i
~matrix() { delete [] data;}
g

{
matrix m(3,3);
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
m(i,j)=0.0;
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Inheritance

¢ (Classes in C++ can be extended, creating new classes which retain characteristics of the base class.
* The derived class inherits the members of the base class, on top of which it can add its own members.

class vector2d
{ private:
double *data;
int nrow, ncol;
int size;
public:
double & operator(int i, int j);
vector2d(int nrow, ncol);
~vector2d () ;
¥
class matrix: public vector2d
{ public:
apply(const vectorld & u, vectorld &v);
solve(vectorld &u, const vectorild &rhs);
}
All operations which can be performed with instances of vector2d can be performed with instances of
matrix as well

In addition, matrix has methods for linear system solution and matrix-vector multiplication
Generic programming: templates

Templates allow to write code where a data type is a parameter
We want do be able to have vectors of any basic data type.
We do not want to write new code for each type

template <typename T>
class vector

{
private:
T *data=nullptr;
int size=0;
public:
int get_size( return size);
T & operator[] (int i) { return datalil; };
vector( int new_size) { data = new T[new_size];
size = new_size;};
~vector() { delete [] data;};
g
{

}

vector<double> v(5);
vector<int> iv(3);

C++ template libray
The standard template library (STL) became part of the C++11 standard
Whenever you can, use the classes available from there
For one-dimensional data, std::vector is appropriate
For two-dimensional data, things become more complicated

— There is no reasonable matrix class
* gstd::vector< std::vector> is possible but has to allocate each matrix row and is inefficient
— it is hard to create a std::vector from already existing data
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Smart pointers

. with a little help from Timo Streckenbach from WIAS who introduced smart pointers into our simulation
code.

* Automatic book-keeping of pointers to objects in memory.

¢ Instead of the meory addres of an object aka. pointer, a structure is passed around by value which
holds the memory address and a pointer to a reference count object.

¢ It delegates the member access operator —> and the address resolution operator * to the pointer it
contains.

¢ Each assignment of a smart pointer increases this reference count.

¢ Each destructor invocation from a copy of the smart pointer structure decreases the reference count.
¢ If the reference count reaches zero, the memory is freed.

* std::shared_ptr is part of the C++11 standard

Smart pointer schematic

(this is one possibe way to implement it)

class C;
Stack Heap
* .
<1 C* p_obj

int * p_ref

* .
x2: _ C* P-oPj
int * p_ref
C* bj
x3:—————£:g¥L——

int * p_ref

std: :shared_ptr<C> x1= std::make_shared<C>();
std: :shared_ptr<C> x2= x1;
std: :shared_ptr<C> x3= x1;

Smart pointers vs. *-pointers
¢ When writing code using smart pointers, write

#include <memory>

class R;

std: :shared_ptr<R> ReturnObject0fClassR(void);
void PassObjectOfClassR(std::shared_ptr<R> pR);

{ auto pR=std::make_shared<R>();
PassObject0fClassR(pR)
// Smart pointer object is deleted at end of scope and frees memory

}

instead of

class R;
R* ReturnObject0fClassR(void);
void PassObject0fClassR(R* o) ;

{ R* pR=new R;
PassObject0fClassR(pR) ;
delete pR; // never forget this here!!!
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Smart pointer advantages vs. *-pointers
¢ “Forget” about memory deallocation

* Automatic book-keeping in situations when members of several different objects point to the same
allocated memory

* Proper reference counting when working together with other libraries

3.3. C++ — some code examples

C++ code using vectors, C-Style, with data on stack
File /net/wir/numcxx/examples/00-cxx-basics/01-c-style-stack.cxx

#include <cstdio>
void initialize(double *x, int n)

{
for (int i=0;i<n;i++) x[il= 1.0/(double) (1+n-i);
}
double sum_elements(double *x, int n)
{
double sum=0;
for (int i=0;i<n;i++) sum+=x[i];
return sum;
}
int main()
{
const int n=12345678;
double x[n];
initialize(x,n);
double s=sum_elements(x,n);
printf ("sum=Y%e\n",s) ;
}

¢ Large arrays may not fit on stack
* (C-Style arrays do not know their length

C++ code using vectors, C-Style, with data on heap
File /net/wir/numcxx/examples/00-cxx-basics/02-c-style-heap.cxx

#include <cstdio>
#include <cstdlib>
#include <new>
void initialize(double *x, int n)
{ for (int i=0;i<n;i++) x[i]= 1.0/(double) (1+n-i);
}
double sum_elements(double *x, int n)
{ double sum=0;
for (int i=0;i<n;i++) sum+=x[i];
return sum;
}
int main()
{ const int n=12345678;
try { x=new double[n]; // allocate memory for vector on heap }
catch (std::bad_alloc) { printf("error allocating x\n");
exit (EXIT_FAILURE); }
initialize(x,n);
double s=sum_elements(x,n);
printf ("sum=%e\n",s) ;
delete[] x;}

* Arrays passed in a similar way as in previous example
* Proper memory management is error prone
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C++ code using vectors, (mostly) modern C++-style

File /net/wir/numcxx/examples/00-cxx-basics/03-cxx-style-ref.cxx

#include <cstdio>

#include <vector>

void initialize(std::vector<double>& x)

{ for (int i=0;i<x.size();i++) x[i]l= 1.0/(double) (1+n-i);

}

double sum_elements(std::vector<double>& x)

{

double sum=0;
for (int i=0;i<x.size();i++)sum+=x[i];
return sum;}

int main()

{

File /net/wir/numcxx/examples/00-cxx-basics/05-cxx-style-sharedptr.cxx

const int n=12345678;
std: :vector<double> x(n); // Construct vector with n elements
// Object "lives" on stack, data on heap
initialize(x);
double s=sum_elements(x);
printf ("sum=%e\n",s);
// Object destructor automatically called at end of lifetime
// So data array is freed automatically

¢ Heap memory management controlled by object lifetime

C++ code using vectors, C++-style with smart pointers

#include <cstdio>
#include <vector>
#include <memory>
void initialize(std::vector<double> &x)

{

for (int i=0;i<x.size();i++) x[i]= 1.0/(double) (1+n-i);}

double sum_elements(std::vector<double> & x)

{

}

double sum=0;
for (int i=0;i<x.size();i++)sum+=x[i];
return sum;

int main()

{

const int n=12345678;

// call constructor and wrap pointer into smart pointer

auto x=std::make_shared<std::vector<double>>(n);

initialize(*x);

double s=sum_elements (*x);

printf ("sum=%e\n",s) ;

// smartpointer calls destructor if reference count reaches zero

¢ Heap memory management controlled by smart pointer lifetime

¢ If method or function does not store the object, pass by reference = API stays the same as for previous

case.
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4. Direct solution of linear systems of equations

4.1. Recapitulation from Numerical Analysis

Floating point representation

* Scientific notation of floating point numbers: e.g. x = 6.022-10%3
* Representation formula:

- BeN,B=2: base
- d; €N,0=d; < f: mantissa digits
- e€Z: exponent

* Representation on computer:

-1 )
x=+Y dif 7 p°
i=0

— t: mantissa length, e.g. t =53 for IEEE double
- L=<e=sU,eg —1022<e <1023 (10 bits) for IEEE double
- do # 0 = normalized numbers, unique representation

Floating point limits
e symmetry wrt. 0 because of sign bit

¢ smallest positive normalized number: dg=1,d; =0,i=1...¢—1

Xmin = ﬁL
¢ smallest positive denormalized number: d; =0,i =0...t—2,d;-1 =1

. —pl-tgpL

Xmin=P0"""P
* largest positive normalized number: d; =—-1,0...t -1

Xmax = P(1 - ﬁl_t)ﬁU

Machine precision

¢ Exact value x
¢ Approximation %

¢ Then: Ixx;xl < e is the best accuracy estimate we can get, where

- €= Bt (truncation)
- €=3p'"* (rounding)

* Also: ¢ is the smallest representable number such that 1+¢ > 1.
¢ Relative errors show up in partiular when

— subtracting two close numbers
- adding smaller numbers to larger ones
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Machine epsilon
¢ Smallest floating point number ¢ such that 1+ ¢ > 1 in floating point arithmetic

* In exact math it is true that from 1+ ¢ =1 it follows that 0+ ¢ =0 and vice versa. In floating point
computations this is not true

* Many of you used the right algorithm and used the first value or which 1+ ¢ =1 as the result. This is
half the desired quantity.

¢ Some did not divide start with 1.0 but by other numbers. E.g. 0.1 is not represented exactly in floating
point arithmetic

Set € =1.0;
* Recipe for calculation: V‘Vhleli i/g 8 €/2.0>1.0do
end
Normalized floating point number
* IEEE 754 32 bit floating point number —normally the same as C++£10at [{] |||, o |on ot calen| |4 ko duld i dalda il i i

* Storage layout for a normalized number (d¢ = 1)
- bit 0: sign, 0 -+, 1——

- bit 1...8: r = 8 exponent bits, value e +2"~1 — 1 = 127 is stored
= no need for sign bit in exponent

- bit 9...31: t =23 mantissa bits d1...de3

— dg =1 not stored = "hidden bit"

1 0_01111111_00000000000000000000000 e =0, stored 127

2 0_10000000_00000000000000000000000 e =1, stored 128
e Examples 0.5 0_01111110_00000000000000000000000 e =—1, stored 126

0.1 0_01111011_10011001100110011001101 infinite periodic

0 0_00000000_00000000000000000000000

* Numbers which are exactly represented in decimal system may not be exactly represented in binary
system.

How Additition 1+¢ works ?
¢ 1. Adjust exponent of number to be added:
— Until both exponents are equal, add one to exponent, shift mantissa to right by one bit
¢ 2. Add both numbers
¢ 3. Normalize result

We have at maximum ¢ bit shifts of normalized mantissa until mantissa becomes 0, so € =277,
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Data of IEEE 754 floating point representations

size t r €
float 32 | 23 8 | 1.1920928955078125e-07
double 64 | 53 | 11 | 2.2204460492503131e-16

long double | 128 | 63 | 15 | 1.0842021724855044e-19

¢ Floating point format not standardized by language but by IEEE comitee

¢ Implementation of long double varies, may even be the same as double, or may be significantly

slower

¢ Intended answer: sum in reverse order. Start with adding up many small values which would be
cancelled out if added to an already large sum value.

¢ Results for float:

n
10
100
1000

1000000
10000000

forward sum

.5497677326202392e+00
.6349840164184570e+00
.6439348459243774e+00
.6447253227233886e+00

.6447253227233886e+00
.6447253227233886e+00

forward sum error

.51664447784423828e-02
.95016098022460937e-03
.99331474304199218e-04
.08854675292968750e-04

.08854675292968750e-04
.08854675292968750e-04

reverse sum

.54976773262023925e+00
.63498389720916748e+00
.64393448829650878e+00

reverse sum error

.51664447784423828e-02
.95028018951416015e-03
.99689102172851562e-04

.01327896118164062e-05

.64 )578613e+00
.64493393898010253e+00

.19209289550781250e-06
.38418579101562500e-07

1 9 1 9
1 9 1 9
1 9 1 9
10000 1 2 1.64483404159545898e+00 1.00135803222656250e-04
100000 1.6447253227233886e+00 2.08854675292968750e-04 1.64492404460906982e+00 1
1 2 1 1
1 2 1 2
1 2 1 1

100000000 1.6447253227233886e+00 2.08854675292968750e-04 1.64493405818939208e+00 1.19209289550781250e-07

* No gain in accuracy for forward sum for n > 10000
¢ long double mostly not a good option
Matrix + Vector norms
® Vector norms: let x = (x;) € R*
- |lxll1 =X; =" |x;|: sum norm, /1-norm
- lxllg = \/Z’il:lxiz: Euclidean norm, /9-norm
- |1%lloo = max;-1._, |x;|: maximum norm, /-norm

* Matrix A =(a;;) eR" xR”
- Representation of linear operator «f : R* — R” defined by «f : x — y = Ax with

n
Yi= ) aijx;
J=1
— Induced matrix norm:

[|Ax]l,
xeR? x#0 ||x|]y
[|Ax]ly
= max T
xeR [lxlly=1 |||y

[1Ally =

Matrix norms

* ||Alls =max;=1._,X}_;la;j| maximum of column sums
* ||Alleo =max;-1 Z;?:l |a; ;| maximum of row sums

* [|All2 = v/ Amax With Apqy: largest eigenvalue of ATA.
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Matrix condition number and error propagation
Problem: solve Ax = b, where b is inexact.
A(x+Ax)=b+Ab.

Since Ax = b, we get AAx = Ab. From this,

{ Ax =A"1Ab }3{ LAl llx]] = 11bl]
Ax =b Ax]] < [IA7L][-]|AB]|

|[Ax]| [1Ab]|
<k(A)——
[l 1ol

where x(A) = ||A||- [|A~1|| is the condition number of A.
Approaches to linear system solution

Solve Ax=b
Direct methods:

* Deterministic

¢ Exact up to machine precision

¢ Expensive (in time and space)
Iterative methods:

* Only approximate

¢ Cheaper in space and (possibly) time

¢ Convergence not guaranteed

4.2. Dense matrix problems — direct solvers

Approaches to linear system solution
Let A: n x n matrix, b € R".
Solve Ax=b

¢ Direct methods:
- Exact
* up to machine precision
* condition number
- Expensive (in time and space)
* where does this matter ?
¢ Iterative methods:
— Only approximate
* with good convergence and proper accuracy control, results are not worse than for direct
methods
— May be cheaper in space and (possibly) time
— Convergence guarantee is problem dependent and can be tricky
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e Let f,g:V— R" be some functions, where V=Nor V=R.

We write

Complexity: "big O notation"

f(x)=0(g(x)) (x— o0)

if there exist a constant C > 0 and xo € V such that

Yx > xo,

¢ Often, one skips the part "(x — 00)"
¢ Examples:

— Addition of two vectors: O(n)

If () = Clg(x)l

- Matrix-vector multiplication (for matrix where all entries are assumed to be nonzero): O(n2)

Solve Ax = b by Cramer’s rule

a1l a1 aii-1 b1

asy bz
xX; =

anil bn

This takes O(n!) operations...

ali+1

¢ Essentially the only feasible direct solution method

* Solve Ax = b with square matrix A.

Really bad example of direct method

Q1n
Q2n
. |MAl @=1...n)

Ann

Gaussian elimination

¢ While formally, the algorithm is always the same, its implementation depends on

— data structure to store matrix

— possibility to ignore zero entries for matrices with many zeroes

- sorting of elements
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6
12
3

Step 1: equationy < equationg — 2equation;
equationg < equationg — %equationl

Step 2: equations — equations —3equation,

Solve upper triangular system

—4x3=-9
—4x9+2x3 =—6

6x1—2x9 +2x3 =2

-2 2
-8 6|x=
-13 3
-2 2
-4 2|x=
-12 2
-2 2
-4 2 |x=
-0 -4
-2 2
-4 2 |x=
0o -4
21
—dxo = —=
= —4x9 B
21

4

16

16
-6

18
>6x1=2+——-——=—
4

|

Gaussian elemination: pass 1

Gaussian elimination: pass 2

9

L. 2
Xg=—
2778
. 11
x1=—
1=
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Pass 1 expressed in matrix operation

6 -2 2 16 1
LiAx=|0 -4 2|x=|-6|=Lb, Li=|-2
0 -12 2 -27 -3
6 -2 2 16 1
L2L1Ax= 0 -4 2 |lx=|-6 =L2le, L2= 0
0 -0 -4 -9 0
1 00
e Let L=L7'L;'=|2 1 0|, U=LyL1A. Then A=LU
1
131
2

LU factorization

¢ Inplace operation. Diagonal elements of L are always 1, so no need to store them = work on storage

space for A and overwrite it.

Solve Ax =5
¢ Pass 1: factorize A = LU such that L,U are lower/upper triangular
* Pass 2: obtain x = U"'L ™15 by solution of lower/upper triangular systems
- 1. solve L¥=b
- 2. solve Ux =%

e We never calculate A~ as this would be more expensive

1

. . € 1)(x1) (1+e
Consider (1 1) (xz) = )
¢ Solution: (xl) = (1)

X9 1

e Machine arithmetic: Let €e << 1 such that 1+e¢=1.

¢ Equation system in machine arithmetic:
l-e+1-1=1+¢

1-1+1-1=2
o Still fulfilled!

LU factorization

Problem example

Problem example II: Gaussian elimination

® Ordinary elimination: equationy — equationg — % equation;

€ 1 x1) _[ 1+e
0 1-1)lxg) 212

¢ In exact arithmetic:

1
¢ In floating point arithmetic: 1+e=1, 1 —% =_1g 1__1. (6 1) (xl) =

>x9=1=2>€ex1+1=1=>x1=0
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Problem example III: Partial Pivoting

¢ Before elimination step, look at the element with largest absolute value in current column and put the
corresponding row “on top” as the “pivot”
¢ This prevents near zero divisions and increases stability

e P B e 5

1-1e
=]., x1=2—x2=1
1-¢

¢ Instead of A, factorize PA: PA = LU, where P is a permutation matrix which can be encoded using
an integer vector

¢ Independent of €:

X9 =

Gaussian elimination and LU factorization

¢ Full pivoting: in addition to row exchanges, perform column exchanges to ensure even larger pivots.
Seldomly used in practice.

* Gaussian elimination with partial pivoting is the “working horse” for direct solution methods

* Complexity of LU-Factorization: O(N?3), some theoretically better algorithms are known with e.g.
O( N2.736)

* Complexity of triangular solve: O(N?)
= overall complexity of linear system solution is O(N?)

Cholesky factorization
e A=LLT for symmetric, positive definite matrices
BLAS, LAPACK
* BLAS: Basic Linear Algebra Subprograms http://wuw.netlib.org/blas/
— Level 1 - vector-vector: y — ax+y
— Level 2 - matrix-vector: y — aAx + By
- Level 3 - matrix-matrix: C — aAB + C
* LAPACK: Linear Algebra PACKage http://www.netlib.org/lapack/
- Linear system solution, eigenvalue calculation etc.
- dgetrf: LU factorization
- dgetrs: LU solve

* Used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++ matrix libraries use these
routines. Unless there is special need, they should be used.

¢ Reference implementations in Fortran, but many more implementations available which carefully
work with cache lines etc.

Matrices from PDEs
¢ So far, we assumed that matrices are stored in a two-dimensional, n x n array of numbers
¢ This kind of matrices are also called dense matrices

* As we will see, matrices from PDEs (can) have a number of structural properties one can take
advantage of when storing a matrix and solving the linear system


http://www.netlib.org/blas/
http://www.netlib.org/lapack/

4.2 Dense matrix problems — direct solvers 37

1D heat conduction
* vr,vR: ambient temperatures, a: heat transfer coefficient
¢ Second order boundary value problem in Q =[0,1]:
—u"(x) = f(x) inQ

—u'(0)+ a(u(0)—vr)=0
(D +aw@)-vg)=0

Let h = %, x; =x0+ (@ —1h i=1...n be discretization points, let u; approximations for u(x;) and

fi=rf(x)

Finite difference approximation:

1
—u'(0)+ a(u(0)-vy) = E(uo —u1)+alug—vr)
1
—u" (x;) = flx;) = ﬁ(lti.;.l —2u;—u;_1)—f; (i=2...n-1)

')+ a(u(l)—vR) = %(un —up-1)+alu, —vgR)

1D heat conduction: discretization matrix
* equations 2...n — 1 multiplied by 2

¢ only nonzero entries written

1 1
“ +1E Fa 1 1 oL
ThoR us hf2
5 A TR us hfs
-3 2 -1 UN-2 hfn-2
-+ £ -1 |lun-1| |hfna
h h1 1 h
“%n 7 +a UN QUR
¢ Each row contains < 3 elements
e Only 3n -2 of n? elements are non-zero
General tridiagonal matrix
bi ui f1
az bz c2 ug fa
as bs ug|=|7s
Cn-1
an, by Un fn

* To store matrix, it is sufficient to store only nonzero elements in three one-dimensional arrays for
ai,b;,c;, respectively
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Gaussian elimination for tridiagonal systems
Gaussian elimination using arrays a, b, c as matrix storage ?

From what we have seen, this question arises in a quite natural way, and historically, the answer has been
given several times

e TDMA (tridiagonal matrix algorithm)

¢ “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))

* “Progonka method” (from Russian "run through"; Gelfand, Lokutsievski, 1952, published 1960)
Progonka: derivation

® qiuj_1+bju;j+ciuip1=fi (G=1...n);a1=0,cy=0

e Fori=1...n-1, assume there are coefficients a;,3; such that u; = a;1u;+1 + Bi+1.

* Then, we can express u;—1 and u; via u;;1:
(@jaiaiv1+biaiv1+euiri+a;aifivi+aifi+bifiv1—fi =0

* This is true independently of u if

a;a;a+1+biais1+c; =0
a;a;fiv1+a;Bi+bifiy1—fi =0

e orfori=1...n-1:

. —_ Ci
i+l - aiai+bi
B _ fi—aiBi
i+1 - aiai+bi
Progonka: realization
¢ Forward sweep:
[4
ay = ——i
By = fi
2 T
fori=2...n-1
. -G
@i+1 - aiai+bi
Bi _ fi—aiBi
i+1 - aiai+bi
* Backward sweep:
u = fn—anPn
" G +by

forn-1...1:

Ui=a;j1Uit1+Pis1
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Progonka: properties

¢ n unknowns, one forward sweep, one backward sweep
= O(n) operations vs. O(n®) for algorithm using full matrix

* No pivoting = stability issues

— Stability for diagonally dominant matrices (|b;| > |a;|+|c;|)
— Stability for symmetric positive definite matrices

2D finite difference grid

¢ Each discretization point has not more then 4 neighbours

* Matrix can be stored in five diagonals,
LU factorization not anymore = "fill-in"

¢ Certain iterative methods can take advantage of the regular and hierachical structure (multigrid) and
are able to solve system in O(n) operations

¢ Another possibility: fast Fourier transform with O(nlogn) operations

Sparse matrices
* Tridiagonal and five-diagonal matrices can be seen as special cases of sparse matrices

¢ Generally they occur in finite element, finite difference and finite volume discretizations of PDEs on
structured and unstructured grids

* Definition: Regardless of number of unknowns n, the number of non-zero entries per row remains
limited by n,

¢ If we find a scheme which allows to store only the non-zero matrix entries, we would need nn, = O(n)
storage locations instead of n2

* The same would be true for the matrix-vector multiplication if we program it in such a way that we
use every nonzero element just once: matrix-vector multiplication would use O(n) instead of O(n2)
operations

Sparse matrix questions
* What is a good storage format for sparse matrices?

¢ Is there a way to implement Gaussian elimination for general sparse matrices which allows for linear
system solution with O(n) operation ?

¢ Is there a way to implement Gaussian elimination with pivoting for general sparse matrices which
allows for linear system solution with O(n) operations?

¢ Is there any algorithm for sparse linear system solution with O(n) operations?

4.3. Sparse matrix problems — direct solvers
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Coordinate (triplet) format

¢ Store all nonzero elements along with their row and column indices
* One real, two integer arrays, length = nnz= number of nonzero elements

1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

A=16. 0. 7. 8 9.

0. 0. 10. 11. O.

0. 0. 0. 0. 12
AA | 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.
JR 5 3 3 2 1 1 4 2 3 2 3 4
IC 55 3 4 1 4 4 1 1 2 4 3

Y.Saad, Iterative Methods,
p.92

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

¢ real array AA, length nnz, containing all nonzero elements row by row

* integer array JA, length nnz, containing the column indices of the elements of AA

* integer array IA, length n+1, containing the start indizes of each row in the arrays IA and JA and
IA(n+1)=nnz+1

1. 0. 0. 2. 0.
s 4 o s o) AA L2 3 4 5 6 7 8 9 1011 12|
A=160. 7 8 9| JA 1 4 1 2 4 1 3 4 5 3 4 5|
0. 0. 10. 11. O.
0. 0. 0. 0. 12) TA 1 3 6 10 12 13
Y.Saad,
Iterative Methods, p.93
¢ Used in most sparse matrix solver packages
The big schism
¢ Should array indices count from zero or from one ?
¢ Fortran, Matlab, Julia count from one
* C/C++, python count from zero
¢ It matters when passing index arrays to sparse matrix packages
CRS again
1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
A=16. 0. 7. 8 9.
0. 0. 10. 11. O.
0. 0. 0. 0. 12.
AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 030130234234
IA: 024 0 11 12

¢ some package APIs provide the possibility to specify array offset
¢ index shift is not very expensive compared to the rest of the work
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Sparse direct solvers

¢ Sparse direct solvers implement Gaussian elimination with different pivoting strategies

- UMFPACK
Pardiso (omp + MPI parallel)
SuperLU
MUMPS (MPI parallel)

- Pastix
* Quite efficient for 1D/2D problems
¢ They suffer from fill-in:

— Memory usage

- Operation count

Sparse direct solvers: influence of reordering

* Sparsity patterns for original matrix with three different orderings of unknowns unknowns:

Original Reverse Cuthill-McKee Min Degree
P 0 Q ] rJ o
‘s [ ’ - *
ol Q L : ot
‘nﬁ.' 201 Nk, 200 ,,4 ¢
® L .'o J’ -.o.
' - °.o '}' “» o
. 40 * 40 7 30
N e
— 60 60 (R
1} 50 0 50
nz = 180 nz = 180 nz = 180

https:/de.mathworks.com

* Sparsity patterns for corresponding LU factorizations unknowns:

Original Min Degree

Reverse Cuthill-McKee
0 0

20 20
40 40
60 60 B
0 50
nz = 1022 nz = 968

https:/de.mathworks.com
Sparse direct solvers: solution steps (Saad Ch. 3.6)

1. Pre-ordering
* Decrease amount of non-zero elements generated by fill-in by re-ordering of the matrix
* Several, graph theory based heuristic algorithms exist
2. Symbolic factorization
e If pivoting is ignored, the indices of the non-zero elements are calculated and stored
* Most expensive step wrt. computation time
3. Numerical factorization
¢ Calculation of the numerical values of the nonzero entries
* Not very expensive, once the symbolic factors are available
4. Upper/lower triangular system solution
¢ Fairly quick in comparison to the other steps

* Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity
structure remains unchanged, e.g. time dependent problems on fixed computational grids

¢ With pivoting, steps 2 and 3 have to be performed together

¢ Instead of pivoting, iterative refinement may be used in order to maintain accuracy of the solution
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Sparse direct solvers: Complexity
¢ Complexity estimates depend on storage scheme, reordering etc.
* Sparse matrix - vector multiplication has complexity O(N)

 Some estimates can be given for from graph theory for discretizations of heat eqauation with N = n¢
unknowns on close to cubic grids in space dimension d

- sparse LU factorization:

d work storage
1 OW)|0(n) O(IN)| O(n)
2 OWN3)|0(m3) OWIlogN)|O(n2logn)
3 OW?)|0(nb) O(N3)|0(n%)
- triangular solve: work dominated by storage complexity
d work
1 O(N)|0O(n)

2 O(NlogN)|O(n2logn)
3 ON#)|0(n)

Source: J. Poulson, PhD thesis,http://hdl.handle.net/2152/ETD-UT-2012- 12-6622
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5. Iterative solution of linear systems of equations

5.1. Definition and convergence criteria

Elements of iterative methods (Saad Ch.4)
Let V =R" be equipped with the inner product (-,-), let A be an n x n nonsingular matrix.
Solve Au = b iteratively

* Preconditioner: a matrix M = A “approximating” the matrix A but with the property that the system
Mv = f is easy to solve

* Jteration scheme: algorithmic sequence using M and A which updates the solution step by step
Simple iteration with preconditioning

Idea: Ai=b6 >

a=0-M1Aa-b)

= iterative scheme

ups1=up—M Y(Aup-b) (=0,1...)

. Choose initial value ug, tolerance ¢, set £ =0
. Calculate residuum r, = Aup—b
. Test convergence: if ||r;|| < € set u = uy, finish

. Calculate update: solve Mvy =ry,

Ot B W N =

. Update solution: uz.1 =up —vp, set k =i+ 1, repeat with step 2.
The Jacobi method

e Let A=D —E —F, where D: main diagonal, E: negative lower triangular part F: negative upper
triangular part
¢ Preconditioner: M =D, where D is the main diagonal of A =

1 .

uk+1,i=uk,i——( Z aijuk,j—bi) (i=1...n)
aii Jj=1l.n

¢ Equivalent to the succesive (row by row) solution of

a;ilp+1,;+ Z aijuk,jzbi (G=1...n)
Jj=1l..n,j#i

¢ Already calculated results not taken into account
¢ Alternative formulation with A =M - N:

ups1 =D YE+F)up+D7 b
=M Nu,+M b

* Variable ordering does not matter
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The Gauss-Seidel method

¢ Solve for main diagonal element row by row
¢ Take already calculated results into account

aiiuk+1,i+Zaijuk+1,j+2aijuk,j:bi (i=1...n)
J<i J>i

(D—E)uk+1—Fuk =b

* May be it is faster
¢ Variable order probably matters
* Preconditioners: forward M =D — E, backward: M =D - F
¢ Splitting formulation: A =M - N
forward: N =F, backward: M = E
* Forward case:

Up1=D-E) 'Fu,+(D-E)'b
=M 'Nu,+M b

SOR and SSOR
* SOR: Successive overrelaxation: solve wA = wB and use splitting
wA =D -wE)-(wF +(1-wD))
1
M=—(D -wE)
)
leading to
(D -wE)upq =(F +(1-wD))up +wb
* SSOR: Symmetric successive overrelaxation
D —wE)uk% =(wF +(1—-wD))up +wbd
D -wF)up1=(E+(1- wD))ukJr% +wb
* Preconditioner:
=——(D-wE)D"YD -wF
5 —y(D~wED (D ~F)
* Gauss-Seidel and symmetric Gauss-Seidel are special cases for v = 1.
Block methods

¢ Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a partition of the
system matrix into larger blocks,

¢ The blocks on the diagonal should be square matrices, and invertible

¢ Interesting variant for systems of partial differential equations, where multiple species interact with
each other
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¢ Let @ be the solution of Au =b.

* Let e, =u; — 1 be the error of the k-th iteration step

resulting in

Upy1 = Up —M_l(Auk -b)
=(I-M A, +M b
Ups1—O=up—0-M Y(Auy - Ad)
=(I-M"A)up-2)
=(I-M A (o -0)

ep1=T-M1A)e,

So when does (I - M~1A)* converge to zero for & — oo ?

Convergence

e 1;(i=1...p): eigenvalues of A
* 0(A)={A1...1,}: spectrum of A
* u;: algebraic multiplicity of A;:

Jordan canonical form of a matrix A

multiplicity as zero of the characteristic polynomial det(A — AI)
* y; geometric multiplicity of A;: dimension of Ker(A — AI)
e /;: index of the eigenvalue: the smallest integer for which Ker(A — AI)'i*1 = Ker(A — AT\

*lisu

Theorem (Saad, Th. 1.8) Matrix A can be transformed to a block diagonal matrix consisting of p diagonal
blocks, each associated with a distinct eigenvalue A;.

¢ Each of these diagonal blocks has itself a block diagonal structure consisting of y; Jordan blocks
¢ Each of the Jordan blocks is an upper bidiagonal matrix of size not exceeding /; with A; on the diagonal

and 1 on the first upper diagonal.

Jordan canonical form of a matrix I

J1
_1 _ _ J2
X "AX =J=
Jp
Ji1
7 Ji2
i =
Ji,Yi
A1
A1
Jip=
1
Ai

Each J; 1 is of size /; and corresponds to a different eigenvector of A.
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Spectral radius and convergence

Definition The spectral radius p(A) is the largest absolute value of any eigenvalue of A: p(A) =
maxjeq(A) Al

Theorem (Saad, Th. 1.10) lim AF =0 pAa)<1.
—00
Proof, =: Let u; be a unit eigenvector associated with an eigenvalue 1;. Then

Au;=Aju;
A2ui = /1,-Aiui = )Lzui

Akui =ﬂ,kui
therefore IIAkuillz =A%

and lim I)Lkl =0
k—oo

so we must have p(4) <1

Spectral radius and convergence I1

Proof, <: Jordan form X 'AX =J. Then X 1A*X = J*.
Sufficient to regard Jordan block J; = A;I + E; where |1;| <1 and Eii =0.
Let £ =1;. Then

li1 L.
JE=Y (k.)/lk—fE{
j=0

~

USEA . .
[FALEDS (J) A B
j=0

One has (];) = ﬁ = Z{:o i] ’;—: is a polynomial of degree j in &
where the Stirling numbers of the first kind are given by

0 j 0 +1 [ '

(o] =1 [4]=[5]=0. [7]=sli]+[ 4]

Thus, (lJe) [A*~7 — 0 (k — 00) as exponential decay beats polynomial growth a.

Corollary from proof

Theorem (Saad, Th. 1.12)

. B L
khm [JA%]|% = p(A)
Od

Back to iterative methods

Sufficient condition for convergence: p(I - M~ 1A)< 1.
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Convergence rate

Assume A with |A| = p(I — M~1A) < 1 is the largest eigenvalue and has a single Jordan block of size I. Then
the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible
power in A which due to E! =0 is

Ak—l+1(ll_"/1)El—1

NI =M A (uo—0)l| =0 (Mk’”ll (l k 1))

and the “worst case” convergence factor p equals the spectral radius:

1

. ||(I—M1A)k(uo—ﬁ)||)k

p = lim [max —
k—oo\ uo [luwg — 4l

. —1 Ak L
= lim [|[(I -M A)"||*
k—o0

=p(I-M1A)

Depending on u, the rate may be faster, though
Richardson iteration, sufficient criterion for convergence
Assume A has positive real eigenvalues 0 < Ap,in < Ai < Ajax, €.8. A symmetric, positive definite (spd),
e Leta>0,M=1I=>1-M1A=1-aA

¢ Then for the eigenvalues y; of I — aA one has:
1-almax < pi =1-almin
and y; <1 due to A, >0

e Wealsoneed1-ald,>-1=2>0<a< ﬁ
Theorem. The Richardson iteration converges for any a with 0 < a < ﬁ

The convergence rate is p = max(|1 — @d;qxl, |1 — aAminl).
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Richardson iteration, choice of optimal parameter
¢ We know that

+(1=Amina) > +(1 = Ao @)

¢ Therefore, in reality we have p = max((1 — @d;uqz), —(1 — adimin)).
® The first curve is monotonically decreasing, the second one increases, so the minimum must be at the
intersection

1-almax =—-1+alnpin
2 = a(Amax + Amin)

Theorem. The optimal parameter is a,p; = —2_
. . Amin+Amax
For this parameter, the convergence factor is

_ Amax = Amin _ k-1
Popt = 1

max + Amin  K+1

where x = «x(A) izz’f is the spectral condition number of A.

a

Spectral equivalence
Theorem. M, A spd. Assume the spectral equivalence estimate

0<ymin(Mu,u) <(Au,u) < Ymex(Mu,u)
Then for the eigenvalues A; of M~1A we have

Ymin = Amin = /11' = Amax = Ymax
and k(M ~1A) < Lmex
Ymm

Proof. Let the inner product (:,-)3s be defined via (u,v)yr = (Mu,v). In this inner product, C = MA is
self-adjoint:

(Cu,v)yr = MM Au,v)=(Au,v)= (M Mu,Av)=(Mu,M 1Av)
=(w,M 1Ay = w,Cv)y

Minimum and maximum eigenvalues can be obtained as Ritz values in the (-,-)3s scalar product

1 . (Cu,u)y . (Au,u)>
in = IMNIN ——— = Mmin = I
0 (u,u)y u#0 (Mu,u) Yimin

A (Cu,u)y (Au,u) -
=—maxX —— =max =
maxr S e o (Mu,u) M
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Matrix preconditioned Richardson iteration
M, A spd.

* Scaled Richardson iteration with preconditoner M

Ups1=aM YAup-b)

* Spectral equivalence estimate

0 <Ymin(Mu,u) < (Au,u) < Ymer(Mu,u)

® = Ymin =i < Ymax

2

¢ = 1 -4
optimal parameter a ———

k(M 14)-1
x(M-TA)+1

¢ This is one possible way for convergence analysis which at once gives convergence rates

¢ Convergence rate with optimal parameter: p <

* But... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

¢ Regard the n x n 1D heat conduction matrix with A = ﬁ and a = % (easier to analyze).

2 _1
_hl zh _1
h _h 4 gh 1
h h h
A= . .. )
-1 2 _1
h _h 4 2h 1
h _h 'y 2h
h h
¢ Eigenvalues (tri-diagonal Toeplitz matrix):
2 %4 .
Ai=—|1+cos (i=1...n)
h n+1
Source: A. Bottcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005
¢ Express them in A: n+1=%+2= 1+h—2h =
2 ithr .
Ai=—|1+cos (i=1...n)
h 1+2h
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Richardson for 1D heat conduction: spectral bounds
e Fori=1...n,the argument of cos is in (0, )
* cos is monotonically decreasing in (0,7), so we get Ap,q, for i =1 and A, fori=n= 1;;—}‘

e Therefore:

72h2
9
( 2(1+2h)2)

o= (1 eos e 55 )~ ()
min = cosm 1 \aar2n)

Here, we used the Taylor expansion
62
cos(®)=1-— +0(6Y (-0)
62
cos(r—0)= -1+ — + oY B-0)

1+h _ 142h h _1__h
and 1597 = 1395 ~ T30k = 1~ 2ok

Richardson for 1D heat conduction: Jacobi

* The Jacobi preconditioner just multiplies by %, therefore for M~1A:

A s n2h2
marTE T 9(1+ 2h)2
A ﬂ2h2
T 91+ 2h)2
* Optimal parameter: a = W =~1(h—0)

¢ Good news: this is independent of A resp. n
* No need for spectral estimate in order to work with optimal parameter
¢ Is this true beyond this special case ?
Richardson for 1D heat conduction: Convergence factor

¢ Condition number + spectral radius

_ 4(1+2h)%
x(M IA)ZK(A):W—
k-1 n2h?
I-M'A)= =1-
ol o | 2(1+2h)2

e Badnews: p—1 (Ah—0)

¢ Typical situation with second order PDEs:

k(A)=0h72) (h—0)
pI-DTA)=1-0(h?) (h—0)
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Iterative solver complexity I

¢ Solve linear system iteratively until ||ep|| = ||( — M‘lA)keOII <e

pleg<e
klnp <lne—-Iney

kzkpz{w-‘

Inp

¢ Assume p < pg <1 independent of 2 resp. N, A sparse and solution of Mv =r has complexity O(V).
= Number of iteration steps %k, independent of N
= Overall complexity O(N).

Iterative solver complexity II

e Assume p=1-h% = Inp=~—-h°
* k=0(h™)
¢ d: space dimension, then A = N4=k= O(Ng)
¢ Assume O(N) complexity of one iteration step

- Overall complexity OV “2°)
* Jacobi: § =2, something better with at least 6 =1?

dim p=1-0M2% p=1-0(h) LU fact. LU solve

1 O(N?®) O(N?) O(N) O(N)
2 O(N?) O(N3) O(N3) O(NlogN)
3 O(N?) O(N?) O(N?)  OW?)

¢ In 1D, iteration makes not much sense
¢ In 2D, we can hope for parity

¢ In 3D, beat sparse matrix solvers with p=1-0(h) ?
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Operations

Complexity scaling for 1D problems

Solver complexity: scaling with problem size

101 101 Complexity scaling for 2D problems
— p=1-0(n*)
16 | 16 ||
10 W — p=1-0()
10" el — P< <1
e o LU fact
1012 1012 | LU solve
10 g
s
10° g
o
10° - vox
aereerrerers — p=1-0(h2) [**
100 17 — p=1-0(h)
— p<<1
10% | e e LUfact 10° |
LU solve
10° L 1 T L 10° H H H H
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
N
101 Complexity scaling for 3D problems
Wl p=1-0(h*)
07 H —  p=1-0(h) 1
pou || — p<<1 1
e o LU fact
102 | LU solve
0 ..-0-.--ooc--oooo-o..o-0'0
5100 o puentt
®
g 100
o
6
10° |
o //, , |
10° J
10°

H H H H
0 200000 400000 600000 800000 1000000
N

Scaling with problem size.
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Solver complexity: scaling with accuracy

Complexity scaling for 1D problems Complexity scaling for 2D problems

102 — p=1-0(1%) 102 ; — p=1-0(h%)
107 — p=1-0(h) 100 | ‘ — p=1-0(h)
— p<<1 — p<<1
10*° e o LUfact 10%° b ; e o LUfact
10 | LU solve 101 LU solve

Operations
=
Operations
-

10° H H i
10* 107 10° 10" 10°

p=1-0(1*) ||
p=1-0(h)
p<<1

LU fact
LU solve

Operations

¢ Accuracy of numerial solutions is proportional to some power of A.
* Amount of operations for to reach a given accuracy.

What could be done ?
* Find a better preconditioner with x(M~1A) = O(A 1) or independent of ~

* Find a better iterative scheme:
Assume e.g. p = ‘/E: Let x = X2 — 1 where X = W =0(h.

NG
vX2-1-1
p=l+-——""-_1
vVX2-1+1
VI VETT
vVX2-1+1
1
P
vVX2-1+1
1
-1 -
X(\/l—}%+%)
=1-0(h)

¢ Here, we would have 6 = 1. Together with a good preconditioner ...

5.2. Iterative methods for diagonally dominant and M-Matrices
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Eigenvalue analysis for more general matrices

¢ For 1D heat conduction we used a very special regular structure of the matrix which allowed exact
eigenvalue calculations

* Generalizations to tensor product is possible

* Generalization to varying coefficients, unstructured grids ...
= what can be done for general matrices ?

The Gershgorin Circle Theorem (Semyon Gershgorin,1931)
(everywhere, we assume n = 2)

Theorem (Varga, Th. 1.11) Let A be an n x n (real or complex) matrix. Let

If A is an eigenvalue of A then there exists r, 1 <r < n such that
A—arl=A;

Proof Assume A is eigenvalue, x a corresponding eigenvector, normalized such that max;-1_, |x;| = |x,| = 1.
From Ax = Ax it follows that

A —ajij)x; = Z aijx;

j=1l.n
J#i
|A_arr|:| Z arjxj|5 Z |arJ||-7Cj|S Z |arj|:Ar
Jj=1l..n Jj=1l..n Jj=l.n
J#r J#r J#r

Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by the Gershgorin circles

Ae.U {ueV:|u—a;;l< A}

i=1..n
Corollary:
n
p(A) < max ) laijl = 1Al
L:L..nj:l
n
p(A) < max ) la;;l=1AllL
J=l.n;3
Proof

n
lu—ail<A; = |pl<Aj+lagl=) lagl
=1

Furthermore, 0(A) = g(AT). a
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Gershgorin circles: example

19 18 34
A=|04 18 04|,141=1,19=215=3,A1=5.2,A9=0.8,13=0.15
0.05 0.1 2.3

v OB

NN

Gershgorin circles: heat example I

2 _1
RO LY
h _hl gh 1
h h h
1 2z _1
h _hl Zh 1
h _hl 2h
h h
0 3
1 oo 1
2 2
1 o9 1
2 2
B=(I-D'A)=| .. .. . o
2 0 3
1 o9 1
2 2
1 0
2

5 i=Ln .
We have b;; =0, A; =<2~ = estimate |1;| <1
1 i=2...n-1
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Gershgorin circles: heat example I1

-1 -0.8 -0.6 -0.4 —-0.2 02 04 06 08 Re
n=11, h=0.1
ithn
A; = cos ) = n)
' 1+2h

Reducible and irreducible matrices
Definition A is reducible if there exists a permutation matrix P such that

PAPT:(AJI Au)

0 Aogo

A is irreducible if it is not reducible.
Directed matrix graph:

* Nodes: & ={N;}i=1.n

¢ Directed edges: & = {mlakl # 0}

Theorem (Varga, Th. 1.17): A is irreducible & the matrix graph is connected, i.e. for each ordered pair
(N;i,N;) there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of nonzero matrix entries a;x,,ar, £y, ---,0k, -
O
Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue A is a boundary point of the
union of all the disks

)Lea. U {ueC:lu—ail = A}

i=1l..n

Then, all n Gershgorin circles pass through A, i.e. fori=1...n,

A —ai;l=A;



5.2 Iterative methods for diagonally dominant and M-Matrices 57

Taussky theorem proof

Proof Assume A is eigenvalue, x a corresponding eigenvector, normalized such that max;_1_, |x;| = |x,| = 1.
From Ax = Ax it follows that

A—ar| < Z |ar‘]||x‘/|S Z |arj|=Ar (%)
Jj=l..n Jj=1l..n
J#r J#r

Boundary point = |A—a,.| = A,
= For all I #r with a, , #0, |x,| = 1.
Due to irreducibility there is at least one such p. For this p, equation (*) is valid (with p in place of r) =
[A=appl=Ap
Due to irreducibility, this is true for all p=1...n. a
Consequences for heat example from Taussky
B=I-D7'A
3 i=1n .
We had b;; =0, A; = ) = estimate |A;| <1
1 i=2...n-1

Assume |1;| = 1. Then A; lies on the boundary of the union of the Gershgorin circles. But then it must lie on
the boundary of both circles with radius % and 1 around 0.

Contradiction = |1;] <1, p(B) < 1!
Diagonally dominant matrices
Definition
* A is diagonally dominant if

@ fori=1...n,la;l= Y lagl
j=1l.n
J#i
e A is strictly diagonally dominant (sdd) if

@ fori=1...n,lail> )Y lagl
Jj=1l..n
J#i
* A isirreducibly diagonally dominant (idd) if
(i) A isirreducible

(i) A is diagonally dominant —
fori=1...n,la;l= Z lajl

j=l.n
J#i
(iii) for atleastoner,l1<r<n, |a,|> Z lar;l
j=l.n
Jj#r

A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or irreducibly diagonally dominant.
Then A is nonsingular.

If in addition, a;; >0 for i = 1...n, then all real parts of the eigenvalues of A are positive:

ReA; >0, i=1...n
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A very practical nonsingularity criterion, proof
Proof:

¢ Assume A sdd. Then the union of the Gershgorin disks does not contain 0 and A = 0 cannot be an
eigenvalue.

As for the real parts, the union of the disks is

U meC:lu—ail<Ay

i=l.n
and Rep must be larger than zero if u should be contained.

¢ Assume A idd. Then, if 0 is an eigenvalue, it sits on the boundary of one of the Gershgorin disks. By
the Taussky theorem, we have |a;;| = A; for all i = 1...n. This is a contradiction as by definition there
is at least one i such that |a;;| > A;

Assume a;; >0, real. All real parts of the eigenvalues must be = 0. Therefore, if a real part is 0, it lies
on the boundary of one disk. So by Taussky it must be contained at the same time in the boundary of
all the disks and the imaginary axis. This contradicts the fact that there is at least one disk which
does not touch the imaginary axis.

O

Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with positive diagonal entries, it is
positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they must be positive, so A is
positive definite.

a

Heat conduction matrix

ath -}
_1r oz 1
h _hl gh 1
h h h
A: . ..‘ ..‘ ...
12 1
h _hl 2h 1
h h h
1 1
" pta

* Aisidd = A is nonsingular
¢ diagA is positive real = eigenvalues of A have positive real parts

* A isreal, symmetric = A is positive definite
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Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is

* positive (x > 0) if all entries of x are positive
* nonnegative (x = 0) if all entries of x are nonnegative

Definition: A real n x n matrix A is

¢ positive (A > 0) if all entries of A are positive
* nonnegative (A = 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A =0 be an irreducible n x n matrix. Then

(1) A has a positive real eigenvalue equal to its spectral radius p(A).
(ii) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.
(iv) p(A)is a simple eigenvalue of A.

Proof: See Varga. O
Perron-Frobenius for general nonnegative matrices

Each n x n matrix can be brought to the normal form

Ri1 Ri2 ... Rinm
PAPT 0 Ros ... Rop
0 0 ... Rum

where for j =1...m, either R;; irreducible or R ;; = (0).
Theorem(Varga, Th. 2.20) Let A =0 be an n x n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius p(A). This eigenvalue is positive unless A
is reducible and its normal form is strictly upper triangular
(ii) To p(A) there corresponds a nonzero eigenvector x = 0.
(iii)) p(A) does not decrease when any entry of A increases.

m

Proof: See Varga; 0(A) = | ] 0(R}), apply irreducible Perron-Frobenius to R ;. O

J=1
Theorem on Jacobi matrix

Theorem: Let A be sdd or idd, and D its diagonal. Then

p(I-D'Ap<1

Proof: Let B=(b;;)=1-D'A. Then

If Ais sdd, thenfori=1...n,

aij
Y Ibl= Y == <1
j=L.n jeTon @i laiil
J#i

Therefore, p(|B]) < 1.
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Theorem on Jacobi matrix IT
If Aisidd, thenfori=1...n,

A
—=<1
lail

alj
Y lbyl= Y 1—l=
j=l..n j=l..n Qii
J#i

A
Z Ib,jlz—r<1foratleastoner
j=l..n larr|

Therefore, p(|B]) <= 1. Assume p(|B]|) = 1. By Perron-Frobenius, 1 is an eigenvalue. As it is in the union of
the Gershgorin disks, for some i,

AA
N=1<—"<1
lai;l

and it must lie on the boundary of this union. By Taussky then one has for all i

A; _1

N=1s—— =
lag;!

which contradicts the idd condition. a
Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a;; >0 and a;; <0 for i # j. Then
p(I-D71A) <1, i.e. the Jacobi method converges.

Proof In this case, |B| =B 0.
Regular splittings
e A=M-N is a regular splitting if

— M is nonsingular
- M~! N are nonnegative, i.e. have nonnegative entries

* Regard the iteration uj,; = M 'Nujy + M~ 1b.
e Wehave I-M'A=M"IN.
Convergence theorem for regular splitting
Theorem: Assume A is nonsingular, A"1 >0, and A = M — N is a regular splitting. Then p(M~1N) < 1.
Proof: Let G = M~ IN. Then A = M(I - G), therefore I — G is nonsingular.
In addition

AT IN=MI-MN)'N=(I-M'N)'MN=(1-6)"'G
By Perron-Frobenius (for general matrices), p(G) is an eigenvalue with a nonnegative eigenvector x. Thus,

p(G)

0<A Nx= x
1-p(G)

Therefore 0 < p(G) < 1.
As I — @G is nonsingular, p(G) < 1. O

Convergence rate comparison

Corollary: p(M~IN) = <= where 7 = p(A~IN).

1+71

. _ PG
Proof: Rearrange 7 = 1= o O

Corollary: Let A =0, A=M;—-N; and A = M2 — Ny be regular splittings. If Nog = N; = 0, then 1 >
p(M51N2) = p(M7'Ny).

Proof: 79 = p(A"1Ny) = p(A"INy) =17, 1+ is strictly increasing.
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M-Matrix definition
Definition Let A be an n x n real matrix. A is called M-Matrix if
(i) a;;=0fori#j
(i) A is nonsingular
(i) A™1=0
Corollary: If A is an M-Matrix, then A™1 >0 © A is irreducible.
Proof: See Varga. O
Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that a;; >0 and a;; <0 for i # j. Then A is an M-Matrix.
Proof:
e Let B=1-D7'A. Then p(B) < 1, therefore I — B is nonsingular.
* We have for £ > 0:
I-B"1=0-B)YI+B+B%+-.-+B")
I-B)y'U-B*YY=U+B+B%+---+B")

The left hand side for & — oo converges to (I —B)~1, therefore

(I-B)y ‘= f B*
k=0

AsB=0,wehave [ -B)"!=A"1D >=0. As D >0 we must have A™1 = 0. a
Application
Let A be an M-Matrix. Assume A=D—-E —F.

e Jacobi method: M =D is nonsingular, M1 > 0. N = E + F nonnegative = convergence

* Gauss-Seidel: M =D - E is an M-Matrix as A < M and M has non-positive off-digonal entries.
N =F = 0. = convergence

* Comparison: Nj = Ngs = Gauss-Seidel converges faster.

* More general: Block Jacobi, Block Gauss Seidel etc.

Intermediate Summary

¢ Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method
convergence:

¢ Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

¢ Check if the matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

¢ Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative
methods converge.



5.2 Iterative methods for diagonally dominant and M-Matrices

62

Example: 1D finite volume matrix:

ui avq
1 2 1

R R R up hfs
-1z _1 u hf:
R R R 3 3
Au = - : =f=
-3+ 2 -4 UN-2 hfN-2
-3 2 - ||uv hfN-1

11
-7 E+a UnN vy

e idd
¢ positive main diagonal entries, nonpositive off-diagonal entries

= A is nonsingular, has the M-property, and we can e.g. apply the Jacobi and Gauss-Seidel iterative method
to solve it.

= for f =0 and v = 0 it follows that u = 0.
= heating and positive environment temperatures cannot lead to negative temperatures in the interior.

Incomplete LU factorizations (ILU)
Idea (Varga, Buleev, 1960):

¢ fix a predefined zero pattern

¢ apply the standard LU factorization method, but calculate only those elements, which do not corre-
spond to the given zero pattern
* Result: incomplete LU factors L, U, remainder R:

A=LU-R
* Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable,
i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?
Comparison of M-Matrices
Theorem(Saad, Th. 1.33): Let A, B n x n matrices such that
(i) A<B
(ii) b;;=0fori#j.
Then, if A is an M-Matrix, so is B.

Proof: For the diagonal parts, one has Dg =Dy >0, D4 — A =Dpg — B =0 Therefore
I-D,'A=>D,'(Dg-B)=D3'(Dp-B)=1-Dz'B=:G=0.

Perron-Frobenius = p(G) = p(I -D3'B) < p(I -D*A) < 1
= I —(@ is nonsingular. From the proof of the M-matrix criterion, Dl’ng =I-G)1= Xt G*=0. AsDg >0,
we get B = 0.

a
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M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix A; obtained from the first step of
Gaussian elimination is an M-matrix.

3 1 _ .. i1
Proof: One has a4 =Qij= g
aij,ai1,a1;<0,a11>0
3a}j50fori;ﬁj

1 0
—ai2 1

a1

A=L1{A{withL{= nonsingular, nonnegative

= o o o

—Q1in
. ail
= A1 nonsingular

1

Let eq...e, be the unit vectors. Then AIlel = ﬁel =0. For j>1, AIlej =A_1L_1ej =A""¢e;=0.

= AIl =0
O
Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU
factorization with a given nonzero pattern

A=LU-R

is stable. Moreover, A = LU — R is a regular splitting.
Stability of ILU decomposition II
Proof

Let A; = A1+R; =L1A+R; where R is a nonnegative matrix which occurs from dropping some off diagonal
entries from A;. Thus, A; = A; and A; is an M-matrix. We can repeat this recursively

Ak =A,+Rp=L,A,_1+R;
=LpLp-1Ar-2+LpRp-1+R;
=LiLp_q-... -L1A +LyLp_1-...-LoR1+---+ Ry,

Let L=(Lp_1-...-L1)"L,U=A4,_1. Then U =L"1A + S with
S =Ln_1Ln_2‘ 'L2R1 +"‘+Rn_1 =Ln_1Ln_2' 'L2(R1 +R2+...Rn_1)

Let R=R1+Ry+...R,_1, then A =LU — R where U"'L™1, R are nonnegative.
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ILU(0)

Special case of ILU: ignore any fill-in.
Representation:

M=D-E)DYD-F)

D is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete
factorization algorithm.

Setup:

for(int i=0;i<n;i++)

d(i)=a(i,i)

for(int i=0;i<n;i++)

{

d(i)=1.0/d(i)
for (int j=i+1;j<m;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,1)

}
ILU(0)
Solve Mu =v
for(int i=0;i<n;i++)
{
double x=0.0;
for (int j=0;j<i;i++)
x=x+a(i, j)*u(j)
u(i)=d(i)*(v(i)-x)
}
for(int i=n-1;i>=0;i--)
{
double x=0.0
for(int j=i+1;j<n;j++)
x=x+a(d, j)*u(j)
u(i)=u(i)-d(i)*x
}
ILU(0)
* Generally better convergence properties than Jacobi, Gauss-Seidel
* One can develop block variants
¢ Alternatives:
- ILUM: (“modified”): add ignored off-diagonal entries to D
— ILUT: zero pattern calculated dynamically based on drop tolerance
¢ Dependence on ordering
¢ Can be parallelized using graph coloring
* Not much theory: experiment for particular systems
¢ I recommend it as the default initial guess for a sensible preconditioner
¢ Incomplete Cholesky: symmetric variant of ILU
5.3. Orthogonalization methods

Generalization of iteration schemes

Simple iterations converge slowly

For most practical purposes, Krylov subspace methods are used.

We will introduce one special case and give hints on practically useful more general cases

Material after J. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”“


http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Solution of SPD system as a minimization procedure

Regard Au = f ,where A is symmetric, positive definite. Then it defines a bilinear form a : R" x R* — R
n n
a(u,v)=(Au,v)= vTAu= Z Z a;jU;U;
i=1;=1

As A is SPD, for all u # 0 we have (Au,u) > 0.

For a given vector b, regard the function

fw = %a(u,u)—bTu

What is the minimizer of f ?

flw)y=Au-b=0

* Solution of SPD system = minimization of f.
Method of steepest descent

¢ Given some vector u;, look for a new iterate u;,1.

The direction of steepest descend is given by —f'(u;).

* So look for u;,1 in the direction of —f'(u;) = r; = b — Au; such that it minimizes f in this direction,
i.e. set u; 1 =u; +ar; with a choosen from

0= if(u,- +ar))=f'(u;+ar;)r;
da

=(b-A(u; +ar;),r;)
=(Mb-Au;,ri)—alAr;i,r;)
=(ri,ry)—alAri,r;)

_ (ry,ry)

@= (Ar;,r;)
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Method of steepest descent: iteration scheme

ri=b-Au;
o= (ri,ri)
" (Ar,r)

Uiv1 =u; +a;r;

Let @ the exact solution. Define e; =u; — i, then r; = —Ae;
Let ||lullg = (Au,u)% be the energy norm wrt. A.

Theorem The convergence rate of the method is

i
K
lleilla = (m) [leolla

is the spectral condition number.

_ Amax(4)
where x = y vy

Method of steepest descent: advantages

¢ Simple Richardson iteration uy.1 = up —a(Auy — ) needs good eigenvalue estimate to be optimal with

— 2
a= Amax+Amin
* In this case, asymptotic convergence rate is p = z—;%

¢ Steepest descent has the same rate without need for spectral estimate
Conjugate directions

For steepest descent, there is no guarantee that a search direction d; = r; = —Ae; is not used several times.
If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let do,d1...dn-1 be a series of A-orthogonal (or conjugate) search directions, i.e. (Ad;,d;)=0,i# j.

® Look for u;,1 in the direction of d; such that it minimizes f in this direction, i.e. set u;+1 = u; + a;d;
with a choosen from

0= if(ui tad;))=f"(u;+ad;)-d;
da

=(b-A(u; +ad;),d;)

=(b-Au;,d;)-a(Ad;,d;)

=(ri,di)—a(Ad;,d;)
(ri,d;)

" (Ad;,dy)

@i
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Conjugate directions II
eg =ug—u (such that Aeg = —rg) can be represented in the basis of the search directions:

n-1

ep= Z 5jdj
1=0

Projecting onto dj, in the A scalar product gives

n—-1

(Aeg,d)=)_ 6;(Ad;,dy)

i=0
=6,(Ady,dy)
_ (Aeo,dk) _ (Ae() +Zi<k aidi,dk) _ (Aek,dk)
 (Adg,dp) (Ady,dg)  (Adg,dp)
_ (rg,dp)
" (Ady,dp)

O

Conjugate directions IIT

Then,
i-1 n-1 i-1
e;=ep+ Zajde— Z ajdj+ Zajdj
J=0 J=0 J=0
n-1
=-2 a;d;
J=i

So, the iteration consists in component-wise suppression of the error, and it must converge after n steps. Let
k <i. A-projection on dj, gives
n—-1
(Aei,dk) = - Z ocj(Adj,dk) =0

J=i
Therefore, r; = Ae; is orthogonal to dg...d;_1.
Conjugate directions IV

Looking at the error norm ||e;||4, the method yields the element with the minimum energy norm from all
elements of the affine space eg + %; where %; = span{dg,d...d;-1}

n-1 n-1 n-1n-1
(Aej,e) = (Z 8idj, 5jdj) = 2 8;6k(d),dp)
Jj=i =i =i k=i

n—-1
=Y 6%d;,d;)= min |le
jz,:i jI\& & e€e0+¢]fi|| ||A

Furthermore, we have
Uil = Ui +a;d;
eiv1=e;+a;d;
Ae;j1=Ae;+a;Ad;

riv1=r;—a;Ad;

By what magic we can obtain these d;?
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Gram-Schmidt Orthogonalization
¢ Assume we have been given some linearly independent vectors vg,vy1...v,-1.
e Set dg=vyp
¢ Define

i-1
di=vi+ ) Birde
k=0
e For j < i, A-project onto d; and require orthogonality:

i-1
(Ad;,dj)=(Av;,dj)+ Y Bir(Ady,dj)
k=0
0=(Av;,d;)+p;j(Adj,d))

o (Avlyd])
Fij = (Adj,dj)

¢ Ifv; are the coordinate unit vectors, this is Gaussian elimination!
e Ifuv; are arbitrary, they all must be kept in the memory
Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d; from d;, j <i, we can choose v; =r;, i.e. the residuals built up during the
conjugate direction process.

Let %; =span{dg...d;-1}. Then, r; L %;

But d; are built by Gram-Schmidt from the residuals, so we also have %; = span{rg...r;_1} and (r;,r;) =0
for j <1i.

Fromr; =r;_1—a;_1Ad;_1 we obtain

K = Ki—1Uspan{Ad;_1}

This gives two other representations of %;:

H; = spanidg,Ady,A%dy,...,A" " do}

i-1

=span{r0,Ar0,A2r0,...,A ro}

Such type of subspace of R” is called Krylov subspace, and orthogonalization methods are more often called
Krylov subspace methods.
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Conjugate gradients I1

Look at Gram-Schmidt under these conditions. The essential data are (setting v; = r; and using j < i)
o (Ari,dj) _ (Adj,ri)
Pij=~@a,d) = ~@d;d)

Then, for j <i:
rj+1= rj—ajAdj
(rjr1,ri)=(rj,ri)—a;(Ad;,r;)

aj(Adj,r))=(rj,ri)—(rj1,r;)

—a i, jrl=i (=G, j+l=i
Adjrd=q g0y, =i ={g0or),  j=i
0, else 0, else

For j<i:

1 (ri,ri) . .
ﬁij: Em’ .]+1—l
0, else

Conjugate gradients III
For Gram-Schmidt we defined (replacing v; by r;):

i-1
di=ri+ ) Pirde
k=0
=ri+Bii-1d;1
So, the new orthogonal direction depends only on the previous orthogonal direction and the current residual.
We don’t have to store old residuals or search directions. In the sequel, set §; :== f; ;1.
We have
di-1=ri-1+pfi-1d;-2

di-1,ri-1)=(ri-1,ri-D+Bi-1(d;i—2,ri-1)

=(ri-1,7i-1)
o 1 (ri,ri) B (ri,ri)
hi= ai-1(Adi-1,di-1)  (di-1,ri-1)
(ri,ry)

(ri-1,7i-1)
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Conjugate gradients IV - The algorithm

Given initial value ug, spd matrix A, right hand side b.

do=ro=b—-Auy
= (ri,ri)
(Ad;,d;)
Uiv1=ui+a;d;
ris1=ri-a;Ad;
Bis1 = (ri+1,7i+1)
(ri,ri)

div1=ri+1+Piv1d;
At the i-th step, the algorithm yields the element from eg + #; with the minimum energy error.

Theorem The convergence rate of the method is

-1 i
) lleolla

K
eilla<2
lleilla (\/1?+1

where x = M is the spectral condition number.
Amm(A)

Preconditioning
Let M be spd, and spectrally equivalent to A, and assume that k(M ~1A) << k(A).
Let E be such that M = EET, e.g. its Cholesky factorization. Then, o(M~1A) = o(E"1AE"T):
Assume M~ 1Au = Au. We have

EAE TYETW) =ETETHE ' Au=ETM 'Au=2ETu

< ETu is an eigenvector of E"1AE~T with eigenvalue A.
Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system
E'AETz=E'

witha =ETu

_ (7, 7i)
(E_IAE_T(;Z,',EZL')
fijv1 =8 +a;d;
Fiv1=7;— a’iE_lAE_T&i
(Fi+1,7i+1)
ﬁi+1 = —(fi,fi)

dit1=Fip1+Bind;

i

Not very practical as we need E
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Preconditioned CG II

Assume 7; =E~1r;, d; =ETd;, we get the equivalent algorithm

ro=b-Auyg

do=M"rg

o= M riri)
(Ad;,d;)

Uil = Ui+ a;d;
ris1=ri—a;Ad;

-1

Bios = (M~ riv1,7i41)

1=
(ri,rq)

-1
div1=M""riy1+Bi1d;

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the
calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However during the iteration, floating
point errors occur which distort the calculations and lead to the fact that the accumulated residuals

riv1=r;—a;Ad;

give a much more optimistic picture on the state of the iteration than the real residual

ris1=b—-Au;y

C++ implementation

template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix %A, Vector &x, const Vector &b,
const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;
Vector p, z, q;
Vector alpha(1), beta(1), rho(1), rho_1(1);
Real normb = norm(b);
Vector r =
if (normb 0.0)  normb = 1;
if ((resid = norm(r) / mormb) <= tol) {
tol = resid;

max_iter = 0;
return 0;
¥
for (dnt i = 1; i <= max_iter; i++) {
z = M.solve(r);
rho(0) = dot(r, 2);
if (i == 1)
P =z
else {
beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;
¥
q = A*p;
alpha(0) = rho(0) / dot(p, Q);
x += alpha(0) * p;
r -= alpha(0) * q;
if ((resid = norm(r) / normb) <= tol) {
tol = resid;
max_iter = i;
return 0;
rho_1(0) = rho(0);
}

tol = resid; return 1;

}
C++ implementation 11

¢ Available from http:/www.netlib.org/templates/cpp//cg.h
¢ Slightly adapted for numcxx
¢ Available in numxx in the namespace netlib.
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Unsymmetric problems

¢ By definition, CG is only applicable to symmetric problems.
¢ The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xg, perform

ro=b-Axo Fo=b—%gAT
Po=To Po="ro
;= (Fi,73)
(Pi,Apy)
Xi+1 =% +aipj Riv1=%itaip;
ri+1=r;—a;Ap; Fia1=Fi—a;p; AT
Bi = (Fi+1,7i+1)
(i)
Pi+1=rit1+Bipi Div1="Fir1+Bibi

The two sequences produced by the algorithm are biorthogonal, i.e., (5;,Ap;) = (#;,r;) =0 for i # ;.

Unsymmetric problems II

¢ BiCG is very unstable and additionally needs the transposed matrix vector product, it is seldomly
used in practice
¢ There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
¢ Main practical approaches to fix the situation:
- “Stabilize” BiCG — BiCGstab (H. Van der Vorst, 1992)
- tweak CG — “Conjugate gradients squared” (CGS, Sonneveld, 1989)
— Error minimization in Krylov subspace — “Generalized Minimum Residual” (GMRES,
Saad/Schulz, 1986)
¢ Both CGS and BiCGstab can show rather erratic convergence behavior
¢ For GMRES one has to keep the full Krylov subspace, which is not possible in practice = restart
strategy.
¢ From my experience, BiCGstab is a good first guess
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6. Mesh generation

Meshes
Regard boundary value problems for PDEs in a finite domain Q c R®

Assume the domain is polygonal, its boundary 0Q) is the union of a finite number of subsets of
hyperplanes in R” (line segments for d = 2, planar polygons for d = 3)

A mesh (grid) is a subdivision  into a finite number of elementary closed (polygonal) subsets T'...Ty.
Mostly, the elementary shapes are triangles or quadrilaterals (d = 2) or tetrahedra or cuboids (d = 3)

During this course: focus on d = 2, triangles
= mesh = grid = triangulation

(FEM)-Admissible meshes

Definition: A grid is FEM-admissible if

N O — M
(i Q=u_ T,

(ii) If T, n T}, consists of exactly one point, then this point is a common vertex of T}, and T',.

@iii) If for m #n, T\, N T, consists of more than one point, then T',, N T}, is a common edge (or a common

facet ford =3) of Ty, and T,.

Source: Braess, FEM

Left: admissible mesh. Right: mesh with hanging nodes

Acute + weakly acute triangulations

Definition A triangulation of a domain ( is

acute, if all interior angles of all triangles are less than g,
weakly acute, if all interior angles of all triangles are less than or equal to 3.
Triangulation methods
Geometrically most flexible
Basis als for more general methods of subdivision into quadrilaterals
Problem seems to be simple only at the first glance ...

Here, we will discuss Delaunay triangulations, which have a number of interestin properties when it
comes to PDE discretizations

Voronoi diagrams

Definition Let p,q € RZ, The set of points Hpq = {x eRY: [Ix—pll < ||x—q||} is the half space of points x
closer to p than to q.

Definition Given a finite set of points S c R, the Voronoi region (Voronoi cell) of a point p € S is the set of
points x closer to p than to any other point q € S:

VPZ{XERd:HX—p“S |Ix—qI|Vq€S}

The Voronoi diagram of S is the collection of the Voronoi regions of the points of S.
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Voronoi diagrams II
¢ the Voronoi diagram subdivides the whole space into “nearest neigbor” regions

* Being intersections of half planes, the Voronoi regions are convex sets

Voronoi diagram of 8 points in the plane

(H. Si)

Delaunay triangulation

¢ Assume that the points of S are in general position, i.e. no d + 2 points of S are on one sphere (in 2D:
no 4 points on one circle)

¢ Connect each pair of points whose Voronoi regions share a common edge with a line

* = Delaunay triangulation of the convex hull of S

Delaunay triangulation of the convex hull
~~  of 8 points in the plane

(H. Si)

Delaunay triangulation I1

* The circumsphere (circumcircle in 2D) of a d-dimensional simplex is the unique sphere containing all
vertices of the simplex

¢ The circumball (circumdisc in 2D) of a simplex is the unique (open) ball which has the circumsphere of
the simplex as boundary

Definition A triangulation of the convex hull of a point set S has the Delaunay property if each simplex
(triangle) of the triangulation is Delaunay, i.e. it is empty wrt. S, i.e. it does not contain any points of S.

* The Delaunay triangulation of a point set S, where all points are in general position is unique

¢ Otherwise there is an ambiguity - if e.g. 4 points are one circle, there are two ways to connect them
resulting in Delaunay triangles
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Edge flips and locally Delaunay edges (2D only)

For any two triangles abe and adb sharing a common edge ab, there is the edge flip operation which
reconnects the points in such a way that two new triangles emerge: adc and cdb.

An edge of a triangulation is locally Delaunay if it either belongs to exactly one triangle, or if it belongs
to two triangles, and that their respective circumdisks do not contain the pointe opposite wrt. the edge

If an edge is locally Delaunay and belongs to two triangles, the sum of the angles opposite to this edge
is less or equal to 7.

If all edges of a triangulation of the convex hull of S are locally Delaunay, then the triangulation is
the Delaunay triangulation

If an edge is not locally Delaunay and belongs to two triangles, the edge emerging from the corre-
sponding edge flip will be locally Delaunay

Edge flip algorithm (Lawson)

Input: A stack L of edges of a given triangulation of S;
while L # ¢ do

pop an edge ab from L;

if ab is not locally Delaunay then

flip ab to cd;
push edges ac,cb,db,da onto L;
end
end

This algorithm is known to terminate. After termination, all edges will be locally Delaunay, so the
output is the Delaunay triangulation of S.

Among all triangulations of a finite point set S, the Delaunay triangulation maximises the minimum
angle

All triangulations of S are connected via a flip graph
Radomized incremental flip algorithm (2D only)

Create Delaunay triangulation of point set S by inserting points one after another, and creating the
Delaunay triangulation of the emerging subset of S using the flip algorithm

Estimated complexity: O(nlogn)

In 3D, there is no simple flip algorithm, generalizations are active research subject
Triangulations of finite domains

So far, we discussed triangulations of point sets, but in practice, we need triangulations of domains

Create Delaunay triangulation of point set, “Intersect” with domain
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Boundary conforming Delaunay triangulations

Definition: An admissible triangulation of a polygonal Domain Q c R? has the boundary conforming
Delaunay property if

(i) All simplices are Delaunay

(i) All boundary simplices (edges in 2D, facets in 3d) have the Gabriel property, i.e. their minimal
circumdisks are empty

¢ Equivalent definition in 2D: sum of angles opposite to interior edges < 7, angle opposite to boundary
edge < 3

* Creation of boundary conforming Delaunay triangulation description may involve insertion of Steiner
points at the boundary

Delaunay grid of Q Boundary conforming Delaunay grid of Q
Domain blendend Voronoi cells

¢ For Boundary conforming Delaunay triangulations, the intersection of the Voronoi diagram with the
domain yields a well defined dual subdivision whic